# 57. Singular Hadamard's Variation of Domains and Eigenvalues of the Laplacian. II 

By Shin Ozawa<br>Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1981)
§ 1. This paper is a continuation of our previous note [2]. Let $\Omega$ be a bounded domain in $\mathrm{R}^{n}$ with $\mathcal{C}^{3}$ boundary $\gamma$ and $w$ be a fixed point in $\Omega$. For any sufficiently small $\varepsilon>0$, let $B_{s}$ be the ball defined by $B_{\varepsilon}$ $=\{z \in \Omega ;|z-w|<\varepsilon\}$. Let $\Omega_{\varepsilon}$ be the bounded domain defined by $\Omega_{\varepsilon}$ $=\Omega \backslash \bar{B}_{\mathrm{c}}$. Then the boundary of $\Omega_{\mathrm{c}}$ consists of $\gamma$ and $\partial B_{\mathrm{c}}$. Let $0>\mu_{1}(\varepsilon)$ $>\mu_{2}(\varepsilon)>\cdots$ be the eigenvalues of the Laplacian with the Dirichlet condition on $\partial \Omega_{c}$. We arrange them repeatedly according to their multiplicities. In [2], [3] we gave the asymptotic formulas for the $j$-th eigenvalue $\mu_{j}(\varepsilon)$ when $\varepsilon \searrow 0$ in case $n=2,3$. In this note we treat the case $n=4$. We have the following

Theorem 1. Assume $n=4$. Fix $j$. Suppose that the $j$-th eigenvalue $\mu_{j}$ of the Laplacian with the Dirichlet condition on $\gamma$ is a simple eigenvalue, then

$$
\begin{equation*}
\mu_{j}(\varepsilon)-\mu_{j}=-2 \mathcal{S}_{4} \varepsilon^{2} \varphi_{j}(w)^{2}+O\left(\varepsilon^{5 / 2}\right) \tag{1.1}
\end{equation*}
$$

holds when $\varepsilon$ tends to zero. Here $\varphi_{j}$ denotes the eigenfunction of the Laplacian with the Dirichlet condition on $\gamma$ satisfying

$$
\int_{\Omega} \varphi_{j}(x)^{2} d x=1
$$

Here $\mathcal{S}_{4}$ denotes the area of the unit sphere in $\mathrm{R}^{4}$.
Our aim of this note is to offer a rough sketch of the proof of the above theorem. Calculation and technique which are used to prove Theorem 1 are more elaborate than in case $n=2$ and 3. $\quad L^{p}(1<p<\infty)$ spaces are used in this note. We employed only $L^{2}$ spaces in case $n=2,3$.

We review a generalization of the Schiffer-Spencer formula. See [6]. Also see [3]. In the following we assume $n=4$. Let $G(x, y)$ be the Green's function on $\Omega$. Put

$$
\omega_{\varepsilon}=\left\{x \in \Omega ; G(x, w)<\left(2 \mathcal{S}_{4} \varepsilon^{2}\right)^{-1}\right\}
$$

and $\beta_{s}=\Omega \backslash \bar{\omega}_{c}$. Let $G_{s}(x, y)$ be the Green's function in $\omega_{c}$.
Variational formula for the Green's function [3]. Fix $x, y$ $\in \Omega \backslash\{w\}$ such that $x \neq y$. Then

$$
\begin{equation*}
G_{\epsilon}(x, y)=G(x, y)-2 \mathcal{S}_{4} \varepsilon^{2} G(x, w) G(y, w)+O\left(\varepsilon^{3}\right) \tag{1.2}
\end{equation*}
$$

holds when $\varepsilon$ tends to zero. The remainder term is not uniform with respect to $x, y$.

To prove Theorem 1 we use the iterated kernel $G_{\varepsilon}^{(2)}$ (resp. $G^{(2)}$ ) of
$G_{\epsilon}(x, y)($ resp. $G(x, y))$ and a variational formula for $G_{s}^{(2)}(x, y)$. See § 2. It should be remarked that in case $n=2,3$ only $G_{c}, G$ were used. See [3].

There are many related papers and topics. For example, see"[1], [2], [4], [5] and [7]. Details and a further generalization of this note will be given elsewhere.
$\S$ 2. Outline of proof of Theorem 1. Since $G(x, w)-\left(2 \mathcal{S}_{4} \mid x\right.$ $\left.-\left.w\right|^{2}\right)^{-1}$ is bounded when $x$ tends to $w$, we see there exists $C>0$ such that

$$
\omega_{\varepsilon+C_{8}} \subset \Omega_{\varepsilon} \subset \omega_{\varepsilon-C_{6}}
$$

holds for any small $\varepsilon>0$. Since the eigenvalues of the Laplacian with the Dirichlet condition depend monotonically on the domain, we can easily deduce Theorem 1 from the following

Proposition 1. Assume $n=4$. Let $0>\tilde{\mu}_{1}(\varepsilon)>\cdots \geq \tilde{\mu}_{j}(\varepsilon) \geq \cdots$ be the eigenvalues of the Laplacian with the Dirichlet condition on $\partial \omega_{c}$. We arrange them repeatedly according to their multiplicities. Fix $j$. If $\mu_{j}$ is a simple eigenvalue then

$$
\begin{equation*}
\tilde{\mu}_{j}(\varepsilon)-\mu_{j}=-2 \mathcal{S}_{4} \varepsilon^{2} \varphi_{j}(w)^{2}+O\left(\varepsilon^{5 / 2}\right) \tag{2.1}
\end{equation*}
$$

holds when $\varepsilon$ tends to zero.
We introduce various operators. For $\varepsilon>0$, let $G_{\varepsilon}^{(2)}(x, y)$ be the kernel of the operator $G_{\varepsilon}^{2}$ defined by

$$
\begin{equation*}
\left(G_{\varepsilon}^{2} g\right)(x)=\int_{\omega_{e}} G_{e}^{(2)}(x, y) g(y) d y \quad x \in \omega_{\varepsilon} . \tag{2.2}
\end{equation*}
$$

Let $G$ (resp. $G^{2}$ ) be the Green operator (resp. its iterated operator) given by

$$
\begin{equation*}
(G f)(x)=\int_{\Omega} G(x, y) f(y) d y \tag{2.3}
\end{equation*}
$$

$\left(\right.$ resp. $\left.\left(G^{2} f\right)(x)=\int_{\Omega} G^{(2)}(x, y) f(y) d y\right)$.
To get Proposition 1 we compare the eigenvalues of $G_{s}^{2}$ and $G^{2}$.
To interpolate $G_{c}^{2}$ and $G^{2}$ we introduce two operators $H_{c}$ with of $\tilde{H}_{\text {e }}$ given by the following :

$$
\left(H_{\varepsilon} g\right)(x)=\int_{\omega_{s}} h_{s}(x, y) g(y) d y
$$

where

$$
h_{\mathrm{f}}(x, y)=G^{(2)}(x, y)-2 \mathcal{S}_{4} \varepsilon^{2}\left(G^{(2)}(x, w) G(y, w)+G(x, w) G^{(2)}(y, w)\right)
$$

for $x, y \in \omega_{c}$.

$$
\left(\tilde{H}_{\varepsilon} f\right)(x)=\int_{\Omega} \tilde{h}_{\varepsilon}(x, y) f(y) d y
$$

where

$$
\begin{aligned}
\tilde{h}_{s}(x, y)= & G^{(2)}(x, y)-2 \mathcal{S}_{4} \varepsilon^{2}\left(G^{(2)}(x, w) G(y, w) \hat{\Psi}_{\epsilon}(y)\right. \\
& \left.+\hat{\Psi}_{s}(x) G(x, w) G^{(2)}(y, w)\right)
\end{aligned}
$$

for $x, y \in \Omega$. Here $\hat{\Psi}_{\epsilon} \in \mathcal{C}^{\infty}\left(\mathrm{R}^{4}\right)$ is defined as $\hat{\Psi}_{\epsilon}(x)=1$ on $|x-w| \geq \varepsilon / 2$ and $\hat{\Psi}_{c}(x)=0$ on $|x-w| \leq \varepsilon / 4$.

We give the following
Theorem 2.

$$
\left\|G_{\varepsilon}^{2}-H_{\varepsilon}\right\|_{L^{2}\left(\omega_{\varepsilon}\right)} \leq C \varepsilon^{5 / 2}
$$

for some constant $C$ independent of $\varepsilon>0$.
Our proof of Theorem 2 is rather involved, thus we put off its sketch untill § 3.

We study $\tilde{H}_{c}$. We have the following
Proposition 2. For any fixed $\varepsilon>0, \tilde{H}_{\varepsilon}$ is a compact selfadjoint operator in $L^{2}(\Omega)$.

It should be remarked that the perturbation family $\varepsilon \mapsto \tilde{H}_{\varepsilon}$ is not an analytic family of selfadjoint operators, thus some techniques are necessary to study eigenvalues of $\tilde{H}_{\varepsilon}$. Let $\lambda_{j}$ be a simple eigenvalue of G. We construct an approximate eigenvalue of $\tilde{H}_{6}$ which tends to $\lambda_{j}^{2}$ when $\varepsilon \searrow 0$. We solve the following equation for $\tilde{\varphi}_{c}$.

$$
\begin{align*}
\left(G^{2}-\lambda_{j}^{2}\right) \tilde{\varphi}_{c}(x)= & -2 \lambda_{j}^{2} \varphi(w) \varphi(x)\left(G\left(\hat{\Psi}_{c} \cdot \varphi\right)\right)(w)  \tag{2.4}\\
& +G^{(2)}(x, w)\left(G\left(\hat{\Psi}_{c} \cdot \varphi\right)\right)(w)+\lambda_{j}^{2} G(x, w) \hat{\Psi}_{c}(x) \varphi(w) .
\end{align*}
$$

Here $\varphi$ denotes the eigenfunction of the Laplacian associated with $\lambda_{j}$ and satisfying $\|\varphi\|_{L^{2}(\Omega)}=1$. The above equation is solvable since the right-side of (2.4) is orthogonal to the kernel space spanned by $\varphi$ and $G^{2}-\lambda_{j}^{2}$ is the Fredholm operator. We have the following

Lemma 1. Put $r(\varepsilon)=2 \mathcal{S}_{4} \varepsilon^{2}\left(G\left(\hat{\Psi}_{i} \cdot \varphi\right)\right)(w)$, then

$$
\begin{align*}
\left(\tilde{H}_{s}-\right. & \left.\left(\lambda_{j}^{2}-2 \lambda_{j}^{2} r(\varepsilon)\right)\right)\left(\varphi+2 \mathcal{S}_{4} \varepsilon^{2} \tilde{\varphi}_{e}^{0}\right)  \tag{2.5}\\
= & -4 S_{4}^{2} \varepsilon^{4}\left(G^{(2)}(x, w)\left(G\left(\hat{\Psi}_{c} \cdot \varphi\right)\right)(w)+G(x, w) \hat{\Psi}_{c}(x)\left(G^{2} \tilde{\varphi}_{s}^{0}\right)(w)\right. \\
& \left.-2 \lambda_{j}^{2} \varphi(w) \tilde{\varphi}_{c}^{0}(x)\left(G\left(\hat{\Psi}_{c} \cdot \varphi\right)\right)(w)\right),
\end{align*}
$$

where $\tilde{\varphi}_{c}^{0}$ is the unique solution of (2.4) orthogonal to $\varphi$.
From (2.4) we easily get

$$
\begin{equation*}
\left\|\tilde{\varphi}_{e}^{0}\right\|_{L^{2}(\Omega)} \leq C|\log \varepsilon|^{1 / 2} \tag{2.6}
\end{equation*}
$$

for some constant $C$ independent of $\varepsilon>0$. By Lemma 1 and (2.6) we have the following

Lemma 2. $L^{2}(\Omega)$-norm of the left-side of (2.5) does not exceed $C \varepsilon^{4}|\log \varepsilon| . \quad$ And $\left\|\varphi+2 \mathcal{S}_{4} \varepsilon^{2} \tilde{\varphi}_{\varepsilon}^{0}\right\|_{L^{2}(\Omega)} \geq 1$.

From Lemma 2 we can deduce the existence result for an approximate eigenvalue. We get the following

Proposition 3. There exists at least one eigenvalue $\tilde{\lambda}_{j}^{(2)}(\varepsilon)$ of $\tilde{H}_{\text {c }}$ satisfying

$$
\tilde{\lambda}_{j}^{(2)}(\varepsilon)=\lambda_{j}^{2}-2 \lambda_{j}^{3}\left(2 S_{4}\right) \varepsilon^{2} \varphi(w)^{2}+O\left(\varepsilon^{4}|\log \varepsilon|\right)
$$

We compare $\tilde{H}_{e}$ with $H_{s}$. Let $\psi_{s}$ be the eigenfunction of $\tilde{H}_{c}$ with respect to $\tilde{\lambda}_{j}^{(2)}(\varepsilon)$. Assume $\left\|\psi_{s}\right\|_{L^{2}(\Omega)}=1$. We put $\psi_{\varepsilon, 1}=\chi_{c} \psi_{\epsilon}, \psi_{\epsilon, 2}=\left(1-\chi_{s}\right) \psi_{c}$ where $\chi_{c}$ is the characteristic function of $\omega_{c}$. Then these equations are equivalent to the following equations:

$$
\begin{equation*}
\left(H_{\varepsilon}-\tilde{\lambda}_{j}^{(2)}(\varepsilon)\right) \psi_{\varepsilon, 1}(x)=\int_{\beta_{\varepsilon}} \tilde{h}_{\varepsilon}(x, y) \psi_{\varepsilon, 2}(y) d y \quad x \in \omega_{e} \tag{2.7}
\end{equation*}
$$

$$
\begin{gather*}
\int_{\omega_{\varepsilon}} \tilde{h}_{\varepsilon}(x, y) \psi_{\varepsilon, 1}(y) d y+\int_{\beta_{\varepsilon}} \tilde{h}_{\varepsilon}(x, y) \psi_{\varepsilon, 2}(y) d y=\tilde{\lambda}_{j}^{(2)}(\varepsilon) \psi_{\varepsilon, 2} \quad x \in \beta_{\varepsilon}  \tag{2.8}\\
\left\|\psi_{\varepsilon, 1}\right\|_{L^{2}\left(\omega_{\varepsilon}\right)}^{2}+\left\|\psi_{\varepsilon, 2}\right\|_{L^{2}\left(\beta_{\varepsilon}\right)}^{2}=1 . \tag{2.9}
\end{gather*}
$$

By (2.7) and arguments from which we deduce Theorem 2 we have

$$
\left\|\left(H_{s}-\tilde{\lambda}_{j}^{(2)}(\varepsilon)\right) \psi_{\varepsilon, 1}\right\|_{L^{2}\left(\omega_{\varepsilon}\right)} \leq C \varepsilon^{4 / p}\left\|\psi_{\varepsilon, 2}\right\|_{L^{p^{\prime}\left(\beta_{\varepsilon}\right)}}
$$

for any fixed $p$ satisfying $1<p<2$. Here $p^{\prime}$ is the conjugate number of $p$. On the other hand we get from (2.8)

$$
\left\|\psi_{\varepsilon, 2}\right\|_{L^{p^{\prime}}\left(\beta_{\varepsilon}\right)} \leq C \varepsilon^{4 / p^{\prime}}
$$

for $2<p^{\prime}<\infty$, and

$$
\left\|\psi_{\varepsilon, 2}\right\|_{L^{2}\left(\beta_{\varepsilon}\right)} \leq C \varepsilon^{2} .
$$

Summing up these facts we have the following
Proposition 4. There exists a constant $C$ independent of $\varepsilon$ such that

$$
\left\|\left(H_{\varepsilon}-\tilde{\lambda}_{j}^{(2)}(\varepsilon)\right) \psi_{\varepsilon, 1}\right\|_{L^{2}\left(\omega_{\varepsilon}\right)} \leq C \varepsilon^{4}
$$

and

$$
\left\|\psi_{\varepsilon, 1}\right\|_{L^{2}\left(\omega_{\varepsilon}\right)} \geq 1 / 2
$$

hold.
Thus we get the following
Proposition 5. There exists at least one eigenvalue $\lambda_{*}^{(2)}(\varepsilon)$ of $H_{\varepsilon}$ satisfying $\lambda_{*}^{(2)}(\varepsilon)=\lambda_{j}^{2}-2 \lambda_{j}^{3}\left(2 \mathcal{S}_{4}\right) \varepsilon^{2} \varphi(w)^{2}+O\left(\varepsilon^{4}|\log \varepsilon|\right)$.

Now we prove Proposition 1. Let $\lambda_{j}$ be as above. Then the following is known. See [5], [3].

Lemma 3. Let $V$ be a sufficiently small fixed neighbourhood of $\lambda_{j}$. Then there exists $\varepsilon_{0}>0$ such that only one simple eigenvalue $\lambda_{j}(\varepsilon)$ of $G_{\varepsilon}$ is in $V$ for any fixed $\varepsilon$ satisfying $\varepsilon_{0}>\varepsilon>0$. Moreover $\lim _{\varepsilon \rightarrow 0} \lambda_{j}(\varepsilon)$ $=\lambda_{j}$.

From Theorem 3, Proposition 4 and Lemma 3 we get

$$
\lambda_{*}^{(2)}(\varepsilon)-\left(\lambda_{j}(\varepsilon)\right)^{2}=O\left(\varepsilon^{5 / 2}\right)
$$

and

$$
\lambda_{j}(\varepsilon)^{2}=\lambda_{j}^{2}-2 \lambda_{j}^{3}\left(2 \mathcal{S}_{4}\right) \varepsilon^{2} \varphi_{j}(w)^{2}+O\left(\varepsilon^{5 / 2}\right) .
$$

Then we have Proposition 1.
§3. Rough sketch of a proof of Theorem 2. We need two Lemmas.

Lemma 4. If $u_{\text {e }}$ satisfies

$$
\left\{\begin{aligned}
\Delta u_{s}=0 & \text { in } \omega_{\varepsilon} \\
\left.u_{\epsilon}\right|_{\partial \Omega}=0, & \left|u_{\varepsilon}\right|_{\partial_{\varepsilon}} \mid \leq H(\varepsilon)
\end{aligned}\right.
$$

then $|u| \leq C H(\varepsilon) \varepsilon^{2}|x-w|^{-2}$ for $x \in \omega_{\varepsilon}$. $\quad C$ is a constant independent of $\varepsilon$.
Lemma 5. If $u_{s}$ satisfies

$$
\begin{cases}\Delta^{2} u_{s}=0 & \text { in } \omega_{\varepsilon} \\ \left.u_{\varepsilon}\right|_{\partial \Omega}=\left.\Delta u_{\varepsilon}\right|_{\partial \Omega}=0 & \\ \left|u_{\varepsilon}\right|_{\partial_{\varepsilon}} \mid \leq M(\varepsilon), & \left|\Delta u_{\varepsilon}\right|_{\partial \beta_{\varepsilon}} \mid \leq N(\varepsilon)\end{cases}
$$

then

$$
\left\|u_{\epsilon}\right\|_{L^{8 / 3}\left(\omega_{\varepsilon}\right)} \leq C\left(N(\varepsilon) \varepsilon^{2}+M(\varepsilon) \varepsilon^{3 / 2}\right)
$$

holds for some constant $C$ independent of $\varepsilon$.
Sketch of proof of Theorem 2. Fix $f \in \mathrm{C}_{0}^{\infty}\left(\omega_{\mathrm{c}}\right)$. And we put $u_{\mathrm{s}}$ $=\left(G_{\varepsilon}^{2}-H_{\varepsilon}\right) f$. Then we have $\Delta^{2} u_{s}=0$ in $\omega_{s}$ and $\left.u_{\varepsilon}\right|_{\partial \Omega}=\left.\Delta u_{\epsilon}\right|_{\partial \Omega}=0$. To estimate $L^{8 / 3}\left(\omega_{c}\right)$-norm of $u_{c}$, we need bounds for $M(\varepsilon)$ and $N(\varepsilon)$ in Lemma 5.

Since we have

$$
\begin{aligned}
&\left|u_{s}\right|_{\partial \beta_{\varepsilon}}\left|\leq \int_{\omega_{s}}\right| G^{(2)}(x, y)-\left.G^{(2)}(y, w)\right|_{x \in \partial \beta_{\varepsilon}}|f(y)| d y \\
&+\left.C G^{(2)}(x, w)\right|_{x \in \partial_{\beta_{\varepsilon}}} \varepsilon^{2}|(G f)(w)|
\end{aligned}
$$

and

$$
\left|\Delta u_{\varepsilon}\right|_{\partial \beta_{\varepsilon}}\left|\leq \int_{w_{s}}\right| G(x, y)-\left.G(y, w)\right|_{x \in \partial \beta_{\varepsilon}}|f(y)| d y
$$

we can take $M(\varepsilon), N(\varepsilon)$ as

$$
\begin{aligned}
& M(\varepsilon)=\widetilde{C}|\log \varepsilon| \varepsilon^{2}\|f\|_{L^{8 / 3}\left(\omega_{\varepsilon}\right)}+\tilde{C} \varepsilon\|f\|_{L^{2}\left(\omega_{\varepsilon}\right)} \\
& N(\varepsilon)=\widetilde{C} \varepsilon^{1 / 2}\|f\|_{L^{8 / 3 /\left(\omega_{s}\right)}}
\end{aligned}
$$

for a constant $\tilde{C}$ independent of $\varepsilon$. Therefore we have

$$
\left\|G_{\varepsilon}^{2}-H_{e}\right\|_{L^{8 / 3}\left(\omega_{\varepsilon}\right)} \leq C \varepsilon^{5 / 2} .
$$

Since we have

$$
\left\|\left(G_{\varepsilon}^{2}-H_{\epsilon}\right)^{*}\right\|_{L^{8 / 5}\left(\omega_{c}\right)}=\left\|G_{s}^{2}-H_{\varepsilon}\right\|_{L^{8 / 3}\left(\omega_{s}\right)}
$$

and

$$
\left.\left(G_{\varepsilon}^{2}-H\right)^{*}\right|_{c_{0}^{\infty}\left(\omega_{\varepsilon}\right)}=G_{\varepsilon}^{2}-H_{s},
$$

we get Theorem 2.
Errata in [1]. The right-side of the formula in Theorem 1 in [1] should be replaced by

$$
G(x, y)-(m-n-2) S_{m-n} \varepsilon^{m-n-2} \int_{N} G(x, w) G(y, w) d w+O\left(\varepsilon^{m-n}\right)
$$

## References

[1] Ozawa, S.: Surgery of domain and the Green's function of the Laplacian. Proc. Japan Acad., 56A, 459-461 (1980).
[2] -: Singular Hadamard's variation of domains and eigenvalues of the Laplacian. ibid., 56A, 306-310 (1980).
[3] -: Singular variation of domains and eigenvalues of the Laplacian (preprint) (1980).
[4] -: The first eigenvalue of the Laplacian of two dimensional Riemannian manifold (preprint) (1980).
[5] Rauch, J., and M. Taylor: Potential and scattering theory on wildy perturbed domains. J. Funct. Anal., 18, 27-59 (1975).
[6] Schiffer, M., and D. C. Spencer: Functionals of Finite Riemann Surfaces. Princeton Univ. Press, Princeton (1954).
[7] Matsuzawa, T., and S. Tanno: Estimates of the first eigenvalue of a big cup domain of a 2 -sphere (preprint).

