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SINGULAR INTEGRALS ON HOMOGENEOUS SPACES
AND SOME PROBLEMS OF CLASSICAL ANALYSIS
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Introduction.

In this paper we generalize some classical results of Calderon and

Zygmund to the context of homogeneous spaces of locally compact groups
and use these results to solve certain problems of classical type which can
not be dealt with by the presently existing versions of the theory of sin-
gular integrals. Problems of this kind arise in studying the Cauchy-Szegb
integral on the boundary of the complex unit ball and of the generalized
halfplane in Cn holomorphically equivalent to the unit ball. In one variable

this leads to the classical Hilbert transform. In [16] we sketched a theory

Pervenuto alla Redazione il 21 Ottobre 1970.
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which allowed us to prove -P-continuity of the relevant operators for all

1  p  oo. In the present paper we extend this theory somewhat further
and bring more applications within its scope. We consider the case of

vector-valued functions, which enables us to deal with the functions of Litt-
lewood-Paley and Lusin on the generalized halfplane equivalent to the

complex ball. Moreover by considering a class of operators slightly more
general than ordinary convolutions (« twisted convolutions », cf. (1.1)) we
get a theory which also applies to Riesz transforms defined on the (real)
n-s phere.

In § 1 we describe the class of spaces (« homogeneous spaces with
gauge ») and operators to which our theory applies. A homogeneous space
with gauge is similar to an ergodic group in the sense of Calderon [2] but
is somewhat more general, corresponding to the needs of our applications.
The most important result in this section is Lemma 1.1, which is a variant
of a result of Wiener.

The main result in § 2 is Theorem 2.2 which states that if a singular
integral operator is continuous in .L2 then it is continuous in every LP

(1  p  oo), provided that its kernel satisfies certain conditions analogous
to those in [1]. In this section we follow [1] fairly closely ; the only major
change in the argument is that the covering lemma of Calderon and Zyg-
mund [3, Lemma 1] has to be replaced by a slightly different one (Lemma
2.1), whose proof is based on our Lemma 1.1. Results very similar to those
contained in this section have been announced for the case of ordinary
convolutions by N. M. Rivi6re [20] ; closely related results have also been
obtained in unpublished work by A. P. Calderon and by R. R. Coifman
and M. de Guzman.

Theorem 2.2 is sufficient for three out of our four applications. In the
case of the Riesz transforms, however, we have no way of directly proving
L2-continuity. In § 3 we prove a general theorem which under hypotheses
on the kernel stronger than those of Theorem 2.2 guarantees .L2 continuity
of the singular integral operator. This is a direct extension of a result of

Knapp and Stein [13] which is, in turn, based on an idea of M. Cotlar

[5], [6]. The main difficulty here is, of course, that Plancherel’s theorem

can not be used in the usual way because of the non commutativity of our
groups.

In § 4 we prove a theorem about preservation of Lipschitz classes by
an extension of the method of [4]. The conditions we seem to need here

are slightly stronger than in Theorem 2.1 but not as strong as in Theo-
rem 3.1.

In § 5 we deal with the important special case of homogeneous kernels
on nilpotent Lie groups. In this case we obtain a very simple result (Theo-
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rem 5.1 ) on .Lp - continuity ; the special case p = 2 of this is due to Knapp
and Stein [13].

In Part II. we discuss the applications listed at the beginning of this
Introduction.

We wish to express our thanks to A. W. Knapp and E. M. Stein for
showing us their results [13] before their publication, and to E. M. Stein
for some useful conversations about the material in § 8.

The present paper was completed and preprints of it were distributed
in February 1970. We also wish to thank those who by pointing out minor
errors helped us to make some improvements on the text.

PART I. - GENERAL THEORY

§ 1. Definitions and basic facts.

Let G be a locally compact Hausdorff topological group, g a compact
subgroup, n: G -&#x3E; G/.g’ the canonical map. Let p denote a left Haar mea-

. 

sure on G, which we assume to be normalized in case G is compact.

DEFINI1.’ION 1.1. A gauge for (G, K) is a map G -+ [0, cxJ), right-inva-
riant under .g and denoted ( g ~ , , such that

(i) the sets B (r) = ig E  r, (r &#x3E; 0)) are relatively compact
and measurable ; the sets yrB (r) form a basis of neighborhoods of n (e) in GIK,

(ii) I for all gEG,
(iii) ( ( g I + I k I) for all g, hE G with some positive constant x.
(iv) p (B (3x r)) x IA (B (r)) for all r &#x3E; 0, with some constant x inde-

pendent of r (1).

REMARK 1. In terms of the homogeneous space X = G/K a gauge is
equivalent with a function y : ~’ X X -~ [0, oo) such that y (x, y) = y (y, X)7
y (gx, gy) = y (x, y), y (x, z) -,- (y (x, y) + y (y, z)) for all x, y, z E X, g E G, and
such that for some (and hence for all) x E X the sets Bx (r) = ( y E X ~ y (x, y)  r~ 1
(r &#x3E; 0) form a neighborhood basis at x, and m (Bx (3x r)) ~ )e m (Bx (r)) for

(1) We have chosen this form of stating (iv) because it is the most convenient in

our later application. Of course, it is equivalent with saying that for some (and hence

all) o ~ 1 there exists c such for all r &#x3E; 0.
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all r &#x3E; 0. This is clear by setting ~ g ~ = y (gp, p) where p denotes the iden-
tity coset.

2. G is necessarily unimodular; it is a-compact, and totally a-finite as
a measure space. In fact (cf. [2]), let 11 be the modular function. Given

let Now

whence 4 (g) for all g, and the first assertion follows. The others are

obvious from (i).

3. By (i), (ii), every compact set S c: C~ is contained in some B (r).
(Note that, for every g, gB (1) c B (z ( I 9 1+ 1» so g is in the interior of

some B (r)). In particular, is compact then G c B (r) for r rio with

some ro ~ 0.

4. There exist C, a ] 0 such that p(B(r)) S Cra for all r &#x3E; 0. In

fact, p (B (2n)) 211 p (B (1)) for natural n ; for any x &#x3E; 0 it follows that

Writing 2 = 2~ 2x = r, we have

5. 1 g = 0 if and only if g E K. In fact, there exist g’s with arbitrarily
small gauge, otherwise B (r) would be empty for small r, contradicting (i).

I) ) implies e = 0, whence I 9 = 0 for g E K.
Conversely, if I 9 = r &#x3E; 0 B (r/2), so g ~ K.

6. The gauge is measurable on G (by (i)) and continuous at e (also by
(i)). The function r (B (r)) is left continuous. If each B (r) is open, the

gauge is upper semi continuous. These statements remain true for the fun-

ction induced by the gauge on 

7. The range of the gauge is discrete (in R) if and only if G/ K is
discrete. In fact, if the range is discrete, .g is open by the continuity of
the gauge at e and by Remark 5. Conversely, if G/.g is discrete, then K,
being open, has positive measure. If r E R were a limit point of the gauge,
there would exist an infinite sequence of elements with the

I I all different, hence the sets gnK all disjoint. This would contradict

the finiteness of p (B (r + 1)).

8. If I is a gauge for (G, K), then so is g I--~ ~ g ~a with any
fixed a &#x3E; 0.

9. One could also consider gauges that are not defined everywhere on

G, but satisfy (i)-(iv). One would assume then that if the right hand side
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of (ii) or (iii) is meaningful, then so is the left. This means that the gauge

would be defined on a subgroup G of G ; by (i) and (iii) G would have to
be open. This gives a generalization of the « ergodic groups &#x3E;&#x3E; of Calderon

[2] ; ergodic groups correspond to the case x =1.
The following lemma will play a fundamental role in § 2. For the case

of R" it is due to Wiener ; more general variants of it, very close to the
present one, can be found in [2] and [7].

LEMMA 1.1. Let S e G and let -~ (0, oo) be a function such that
p (U gnB (r (gn)))  M whenever the sets gnB(r(gn)) are mutually disjoint.

n

Then there exists a (finite or infinite) sequence (gun) in 8 such that
(i) the sets gnB (r (gn)) are mutually disjoint,

(ii) U gnB (3m r (gn)) n ,S.
n

PROOF. In case G is compact we may assume that r (g)  ro for all

g E S, where ro is the number in Remark 3. We pick g1 such that

The latter number is finite by our hypothesis even if C~ is non-compact,
since in that case lim ,~ (B (r)) = oo by Remark 3. By induction we pick

E S such that (writing rj for r 

Note that if this sequence does not end somewhere, then lim rn = 0, since
n-co

otherwise there would exist infinitely many disjoint gnB (rn) with e &#x3E; 0,
and their union would be of infinite measure.

We have to show that our sequence has property (ii). For this, let
g E S. Let I be the smallest number such that either ri  1/2 r (g) or that

there is no gl. (Note that 0~ ~ ~&#x3E; 1 by the choice of Now

gB (r (g)) intersects some gj B (1 ~j S l), or else g would have been

picked instead of gi in the construction of our sequence. Let h be an ele-

ment in this intersection. Then

Hence g E gj B (3m finishing the proof.
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COROLLARY. Defining the « maximal function &#x3E;&#x3E;

for every right K-invariant LP.function f on G (1  p  oo), the Hardy-
Littlewood maximal theorem holds. Furthermore, for every right K-invariant
locally integrable function f we have, for almost every g E G,

The proof is classical ; for details see e. g. [7].

DEFINITION 1.2. Let E be a Banach space. For 1 -,-_p  oo, Lp ( G : K, E) is
the subspace formed by (equivalence classes of) right K-invariant functions
of the usual E-valued LP - space on G. I’ (G : K, E) is the set of (equivalence
classes of) functions with compact support in .L°° (G : J5~jE7). ~f(G: is

the space of strongly measurable right K-invariant functions G --~ E.
These spaces are of course just the E-valued Zp and other spaces on

lifted to G. We will be interested in integral operators (and li-

mits of such) on these spaces of the form

where such that S (gx, gy) = a2 (g) S (x, y) Q1 (g)-l
for all g E G, with some uniformly bounded representations (2) 01’ °2 of G
on the Banach spaces These operators have the property TgA =
= 02 (g) A Tg at (g)-l for all g E G, where Tg denotes the action of G on X.
If we lift all functions to G the operator A is of the form (3)

(2) Throughout this paper by a « representation » we mean a strongly measurable
representation.

(3) For reasons of convenience f d,u and f (g) dg are used intercbangably to denote
the integral of f on G.
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where k (g) = S (gp, p), p denoting the identity coset ; k satisfies the identity

for all h, h’ E R. In case E1 = E2 = C and al Q2 are trivial, (1.2) only
means that 7z is left and right invariant under K, and (1.1) is an ordinary
convolution f * k. In the general case it could be called a «twisted convo-

lution » and denoted fl,* 2 k(one has to think of operators acting on Bi, E2
on the right). The following three lemmas extend well known simple facts
about convolutions to the twisted case.

LEMMA 1.2. Let Q2 be representations of Q’ on the Banach spaces

E1 , E2 having uniform bound M1’ M2’ respectively.
Let k E ~1 (G : K, E~)) satisfy (1.2). Then, for all 1  p  oo, A

defined by (1.1) is a continuous linear transformation LP (G: K, 
2013~Z~((?:~ E2) with bound not greater than ~11.M2 I~ k ~~1.

PROOF. A change of variable in (1.1) gives

Now, by Minkowski’s inequality,

finishing the proof.
We denote by (,) the bilinear form connecting E and its dual ~’.

This may be a complex bilinear or a Hermitian form; the results that fol-
low hold in either case. If E is a Hilbert space we always identify E with
.E’ and ~ , ) witb the inner product on E.

In any case, the dual of LP ( G : K, E ) contains (here
p’ is the dual exponent to p, p’ = p/~ -1 )), and coincides with it if ~ is

reflexive.
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LEMMA 1.3. Let A be as in Lemma 1.2. Then, for any
the adjoint A~ of A is given by

where

PROOF. For every

J J

by Fubini’s theorem. The assertion follows.

REMARK. If k (g) = S (gp, p) with a kernel S as in the discussion

preceding Lemma 1.2, then for all

LEMMA 1.4. Let ai be uniformly bounded representations of G on the
Banach spaces let

and Then

with

The proof is an easy computation left to the reader.
It may be remarked that, if we use the twisted convolutions mentioned

before, this lemma expresses the associativity

DEFINITION 1.3. Given a function k on G, for any 0 [ E  R, we define
by

otherwise
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and for any
if

otherwise.

DEFINITION 1.4. Let a &#x3E; 0 and let jE7 be a Banach space. We denote

by ~la ~ G : .g, .E ) the class of right K-invariant functions f : (~ --~ ~ such

that, for some &#x3E; 0,

whenever h ~  a. We denote by ~lo ( l~ : the subclass made up of

functions with compact support.

REMARK. Formulated for functions ffJ: X - E (1.3) is equivalent with
for Here 7 is the same as in Remark

1 after Definition 1.1.

LEMMA 1.5. Let for some

Then f is bounded and tends to 0 at infinity.

PROOF. Clearly f is continuous, so it suffices to prove the second sta-

tement. Suppose it is false. Then there exists fJ &#x3E; 0 such that outside of
every ball there exists g with By (1.3) there exists 61 &#x3E; 0 such
that and imply So we can find a se-

quence gn t such that the balls g. B (ðf) are disjoint and on

each of them. This contradict!

COROLLARY. If then

for all g, h E G with some

PROOF. The statement is true by (1.3) for we have

DEFINITION 1.5. Let &#x3E; 0. We say that the gauge satisfies if

there exists tj &#x3E; 0 such that
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whenever We say that the gauge satisfies if

whenever

REMARK. If it is known that (1.5) holds whenever with

some then it also holds automatically for all (possibly
with a different M). In fact, if we have

LEMMA 1.6. (7~a) implies 

PROOF. If we have

with By property (iii) of the gauge E is bounded, hence the
_ - - - -- 1- , _

last factor on the right hand side is bounded. If then

which finishes the proof.

LEMMA 1.7. If the gauge satisfies (Lap) with some a, ,B ) 0, then
is dense in every

PROOF, for we define 1pr by

Then 1pr E K, R). In fact, let 6 = ~y/2~. We show (1.3) for by
distinguishing the four cases we haft-

and hence

The other three cases are obvious.
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Let ar be a scalar multiple of 1pr such that It is clear

that for every, We are going to show

that every continuous right .g= invariant f : G -+ E with compact support
can be approximated to within in the L°°-norm by an f ~ ar ;
this will immediately imply the lemma. We have

where Rh f denotes the right translate of f by h. By the uniform continuity
of f we can find r &#x3E; 0 such that Since the

support of ar is the set I h I.::;: r, the assertion follows.
The next lemma describes a case where the density of A’ can be

proved under even less restrictive hypotheses about the gauge.

LEMMA 1.8. If (~ is a Lie group and there exists some 0 and a

local coordinate system lqjl on Glg at n(e) such that

then is dense in every

PROOF. It is known that the C--functions f with compact support are
dense in every LP. But every such f is also in At. In fact by Taylor’s
formula,

with some smooth functions Ij, y and on a compact neighborhood of n (e)
this is majorized by with some M &#x3E; 0.

§ 2. The main result on Lp-continuity.

LEMMA 2.1. Let fh 0 be an integrable function on G. Then for every

~, &#x3E; 0 (resp. for if G is compact) there exists a sequence
of mutually disjoint, right K-invariant measurable sets Qn such that

with some

outside of
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PROOF. Denote by (g) the mean of f on gB (r), and let

Then f’ ~ ~ outside of Bl by the differentation theorem (Corollary to

Lemma 1.1).
For each g E Ei choose r (g) &#x3E; 0 such that

This is possible since (trivially in the non-compact case ;

in the compact case because
The hypotheses of Lemma 1.1 are now clearly satisfied. Let (gn) be a

sequence as in Lemma 1.1, write rn = r (gn), and define, by induction,

Now (i) is obvious, and (iii) follows since El c U Q~, by Lemma 1.1. (ii)
n

follows using property (iv) of the gauge by the following chain of inequa-
lities :

THEOREM 2.1. Let be a linear map
such that for some r &#x3E; 1 and

for all and all

for all f supported on go B (e) and such
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that Then, for all and

with a constant ep depending only on

PROOF. By the operator-valued extension of the Marcinkiewicz inter

polation theorem [1, Lemma 1] it suffices to prove that

for all A ~ 0 and all f, with some constant c.

Let therefore A &#x3E; 0 be given. If G is compact and then

so (2.1) holds with c =1. If, or it

(~ is non-compact, we take the sets Qn of Lemma 2.1 corresponding to If 11
aud define

and We have then

If follows that

Now let and let The support of yn is

in Un B and So hypothesis (ii) gives

It follows that

(4) Here and elsewhere, for any S c G we denote the complement of ,S by S’.
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By Remark 4 after Definition 1.1 and by Lemma 2.1 we have

and again by Lemma 2.1,

So, finally

and (2.1) follows from (2.2) and (2.3).

LEMMA 2.2. Let a, °2 be representations of G on the Banach spaces

El E2 , uniformly bounded by respectively. Assume that k : G -+

-+ .E~) satisfies (1.2) and is integrable on compact sets. If for all

h E G and u E Ei

with some constants then the operator A defined by

satisfies condition (ii) of Theorem 2.1.

PROOF. Suppose that with support contained in i

and Making the variable change h = got and then the change

we find
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In the last step we used Using our hypothesis, the last

expression is seen to be majorized by

finishing the proof.

LEMMA 2.3. a, be as in Lemma 2.2. Assume that

satisfies (1.2) and is integrable on all compact sets disjoint from K. If lc

satisfies the conditions

for all all u E Ei t and some (hence all) fixed

for all u E Ei , then ks, R satlsfies them too, with a constant c~ possibly dif-
ferent from C3 but independent of e and R.

PROOF. It is immediate that (i) for any fl &#x3E; 0 is equivalent with the

condition

for some (hence every) fixed and all

Now observe that if then

for all u E 1 with a constant c3 independent of Lo. In fact, by (i) and (ii)
the left hand side is majorized by
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Next we note that, if then

In fact, the second inequality is immediate from properties (ii), (iii) of the

gauge ; the first follows by
Now (2.5) shows that, for

if or

therefore

The first integral is by hypothesis. The third and fifth are ..
by our first remark (applied with h = e). To estimate the second we distin-

guish two cases : If then it is by (2.4). If
then so the integral is majorized by

and this is  c3| 1 u I by (2.4) applied with e = 4%2 1 h I. The fourth integral
is estimated in the same way as the second. It follows that (ii) holds for

kER with c3 = c3 + 4c3 .
The following theorem is our main result. As to its hypothesis con-

cerning A’ , cf. Lemmas 1.7 and 1.8.

THEOREM 2.2. Let 61,  a2 be uniformly bounded representations of G

on the Banach spaces Ei’ Assume that for some
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is dense in every Let satisfy
(1.2), let k be integrable on all compact sets disjoint from K, and such that

I

(i) defining, for all

for some we have with c

independent of 8, R, f,

(ii) for all

(iii) for all o &#x3E; 0, u E E1 , v E and for some (hence all) fixed

exists for all u 

Define for all

Then, for all with ep depending only 
and. exists in

PROOF. First we claim that for all and

In fact, let I be such that B (e) contains the support of f.
We have

If this expression is 0 for . by property (iii) of the
gauge. Therefore

2. Annali della Scuola Norm Sup. di Pisa.
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Since this is true for every M &#x3E; 0, the claim is proved.
For 1  p  r the first assertion of the Theorem now follows from

(ii) and (iii) by Theorem 2.1 and Lemmas 2.2 and 2.3. Since (i) is automa-

tically satisfied for with the dual exponent r’, it follows as above

that for This implies our assertions
for

To prove the second assertion of the theorem it is now enough to

prove that lim exists in the LP.sense for all For this

let 0  8’  8  b where ð belongs to f as in the definition of Aa. By a
change of variable we have

where

As uniformly in g, since, using (iii),

Also 99 (g) = 0 independently of e for g I sufficiently large; this is clear,

since h ~ ~ ~  ~ and I g ~ large imply that I is large, and so g, gh are
both outside of the support of f. It follows that cp --&#x3E; 0 in LP (G: K, E2)
as E --~ 0.
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To show that also VJ --&#x3E; 0, note that by (iv) 1Jl tends to 0 pointwise.
By (iv) and the Banach-Steinhaus theorem

By the Lebesgue dominated convergence theorem the assertion follows.

REMARKS. 1. If k-E EP for all 1 [ ~  oo with some (and hence all)
8 &#x3E; 0, then the formula

is valid for all In this case we also have

in the LP.sense.

2. Assuming only the first inequality of (ii) the theorem still holds

for 1  r, by the same proof as above.
3. Both inequalities in (iii) are implied by the stronger hypothesis

Instead of (ii) one can also assume inequalities about operator norms, but
there are still two independent inequalities to assume. An easy computation
using the unimodularity of C~ shows that these operator norm inequalities
are equivalent with

4. The conditions of the theorem are easy to translate to the case

were our operators are given in terms of a kernel s on X x X as in the

discussion after Definition 1.2. E.g. the inequalities in (ii) become
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§ 3. An .L2-theorern.

The first lemma is a simple extension of a result of Cotlar, Knapp and
Stein [5] [13].

LEMMA 3.1. Let 9l be Hilbert spaces. Let Ai, A2 , ... be uniformly
bounded operators 9C 2013~ ge such that, for all &#x3E; 0

with somme Then for all N, with some

independent of N.

PROOF. We may assume dim 9( otherwise we consider 

A2 , .., instead of A2 , .... Let y : be an isometric injection, i. e.

Let Now the sequence obvi-

ously satisfies (3.1), and hence, by [13, Lemma 1],
’ for

all N. Since the

assertion follows.

The next two lemmas generalize results of Cotlar [6, p. 38].

LEMMA 3.2. Let (1i , Q2 be unitary representations of G on the Hilbert

spaces Hi, H". Assume that q2 , ... are integrable functions G -~ Z (Hi H2)
satisfying (1.2) and such that

with some for all

for all

with some

whenever

with some

Then the conclusion of Lemma 3.1 holds for the operators

defined by

Proof. By Lemma 1.3 and 1.4, Ai is given by the kernel

After a change of variable we can
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write with

By Lemma 1.2, it will suffices to estimate the L1-norm of 1c’ and k". By
Fubini~s theorem,

By (iii) the h-integral is 0 for therefore in the g-integral
we hawe to consider only This implies with

jo such that  a. For such j (iv) can be applied to give, using also

(iii) and (ii),

On the other hand, by (i) and (ii),

This shows that with some whenever

The same inequality for Ai+j At follows by interchanging the roles of qi
v

with qf y er with 

Lemma 3.1 can not be directly applied because of the condition j &#x3E; jo .
However, we can apply Lemma 3.1 to each of the finitely many families

and get the desired conclusion.

LEMMA 3.3. Let Hi H2, a1, ,°2 be as in Lemma 3.2. Assume that

.,. are integrable functions G - H2) satisfying (1.2) and such
that

for all
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for all

with some

whenever with some Then the conclusion of

Lemma 3.1 holds for the operators defi-

ned by

PROOF. By (i) the kernel of . can be written in the form

As in Lemma 3.2, for

which gives the necessary estimate of can be dealt with

similarly, and the assertion follows as in Lemma 3.2.

THEOREM 3.1. Assume that the gauge satisfies (La’) for some % &#x3E; 0.
Let °1’ 7 a2 be unitary representations of G on the Hilbert spaces 
let k : G -~ (gi , H2) satisfy (1.2) ; let lc be integrable on compact sets dis-
joint from K, and such that

(a) for some 0  ~  1, for all A &#x3E; 0 and 
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for all and some (hence all) fixed

(c) with some v ~ 0 we have for all small

for small

for large

Then all conditions of Theorem 2.2 are satisfied.

PROOF. By Lemmas 1.6 and 1.7 the condition about the density of
Aa is satisfied. Conditions (ii), (iii), (iv) follow in a trivial way from (a), (b),
(c) (cf. Remark 3 after Theorem 2.2). We only have to prove that condition

(i) is fulfilled.

Let be a non-negative C °°-function with support in the interval

(1/2, 2) and such that, defining The

existence of such a p is shown in [11, Lemma 2.3].
We define and

show that, for sufficiently large i, the conditions of Lemmas 3.2 and 3.3

are satisfied. This will finish the proof since a finite number of q,’s and
being integrable, can be neglected, and since for any 0  e  R we

...

have j’, j" such that hence

where have their support in and

respectively, y and both are majorized by I k 1. . By con-
dition are bounded independently of j’, j", so the state-
ment follows from Lemma 1.2.

We shall check only the conditions of Lemma 3.2 involving the 
v

the case of the and the case of Lemma 3.3 are entirely analogous. To
check (i) note that, since the support of is contained in

can be approximated in norm arbitrarily closely by a sum

where Dl is the set This
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sum can be majorized in norm (using that by

with some constants c, c’, proving (i). Condition (ii) is immediate from (b)
by the inequalities

Condition (iii) follows from the definitions, with

Now we have to check (iv) with Let

and let We have

The integrand in If is 0 if This is certainly the case if
by the choice of a. Condition (a) with can be

applied, since the choice of a guarantees and gives

The integrand in I2 is 0 if by the same remark as above.
Similarly it is 0 if which is certainly the case if

Now note that and that

imply . So, by

where we wrote M’ for It follows that
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By condition (b) the last integral is bounded independently of i, so we

have which, together with the estimate on finishes

the proof.

§ 4. Preservation of Lipschitz classes.

LEMMA 4.1. Assume all the hypotheses of Theorem 2.2. In addition

assume that for some (hence all) fixed f3 &#x3E; 0

as o - 0. Let, for each small e &#x3E; 0, Be be a measurable subset of
Then, for all and all we have

PROOF. Introducing the new variable the norm of the left

hand side can be majorized as follows.

In particular, it follows that the integral we have written down exists.

LEMMA 4.2. Assume all the hypotheses of Theorem ~.2, assume (4.1)
and assume that ke E LP for all 1  p  oo with some (hence all) 6 &#x3E; 0.
Let ~1 be defined as in Theorem 2.2. Then for all

and all we have
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PROOF. The first integral exists by Lemma 4.1, the second (to be in-
terpreted as lim by condition (iv) of Theorem 2.2, the third by

kg E Lp’ (cf. Remark 1 after Theorem 2.2).
Let 0  s  p. Then, defining A8 as in Theorem 2.2, the right hand

side is easily seen to be equal to

Both of the integrals tend to 0 as ~ --~ 0 ; the first by Lemma 4.1, the
second by a change of variable and condition (iv) of Theorem 2.2. Therefore

converges pointwise. Since LP by Theorem 2.2,

it follows that the same is true pointwise a. e. This proves the lemma.

THEOREM 4.1. Assume that the gauge satisfies (.La) with some a &#x3E; 0.

Let be uniformly bounded representations of G on the Banach spaces
such that for all

Assume that k satisfies all conditions of Theorem 2.2, and in addition,

for all

for some for all and

for all and for some (hence all)

for all

Then, for all and the operator A of Theorem 2.2

maps into
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PROOF. Let g, denote We have to show that

uniformly in g.
We pick a large R &#x3E; 0, and using Lemma 4.2 write

1, and Ji are 0 (C)#), by Lemma 4.1. I4 , J5 tend to 0 as R -+ oo, since

k E LP’. Denoting

we have, by some variable changes,
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a, b are uniformly bounded by conditions (iv) and (ivl), 01’ g2 by hypothe-
sis, and f (g), f ~gl~ by Lemma 1.5.

Furthermore, each term on the right contains a factor which is 0 (eg).
Therefore the whole expression is 0 uniformly in g and R.

It remains to show only that We have

Since ~ o, property (iii) oi the gauge gives 
therefore, by Lemma 4.1, the first integral is 0 (g4). We majorize the second
integral by taking norms under the integral sign and increasing the domain
to gB (R) - gB (e). After a change of variable this gives

By the Corollary of Lemma 1.5, for all g; this

gives a further majorization which can be written in the form

where
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Integration by parts gives

Using (ii’) if follows that the first term tends to 0 as R --~ oo and that

the other two terms are 0 

To estimate the third integral in (4.2) we take norms inside, use that

I f (g~ ~ I is uniformly bounded, and make a change of variable to get

By (L(), is small (exactly if 1 ), the domain of integration is

getting larger by taking

It is clear from (iii’) (cf. proof of Lemma 2.3) that is bounded

by a constant independent of .R.
It follows that we can find a sequence Rn - oo such that the corre-

sponding sequence of integrals (4.3) tends to 0.

The fourth integral in (4.2) can be treated similarly to the third,
finishing the proof of the theorem.

§ 5. Homogeneous gauges and kernels.

In this section we assume that (~ is a real Lie and

that there is given a (multiplicatively written) one-parameter group )a(t)~
of automorphisms of Q’ which is contracting in the sense that

for all g E G. We also assume that G has a gauge which is homogeneous in
the sense that
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for all t ~ 0, g E G. Uniqueness of the Haar measure implies the existence
of a positive number, which we will denote by q throughout this section,
such that

We assume furthermore that the induced group # a,~ (t) ~ t of automorphism of

g, the Lie algebra of G, is diagonalizable over the reals. This means that

on an appropriate basis of g, a~ (t) acts by multiplications ~~ I--~ 

Ai &#x3E; 0. Throughout this section we shall denote by a the smallest one of

the Åi. cx is uniquely determined by the group a (t) t. Reparametrizing
# and taking an appropriate power of the gauge so that (5.2) should

remain valid (cf. Remark 8 after Definition 1.1), we could always arrange
a =1, but we prefer the present more flexible arrangement.

It is easy to see that the existence of a contracting group of automor-

phisms implies that C is a simply connected nilpotent group [17].
It is also easy to see that every symmetric relatively compact neigh-

borhood U of e determines a homogeneous gauge on G by the formula

for all t &#x3E; r ~ t [17]. Every homogeneous gauge

clearly satisfies the condition of Lemma 1.8, but, as one easily sees on ex-
amples in a = R2, not every homogeneous gauge has a property jLao) or
is continuous on (~. On the other hand there always exist continuous or

even smooth homogeneous gauges; one obtains these by starting with a

sufficiently regular U in the construction above.

DEFINITION 5.1. Let s be a real number. We say that a function u

on G - I e I is homogeneous of degree s if

for all g $ e and all t ~ 0.

LEMMA 5.1. If u is real-valued, homogeneous of degree s and integrable
on compact sets not containing e, then, for every 0  a  b,

if

if

with some constant c depending on u.

PROOF. Let ro &#x3E; 0, and for r &#x3E; ro define
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By the integrability hypothesis on u, (M is absolutely continuous with

respect to By (5.2) and (5.3) we have 99 (r) = erq , y hence co

is absolutely continuous with respect to r, and

(note that m’ is independent of the choice of ro~. From (5.3) and (5.4) it

follows easily that x/ is a homogeneous function of degree s -~- q -1 on
Hence o and the assertion follows from (5.5).

LEMMA 5.2. Suppose that the gauge is continuous on G. Let be a

Banach space, and - E be a continuously differentiable

homogeneous function of degree s. Then there exist numbers M, N &#x3E; 1
such that

whenever

PROOF. We use the basis of g introduced at the beginning of this

section; we identify (~ with g via the exponential map, and denote the i’th
coordinate of an element g by già.

(au/ a 9,) is homogeneous of degree, - Åi ; this is clear for the difference

quotient of u regarded as a function on C~ X G, and hence true for its

limit. Also (gh)~ is homogeneous of degree Ai on Q’ X C~ ; it is also a poly-
nomial in 9i’ ... , hi , h2 , ... since C is nilpotent.

Using the vector space structure of g we define the line segment

We have

There exists such that implies
for all In fact, for given g such that and given t
there exists such that implies By a
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compactness argument then there exists such that implies
for all g with , and all By homogeneity

of the gauge our assertion follows with

Now, by the homogeneity of we have

whenever

Since is a homogeneous polynomial of degree Ai vanishing
for h = e, we have

where the Pij are homogeneous polynomials of degree
We have with the constant We can

majorize by the sum of the absolute values of its monomial terms.
Each such term is of the form where

by the homogeneity of and is therefore majorized by

It follows that

The first inequality of the lemma now follows from (5.6), (5.7), (5.8). The
proof of the second inequality is similar.

COROLLARY. (Knapp-Stein ~1.3, Lemma 2].) If the gauge is continuously
differentiable on G - e ~, then it satisfies (.La~.

In fact, the gauge being homogeneous of degree 1, the inequality of

(jE~) holds for N I h g 1. . By the Remark after Definition 1.5 this is

enough.

THEOREM 5.1. Suppose that the gauge is continuously differentiable

on Q~ - ~ c #. Let 62 be the trivial representations of (~ on the Banach

spaces Let be continuously differentiable,
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homogeneous of degree - q, and such that

for all 0  a  b. Then the conditions of Theorems 2.2 and 4.1 are satisfied.

If El I E2 are Hilbert spaces, then the conditions of Theorem 3.1 are also

satisfied.

PROOF. We check the conditions of Theorem 3.1 first ; they automati.
cally imply also the conditions of Theorem. 2.2.

To show (a~ we apply Lemma 5.2 to k, and then Lemma 5.1 to get,
for every A ~ 0 and 

v

The analogous inequality for k follows similarly. (b) is immediate from Lemma
5.1. (c) is trivial.

In passing we have also shown conditions (ii’) and (iii’) of Theorem 4.1.
(iv’) is trivial; to show (i’) we note that is homogeneous of degree

- qp, and so by Lemma 5.1 exists and is equal to for

every p &#x3E; 1. This finishes the proof.
The following theorem is a generalization of a result in [1]. It will be

used in § 8.

THEOREM 5.2. Let 99 C be such that, with some y &#x3E; 0, for all

g~hE G,

For be defined by
Then conditions (ii), (iii), (iv) of Theorem 2.2 and the conditions of Theorem 4.1

3. Annali della Scuola Norm Sup. di Pisa.
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are satisfied. If, in addition, y --- a and

then the conditions of Theorem 3.1 are also satisfied.

PROOF. e and z E C we have, using (i),

which shows that with a constant c. This, by Lemma 5.1,
implies for all and

for all

Next we note by (i) and by Lemma 5.1. It follows that

the integrals in (iii) are bounded independently of h (by the number 2c 11 TIll)-
Consequently the right hand side of (iii) can be replaced by

Also, by (i) we have

whenever (since the latter ineqaality implies
Using first the Schwarz inequality and then the facts just mentioned

we obtain, for all
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v

A similar inequality follows for k by the same proof.
Now let 0  a  b. We have

It is now clear that (ii’) implies condition (c) of Theorem 3.1. If only (ii)
is assumed, we observe that it implies

whence, by (i) and by Lemma 5.1 it follows that

This implies at once that I (a, b) is bounded independently of a, b and
converges as a - 0. This finishes the proof.

REMARKS 1. It is clear that I (a, b) depends only on the ratio of a
and b. Therefore condition (c) of Theorem 3.1 is satisfied if and only if

(if) holds.

2. If we define a one parameter group of unitary transformations
on by I we have
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for all s ] 0, g ~ e. This is a kind of generalized homogeneity for k similar
to that which, in the case of G = Rn, was studied in [21].

PART II. - APPLICATIONS.

§ 6. The Cauchy-Szego integral for the generalized halfplane D.

Let be the generalized halfplane

and let B be its boundary in Cn. D is the image of the complex unit ball
under a generalized Cayley transformation T defined by

T is the same as the Cayley transformation of [15] preceded by the map

The transformation of (15] is, in turn, the same as the c of [14]
followed by a map

There is a group 11 of holomorphic automorphisms of D, which as a

set equals R X ()n-1, an element g = (~, ~) acting by

n

stands for  I Ck 12. if) is simply transitive on B, so g i- g. 0 is
2

a one-to-one map of it) onto B ; the point z = (z, , ... , corresponding to

the element g = (~, C) is given by

Multiplication in m is given by
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if) has a contracting one-parameter group la (t)t of automorphisms defined by

It is easy to see that 1m ..., Im Cn are canonical coordinates

in 11, therefore the minimal exponent a defined at the beginning of § 5 is

now 1/2. For the Haar measure of if) we have

We define a homogeneous gauge in if) by

In [15] we used the gauge Maxi I ~ 1, 1 ~ 12~ which is also homogeneous.
The gauge used here has the advantage of being smooth on if) - ~e~, and

that if u E B is the point corresponding to gEm (i. e, if u = g ~ U) then

with ordinary absolute value on the right hand side. It is also clear that

the generalized distance function y of Remark 1 after Definition 1.1 is now

given by where , as in [15].
The Szegö kernel of .D is given by

(cf. 15] ; the value of cn given there is wrong, the fact that the Cayley
transform used is not exactly the same as c in [14] having been overlooked).

It is known [17] that for every, de-

fines an H2 function on D and P is the orthogonal projection operator
onto g2 if we identify .g2 with a subspace of .L2 (B) by taking boundary
values. The measure P on B is defined by

It is also known that writing and denoting

by 7 the lift to it) of a fanction g2 on B, i. e. we have,
for all
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where so, in the present case,

Since f lifts to a Haar measure on 11, it follows that for

all and is the orthogonal projection of f onto

the subspace corresponding to boundary values of H2-functions.
We wish to study the singular Cauchy-Szeg6 integral given by the

kernel i. e., explicitly, by

We will show that Theorem 5.1 can be applied to it, and we will also
find the connections between the operators and de-

fined as in § 1).

LEMMA 6.1.

PROOF. Let denote the Euclidean volume element in To

compute the integral we introduce polar coordinates in Cn-1

where dC’ is the surface element on I the unit sphere in Next

we make the variable change

and then introduce polar coordinates in plane in which we have
to integrate on the upper halfplane,
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We find

and this is equal to 0 since by an easy computation we have, for all

LEMMA 6.2. Let, for

Then

PROOF. Differentiating n - 1 times with respect to x the identity

by Loibniz2s rule we obtain

Substituting this identity with x = ieiO into the definition of J (a, b), we find
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The integral of the term containing is 0 by (6.6). In the terms un-g g g 
a 

)

der the summation sign we let b -&#x3E; oo and a --&#x3E; 0 ; in the limit each term

is a constant multiple of so the integral is again 0 by (6.6). We
denote the last term by J’ (a, b) and rewrite it as

We rewrite I (~O) as a complex line integral setting
and denoting by T the lower half of the unit circle from 1 to - 1 :

The denominator has a zero in the upper halfplane only; therefore by Cau-

chy’s theorem T’ can be changed to the straight line segment from 1 to

-1. Now we have

The second integral is zero since the integrand is odd ; the first integrand
is even. So we have

The e.integral equals tan-1 bx - tan-’ ax, and tends boundedly to as

a -~ 0, b - oo. Therefore

finishing the proof.

COROLLARY. For every fixed.
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PROOF. Let By the variable changes (6.3), (6.4), (6.5)
we have

After the variable chadge s = this is equal to

Letting first then the Corollary follows.

LEMMA 6.3. For every. we have

with some c independent of f and s, furthermore

in the sense and pointwise a. e.

PROOF. We adapt the argument of [22] to our case. We note first

that, for h = (~, C) such that we have

where P is a homogeneous polynomial of degree 3n - 1. Majorizing P by
the sum of the moduli of its terms, then majorizing e,
we obtain

It is immediate that the function has the homogeneity
property

From this and (6.7) it follows that ~~ kE ~~1 is finite and independent of e.
This implies the first assertion of the Lemma.
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To prove the LP part of the second statement, let By
Lemma 6.1 we can write, for any

The last integral tends to 0 in .L~ oo by (6.8). The third integral
tends to 1~2 f (g) by the Corollary of Lemma 1.2. We will show that the

first two integrals tend to 0 in uniformly in R.

By MinkowskFs inequality we have

where denotes the right translate of By the trivial ine-

quality for this is majorized by

which tends to 0 8S E --~ 0.

To estimate the second integral we choose 8 [ r~  R and use (6.7) to
get the majorization

The .Lp - norm of the first term here is majorized by Minkowski’s inequality
and by Lemma 5.1 by
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The LP - norm of the second term is similarly majorized by

By choosing first q then e conveniently, both terms can be made arbitrarily
small.

To prove that - f *’ k’ tends to 1 a. e. we let R tend to 0o in2
(6.9) to obtain

Using again the estimate ~ for it follows by Le-
besgiie7s theorem (cf. [7] and the remarks following our Lemma 1.1) that
the first term tends to 0 a. e. as B --~ 0.

Let now 17 &#x3E; E. Split the second term as follows :

By (6.7), as Let, for

which is an increasing function of r. Using (6.7) we have
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where in the last step we integrated by parts. The last expression in ab-
solute value does not exceed a constant multiple of

For g in the Lebesgue set of f this can be made arbitrarily small by choo-

sing n small enough. Finally, by (6.8) and a change of variable we have

Since ki is integrable, this tends to 0 as

THEOREM 6.1. Let For all the limit

exists in LP (B) and a. e. P is a bounded projection in LP (B) whose range
is gp (D) regarded as a subspace of LP (B), and PF is the boundary fun-

ction of the Cauchy Szeg6 integral P maps the classes

into themselves for all

PROOF. Therefore we have to show that k

satisfies the conditions of Theorems 2.2 and 4.1. There are two ways of

doing this : From Lemma 6.1 it is clear that k satisfies the conditions of

Theorem 5.1, which implies the other two theorems. The other way avoids
the general L2-theory of § 3; Lemma 6.3 together with the results of [17]
mentioned earlier implies condition (i) of Theorem 2.2 ; the other conditions
and those of Theorem 4.1 follow by the same simple arguments which we
used in § 5. 

-

To prove the remaining statements we note that

is a function in HP, since its restriction to lifted to 11

equals and by the first statement of

Lemma 6.3. Still by Lemma 6.3, PF is the boundary function of this gp-
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function. Since it is known [15] that every HP - functions converges to its

boundary function a. e., Lemma 6.3 also implies that (6.10) holds a. e.

To see that P is a projection, it suffices to see that P2F = PP for
all F in a dense subset of this is clearly true for by
the results of [17]. To see that the range of P is exactly HP, it suffices

to see that PF = F for all F in a dense subset of Now PF = 11 holds

for again by the results of [17], and Hp n H2 is dense in .gp

by the following argument implicitly contained in [23]: Given F E HP , it

can be approximated in HP by Ft (t &#x3E; 0). Fe E g °° n hence, and since

8 (z, ip) is in the function where

a (e) Z = 81/2 Z2 , ... , Ell2 zn), is in .g2 n HP. For small E &#x3E; 0 this function

approximates Ft in HP by the Lebesgue dominated convergence theorem.

§ 7. The Cauchy-SzegU integral for the complex unit ball.

Let (D be the open unit ball in C’~, let Cf3 be its boundary. The uni-

tary group G = ~ (n) acts on 93 transitively; i the isotropy group .g at

~r = (1, 0, ... , 0) is isomorphic with U (n - 1). We identify cf3 with G/.g
whenever convenient.

There are several ways of defining a gauge for (G, K), or, what by
Remark 1 after Definition 1.1 amounts to the same, a generalized distance

y on Gong and Sun [10] use the definition in [15]
we used Here we will use 7
defined by

This has the advantage that, when we have

by the formulas (6.1). So a  ball &#x3E;&#x3E; of radius p  1 in cl3 is transformed

by T onto a ball of the same radius in B.
In checking that y really determines a gauge only properties (iii) and

(iv) of Definition 1.1 are not entirely trivial. (iii) can be checked by a very
easy direct computation, or in the following way: Denoting, for ~o &#x3E; 0,

and



620

there exist constants c1, c2 &#x3E; 0 such that

for all e. This is easy to see, since u E sIle is equivalent to

(when LD ---- 1), i. e. to ul being in the intersection of the one-dimensional

complex unit disc with the disc of center and radius - = while

is equivalent to It was shown in [15]
that YH has property (iii) ; from (7.3) it follows that y has it too. As for

property (iv), in [15] it was shown that IA = en for ~o ~ 1. This implies
(iv) for yg, and then, by (7.3), it also holds for y. Another way of checking
(iv) consists in applying the Cayley transform T and computing on B.

It is also easy to see that a relation of the type (7.3) holds between

r Hand y~ ~ so r G also defines a gauge.

LEMMA 7.1. The gauge determined by y has the property (Lÿ.
2

PROOF. The inequality (1.5) to be proved can be reformulated in terms
of 7 as follows : 

1 ..

whenever y (v, p) : 7 (u, p). It is clearly enough to prove this for the case

y (u, _p) - 6 with since 7 is bounded, (7.4) will then automati-

cally be true without restriction. We choose 6 ) 0 such that y (u, p) -~ ~

implies Reu1’ Rev1, Re 
Denoting we have

Now

By the choice of 6 the denominator is ~ 1 and hence can be omitted. It

follows that
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It is clear that Writing we have

by i and

A direct computation gives

By (7.5), (7.7) and this implies
Together with our estimate on b this implies the Lemma.

REMARK. A very similar computation proves the property for

The Szeg6 kernel of ~D is given [15], [14] for z, w E Q by

For every defines an H2 function on (D,

and P is the orthogonal projection onto the subspace of boundary functions
of H2-functions. p is the normalized G-invariant measure on the Haar

measure of G can also be denoted by It without leading to any confusion.

Writing, for 0  r  1, (PF )r for and denoting by ~ the lift to (~

of any function (p on we have

where is then the orthogonal projection
I --r" 1

operator on H2 ; we shall investigate the connection of this with the singu-
lar integral operator given by the kernel

LEMMA 7.2. for all and
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PROOF. The first statement is immediate by applying the Canchy.Szeg6
integral to the function identically 1, which is in .g2 (9b).

To prove the second statement we write the integral as an integral
on 93, then use the Cayley transform (6.1) to transform it into an integral
on B where it is easier to compute. We have by [14] formula (4.1) and a

formula on p. 342,

These formulas are also easy to check directly. Using these, noting that

Tp --- 0, writing Tu and using (7.2), (6.2) we have

Performing the variable changes (6.3), (6.4), (6.5) in the last integral we
find that it equals (in the notation of Lemma 6.2)

By Lemma 6.2 this tends to 1/2 as

LEMMA 7.3. For every

in LP and a. e.

PROOF. For all
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By Lemma 7.2 the third term equals f (g) and the last term tends to f(g)/2
as r - 1. We have to show only that the first two terms tend to 0 in .Lp.

We majorize the L?-norm of the first term using MinkowskFs inequatity :

By the explicit formula for cS we have Also, we find

by transforming the integral to B by T as in Lemma 7.2.

Hence we have the further majorization by

This number tends to 0 as r -t-1.

To majorize the second term we apply 8Iinkowki’s inequality, then,
taking we split the resulting integral into a sum
where

and

Writing we have

4. Annali della Scuola Norm. Sup. di Pi8a.
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If h then Re hence Therefore the sum in (7.10)
is majorized on D3 by an integrable function q? independent of r. Hence

which tends to 0 as

On D1 and D2 , Re . Therefore and

Hence, by (7.10),

For 11 this gives the estimate

The integral here can be computed by applying T as in Lemma 7.2 and
then lifting the integral from B to 1R ; it is majorized by

the last equality by Lemma 5.1. This shows that 7~ can be made arbitra~

rily small, uniformly for 1- r  q, by choosing q small enough.
For I2 we have, by the same transformations and by Lemma 5.1,

This also tends to 0 as r --~ 1, finishing the proof of the statement on

L P.con vergence.
Convergence a.e. is proved similarly as in Lemma 6.3.

7.4. The gauge induced by 7 and the kernel c)C satisfy all con-

ditions of Theorems 2.2 and 4.1.

PROOF. We have shown in Lemma 7.1 that the gauge satisfies (L’1/2).
Condition (i) of Theorem 2.2 follows from Lemma 7.3. Instead of checking
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conditions (ii), (iii), (iv) we will, with almost no extra effort, check the

more stringent conditions (a), (b), (c) of Theorem 3.1. In this way we also

have an other proof of condition (i), avoiding Lemma 7.3 but involving the
.L2 theory of § 3.

It is enough to check (a) for small A &#x3E; 0 since G is compact, and it
v -

is enough to check the first inequality in since We write u = gp,
v = hp and use (7.8) and (7.9) writing again u, v instead of Tu, Tt,

These integrals can be rewritten as integrals on 11 using the kernel k
of § 6. Since we consider small A only and ~ A, v is close to 0. The-

refore

where is such that I - 0 = v, therefore Lemma 5.2 and

Lemma 5.1 now give, for

To estimate I2 we again write if the expression in,."

front of the integral is which is less than

(since h I is smal). Therefore
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we have

by Lemma 5.1.

To check (b) and at the same time condition (iii’) of Theorem 4.1,
let Applying T as usual, we find

the last equality by Lemma 5.1.
v -

To check (c), it is again sufficient to consider c)C. The com-

putation of Lemma 7.2 gives, for small 0  a  b,

where

R (e) is a continuously differentiable function of e on the interval [0, 1/2],
so R’ (e) is bounded on this interval. R (0) = 0 by (6.6). It follows that

~ R (~o) ~ S M e, and hence J (a, b) S M (b - a). This implies (c) with v =1

for small ; by compactness of G this is all that is needed.
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By compactness the conditions (i’) and (iv’) of Theorem 4.1 are trivial,
so the proof of the Lemma is finished.

THEOREM 7.1. Let 1  p  oo. For all the limit

exists in Z~(~3) and a. e. P is a bounded projection in .L~ (~3) whose range
is HP (0) regarded as a subspace of LP and PF is the boundary fun-

ction of the-Cauchy-Szegö integral maps the classes

into themselves for all

PROOF. The proof follows from Lemmas 7.3 and 7.4 in analogy to the

proof of Theorem 6.1. One detail requires further mention : in the case

p = 2, P is the orthogonal projection onto (0). In fact, we have P2 = P
by the reproducing property of the Szegb kernel, and P is selfadjoint by

REMARK. The analogue of Theorem 7.1 holds also if we use y~, instead

of y. To see this, denote the gauge induced by ya. An elementary

computation shows that if then

Hence, setting

otherwise

we have

Transforming the integral by the Cayley transform and using Lemma 5.1

we get a majorization by This tends

to 0 as and it follows that for

all
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§ 8. The functions of Littlewood-Paley and Lnsin on D.

We consider the generalized halfplane D of § 6. As we have seen, the

group 11 acts on D by holomorphic automorphisms. There is also a one-

parameter group (a (t)( (t &#x3E; 0) of holomorphic automorphisms acting by

(It may be noted that the automorphism group )a (t)t of § 6 acts on lll by

Every point z E D can be uniquely written as

where The pair or can

be used as coordinates on D. The formulas for the coordinate change are

In this section we will use the new coordinates throughout. Also we will

identify the boundary B of D with it) under the map g I --~ g · o. 
-

We write I and use the usual notation

LEMMA 8.1. are left-invariant

vector fields on 11.

PROOF. Trivial computation based on the composition rule of 11.

LEMMA 8.2. The vector fields

on D are invariant under 11 and ~% (tH. At every point of D they form an
orthonormal basis with respect to the Bergman metric of D,
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PROOF. The statement about group-invariance follows by a trivial
verification. Since every holomorphic automorphism is an isometry in the

Bergman metric, and (){ is transitive on D, it suffices to check

orthonormality at one point, e. g. at ip.

The values of our vector fields at ip are

Expressed in terms of the coordinates they kave

the form There are several ways to
» " 1 .. v ..

see that these are orthonormal. The most direct way is to compute explicitly

the coefficients of the Bergman metric at

It is known [19] that in our case, so we

find diag proving the assertion. Another way is

to use that is the inverse matrix of the coefficient matrix of the

invariant Laplacian ; for the latter there is an explicit formula in [15, p. 511 ~.
A third way consists in computing the differential of the Cayley transform
T at 0 ; the metric matrix of the unit ball at 0 is cI by rotation invariance,
and T carries it to the metric matrix of D at ip.

Let us recall from [15] that every real-valued LP-function f on B (or,
what is the same, on has a « Poisson integral » F defined on D by

where

F is harmonic with respect to the Begman metric.

DEFINITION 8.1. Let (11, R). The Littlewood-Paley fuuction
is defined by

where F is the Poisson integral of f, V F is the gradient of F with respect
to the Bergman metric, and ( I denotes lengh with respect to the Bergman
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metric. We also define the following auxiliary functions :

REMARKS 1. By Lemmma 8.2 we have

2. Since by Lemma 8.1 we have

DEFINITION 8.2. On 11 we define the functions

Explicitly, we have

LEMMA 8.3. For all



631

PROOF. Immediate by direct calculation. The calculation can be somewhat
shortened by using which is a known general iden-
tity [14] and also easy to check directly.

LEMMA 8.4. For all with a constant c

independent of f.

PROOF. By continuity it suffices to prove the Lemma for all smooth f
with compact support. Let 0 C s  R, and let D,R be the subset of D

determined by the inequalities

We have Green’s formula

where the Laplacian, the unit normal and the volume elements are taken

with respect to the Bergman metric. We set and where F

is the Poisson integral of f. It is easy to see that = 0 (in [15, p. 515]
it is erroneously stated that LIt = 0). Also, by the well known formula
div (aX) = a div X + V a - X and by div PF = AF = 0 it follows that

Taking into account that the invariant volume on D is

proportional to we find that the left hand side of (8.2) equals

with some constant c. As s ~ 0 and R - oo this tends to
_

The right hand side of (8.2) has to be considered separately on the
different faces of On the piece where t = .~ the unit normal pointing

outward is R a by Lemma 8.2. The surface element on this set is
at

as it follows from the formula for the volume element on D
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and again from Lemma 8.2. This gives us

We haves By the obvious estimate

I 
- it follows that Hence

(8.3) tends to 0 as R - oo.
On the piece of the boundary where t = E we get (8.3) with R in the

integrand replaced by e and with signs changed due to the fact that the

normal pointing outwards is now - (and then R --~ oo) the

second term tends to by elementary properties of the Poisson in-

tegral (cf. [14]). We claim that uniformly, whence

the first term tends to 0.

To prove the claim we note that by Taylor’s for-

mula (cf. Lemma 1.8), and hence, e.g. by Lemma 1.5 we have

for all g, h E 11, with some .. Clearly and

thus we have

Making the change of variable and using Lemma 8.3 the last

expression is seen to be equal to

and the claim follows.

We still have to consider the lateral surfaces of i. e. those where

one of the variables $, is constant. t a is tangent to these surfaces,’ at g ’
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hence by Lemma 8.2 the unit normal is a linear combination of

Hence the second term on the right hand side of (8.2)

is 0. The integrand in the first term is the argnments (t, g) of F

that occur satisfy the inequalities It is easy to see from

our explicit formulas that and that

Since F is the Poisson integral of a function with

compact support, F and satisfy the same inequalities I large

enough. Thus, for large R, our integrand is majorized by

The integrand has to be multiplied by the surface element expressed
in the which we now proceed to estimate. Let A

denote the matrix transforming the orthonormal basis to the

basis is known from the definition y and

an easy computation gives

with zero everywhere else. The metric matrix is clearly A ’A. The principal
minors of order of this are majorized by or I
where The surface element is the square root of such a minor,

and therefore majorized on the lateral surfaces of D,n by or

where c is some constant. Carrying out the integration with
respect to t, all y and ~ except one, we find that our integral is majo-

rized by and tends to 0 as R - oo. This finishes the proof of the

Lemma.
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THEOREM 8.1. For every 1 ~ p  oc there exists a constant cp such

that

PROOF. Each ~,; (0 ~ i ~ n) satisfies conditions (i)-(iii) of Theorem 5.2
with 7 = 1/8. For (i) and (ii) this is trivial. For (iii) it is enough to con-
sider the case of small I h I ; putting (pi (h-lg) (g) over a common deno-

minator the terms of the numerator not involving the coordinates of h

cancel out and one gets a majorization by c ( h 11/2 (1-~- I g 12)-n. This is in-

tegrable with respect to g by Lemma 5.1 and so we get the first inequality
of (iii). The proof of the second inequality is the same.

Let ka be the kernel defined with the aid of gJ; (0  i ~ n)~ as in Theo-
rem 5.2. Then for all smooth f with compact support we have

In fact, noting that k~ E Z/* for all we have

The innermost integral has the value ( f ~ ki) (g) (t~ and, since 99i E L’, con-
verges for every fixed g and t to the value of the innermost integral in

On the other hand, converges as an element of .L2 (if), .L2 (0, 00)) by
the argument used at the end of the proof of Theorem 2.2. The limit must

coincide with the pointwise limit a. e. and it follows that

This shows that ki satisfies all conditions of Theorem 2.2. It follows,
therefore, that for all It is also clear

that and so the proof is finished.
- v

We recall from [15] the definition of an admissible domain in D at

g.OEB,

0. (The fact that we use here a slightly different gauge from

[15] is irrelevant).
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DEFINITION 8.3. Let The Lusin function

of f is defined for all g E N by

where A is some fixed positive number, F is the Poisson integral of f and
the integral is taken with respect to the invariant volume of D.

THEOREM 8.2. For every 1  p  oo there exists a constant c. such

that for all

PROOF. Since the invariant volume on D is we have

After the change of variable this is equal to

where Ri denotes right translation by l. By invariance of the Haar measure
it follows that where c is the measure of the set

Hence the analogue of Lemma 8.4 holds for
Now let be as in Definition 8.2. For each g E if) define

by As in the

proof of Theorem 8.1 one sees that

which shows that condition (i) of Theorem 2.2 is satisfied for each of the

kernels An obvious modification of the proof of Theorem 5.2 (cf. [1, p.

365]) shows that its conclusions remain true for the kernels and hence

our Theorem follows.
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§ 9. The Riesz transform on 

Let Sn-1 be the unit sphere in Rn (n ~ 3) and let Un be its interior.
We want to consider the following problem : Suppose that f E LP R)
(1  p  oo) is (the limit on Sn-1 of) the normal component of the gra-
dient V u of a harmonic function u in Is it true that the tangential
component of Vu also has boundary values on Snw and the mapping .R,
of f to these boundary values is a bounded linear transformation from

If the same question is formulated for a hyperplane and a half space
instead of Sn-1 and the analogue of R is the Riesz transform in the

sense of M. Riesz and J. Horvath [12], and the affirmative answer follows
from classical results on singular integral operators [3].

Here we will show that R is a singular integral operator on re-

garded as a homogeneous space of SO (n), and the answer which is affir-

mative in this case, too, (5) will follow from Theorem 3.1.

It is known [8, pp. 261-2] that the solution of the Neumann problem

for with continuous boundary datum f (subject to the condition

is given by (6)

Here K is the kernel function of U i.e. the reproducing kernel of the

Hilbert space 1Ð which consists of the functions u harmonic in Un, vanish-

ing at the origin, and having finite Dirichlet norm dy denotes

the measure induced on Sn-1 by the natural Euclidean structure of R".

(5) E. M. Stein informs us that this result is also obtainable by other methods, cf.

D. A. ,Systems of singular integral operators on 8phere8, ’rrans, Amer. Math. Soc.,
144, (1969), 493-522, and E. M. STEIN, TopiC8 in harmonic analysis related to the Lp- theory,
Ch. 3, Ann. of Math. Stndies, Princeton, 1970. For the case !’n = 3 see also V. Morley,
Singular integrals, Thesis, University of Chicago, 1956. Cf. also [24].

(6) The sign is different from the sign in [8] because we .look at f as the derivative
in the direction of the normal pointing outward. Also note that g (y, ~) = K (~, y) by a
well-known property of K.
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LEMMA 9.1. For we have

where 8’ denotes

PROOF. For , I where is a complete
orthonormal system in ~1 (cf. [8, p. 262]).

Let u bB-A-homogeneou8 harmonic polynomial of degree k ; then
where Sk is a spherical function of degree k on By the

divergence theorem and by the relation div i we have

where is differentiation with respect to the normal pointing outward.

It follows that if is a complete orthonormal system of spherical
functions with respect to the usual norm, with k denoting the degree, then

By the addition theorem for spherical functions [19, p. 10] this becomes

Here Pk is defined by

[19, p. 33]. Since n h 3 is fixed once and for all we do not display the
dependence (7) of Pk on n.

(7) We have is a Gegenbaner polynomial renormalized
so that
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By an explicit formula for it is clear that

It follows that

Setting this formula reduces to (9.2).

REMARKS. 1. Using a different standard formula [19, p. 30] to sum (9.3)
we find

whose equivalence with (9.4) can also be checked directly.

2. The radial component of the gradient of .I~ (~, y) with respect to ~
and for fixed y E Swl is

as it is immediate from (9.5). The first term inside the parenthesis is just
the Poisson kernel of By well known results it follows that if f E

such that I and u is given by (9.1), then the normal

derivative of u on r converges to f in LP and a. e. as r tends to 1.

LEMMA 9.2. For all, and define

by where u is as in (9.1) and denotes the

tangential component (i, e. the component perpendicular to rx) of the gra-
dient of u. Then 

-
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where . and

PROOF. If a function ø on Rn is of the form

with some fixed vector a, then the « tangential &#x3E;&#x3E; and radial components of
the gradient, at $ ~ 0, are

Using this, the assertions follow from (9.2) by an easy computation.

LEMMA 9.3. Let for

and let Then, for all ,

exists in and S is a bounded linear transformation.

PROOF. We regard Sn-I as a homogeneous space of
is a G~invariant distance on Sn-1 , which gives us a gauge with

We denote the point (0,..., 0, 1). For any x E S"-1 we define.

sox is an orthogonal sum, The measure dx induced on

by the Euclidean measure of is G.invariant and by an easy computa-

5. Annali della Scuola Norm. Sup. di Pisa.
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tion is seen to be equal to

where d~ is the volume element on 

Clearly we have for all g E G, Therefore by the di-

scussion after Definition 1.2 the operator S is of the type considered in

Theorems 2.2 and 3. 1, with k (g) = s (gp, p), g, the trivial representation and

a2 the identity representation of SO (n) on R,’~ . We are going to check that
the conditions of Theorem 3.1 are satisfied; this will finish the proof.

To check (a), let A = 1/2. The first integral in (a) is now (cf. Remark 4
after Theorem 2.2). 

-

and the integrand is clearly majorized by

Now, for every we have

furthermore, for and

By these inequalities our integral is majorized by

where the last inequality follows from (9.6) and from
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We have shown that the first inequality in Theorem 3.1 (a) holds. For
the second one we have to estimate

Here the integrand is majorized by

The first term is estimated as before. The last factor of the second term

can be rewritten as which is clearly
So we get the same estimate as for the first integral, this finishes the proof
for (a).

To check condition (b), and at the same time (iii’) of Theorem 4.1 ~ let

Using (9.7) we have

and this is by
To check (c), by compactness of (~ it suffices to consider small

In order to estimate

we note that

The first term on the right is an odd function of x~h~, therefore its in-

tegral is 0. the second term is majorized
in norm by So (9.10) is majorized in norm by
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the domain of integration is equi-
valently described by the inequalities

By (9.6) this shows that our integral is majorized by a constant multiple
of which finishes the proof of the first inequality in (c). As for the

second, we have, for any

since the integrand is an odd function of 

REMARKS 1. If f is thought of as a mass distribution on Swl, Sf is
just the tangential derivative of the potential of f, i. e. the tangential com-
ponent of the force on S"-1.

2. In the proof we have also checked condition (iii’) of Theorem 4.1 ;
the other conditions are trivial. This gives a new proof of the known fact
that S preserves Lipschitz classes.

LEMMA 9.4. For let

and = 0 otherwise. For all j we have

in LP and a. e.

PROOF, The proof is analogous to that of Lemmas 6.3 and 7.3 ; we

only sketch the proof of the LP-convergence. Let f denote the lift of f to G,
and let By a change of variable we have

Taking into account (9.11) and the analogous equality for sr , y this is fur-
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ther equal to

The .Lp-norm of the first integral is majorized, by Minkowski’s integral
inequality, by 

-

where ~ is right translation by tm . It is easy to see that for all x,
we have the inequalities

By (9.7) and (9.13) we have, writing x for lp,

Now (9.6) gives a further majorization by the quantity

which tends to 0 as r --+ 1.

The second integral in (9.12) is majorized by

where ri is to be determined later. Writing lp = x, using (9.7), and in the

last step (9.14), we have
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It follows using (9.6) that

which can be made arbitrarily small by choosing r~ appropriately. On the
set we have by the estimate above that

tends to 0 uniformly as r --~ 1. Hence I2 tends to 0, fini-

shing the proof.

LEMMA 9.5. Define for

Then and in

PROOF. Using (9.7), (9.13) and (9.14) we obtain, for small

It follows that , and thus, by (9.6),
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As for the second statement, we have

Both terms on the right tend to 0 as r - 1 since

by the fLrst part of the proof.

THEOREM 9.1. Let For all

the limit

exists in .L~ and a. e. R is a bounded linear map from to

and maps every class into itself. Furthermore,
in .Lp and a. e.

PROOF. The limit defining .Rf exists in LP and R is bounded by
Lemmas 9.3, 9.5, and 1.2. Rr f tends to Bf in .Lp by Lemmas 9.4 and 9.5.
To prove the assertions about convergence a. e. we note that if u is defined

by (9.1) then the radial component of P u is given by the Poisson integral
of f as in Remark 2 after Lemma 9.1, and its tangential component on

is Rr f. It follows that V u is in the space Hp studied in [9], and
hence has boundary values a. e. on Sn-i. This shows that Rr f tends to .Rf
a, e. and the convergence a. e. of the limit defining .Rf follows by Lemmas
9.4 and 9.5.

REMARKS 1. The subspace of LP R) formed by functions f ha-

ving cylindrical symmetry with respect to p is isometrically isomorphic
with the space Lr ([0, a], sinn-20 dO) under the correspondence f (x) = F (0)

For such a function, (9.1), (9.3), and the Funk-Hecke
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formula [19, p. 20] give

where

Hence, by definition of Rr, we have

where Pk denotes the derivative of Pk and vx is the unit vector (
in the plane of x and p. It follows now from Theorem 9.1 that the operators

are uniformly bounded on for every

fixed ), and that exists in the strong operator topology.

2. For Muckenhoupt and Stein [18, p. 34]
define the conjugate Poisson integral by

(here we have rewritten everything in our notation). A simple computation
now gives 

--

is bounded uniformly in r (Remark 1), it follows by Minko-

wskFa inequality that the maps are also uniformly bounded
linear transformations on This gives a new proof of’L , / ..I’ , "-’ ....

[18, Theorem 4, part a] for the special values of the index I of that paper

for which
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