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1. This paper is continuation o.f our previous note [2]. Let
9 be a bounded domain in R with C boundary and w be a fixed point
in/2. For any sufficiently small e0, let B be the ball defined by B,

{z e/2 z--wl}. Let f2 be the bounded domain defined by /2
=t2\B. Then the boundary of 9o consists of - and 3B. Let 0Zl(e)
.()).. be the eigenvlues of the Luplacian with the Dirichlet con-

dition on 320. We arrange them repeatedly according to their multi-

plicities. In [2], [3] we gave the asymptotic ormulas or the ]-th
eigenvalue/(e) when e0 in case n= 2, 3. In this note we treat the
cse n=4. We have the ollowing

Theorem 1. Assume n--4. Fix ]. Suppose that the ]-th eigen-

value [ of the Laplacian with the Dirichlet condition on is a simple

eigenvalue, then
(1.1) /() --/z 24se(w)e O(e/e)
holds when tends to zero. Here denotes the eigenfunction of the
Laplacian with the Dirichlet condition on satisfying

(x)dx 1.

Here denotes the area of the unit sphere in R.
Our aim of this note is to offer a rough sketch o the proof of the

above theorem. Calculation and technique which are used to prove

Theorem 1 are more elaborate than in case n=2 and 3. L(l<p< c)
spaces are used in this note. We employed only L spaces in case n= 2, 3.

We review a generalization o the Schiffer-Spencer ormula. See
[6]. Also see [3]. In the ollowing we assume n=4. Let G(x,y) be
the Green’s unction on/2. Put

cos= {x e 9; G(x, w)< (2e)-1}
and fl=tg\. Let G(x, y) be the Green’s unction in w.

Variational formula for the Green’s function [3]. Fix x, y
e/2 \ {w} such that x 4= Y. Then

(1.2) G(x, y)= G(x, y) 2e2G(x, w)G(y, w)/0(3)
holds when tends to zero. The remainder term is not uniform with

respect to x, y.
To prove Theorem 1 we use the iterated kernel G) (resp. G)) of
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G,(x, y) (resp. G(x, y)) and a variational formula for G?)(x, y). See 2.
It should be remarked that in case n= 2, 3 only G,, G were used. See
[3].

There are many related papers and topics. For example, see:[1],
[2], [4], [5] and [7]. Details and a further generalization of this note
will be given elsewhere.

2. Outline o proof of Theorem 1. Since G(x,w)-(2lx
w )- is bounded when x tends to w, we see there exists C0 such

that

holds or any small 0. Since the eigenvalues o the Laplacian with
the Dirichlet condition depend monotonically on the domain, we can
easily deduce Theorem 1 rom the ollowing

Proposition 1. Assume n=4. Let 0>I(S)>’’" j(S) be
the eigenvalues of the Laplacian with the Dirichlet condition on o,.
We arrange them repeatedly according to their multiplicities. Fix ].
If/z is a simple eigenvalue then
(2.1) /7(s)--/ --2Ss(w)+O(s/)
holds when tends to zero.

We introduce various operators. For 0, let G?)(x, y) be the
kernel of the operator G, defined by

(2.2) f G?)(x, y)g(y)dy x e
J

Let G (resp. G) be the Green operator (resp. its iterated operator) given
by

(2.3) (Gf)(x) f G(x, y)f(y)dy
J

(resp. (Gf)(x) f G(2)(x, y)f(y)dy).
J

To get Proposition 1 we compare the eigenvalues o G,: and G.
To interpolate G and G we introduce two operators H with of

H given by the ollowing

(H.g)(x) f h,(x, y)g(y)dy,

where
h,(x, y)= G(2)(x, y)-2e(G()(x, w)G(y, w)+ G(x, w)G()(y, w))

or x, y e

(If)(x) ft.(x, y)f(y)dy,
where

/(x, y)= G()(x, y) 2e(G()(x, w)G(y, w),(y)
+(x)G(x, w)G()(y, w))

or x, y e 9. Here e C(R) is defined as (x)= 1 on Ix-wl _e/2 and
,(x)-0 o lx-wl<_/4.
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We give the following
Theorem 2.

for some constant C independent of 0.
Our proof o Theorem 2 is rather involved, thus we put off its

sketch untill 3.
We study H,. We have the ollowing
Proposition 2. For any fixed 0, H is a compact selfadjoint

operator in L ().
It should be remarked that the perturbation family eH is not

an analytic family of selfadjoint operators, thus some techniques are
necessary to study eigenvalues of H,. Let 2 be a simple eigenvalue of
G. We construct an approximate eigenvalue of H which tends to
when e0. We solve the following equation for .
(2.4) (G-2)(x) 22(w)(x)(G(. ))(w)

+ G()(x, w)(G(. )) (w) +G(x, w)(x)(w).
Here denotes the eigenfunction of the Laplacian associated with
and satisfying ]]?()=1. The above equation is solvable since the
right-side of (2.4) is orthogonal to the kernel space spanned by and
G- is the Fredholm operator. We have the following

Lemma 1. Put r(e)=22(G( ))(w), then
(2.5) (H--(2--22r(D))(+2)

-4(G()(x, w)(G(. ))(w)+ G(x, w),(x)(G)(w)
2(w)(x)(G( ))(w)),

where o is the unique solution of (2.4) orthogonal to
From (2.4) we easily get

(2.6) I()Clog
or some constant C independent o 0. By Lemma 1 and (2.6) we
have the following

Lemma 2. L(9)-norm of the left-side of (2.5) does not exceed
Ce[log ]. And

From Lemma 2 we can deduce the existence result or an approxi-
mate eigenvalue. We get the ollowing

Proposition 3. There exists at least one eigenvalue
satisfying

]:) (e) 2-22(24)e(w) + 0([ log ]).
We compare . with H. Let + be the eigenfunction of , with

respect to ])(D. Assume ,]L()= 1. We put ,,
where Z is the characteristic function o w. Then these equations are
equivalent to the following equations"

(H,--)(e)),,l(X)=[ ,(x, y),(y)dy x e(2.7)
J
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| x e(2.8) h(x,- y),l(y)dy q- f,(x, y)qz,,.(y)dy ..](),
(.) 1.

By (2.7) and arguments from which we deduce Theorem 2 we have

for n xed stisfin l<2. Here ’ is the conjugate number
of p. 0n the other hand we get rom (2.8)

:, I1.,<:> C
for 2p’, and

II:,II.<:>C.
Suinl up these fcts e hve the folloint

Proposition 4. Tker misfs confnf C indngnf of such

and
o,,I1 1 /2

hold.
Thus we get the ollowing

Proposition . There exists at least one eigenvalue () of
satisfying 2 (D 2. 2.(23)o(w) +O( log 1).

Now we prove Proposition 1. Let be as above. Then the fol-
lowing is known. See [5], [3].

Lemma 3. Let V be a sufficiently small fixed neighbouxhood of
2. Then there exists o0 such that only one simple eigenvalue ().
of G, is in V for any fixed satisfying o0. Moreover lim,_02(}

From Theorem 3, Proposition 4 and Lemma 3 we get

7>() (()) 0(/)
and

Then we have Proposition 1.
3. Rough sketch of a proof of Theorem 2.

Lemma 4. If u, satisfies
Au:= 0 in

u,10,=0, lu,l,lH()
then luiCH(z)zlx--wl- for x

Lemma 5. If u, satisfies
0 in

[u,l:lM(,), Iu,l,lN()
then

We need two Lem-

C is a constant independent of .
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u, I,(, <--- C(N(Dd+M()/)
holds for some constant C independent of .

Sketch of proof of Theorem 2. Fix fe C((o3. And we put u,
=(G-H3f. Then we have u=0 in w and u]=u]o,=0. To
estimate L/(w3-norm of u, we need bounds 2or M(D and N(D in Lemma
5.

Since we have

u,a, G()(x, y)-G()(y, W)xef(y)[dy
2+CG(=)(x, w)l=, I(Gf)(w)]

and

we can take M(D, N(D as

N() C/ f
or a constant C independent of e. Therefore we have

G H,(,) Ce/.
Since we have

and
(G-H)*

we get Theorem 2.
Errata in [1]. The right-side of the formula in Theorem I in [1]

should be replaced by

G(x, y)-(m-n-2)S_--f G(x, w)G(y, w)dw+O(-O.
JN
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