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Abstract. We consider an equilibrium problem for a 2D elastic body with a thin

elastic inclusion. It is assumed that the inclusion is partially delaminated, therefore

providing the presence of a crack. Inequality type boundary conditions are imposed at

the crack faces to prevent a mutual penetration of the faces. Differentiability properties

of the energy functional with respect to the crack length are analyzed. We prove an

existence of the derivative and find a formula for this derivative. It is shown that the

formula for the derivative can be written in the form of a singular invariant integral.

1. Introduction. To analyze composite materials, one has to consider mathematical

models of deformable bodies with elastic or rigid inclusions and cracks. It is known that

inclusions can be divided into thin and volume ones. The terminology “thin” inclusion is

used in the case when the inclusion dimension is less than a dimension of the body. On the

other hand, among thin inclusions we can distinguish rigid and elastic ones. Thin rigid

inclusions can be viewed as “unticracks”. On the other hand, cracks can be viewed as thin

inclusions of zero rigidity. There are different approaches to model cracks in solids. The

classical approaches are characterized by linear boundary conditions at the crack faces

[1,11,12]. Suitable linear models allow the opposite crack faces to penetrate each other,

which demonstrates a shortcoming of the model from a mechanical standpoint. During

the last few years, a crack theory with non-penetration conditions at the crack faces

has been under active study. This theory is characterized by inequality type boundary

conditions that lead to free boundary value problems. The book [2] contains results

on crack models with the non-penetration conditions for a wide class of constitutive

laws. The elastic behavior of bodies with cracks and inequality type boundary conditions

are analyzed in [3, 6, 10, 15], etc. In particular, a differentiability of energy functionals

with respect to the crack length is investigated. Finding the derivatives of the energy
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functionals is important from the standpoint of the Griffith rupture criterion. We can

mention the publications [2, 3, 9, 15], among many others. The considered inclusions

may be delaminated, hence the crack approach with non-penetration conditions is to be

used. In the case of rigid inclusions with delaminations, a new type of boundary value

problem and non-local boundary condition appears. Existence theorems and qualitative

properties of solutions in equilibrium problems for elastic bodies with rigid inclusions

can be found in [3–5,13,14]. On the other hand, in many cases, derivatives of the energy

functional can be rewritten in the form of invariant integrals over curves surrounding

crack tips. As for the linear crack model, we refer the reader to the paper [8]. Invariant

integrals for the non-linear crack model can be found in [2, 3, 9, 15].

In this paper, we consider a model of a thin elastic inclusion inside an elastic body

recently proposed in [7]. A behavior of the inclusion is modeled by the Kirchhoff-Love

equations. The inclusion may be delaminated, therefore providing the presence of a

crack. To exclude a mutual penetration between the crack faces, non-linear boundary

conditions of inequality type are considered at the cracks. We prove an existence of the

derivative of the energy functional with respect to the crack length and write the formula

for this derivative in the form of an invariant integral. It turns out that the invariant

integral consists of two terms, regular and singular ones. Different geometries of curves

surrounding the crack tip are considered.

2. Problem formulation. Let Ω ⊂ R
2 be a bounded domain with Lipschitz bound-

ary Γ such that γ̄ ⊂ Ω, γ = (−1, 1) × {0}. Denote by ν = (0, 1) the unit normal vector

to γ, τ = (1, 0), and set Ωγ = Ω \ γ̄, γ0 = (−1, 0)× {0}; see Fig. 1.

x1

x2

γ
Ωγ

ν

Γ 

1 1-

Fig. 1

In what follows the domain Ωγ represents a region filled with an elastic material, and γ

is an elastic inclusion with specified properties. In particular, we consider γ as a bending

beam incorporated in the elastic body. We assume that the beam is delaminated at γ+
0 ,

thus providing a presence of a crack, and there is no delamination at γ \ γ0.
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Let A = {aijkl}, i, j, k, l = 1, 2, be a given elasticity tensor with the usual properties

of symmetry and positive definiteness,

aijkl = ajikl = aklij , i, j, k, l = 1, 2, aijkl = const,

aijklξijξkl ≥ c0|ξ|2 ∀ξji = ξij , c0 = const > 0 .

Summation convention over repeated indices is used; all functions with two lower indices

are assumed to be symmetric in those indices.

The equilibrium problem for the body Ωγ with the elastic inclusion γ is formulated

as follows. For given external forces f = (f1, f2) ∈ C1(Ω̄)2 acting on the body, we want

to find a displacement field u = (u1, u2), a stress tensor σ = {σij}, i, j = 1, 2, and a

(vertical) displacement w of the beam, defined in Ωγ\γ0
, Ωγ , γ, respectively, such that

−div σ = f in Ωγ , (1)

σ −Aε(u) = 0 in Ωγ\γ0
, (2)

w,1111 = [σν ] on γ, (3)

u = 0 on Γ, (4)

w,11 = w,111 = 0 for x1 = −1, 1, (5)

w = uν , [στ ] = 0 on γ \ γ0, (6)

[uν ] ≥ 0, w = u−
ν , σ

+
ν ≤ 0, σ+

ν [uν ] = 0, σ±
τ = 0 on γ0. (7)

Here [v] = v+ − v− denotes the jump of v on γ, and v± are the traces of v on the

crack faces γ± (the signs ± correspond to the positive and the negative directions of

ν). Then, ε(u) = {εij(u)} is the strain tensor, εij(u) = 1
2 (ui,j + uj,i), i, j = 1, 2;

σν = (σ1jνj , σ2jνj), σν = σijνjνi, στ = σijνjτi, uν = uν. In our setting ν = (0, 1) so

that σν = (σ12, σ22), σν = σ22, στ = σ12, and uν = u2.

Relations (1), (3) are the equilibrium equations for the elastic body and the inclusion,

while (2) represents Hooke’s law. The first equation of (6) represents the non-debonding

condition since the vertical displacements of the elastic body coincide with the displace-

ment of the beam γ. The first inequality in (7) provides a mutual non-penetration be-

tween the crack faces. The second relation of (7) shows that the inclusion displacement

coincides with the vertical displacement of the elastic body at γ−
0 .

First, we provide a variational formulation of the problem (1)-(7). Introduce the set

of admissible displacements

K0 = {(u,w) ∈ H1
Γ(Ωγ\γ0

)2 ×H2(γ) | [uν ] ≥ 0, w = u−
ν on γ0; w = uν on γ \ γ0}

and the energy functional

π(u,w) =
1

2

∫
Ωγ\γ0

σ(u)ε(u)dx−
∫

Ωγ\γ0

fudx+
1

2

∫
γ

w2
,11dx1,

where the Sobolev space H1
Γ(Ωγ\γ0

) is defined as

H1
Γ(Ωγ\γ0

) = {v ∈ H1(Ωγ\γ0
) | v = 0 on Γ},

and σ(u) = σ is defined from the relation (2). For simplicity we write σ(u)ε(u) =

σij(u)εij(u), fu = fiui.
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722 A. M. KHLUDNEV

The solvability of a problem like (1)-(7) was proved in [7], and we omit the details. To

this end a variational approach was used. In particular, the coercivity of the functional

π on the set K0 can be established. The problem (1)-(7) is equivalent to the following

minimization problem:

find (u,w) ∈ K0 such that π(u,w) = inf
(ū,w̄)∈K0

π(ū, w̄). (8)

A unique solution of problem (8) exists, and it satisfies the variational inequality

(u,w) ∈ K0, (9)∫
Ωγ\γ0

σ(u)ε(ū− u)dx−
∫

Ωγ\γ0

f(ū− u)dx (10)

+

∫
γ

w,11(w̄,11 − w,11)dx1 ≥ 0 ∀ (ū, w̄) ∈ K0.

3. Derivative of energy functional. We introduce the problem perturbed with

respect to (9)-(10). Denote γδ = (−1, δ)×{0}, where δ is a positive parameter. We want

to find a displacement field uδ = (uδ
1, u

δ
2), a stress tensor σδ = {σδ

ij}, i, j = 1, 2, and a

(vertical) displacement wδ of the beam, defined in Ωγ\γδ
, Ωγ , γ, respectively, such that

−divσδ = f in Ωγ , (11)

σδ −Aε(uδ) = 0 in Ωγ\γδ
, (12)

wδ
,1111 = [σδ

ν ] on γ, (13)

uδ = 0 on Γ, (14)

wδ
,11 = wδ

,111 = 0 for x1 = −1, 1, (15)

wδ = uδ
ν , [σδ

τ ] = 0 on γ \ γδ, (16)

[uδ
ν ] ≥ 0, wδ = uδ−

ν , σδ+
ν ≤ 0, σδ+

ν [uδ
ν ] = 0, σδ±

τ = 0 on γδ. (17)

The problem (11)-(17) also admits a variational formulation. To this end, consider the

set of admissible displacements

Kδ = {(u,w) ∈ H1
Γ(Ωγ\γδ

)2 ×H2(γ) | [uν ] ≥ 0, w = u−
ν on γδ;w = uν on γ \ γδ}

and the energy functional

πδ(u,w) =
1

2

∫
Ωγ\γδ

σ(u)ε(u)dy −
∫

Ωγ\γδ

fudy +
1

2

∫
γ

w2
,11dy1.

In the domain Ωγ\γδ
consider a minimization problem: find (uδ, wδ) ∈ Kδ such that

πδ(uδ, wδ) = inf
(ū,w̄)∈Kδ

πδ(ū, w̄). (18)
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Problem (18) has a unique solution (uδ, wδ) ∈ Kδ satisfying the variational inequality

(uδ, wδ) ∈ Kδ, (19)∫
Ωγ\γδ

σ(uδ)ε(ū− uδ)dy −
∫

Ωγ\γδ

f(ū− uδ)dy (20)

+

∫
γ

wδ
,11(w̄,11 − wδ

,11)dy1 ≥ 0 ∀ (ū, w̄) ∈ Kδ.

Consider a perturbation y = Φδ(x) of the domain Ωγ\γ0
describing a change of γ0

along the axis Ox1:

y1 = x1 + δθ(x1, x2), y2 = x2, x ∈ Ωγ\γ0
, y ∈ Ωγ\γδ

. (21)

The function θ ∈ C∞
0 (R2) is chosen such that θ = 1 in a small neighborhood of the point

(0, 0), supp θ ∩ {(−1, 0)} = ∅.
There exists δ0 > 0 such that for all 0 < δ < δ0 the transformation (21) is one-to-one

between Ωγ\γ0
and Ωγ\γδ

. Since γ0 is rectilinear, the mapping (21) provides a one-to-one

mapping between Kδ and K0.

Next we formulate and prove auxiliary statements to be useful below. Consider a

matrix of the transformation (21),

∂Φδ

∂x
= I + δ

∂V

∂x
,

where V = (θ, 0). The Jacobian of the transformation (21) is as follows:

Jδ(x) = 1 + δθ,1(x), (22)

and it is positive for all δ ∈ (0, δ0). Hence there exists an inverse matrix

Ψδ =
(∂Φδ

∂x

)−1

,

which admits a representation

Ψδ = I − δ
∂V

∂x
+ r1(δ, x), ‖r1(δ, x)‖[W 1,∞

loc (R2)]4 = o(δ). (23)

Also we have

d2

dx2
1

= (1 + δθ,1)
2 d2

dy21
+ δθ,11

d

dy1
.

Hence it follows that

d2

dy21
= k1(δ)

d2

dx2
1

− k2(δ)
d

dx1
, (24)

where

k1(δ) = (1 + δθ,1)
−2 = 1− 2δθ,1 + r2(δ, x),

k2(δ) = δθ,11(1 + δθ,1)
−3 = δθ,11 + r3(δ, x),

‖r2(δ, x)‖W 1,∞
loc (R2) = o(δ), ‖r3(δ, x)‖W 1,∞

loc (R2) = o(δ).
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724 A. M. KHLUDNEV

Next we apply the transformation (21) to functions inserted in (20):∫
Ωγ\γ0

Jδ(x)aijklEkl(Ψδ;uδ)Eij(Ψδ; ū− uδ)dx (25)

+

∫
γ

Jδ(x)(k1(δ)wδ,11 − k2(δ)wδ,1)(k1(δ)(w̄,11 − wδ,11)− k2(δ)(w̄,1 − wδ,1))dx1

≥
∫

Ωγ\γ0

Jδ(x)fδ(ū− uδ)dx ∀(ū, w̄) ∈ K0.

Here vδ(x) = vδ(Φδ(x)), and Eij(Ψδ;w) is the transformed strain tensor

Eij(Ψδ;u) =
1

2

(
∂ui

∂xk
Ψδkj +

∂uj

∂xk
Ψδki

)
.

Thus, the following statement holds.

Theorem 1. For all δ ∈ (0, δ0) the solution (uδ, wδ) ∈ Kδ of problem (20), transformed

to Ωγ\γ0
with the help of (21), is a unique solution (uδ, wδ) ∈ K0 of the variational

inequality (25).

By the above presentations (22), (23), (24), we have∫
Ωγ\γ0

Jδ(x)aijklEkl(Ψδ; ū)Eij(Ψδ; w̄)dx (26)

=

∫
Ωγ\γ0

(
σij(ū)εij(w̄) + δB1(V ; ū, w̄)

)
dx+ o(δ)r1(ū, w̄),

∫
γ

Jδ(x)(k1(δ)w̄,11 − k2(δ)w̄,1)(k1(δ)v̄,11 − k2(δ)v̄,1)dx1 (27)

=

∫
γ

(
w̄,11v̄,11 + δB2(V ; w̄, v̄)

)
dx1 + o(δ)r2(w̄, v̄),

∫
Ωγ\γ0

Jδ(x)fδūdx =

∫
Ωγ\γ0

fūdx+

∫
Ωγ\γ0

δdiv(V fi)ūidx+ o(δ)r3(ū), (28)

where

B1(V ; ū, w̄) = divV · σij(ū)εij(w̄)− σij(ū)Eij

(
∂V

∂x
; w̄

)
− σij(w̄)Eij

(
∂V

∂x
; ū

)
, (29)

B2(V ; w̄, v̄) = −(3θ,1w̄,11v̄,11 + θ,11w̄,1v̄,11 + θ,11w̄,11v̄,1), (30)

and r1, r2, r3 are bounded functionals.

Now we prove a theorem characterizing a continuous dependence on δ of the solution

of (19)-(20).
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Theorem 2. Let (uδ, wδ) and (u,w) be solutions of (25), (9)-(10), respectively. Then

‖uδ − u‖H1
Γ(Ωγ\γ0 )

2 ≤ cδ, ‖wδ − w‖H2(γ) ≤ cδ, (31)

where a constant c does not depend on δ.

Proof. First, we substitute in (25) test functions of the form (ū, w̄) = (0, 0) and

(ū, w̄) = 2(uδ, wδ). By (26)-(28), we obtain uniformly in δ:

‖uδ‖H1
Γ(Ωγ\γ0 )

2 ≤ c, ‖wδ‖H2(γ) ≤ c. (32)

Next, we substitute in (25) a test function (u,w); simultaneously, in (10) we substitute

a test function (uδ, wδ). By (32) and Korn’s inequality we derive (31). Theorem 2 is

proved. �
Now consider πδ(ũ, w̃) and apply the transformation (21), where (ũ, w̃) ∈ H1

Γ(Ωγ\γδ
)2×

H2(γ). We have

πδ(ũ, w̃) = πδ(ū, w̄), ũ(y) = ū(x), y = Φδ(x).

In view of (26)-(28), the following representation holds:

πδ(ū, w̄) =
1

2

∫
Ωγ\γ0

σij(ū)εij(ū)dx+
1

2

∫
γ

w̄2
,11dx1 −

∫
Ωγ\γ0

fūdx

+
1

2
δ

∫
Ωγ\γ0

B1(V ; ū, ū)dx+
1

2
δ

∫
γ

B2(V, w̄, w̄)dx1

−δ

∫
Ωγ\γ0

div(V fi)ūidx+ o(δ)r4(ū, w̄),

where r4 is a bounded functional. We have

πδ(uδ, wδ) = πδ(uδ, wδ).

Since Kδ is transformed one-to-one at K0, as δ → 0, we obtain

πδ(uδ, wδ)− π(u,w)

δ
=

πδ(uδ, wδ)− π(u,w)

δ
≤ πδ(u,w)− π(u,w)

δ

−→ 1

2

∫
Ωγ\γ0

B1(V ;u, u)dx+
1

2

∫
γ

B2(V,w,w)dx1 −
∫

Ωγ\γ0

div(V fi)uidx.

On the other hand, by (31), as δ → 0,

πδ(uδ, wδ)− π(u,w)

δ
=

πδ(uδ, wδ)− π(u,w)

δ
≥ πδ(uδ, wδ)− π(uδ, wδ)

δ

−→ 1

2

∫
Ωγ\γ0

B1(V ;u, u)dx+
1

2

∫
γ

B2(V,w,w)dx1 −
∫

Ωγ\γ0

div(V fi)uidx.

We see that the following limit exists:

G = lim
δ→0

πδ(uδ, wδ)− π(u,w)

δ
, (33)
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and that the formula for this limit can be written. The limit (33) provides a derivative

of the energy functional πδ(uδ, wδ) with respect to δ at the point δ = +0:

G =
dπδ(uδ, wδ)

dδ

∣∣∣
δ=+0

.

Hence the following statement is proved.

Theorem 3. The derivative of the energy functional with respect to the crack length

exists, and the following formula takes place:

G =
1

2

∫
Ωγ\γ0

B1(V ;u, u)dx (34)

+
1

2

∫
γ

B2(V,w,w)dx1 −
∫

Ωγ\γ0

div(V fi)uidx,

where (u,w) is the solution of the unperturbed problem (9)–(10), and B1, B2 are defined

in (29), (30).

Remarks. 1) It is interesting to compare (34) with the formula obtained in [16] where

a contact problem for a 2D elastic body and a thin elastic beam is analyzed.

2) In deriving (34) we assumed δ > 0. The case δ > 0 is more interesting from the

standpoint of mechanics since the healing of cracks in elastic materials is hardly expected.

In fact, formula (34) can be derived in a general case, where δ is a small parameter, δ → 0.

4. Invariant integrals. In this section we write formula (34) in the form of a singular

invariant integral over a curve, assuming a sufficient regularity of the solution. The

invariance means an independence on the curve of integration. Assume that f = 0 in a

neighborhood of the point (0, 0). By V = (θ, 0), from (34) we have

G =

∫
Ωγ

(
1

2
θ,1σijεij − σijui,1θ,j)dx− 1

2

∫
γ

(3θ,1w
2
,11 + 2θ,11w,1w,11)dx1. (35)

Here we have changed the domain integration Ωγ\γ0
by Ωγ . This was done because we are

planning to integrate by parts in (35) and to use the equilibrium equations (1), and the

equilibrium equations are fulfilled in Ωγ . Assume that θ = 1 in the bounded domain with

a smooth boundary L, and θ = 0 outside the bounded domain with a smooth boundary

M. Hence in (35) we should integrate over the domain located between curves L and M,

instead of Ωγ ; see Fig. 2. Denote by n = (n1, n2) a unit normal vector to L as is shown

in Fig. 2. Providing the integration by parts for the integral included in (35), we derive

−
∫
Ωγ

σijui,1θ,jdx =

∫
Ωγ

θ(σijui,1),jdx+

∫
L

σijui,1njds+

∫
N∪Q

[σijui,1νjθ]dx1. (36)

Here N = (c, e)× {0}, Q = (a, b)× {0}; see Fig. 2. Also, from (35) we have∫
Ωγ

1

2
θ,1σijεijdx = −1

2

∫
Ωγ

θ(σijεij),1dx− 1

2

∫
L

σijεijn1ds. (37)
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Fig. 2

Let us transform the integral in (36) over N . By [u1,1] = [u2,1] = 0, [σ12] = 0, w = u2

on N , we have ∫
N

[σijui,1νjθ]dx1 =

∫
N

θ[σν ]w,1dx1. (38)

Next we calculate the integral over Q in (36). By σ±
12 = 0 on Q, it gives

∫
Q

[σijui,1νjθ]dx1 =

∫
Q

θ[σ22u2,1]dx1,

and hence ∫
Q

[σijui,1νjθ]dx1 =

∫
Q

θσ+
22[u2,1]dx1 +

∫
Q

θ[σ22]w,1dx1. (39)

Therefore, by the Lemma proved below, we derive∫
Q

[σijui,1νjθ]dx1 =

∫
Q

θ[σν ]w,1dx1. (40)

The formulas (38), (40) imply∫
N∪Q

[σijui,1νjθ]dx1 =

∫
N∪Q

θ[σν ]w,1dx1. (41)

Now we transform the integral over γ in (35) by integrating by parts. Observe that,

in fact, we should integrate over N ∪Q since, outside of N ∪Q, derivatives of θ are equal

to zero. Denote

F (h) =
1

2
w2

,11(h)− w,1(h)w,111(h). (42)
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Then, by (5), direct calculations show that

−1

2

∫
γ

(3θ,1w
2
,11 + 2θ,11w,1w,11)dx1 = −

∫
N∪Q

θw,1w,1111dx1 + F (c)− F (b). (43)

Collecting the formulas (35), (36), (37), (41), (43) we find

G =

∫
L

(−1

2
σijεijn1 + σijui,1nj)ds+

∫
N∪Q

θ(−w,1w,1111 + [σν ]w,1)dx1 + F (c)− F (b).

(44)

In so doing we take into account that the volume integral (after integrating by parts

over Ωγ in (35)) is equal to zero. By (3), from (44) there follows the singular invariant

integral

G =

∫
L

(−1

2
σijεijn1 + σijui,1nj)ds+ F (c)− F (b). (45)

Note that there is no dependence on L (and hence on b, c) in (45). Denote by μc the

Dirac measure on γ with support at the point x1 = c. Then (45) can be rewritten as

G =

∫
L

(−1

2
σijεijn1 + σijui,1nj)ds+

∫
γ

Fdμc −
∫
γ

Fdμb.

Now consider a case corresponding to a different choice of the curve L as it is shown in

Fig. 3

Fig. 3. Let the curve L∪L1 surround the domain where θ is equal to one, L1 = (b, c)×{0}.
Let Q = (a, b) × {0} N = (d, e) × {0}. The formula for the derivative of the energy

functional has the same form as (35) in this case. But now the situation is different. We

have

G =

∫
Ωγ

(
1

2
θ,1σijεij − σijui,1θ,j)dx− 1

2

∫
γ

(3θ,1w
2
,11 + 2θ,11w,1w,11)dx1. (46)
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Integrating by parts in (46) over Ωγ provides

−
∫
Ωγ

σijui,1θ,jdx =

∫
Ωγ

θ(σijui,1),jdx+

∫

L∪L+
1

σijui,1njds+

∫
N∪Q

[σijui,1νjθ]dx1.

Hence the singular invariant integral in this case is as follows:

G =

∫

L∪L+
1

(−1

2
σijεijn1 + σijui,1nj)ds+ F (d)− F (b), (47)

where F (h) is defined by formula (42). In formula (47), there is no dependence on L∪L1,

and consequently, on b, d.

Now we have to prove the following Lemma used in deriving invariant integrals.

Lemma. For smooth solutions of the problem (1)-(7), the following boundary condition

holds:

σ+
ν [u2,1] = 0 on Q. (48)

Proof. By (7), the following condition takes place:

σ+
ν [u2] = 0 on Q.

Assume that at a given point y we have σ+
ν (y) > 0. Then this inequality holds in a

neighborhood of the point y. In this neighborhood, we have [u2] = 0, hence [u2,1] = 0,

and (48) follows. If at the point y, the equality σ+
ν (y) = 0 holds, then (48) clearly takes

place. The lemma is proved. �
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