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We study singular integral equations of convolution type with cosecant kernels and periodic coe
cients in class �2[−�, �]. Such
equations are transformed into a discrete jump problem or a discrete system of linear algebraic equations by using discrete Fourier
transform. 	e conditions of Noethericity and the explicit solutions are obtained by means of the theory of classical boundary
value problem and of the Fourier analysis theory.	is paper will be of great signi�cance for the study of improving and developing
complex analysis, integral equations, and boundary value problems.

1. Introduction

It is well-known that the boundary value problems for
analytic functions have been widely used in many �elds, such
as engineering mechanics, physics, engineering technology,
and fracture mechanics. Various types of boundary value
problems for analytic functions and singular integral equa-
tions have been deeply studied andwidely applied to practical
problem (see [1–3]). In the theory of integral equations, the
convolution type integral equations and singular integral
equations are two important classes of equations, which had
been studied by many mathematical workers and there were
already rather complete theoretical systems (see [4, 5]).	ese
theories have been widely used in practical applications, such
as engineering mechanics, fracture mechanics, and elastic
mechanics (see [6, 7]).

	e main aim of this paper is to extend further the
theory to singular integral equations of convolution type with

periodic coe
cients and cosecant kernel in class �2[−�, �]
(see [8] for the de�nition of �2[−�, �]). By using discrete
Fourier transform, such equations are transformed into a
discrete jump problem or a discrete system of equations. 	e
explicit expressions of general solution and the conditions

of solvability are obtained in class �2[−�, �]. 	erefore, this
paper generalizes some results for [1–5].

2. Definitions and Lemmas

In this section we present some de�nitions and lemmas.

De�nition 1. Suppose � = {��} = {. . . , �−1, �0, �1, . . .} is
an in�nite dimensional vector consisting of two-way in�nite
sequence; then all of∑+∞�=−∞ |��|� which satisfy∑+∞�=−∞ |��|� <+∞ constitute a linear space; we denote it as � ∈ ��.
Remark 2. From De�nition 1, we know that if � ∈ ��, then	� ∈ �� for any constant 	. Moreover, if {��} ∈ ��, {
�} ∈ ��,
then {��
�} ∈ �1, where �−1 + �−1 = 1 (� > 1, � > 1). In this
paper we mainly consider the case � = 2.
De�nition 3. Let Φ(�), Ψ(�) be periodic functions with

period 2�, and Φ(�), Ψ(�) ∈ �2[−�, �]; then

(Φ ∗ Ψ) (�) = 1
2� ∫
�

−�
Φ (� − ]) Ψ (]) �], � ∈ [−�, �] (1)

is called the convolution of Φ(�) and Ψ(�).
Remark 4. With regard to the convolution (Φ∗Ψ)(�), we can
extend the value of � from [−�, �] to R by De�nition 3.
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De�nition 5. Let � = {��}+∞�=−∞ ∈ �2; the transforms � and

�−1 de�ned by

�� = +∞∑
�=−∞

������ = Φ (�) ,

�−1 [Φ (�)] = 1
2� ∫
�

−�
Φ (�) �−����� = ��,

� = 0, ±1, ±2, . . . ,

(2)

are called the discrete Fourier transform and the inverse
transform, respectively. For simpli�cation, in (2), we denote

them as �� = Φ(�) and �−1[Φ(�)] = ��, respectively.
De�nition 6. Let � = {��}+∞�=−∞ be a number sequence and�
and � be positive constants with 0 < � ≤ 1. If |�1+	��| ≤ �
holds for any integer �, we say that � = {��} belongs to class{1}.
De�nition 7. If � = {��}+∞�=−∞ ∈ {1}, then we say Φ(�) ∈ {0̃}.

	e following lemma plays an important role, and it is
proposed �rstly in this paper.

Lemma 8. Let Φ(�) ∈ �2[−�, �], �Φ(�) = (1/�) ∫�−�Φ(])csc(] − �)�],
�̃Φ (�) = 1� ∫

�

−�
Φ (]) csc (] + �) �]. (3)


en

(1) �−1(�Φ(�)) = 2��� sgn ���, �−1(�̃Φ(�)) =−2��� sgn ���;
(2) �Φ(�) ∈ �2[−�, �], �−1(�Φ(�)) ∈ �2[−�, �],

where �Φ(�), �̃Φ(�) are singular integrals with cosecant kernels
and

�� = {{{
1, � = 2" + 1;
0, � = 2", " ∈ Z. (4)

Proof. (1) Since

�Φ (�) = 1� ∫
�

−�
Φ (]) csc (] − �) �]

= 1� ∫
�

−�
Φ (]) 2�

��(]−�) − �−�(]−�) �]

= 2�� ∫
�

−�
Φ (]) ��(�+])

�2�V − �2�� ,

(5)

by De�nition 5, we have

�−1 (�Φ (�))
= � ⋅ 1�2 ∫

�

−�
Φ (]) ��] [∫�

−�

�−�(�−1)�
�2�] − �2�� ��] �].

(6)

It follows from the extended Residue theorem (see [9]) that

∫�
−�

�−�(�−1)�
�2�] − �2�� �� =

�
��(�+1)] �� sgn �. (7)

	is implies

�−1 (�Φ (�)) = � 1�2��� sgn �∫
�

−�

1
��(�+1)]Φ (]) ��]�]

= 2����� sgn �.
(8)

	e other equality can be proved similarly.
(2) By using Riesz’s theory (see [9]), we have ‖�Φ(�)‖2 ≤'‖Φ(�)‖2, where ' is a constant. 	erefore, it follows fromΦ(�) ∈ �2[−�, �] that �Φ(�) ∈ �2[−�, �].
It is also obvious for the second conclusion in (2).

Lemma 9. If � = {��}+∞�=−∞ belongs to class {1}, then Φ(�) =�� ∈ *, where* is the class of Hölder continuous function.

Proof. By De�nition 6, we know that ∑+∞�=−∞,� ̸=0(�/|�|1+	)
converges; therefore, ∑∞�=−∞ �� is convergent absolutely. For
any two points �1, �2 ∈ [−�, �], we have

----Φ (�1) − Φ (�2)---- =
----------
∞∑
�=−∞

�� (����1 − ����2)
----------

≤
----------
∞∑
�=−∞

----��---- (����1 − ����2)
----------

≤ �̃ ----�1 − �2---- ,

(9)

where �̃ = ∑∞�=−∞ |��|; thusΦ(�) ∈ *.

Lemma 10. LetΦ(�) = ∑∞�=−∞ ������ and � ∈ �1; thenΦ(�) ∈�2[−�, �] if and only if � ∈ �2.
Proof. Since Φ(�) ∈ �2[−�, �] and � ∈ �1, then ∑∞�=−∞ �� is
convergent absolutely and uniformly. It is easy to see that

∫�
−�
|Φ (�)|2 �� = ∫�

−�
Φ (�)Φ (�)��

= ∫�
−�
∑������∑���−�����

= ∫�
−�

∞∑
�,�=−∞

������(�−�)���

= 2� ∞∑
�=−∞

----��----2 .

(10)

	e proof of Lemma 10 is complete.

Lemma 11 is an obvious fact.

Lemma 11 (convolution theorem). If Φ(�) and Ψ(�) ∈�2[−�, �], then Φ ∗ Ψ(�) ∈ �2[−�, �] and �−1[Φ ∗ Ψ(�)] =��
�, where 
� = �−1[Ψ(�)].
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3. Problem Presentation and
Methods of Solution

Consider the following singular integral equation of convo-
lution type with periodicity and cosecant kernels:

81 (�) [:Φ (�) + ?�Φ (�) + @1 ∗ Φ (�) +�1 ∗ �Φ (�)
− 	A (�)] + 82 (�) [:Φ (�) + ?�Φ (�) + @2 ∗ Φ (�)
+�2 ∗ �Φ (�) − 	A (�)] = 0, � ∈ R,

(11)

where

81 (�) = 	1 cos C�2 + �1 sin
C�
2 ,

82 (�) = :1 cos C�2 + ?1 sin
C�
2 ,

� ∗ �Φ (�) = 1
2� ∫
�

−�
�(� − ]) �Φ (]) �].

(12)

�Φ(�) is as in Lemma 8. :, ?, 	, :1, ?1, 	1, �1 are real constants
with :2+?2 ̸= 0, :1�1−?1	1 ̸= 0.	e functions 8�(�) (E = 1, 2)
are periodic coe
cients;C is a positive integer.@�(�),��(�),Φ(�), �Φ(�), andA(�) are periodic functions with period 2�.
Once Φ(�) is obtained in [−�, �], we can make the periodic
extension ofΦ(�)with period 2� and then obtain the solutionΦ∗(�) in R. 	erefore, in the following discussion we are
restricted to � ∈ [−�, �].

Equation (11) is one important class of equations in the
theory of integral equations, and it has important applications
in physics, air dynamics, and electronic optical (e.g., see
[10–14]). Hence, the study of (11) is meaningful not only in
application but also in the method of solution.

Since ��
� = cosC� + � sinC�, we write (11) as
F+Φ (�) + G+�Φ (�) + H+@1 ∗ Φ (�) + I+@2 ∗ Φ (�)
+ H+�1 ∗ Φ (�) + I+�2 ∗ �Φ (�) − J+A (�)
+ ��
� [F−Φ (�) + G−�Φ (�) + H−@1 ∗ Φ (�)
+ I−@2 ∗ Φ (�) + H−�1 ∗ Φ (�) + I−�2 ∗ �Φ (�)
− J−A (�)] = 0, − � ≤ � ≤ �,

(13)

where

I± = :1 ± �?1,
H± = 	1 ± ��1,
F± = : [(:1 + 	1) ± � (?1 + �1)] ,
G± = ? [(:1 + 	1) ± � (?1 + �1)] ,
J± = 	 [(:1 + 	1) ± � (?1 + �1)] ,

(14)

and 8�(�) (E = 1, 2) can be rewritten as

81 (�) = 12 (H−��
�/2 + H+�−�
�/2) ,
82 (�) = 12 (I−��
�/2 + I+�−�
�/2) .

(15)

Let

F−Φ (�) + G−�Φ (�) + H−@1 ∗ Φ (�) + I−@2 ∗ Φ (�)
+ H−�1 ∗ �Φ (�) + I−�2 ∗ �Φ (�) − J−A (�)

= K (�) ,
(16)

then,

F+Φ (�) + G+�Φ (�) + H+@1 ∗ Φ (�) + I+@2 ∗ Φ (�)
+ H+�1 ∗ �Φ (�) + I+�2 ∗ �Φ (�) − J+A (�)

= −��
�K (�) ;
(17)

Applying �−1 to both sides of (16) and (17), respectively, by
Lemma 8 we have

L� = (F− + 2G−� sgn ��� + H−G(1)� + I−G(2)�
+ 2H−'(1)� � sgn ��� + 2I−'(2)� � sgn ���) �� − J−M�;

− L�−
 = (F+ + 2G+� sgn ��� + H+G(1)� + I+G(2)�
+ 2H+'(1)� � sgn ��� + 2I+'(2)� � sgn ���) �� − J+M�,

(18)

where

L� = �−1K,
�� = �−1Φ,
G(�)� = �−1@�,
'(�)� = �−1��

(E = 1, 2) ,
M� = �−1A.

(19)

Denote

�±� = F± + 2G±� sgn ��� + H±G(1)� + I±G(2)�
+ 2H±'(1)� � sgn ��� + 2I±'(2)� � sgn ���.

(20)

	en (18) can be reduced as

�−��� − J−M� = L�;
�+��� − J+M� = −L�−
.

(21)

Since {G(�)� }∞�=−∞ ∈ �2, {'(�)� }∞�=−∞ ∈ �2 (E = 1, 2), then G(�)� →0, '(�)� → 0, and �±� → F± ± 2�G± ̸= 0 or �±� → F± ̸= 0 when
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|�| → ∞. 	erefore there exists �0 (|�| > �0) such that |�±� | >O when |�| > �0 for certain positive constant O (0 < O < 1).
Consider �rst the case |�| ≤ �0.
(1) When �±� = 0 for � = "1, "2, . . . , "�1 (−�0 ≤ "� ≤�0, 1 ≤ E ≤ �1), by (21) we know that

L�� = −J−M�� ,
L��−
 = J+M��

(22)

must be ful�lled. Now ��� (1 ≤ E ≤ �1) take arbitrary
constants.

(2) When �+� = 0, �−� ̸= 0 for � = "�1, "�2, . . . , "��2 (−�0 ≤"�� ≤ �0, 1 ≤ E ≤ �2), by (21) we have

���� =
J−M��� + L���
�−���

, (23)

where

L��� = J+M���+
. (24)

(3) When �+� ̸= 0, �−� = 0 for � = "��1 , "��2 , . . . , "���3 (−�0 ≤"��� ≤ �0, 1 ≤ E ≤ �3), by (21) we get

����� =
J+M���� − L���� −


�+����
, (25)

where

L���� = −J−M���� . (26)

(4)When �±� ̸= 0 (−�0 ≤ � ≤ �0), �� are given by (21) and
this situation is similar to the situation |�| > �0.

Next we consider the case |�| > �0. Since |�±� | > O for|�| > �0, then �±� ̸= 0. By (21) we obtain
�� = 1

�−� (L� + J
−M�) = 1

�+� (−L�−
 + J
+M�) ; (27)

thus

L� + P�L�−
 = *�M�, (28)

where

P� = �
−
��+� ,

*� = 2� (?1	1 − :1�1)�+� [(G(2)� − G(1)� )
+ 2 ('(2)� − '(1)� ) � sgn ���] .

(29)

Assume that

S = G−G+ ,
P� = S (1 + T�) ,

(30)

where

T� = 2�? (?1	1 − :1�1)G−
⋅ G
(1)
� − G(2)� + 2� sgn ��� ['(1)� − '(2)� ]�+� .

(31)

	erefore, (28) can be written as the following discrete
jump problem:

L� + S (1 + T�) L�−
 = *�M�. (32)

	us, we should only study (32) in place of (11). Since {*�} ∈�2, {M�} ∈ �2, then {*�M�} ∈ �2, {L�} ∈ �2. Once L� is obtained,
then �� can be given by (21). To solve (32), we �rst need to
analyze the structure of 1 + T�. Assume that 1 + K� can be
factorized; we can choose U� such that

1 + T� = U�U�−
 , (33)

where O < |U�| < O−1; O is as the above. Provided that O takes
su
ciently small value, we can choose U� satisfying the above
requirement (33). We now give an expression of U�, taking
logarithms for both sides of (33) and denoting

V� = ln U�
W� = ln (1 + T�) ; (34)

then, by (33) and (34) we obtain

V� − V�−
 = W�. (35)

Note that we have taken a continuous branch of ln(1 + T�)
such that ln(1 + Tk) ∈ �2. Applying Fourier transform to both
sides of (35), we can obtain

(1 − ��
�)X (�) = Y (�) , (36)

where X(�) = �V, Y(�) = �W, V = {V�}+∞�=−∞, and W ={W�}+∞�=−∞.
From the above discussions, the following conditions of

solvability Y(��) = 0 follow and that is,

∑(ln 1SP�) ����� = 0, {ln 1SP�} ∈ �2, (37)

where �� = (2E/C)� (E = 0, ±1, . . . , ±[C/2]; [C/2] is the
integer part ofC/2). 	erefore,

X(�) = Y (�)
1 − ��
� (� ̸= ��, ----E---- ≤ 2 [C2 ] + 1) . (38)

From (38), we obtain V� = �−1X(�) and thus U� = expV�.
Note (33) and denote

�� = L�U� ,


� = *�M�U� .
(39)
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	en (32) can be rewritten as

�� + S��−
 = 
�. (40)

Since {*�M�} ∈ �2, {U�} ∈ �2, and O < |U�| < O−1, we have{��} ∈ �2 and {
�} ∈ �2. By taking Fourier transform � for
both sides of (40), we have

(1 + S��
�) b (�) = Ψ (�) , (41)

where b(�) = ��, Ψ(�) = �
, � = {��}+∞�=−∞, and 
 ={
�}+∞�=−∞.
Since |S| = 1, we know that 1+S��
� has �nite number of

zero points ��1, ��2, . . . , ��� in [−�, �].
	erefore the conditions of solvability Ψ(���) = 0, that is,
∑ *�M�U� �

����� = 0, {*�M�U� } ∈ �
2 (E = 1, 2, . . . , ") , (42)

must be augmented. In view of (41) we get

b (�) = Ψ (�)
1 + S��
� (� ̸= ���, E = 1, 2, . . . , ") . (43)

If (37) and (42) are satis�ed, then by (43) we obtain

�� = �−1b (�) (� = 0, ±1, . . .) . (44)

	us L� (� = 0, ±1, . . .) can be also obtained by (39).
Now we state our main result.

�eorem 12. Under (37) and (42), (11) has a solution. When�±� ̸= 0 (� = 0, ±1, . . .), �� is given by (21). When �±�� = 0 (E =1, 2, . . . , �1), ��� take arbitrary constants. When �+��� = 0,
�−��� ̸= 0 (E = 1, 2, . . . , �2), ���� , L��� are given by (23) and (24),

respectively.When �+���� ̸= 0, �−���� = 0 (E = 1, 2, . . . , �3), ����� , L����
are given by (25) and (26), respectively. But in (23) and (25), L���
and L���� are constants determined by (24) and (26), respectively.

When � ̸= "�, "��, "��� , �� is given by (21).
erefore, the solution

of (11) is of the form

Φ (�) = �� = ∞∑
�=−∞

������, (45)

and then Φ(�) ∈ �2[−�, �].
Proof. From the above discussion, we only need to prove

that the functionΦ(�) obtained by (45) belongs to �2[−�, �].
Obviously, (11), (13), and (21) are equivalent to each other.

Since {M�}, {L�} ∈ �2, then {�±� } ∈ �2 and�±� ̸= 0. It follows from
(27) that {��} ∈ �2 is a bounded sequence, and ∑∞�=−∞ ������
is convergent. 	us, by Lemma 10, (11) has a unique solutionΦ(�) = �� in class �2[−�, �].

According to	eorem 12, De�nition 5, and Lemma 9, we
obtain the following.

�eorem 13. In (11), if @�(�),��(�) (E = 1, 2), A(�) ∈ {0̃},
then (11) is solvable in class {0̃} and all conditions of solvability
and its solutions are similar to those in 
eorem 12.

In order to illustrate that (11) has an explicit solution, we
present an example and satisfy the above conditions (37) and
(42). For example, suppose that

: = ? = 	 = 1,
?1 = 	1 = 0,
:1 = �1 ̸= 0,
@1 = @2,
�1 = �2;

(46)

then 81(�) = :1 sin (C/2)�, 82(�) = :1 cos (C/2)�, and (11)
can be transformed into

Φ + �Φ + @1 ∗ Φ +�1 ∗ �Φ = A; (47)

it is easy to prove that (47) satis�es conditions (37) and (42),
and the solution of (47) was obtained in the literature [1].
	erefore, we can conclude that a solution set of (11) is not
empty.

Remark 14. If :1�1 − ?1	1 = 0, 82(�)/81(�) is a constant. 	is
case is simple, and we do not discuss it here.

4. Results and Discussion

In this paper, we �rst proposed one class of singular integral
equations of convolution type with cosecant kernels and
periodic coe
cients. By applying discrete Fourier transform
and its properties, such equation can be transformed into
a discrete jump problem depending on some parameter.
Here, our method is di�erent from the ones of the classical
boundary value problem, and it is novel and simple. 	e
exact solution, denoted by series, of (11) and the conditions

of solvability are obtained in �2[−�, �]. We remark that our
approach is also e�ective in other classes of equations, such
as the equations of dual type with periodicity and cosecant
kernel and Wiener-Hopf type equations. 	us, this paper
generalizes the classical theory of boundary value problems
and singular integral equations.

In this paper, we solved (11) in�2[−�, �]. Indeed, this class
of equations can be also solved in Cli�ord analysis, which is
similar to that in [15–18]. Further discussion is omitted here.

5. Conclusions

Equation (11) has important applications in practical prob-
lems, such as elasticmechanics, heat conduction, and electro-
statics.Many problems, such as piezoelectricmaterial, voltage
magnetic materials, and functional gradient materials, can
o�en attribute the problem to �nding their solutions to (11).
For the study of such equations, the present result is still rare
due to lack of e�ective approaches. Our approach of solving
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the equations is novel, di�erent from the ones in classical
cases, and it is converted by using discrete Fourier transform
into a discrete boundary value problem depending on some
parameter; here we call it “a discrete jump problem.” 	e
exact solutions of (11) and the conditions of solvability are

obtained in class �2[−�, �].
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