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Singular limit of a second order nonlocal parabolic
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Abstract. We study the limiting behavior as ¢ tends to zero of the solution of a second

order nonlocal parabolic equation of conservative type which models the micro-phase

separation of diblock copolymers. We consider the case of spherical symmetry and prove

that as the reaction coefficient tends to infinity the problem converges to a free boundary

problem where the interface motion is partly induced by its mean curvature.

Key words: reaction-diffusion systems of conservative type, singular limits, nonlocal

motion by mean curvature, asymptotic expansions.

1. Introduction

In this paper, we consider a second order nonlocal parabolic equation

of conservative type proposed by Ohnishi and Nishiura [9], namely

’

w = Auf + E%(f(ue) - ][Qf(us) _ EUE) in Q x (0,7)

—Avezug—fus in ©x(0,T)
9
out ot
PEy < S '
(P<) =g =0 in 89 x (0,T)
J[ v8dzr =0 for t € (0,7)
Q
L v (z,0) = ug(x) for € Q

where

f(s) :=2s(1 — %), ][Qudx = ﬁ/s;udx
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and where Q C RN (N > 2) is a smooth bounded domain.

Integrating in Q and using (1.4) we deduce that the integral of u
is conserved in time, namely

/ u®(z, t)dr = / ug(z)dx =: Mg for all ¢t € (0,T). (1.6)
Q Q

Therefore (P¢) is a second order model system which conserves mass. The
main feature of this equation is that it shares the same stationary solutions
as the fourth order model system arising in the micro-phase separation of
diblock copolymer melts (cf. [8]). Both problems are technically quite diffi-
cult: it is well-known that fourth order equations do not have a maximum
principle which excludes making use of the usual techniques involving upper
and lower solutions. The situation is similar for the conserved Allen-Cahn
for which the maximum principle does not apply either and the only L™
bounds which are known for the solutions can be obtained using arguments
based on invariant domain. Moreover stability properties of those solutions
also coincide with each other, namely Ohnishi and Nishiura [9] proved that
the sign of the real parts of the spectrum corresponding to the fourth or-
der model and to Problem (P¢) coincide with each other. In general, it is
much more difficult to study the spectrum distribution of the fourth order
equation compared with the second order one, hence it is more informa-
tive to investigate (P?) than attacking the fourth order problem directly.
As we shall discuss below, the singular limit equation of (P) turns out to
be a mean curvature flow with nonlocal term, which is much more intu-
itive than a free boundary problem of Mullin-Sekerka type associated to the
fourth order problem. Note that the total mass does not change in polymer
problems, hence the above conservation (1.6) is a natural consequence.
We remark that the functional

E(EY _ E €2 H]; £ 1 €12
E (u)—/ﬂ(2|Vu B+ P(u) 45 Vo ) da (1.7)

where F(s) = (IAQS P isa Lyapunov functional for Problem (P¢) and sup-
pose that the initial value u§ € H?(Q) satisfies the hypothesis H,

There exists a positive constant C' such that £°(ug) < C;
HG ¢ there exists Mg € (-]}, |Q]) such that
MG tends to My as e | 0.
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When ¢ | 0, the solution »® converges to a limit function v = 41 a.e. in
2 x (0,T) and one can formally show that the limiting problem has the
form (see also Rubinstein and Sternberg [13])

( 3
V= —(N = 1)K + (N = 1) K+-(v_][ v)
Ft 2 Ft
on I'y,te (O,T)
—szu—][ud:c in 2 x(0,7T)
(Pp) 4 &
%:0 on 9 x (0,T)
][Ud:c:O for ¢t € (0,T)
Q
\ 1_‘t‘tzo FO’

where u(.,t) = 1 on QF, Q@ = QFf UQ; UT,, K is the mean curvature
of I'; taking the sign convention that convex hypersurfaces have positive
mean curvature, V,, is the normal velocity of the interface taking the sign
convention that the normal velocity of expanding hypersurfaces is posi-
tive. The purpose of this paper is to give a rigorous derivation of the limit
problem (Fy) in the case of spherical symmetry. In this special case we
rigourously show how starting from the PDE system one obtains the limit-
ing free boundary problem. Of course the case of spherical symmetry is a
stable one whereas instabilities do arise in the general case.

This paper is organized as follows.

We pesent a formal derivation of the limit equation for the interface
motion in Section 2. In Section 3 we introduce an alternative formulation
with a Lagrange multiplier and prove a priori estimates on the solution of
Problem (P?); we then obtain a first convergence result, namely that there
exists a function u taking the values £1 such that u® tends to v = +1 in
L1 x (0,T)) and a.e.

From Section 4 we assume that Q is the unit ball in R and rewrite
Problem (P¢) in the radial variable r = |z|. We prove in Section 4 a key
estimate, which implies in particular that far away from the origin r = 0,
the shape of the solution u® is close to that of the function + tanh(g).

In Section 5 we define and characterize the “jumps” of the limit func-
tion u.

In Sections 6 and 7 we approximate u® by a first order asymptotic
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expansion with respect to e.
We deduce the interface equation in Section 8; more precisely we prove
the following result.

Theorem 1.1 Assume that Hj is satisfied.
(i) There exist a sequence {e,} and functions u, v such that

u - uin LY % (0,T)) and a.e. in Q x (0,T), where u = %1 a.e.,
vir — v in L2(0,T, HY(Q)),

as €, tends to 0. The functions u and v are such that

4

—Av:u—][ u a.e in x(0,T)

Q

{ ]lvdat:() for a.e. t€(0,T)
Q

\ %:0 a.e. on 002 x (0,T)

(ii) Suppose that § is the unit ball in RY and that u§ is radially sym-
metric so that u* is also radially symmetric. We suppose that the number of
Jumps of u, which we denote by Ny is finite and constant in time on an in-
terval (t1,t2). Let {Ti}ticn,  aq) be the jumps of w in (0,1] on (t1,t2). Then

forall 1 € [1,...,Np] 7 is Lipschitz continuous on [t1,ts] and moreover Ty
satisfies
N-1 3
nilt) = - 1) su(Ti(t), t
ori(t) 0 + I/(T’g)Qv(rl( ), 1)
1 oy YD EE (02 = 372 T om0, 97 ()
o ’
(1.8)

for a.e. t € (t1,t3), where

3 1 if u jumps from —1 to 1 across 7;,
v(T;) =

—1 of u jumps from 1 to —1 across 7;.

Equation (1.8) which is written in the case of spherical symmetry cor-
responds to the interface motion

Vo=—(N-1K+(N-1) FK+2(U_][F U).
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We remark that a single interface does not move when there is spherical
symmetry. The complicated form of equation (1.8) is due to the fact that
a number of interfaces which corresponds to the point 7;(¢) are involved.

This study is mainly based upon two articles: one of them by Henry
also written in the case of spherical symmetry, deals with the singular
limit analysis of the fourth order model corresponding to Problem (P®);
however since the limiting free boundary problems are very different, the
mathematical analysis necessarily also involved different arguments. Many
proofs presented here extend similar ones given by Bronsard and Stoth
in the simpler case of the mass-conserved Allen-Cahn equation.

We should also mention a number of articles of Ren and Wei dealing
with related problems, in particular and where they consider the
corresponding minimization problem in the one-dimensional case and in
the case of spherical symmetry. They study equilibrium configurations and
present the connection between the local minima of the Lyapunov functional
and those of its gamma-limit.

2. Formal derivation of the interface motion equation

In this section we present a formal derivation of the equation for the
displacement of the interface. We consider for a given smooth function v
the equation

ut:Au+£§(f(u)_][Qf(u)—ev) in RV x (0,7T)

together with suitable initial data and denote the solution by u¢.
We show heuristically how to derive the motion equation

Vo=—(N-1)K+(N-1) FtK+ g—(v — ][Ftv) on I'y, t€0,T]
(2.1)

as € tends to 0.
To that purpose we define the operator

L) = - A0 - (50 - £ ) -eo)

We denote by q(r, w) the travelling wave solution associated to the function
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f(s) = 25(1 — s%), namely the unique solution (g(r,w), c(w)) of

{ Gor + c(w)gr + F(q) —w =0
q(—o0) = h_(w), ¢(0) = ho(w), q(+o0) = hi(w),

where c¢(w) is the travelling wave velocity and h_(w), ho(w) and iy (w) are
the three solutions of the equation f(s} = w, such that h_(w) < hg(w) <
hy(w). We suppose that the moving boundary Ty, ¢t € [0,T] is smooth
enough and denote by d the signed distance function to I';. In particular,
d=0onT; and |Vd(z,t)| = 1 in a neighborhood of T}.

We make the assumption that for € small enough, the function «* can
be approximated in the form

W (2, t) = g (d(‘z’ D evt fﬂf(f)) |

We obtain

i . c(5v+][ f(ue))
LE(%F) = g(l —|Vd*) + ? d; — Ad + E”

where the notation g, ¢, g-~ means that we take the values of the functions

q, Gr, Grp 1IN (ﬂi’t—), v + fﬂf(ug)) Since u° satishes L°u® = 0, the idea is

to consider the expression above on ['; and to cancel the lower order terms.

Setting to 0 the coefficient of -i— in the second term and using the fact that
¢(0) = 0 we deduce that

dy — Ad + ¢(0) (% +][ f(u)) —0 on Ty,
Q
which can be rewritten as
V, = —~(N - 1)K + ¢/(0) (% +][ f(u)), (2.2)
Q

after substituting Ad = (N -~ 1)K and d; = V,, on T';. Furthermore inte-
grating this equation on I'y we obtain that

]lnvn =—(N-1) FtK + c’(o)(][ﬂv + ][Qf(u)) (2.3)
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By the conservation law we have that

{ 2|~ 1] = Mo
2|+ |97 =9,
which implies that ([13])

0
_Q_: Vn:()-
silorl= [

Substituting this into (2.3) we deduce that

]le(u) - C,(lo) (N—1) ][FtK _ ][nv’

which together with (2.2) gives

Vio=—(N-1DK+ c’(O)v]Ft + (N -1) ) K- c'(())]lF v. (2.4)

In the case that f(s) = 2s(1 — s?) we have that ¢/(0) = 2, so that (2.4)
coincides with the interface motion equation (2.1).

3. A priori estimates and first convergence results

First we give an equivalent form of Problem (P¢), namely

4
uy = Au + é(f(uﬁ) —ev® —eA®) in Qx(0,T) (3.1)
/ ut(z,t)dr = f ug(x)dz for t € (0,T) (3.2)
Q Q
— Av® =’ —][ u® in Qx (0,7) (3.3)
(P°) 4 &
f v (x,t)dr =0 for t € (0,T) (3.4)
Q
ous v ,
=l =0 in 90 % (0,T) (3.5)
| v (x,0) = ug(x) for € Q (3.6)

where A*(t) = 1fﬂf(u5(x,t))dx.

~ e
We show below some estimates, which imply in particular the compact-
ness of {uf} in L*(Q2 x (0,T)).
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Lemma 3.1 Let (u®,v%) be the solutz’on of Problem (P®) and suppose that
ug satisfies the hypothesis HS. Let g(s fo V2F (T} and 0 < 7 < 5 <
T, then

* ey2 E(ulNs) — EE(us) () =
E]T /Q(ut)da:dt+E( )(s) — B5(uf)(r) = 0, (3.7)

which implies that the function t — E¢(u®)(t) is nonincreasing. We have
that

] Vg(u(z,t)|dz < EF(wS)(t) < C, forall te[0,T], (3.8)

/ / (g(u))|da dt < OV =T (3.9)

Proof In order to prove [3.7) we multiply (3.1) by u$ and integrate on
Q x (7,s). This gives

//ut //A //f ) — eVt —eA%)ug
Thus we have
. 1 1 1
2 €2 2
[r /Q(uf) clar:dt—l—/Q (g}Vu\ +E§F(u€)+2—€\VU€] )(x,s)dx
:f (5190 + () + o [V [?) (2, 7)
a \2 g2 2e ’ ’

which coincides with [3.7). Next we prove (3.8). We have in view of
and hypothesis Hj that

/\V “(z,1)) |d:1:—-/\/ (uf(x,t)) |Vu'(zx,t)|
</ (—|VUE|2+1F(UE))dm
Jo 2 £

< Ef(ui)(t) < C.

Finally we prove (3.9).

[ s

£
) g\(/%)\/‘e_uf dx dt
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s F(ut 1/2 s 1/2
< \/5([ / u) da:dt) (/ /s|u;‘y2dxdt)
T JE T JO

<va ([ ) (Eeom - s

<CyVs—T.
This completes the proof of Lemma 3.1. dJ
Corollary 3.2 Suppose that the Hypothesis H is satisfied. Then
{u} is bounded in L*°(0, T, L*(Q)); (3.10)
sup | Xe(t)| < Ce™V/? (3.11)
t€[0,T]

Proof. (3.10) follows from the Hypothesis H§ and [3.7). Next we prove
(3.11). Integrating {3.1) on Q we deduce that

0= g7 Jy <o
s 2 (o) (fa- )"

Using we deduce that
C /2
petl s S [ep) s e
Q

£

so that

which coincides with (3.11). O

Lemma 3.3 There exists a positive constant C, depending on §2, such that

sup / (|o°)° + |[Vv¥|?) (2, t)dz < C
tc[0,7] /02
Proof. We deduce from (3.8) that

sup f|VU€\2(z,t)d$501. (3.12)
te[0, 7]/
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The generalized Poincaré inequality

2
>, for all h € H'(9),

H]Za < c(uvmm(m n \ [

together with (3.12) and the fact that [, v = 0 implies that

/ [v¥|? dz < C.
Q
This completes the proof of Lemma 3.3 O

Next we show the first convergence results.

Theorem 3.4 There exists a subsequence {e,} and functions u, v such
that

u —u in LNQ x (0,T)) and a.e. in Q x (0,T)
and moreover u = *x1,
vir — v weakly in L*(0,T, H'(Q)),

as € tends to 0.
Proof. Using the fact that
l9(s)| < Cy|s|> + Cy for all s € R,

and (3.10) we deduce that {g(u)} is bounded in L'(€2 x (0,7)). This
together with (3.8) and (3.9) implies that there exist a subsequence {e,}
which we denote again by {e} and a function £ such that {g(u®)} tends to
€in LY(Q2 x (0,7)) and a.e as £ | 0. Since the function ¢ is continuous and
strictly increasing one can define its inverse ¢~ and deduce that as ¢ | 0

u® tends to u:= g '(£) a.e. in Q x (0,7T).

Next we show that u® tends to uw in L'(Q x (0,T)) as ¢ | 0. Let 6 > 0
be arbitrary. It follows from Egoroft’s Lemma (see for instance Rudin [14])
that there exists {25 C 2 such that

|2\ Q5] <6 and w® — w uniformly in 5 as ¢ | 0.

Then

/ lu® —u| = / |u® —ul+ [ |u® — ul (3.13)
0 O\ 0y
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and we have that

1/3
Lz inepe( [ e - o)
O\ 2N\
1/3
<o\ as{ [ o) (314
O\ Qs
Note that there exist positive constants D1 and Ds such that

|5]* < Dig(s) + Dy, forall s< R. (3.15)

Therefore we deduce from (3.14) that

1/3
Lo =< cinas ([l + g+ )
Q\Q5 Q\Qé

< C3|Q\ Q522 < €82/3 (3.16)

Let 7 > 0 be arbitrary. Choose § small enough such that C§%/3 < 1 and
choose ¢ small enough such that

fﬂ uf —u| < g (3.17)
2

Using (3.13), (3.16) and (3.17) we deduce that [, [u — u| < 1. Next we
check that u = £1 a.e. in Q x (0, 7). In view of [3.7) and Fatou’s Lemma
we deduce that

//hmlan da:dt<hm1nff/ )dzdt <0.

This implies that F'(u) = 0 and thus that v = £1 a.e. in 2% (0, T'). Moreover
we also deduce that

u*(.,t) > u in LY(Q) ae. in (0,T), (3.18)

which will be used in the sequel. Next we prove the convergence of the
sequence {v°}. We deduce from that {v°} is bounded in
L*0,T; HY()). This in turn implies that there exists a function v and
a subsequence {e,} that we denote again by {¢} such that {v°} tends to
v weakly in L2(0,T; HY(Q)). This completes the proof of [[heorem 3.4,
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Finally we deduce that the functions (u, v) are such that

’

—szu—][ u a.e in Qx(0,T)
Q
\ ][vda::() for a.e. te (0,7)
9)
0
\ (—9—2 =0 a.e. on 00 x (0,T).

n

Theorem 3.5 The sequence {t — E(u®)(t)} is bounded in WH1(0,T).
Therefore there exists a function Fg € BV (0,T) and a subsequence {e,},
which we denote again by {e} such that

Ef(u®)(.) — Eo(.) in L*(0,T) and a.e. in (0,T).

Proof. By [3.7) {E¢(uf)(.)} is bounded in L*(0,T"). Moreover also
implies that the function E°(u®)(.) is decreasing so that in fact {E®(u®)(.)}
is bounded in BV (0,T). This completes the proof of [[heorem 3.5. L]

As it is done by L. Bronsard and B. Stoth [3] we define for any n > 0 a
set N(n) C (0,T) as the set of all jump points of Ey with height at least n:

N(n) = {t, ess in£ Ey(s) — esssup Ey(s) > 77} (3.19)

s< s>t

Then for any 7 > 0, the set N(n) is finite since Ey is monotone decreasing.
Furthermore since E¢ and therefore £y are bounded, it follows that

card (N(n)) < —C—
n

For ty > 0 and n not too large we define T¢(n, fp) > 0 by
t0+T€(TLtO)
E/ / |uS|2de dt = 7 (3.20)
to—T<(nto) JQ

Next we state a result which implies that for any to ¢ N(7) one can find
an interval (to — T%(n, to), to + T¢(n, o)} on which the energy E*(u®)(.) is
uniformly small in €.
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Lemma 3.6 Let 0 < tg ¢ N(n) where N(n) is defined by (3.19) and let
T¢(n,to) be as in (3.20). Then there exists To(n,to) > 0 such that

Ts(nv tO) > TO(TIJ tO)a fO’I" £ < 50(77,t0)°
In particular we have

to+To(n,to)

B(6%)(to — To) — B<(u) (o + To) = < ] [ ildzat <

(3.21)

—To(nto)

Proof. Suppose on the contrary that T° — 0 for some sequence. Then for
7 > 0 it follows from that

to+1¢(n,to)
0<n=lim /]ut|dxdt
£=0 Jeg-Te(nte) JO

= lim Ef(u®)(to — T (n, to) — E(u®) (tg + T°(n, to)
< lir% Ef(u®)(to—7) — ES(u®)(to + 7)

SEo(tO—T)—EQ(to—f-T)

Thus
0<n<ess mf Ey(s) — esssup Eg(s) < n,
s>t
which is impossible. This completes the proof of Lemma 3.6 d

4. 'The approximation in the radial case

'The purpose of the next subsection is to prove a central estimate, which
implies that the function u® can be locally approximed by a hyperbolic
tangent profile in the neighborhood of each of its zeros. More precisely, we
prove a result (see also Stoth [2]) that implies that far away from the origin
and near each of its zeros, the solution «¢ is close to the function j:q(g)
where ¢ satisfies

e + flq) =
g(—o0) =1, ¢(0) =0, g(+o0)=1,
so that ¢(£) = tanh(¢).
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4.1. The central estimate

From now on we suppose that € is the unit ball in RY and that ug
is spherically symmetric. We express the solutions (¢, v%) in the spherical
variable r = |z|. It follows from the regularity of «® and v¢ that

(Or) wup(0,t) =v;(0,¢) =0, forall te(0,T).
Problem (P*) takes the form

N -1 1
(cuf —eus, — ¢ ——uf = —f(u) + 0+ X =0
in (0,1) x (0,T)
N-1 '
— v, — . vf:us—][usd:c in (0,1) x (0,7T)
0

1 1
. / wl (r, t)rN ~ldr = / ug(r)rN " ldr in (0,7)
(Pr) 0 0

—"

1
/ v (r, )V e = 0 for t € (0,T) (4.3

0
us(0,t) = v;(0,t) =0 for t € (0,7T)
u(l,t) =vi(L,t) =0 for t € (0,7T) 4.5)
[ u®(r,0) = uf(r) for r € (0,1) 4.6)

The energy estimates becomes
tre 2 1 1 2),.N-1
sup [ (—(uf,) + —F(u®) + = (v;) )r “ldr < K (4.7)
tefo,7]Jo N2 3 2

Next we give some preliminary estimates.

Lemma 4.1 Let 0 < Ry < 1; there exists a function C(Ry) independant
of € such that v¢ satisfy the following estimates

1
sup / (02 + [P (ry t)dr < C(Ro), (4.8)
te[0,T1J Ry
sup [0 )]l ooty < C(Ro), (4.9)
t€[0,T]
sup (14 )l m(ror) < C(Ro). (4.10)

t€[0,T]
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Proof. In order to prove [4.8), we note that

1 1

1

/RivEIQHUfIQdTS RN*I]R(lUE!ZHUle)TN”ldT-
0 0 0

Using we deduce [4.8). (4.9) immediately follows from [4.8].
Next we prove (4.10). We have

9 (r, 1))
< lo(u(s. 1)) + [R (g€, 1)), lde

1
< lg(u(s,1))| + [R (€, 8)]| V2P (€, 1)) |de

1! 1 _
<o, O]+ vy [ [ 6 0 + P €, )]e e

0
Using (3.15) and this implies that

[u®(r,1)|® < Di|g(u(s,t))| + Dy + for all 7, s € [Rg, 1].

R{)V L
(4.11)

Moreover using the mean value theorem we obtain that there exists p €
(R, 1) such that

1
] (€, 8)dE = uf (p,£)(1 — Ro)

Ry

This gives that

[u*(p, 1)] =

1
ut (€, t)dé| < uwlr¥1d
| ]R (€ )§|_(1_ROR [l Ny

In view of (3.10) we deduce that |u®(p,t)| < Ki(Rp), which together with
the fact that the function ¢ is continuous, implies that

lg(u®(p, )| < Ka(Ro).

Therefore applying (4.11) with s = p we obtain that |[u®(.,t)|/pee(r,1) <
K3(Rg) for all t € [0, T]. This completes the proof of Lemma 4.1. O
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Lemma 4.2 Let 0 < Ry <1 and t; > tg; u® satisfies that

|- 00+ F( 0

LOO(RQ,I)

- tr pl 1/2
< C(Ryp) l&1/2+(6f j |uﬂ2(r,t)rN_ldr)
to 0
1 1/2
3 / [uf [ (r, t2)r™ ) }
0

forallt € (ta, t1).

Proof.  We multiply (4.1) by euf. and integrate on (7, p) C [Ro, 1] to obtain

p2 p 2 2N_1 2
‘/su¢é+ﬂfwﬂj/ e — 2T (uf)2 + e(vF + X))
T
n n

This in turn implies that
62 IAWA £
_E(ur) (P, t) + F(’Ll, (.0: t))
2

=‘%ﬂ@%mw+ﬂmm¢n‘gﬁz@é

—¢ /:(ys + A%))us

+e%(N - 1)

Taking absolute values we deduce that
52 9
S8R0 + P,

2
SF%@ﬂ( 0+ Flu m,w

1/2
/‘[’u,ﬂQNl /‘u|2N1/
'
1/2
RN f‘u|2N1 f|v‘2

+e|A[[u(p, t) — wi(n, 1)
Using [3.7), (3.11), [4.7), and (4.10) we deduce that

R{,V 1
1/2
+ &

P
[lﬁﬁ
n
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62
‘__ (uE)2(p, t) + F(uf(p, t))|

2 T
2 3/2 P 1/2
__6_ £\2 € £ 12, . N—-1
< -0+ P )+ e[ i)
+ 5(N = 1)C1(Ro) + £'/2Cy(Rg) + €/2C(Ry), (4.12)

which we integrate for n € (Ro,1). It follows from that for all t €
[t2, 1]

62
y__i(uf,)?(p, t)+ F(u®(p, t))\

1
< Cg(Ro) |:51/2 +€3/2(/
R

0

< C(Ry) [51/2 n (63]9|u§’2)1/2] |

(4.14)

1/2
|u§\2rN—1) ] (4.13)
This gives that

€2 ..o
S+ (o0

Let us differentiate with respect to ¢ and multiply the resulting equa-
tion by £?uf. We deduce using the conservation of mass property that

T T T T
2 [ [ -2 [ [ s = [0 [ paowir - [ [ o
ta JO to JQ to JO ty J2
that is
62 T T
—f(ui)Q(a;,T)—E—EQ/ /\Vu§2+5/ ]vfuf
2 Ja ty JO t, Jo

& [ wppemy+ [ P (4.15)
-, I

Next we differentiate (1.2) with respect to ¢ and we multiply the resulting
equation by vy to obtain

—fvavf:/vfuf:/ |V'Uf|2,
Q Q Q

which we substitute in (4.15) to obtain
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2

5 [+ /h]!vams[t?fiWF
:—fut (z,t2) + Lff :

Moreover using the fact that f'(s) = 2 — 652 < 2 we deduce that

[( £)2 :1:7'd:15<—/ult xt2d$+2f/ut2dxdt
to

which we substitute into (4.14) to deduce that
€2 .5
S0 4 Pt

t 1/2
< C(Rp) |/ + ( /|u T tg)d:v—l—s/ /(uf)Qdmds)
to JQ
This completes the proof of Lemma 4.2. O

Next we show that away from the origin the solution u¢ is close to the
standing wave g in (to — Tp, to + To).

Theorem 4.3 Let Ry € (0,1),6 > 0 and n = 402? ) where C(Ry) is

defined in Lemma 4.2. Suppose that tg # 0 and that to ¢ N(n) =: N(4, Ro)
where N is given by (3.19). Then there exists Ty = Ty(d, Ry, to) > 0 and
g0 = €0(4, Ro, to) > 0 such that

< 6
L>({Ro,1)x(to—To,to+Tp))

9

for all £ € (0,¢0).
Proof.  'We choose Ty = Ty(8, Rg, to) as in Lemma 3.6. So that

to—To/2
/ ]\u (r,t)rN " dt, <
lo—

which by the mean value theorem implies that there exists to € (to —To, tg—

%Q) such that

(ﬂl-‘j

T 1
?0/ 5Pyt ar < 2. (4.16)
0
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Applying Lemma 4.2 Wlth t = tg + 0 and ty € (to—To, to— ) we deduce
that for all ¢ € [tg — 22, to + £2]

Hmi(ufﬂ(., £)2 + Fu(.,1))

Leo(Ryp,1)

. to+Tp/2 1/2
C’(Ro)lel/Q / [ S| (r, t)rY ldr)

+ (é‘fg |uﬂ2(:1:,t2)d:1:)1/2].

Using (4.16) and we obtain for all £ small enough

H_f(ui(., t))* + F(u(.,1))

2 Lo (Ro,1)
< ClRo) [+ /2 4 e[ 2
0

_ 2
< C’(Ro)el/2+5— (1+s1/ 2 ) < 4°
2 Ty

where we have used the definition of 5 given in [Theorem 4.3. Replacing %l
by Ty we deduce the result of [Theorem 4.3 0

4.2. A new estimate for \¢
In this section we prove a uniform estimate for the Lagrange multiplier

AZ.

Lemma 4.4 There exists a positive constant C, independent of e, such
that

T
/ IAS(1)|2dt < C
0

Proof. 'We multiply the equation (4.1} by u& and integrate on (o, p) with
Ry < o < p <1 to deduce that

p N-1 1
/ (Eufui — UL UL — € (uf)? - Ef(us)ui + vful + )\E(t)ui)dr =0,
- r

which we multiply by o =1p¥ =1 to obtain that
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A () (u(py t) = w (o, 1)) o™ 1N

= N (e [+ S0, 0)° - (1)

rev =) [ L) - o) - [ )

r £
=: G(a, p)- (4.17)

In what follows we integrate (4.17) in p in a set where u® is close to 1 and
we integrate it in o in a set where u® is close to —1. The idea is to use
the mass conservation property to show that the measure of those sets is
bounded from below by a positive constant which does not depend on ¢t. By
hypothesis H§ we may define w > 0 such that

—|Q +w < MG < Q] - w, (4.18)
for & small enough. For 1/2 < 5 < 1 and close to 1 we define

1
AT = {y € 2 such that n < u(y,t) < _},
n

and

A5 = {y € Q such that — 1 <uf(y,t) < —77},
n

Bt .= {y € Q such that |[u®(y,t)| < n},

1
Bs .= {y € Q such that |u®(y,t)| > E} .

We have that y € Bf implies that F(u®(y,t)) > F(n) and y € B5 implies
that F(u®(y,t)) > F(%) > F(n). This gives in view of that

/ F(u®)
C
|BS U B3| < 42 < —

F) = Fl) (4.19)

Moreover we note that
|s| <141 —s?| forall s€R, (4.20)

which implies that
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] IﬂSf L+ i1— ()
BEUBS BEUBS

< 1B U B3|+ B U Bl ([ 11— )

S’
—
.
[\

In view of [3.7) m and of (4.19) we deduce that fBEuBE luf| < %1—1%, which
together with {4.19) 1mphes that for ¢ small enough

/ W< and [BEUBE <. (4.21)
BfUBS 4 4
Moreover since €2\ {A] U A5} = B U BS we also have
2
A U A 29—— 4.22
1 2 1

for € small enough. Next we set
SE(t) = f W (2, £)dz (4.23)
AFUAS
Since [, u®(x,0)dr = [, u*(z,t)dz we deduce that
S°(t) = MS — / o (2, )da.
BfUBS

Using (4.18), (4.21) and (4.23) we deduce that

3 3
o+ T M-S s s M+ S <o -0 a2

Furthermore using the definition of the sets A and A§ and (4.23) we have

_ | 3l o e ATl
1| 4f] <8 < - n A3 (4.25)
Therefore using (4.22) and (4.25) we deduce that

5°(0) < (7 +m) l4s] = n[l45] + |45

2

145 [l - ¢

n® +1

w
451 - nlg) + 2,



H82 M. Henry, D. Hilhorst and Y. Nishiura

which together with gives that

451> S |5 - (- mle] (4.26)

Similarly using (4.25) and (4.22) we deduce that

S¥(t) > nf| A5 + | 45)) - ( +7)]43)

21
W n
27]|Q\“Z— \A|

which in view of implies that

n o [w
Ayl > [ —(1- Q] 4.9
4> =[5 - a-mi (4.27)
Thus we have shown that fornZl—Z"‘ﬁT
| Al |AE|>do~»€>0 (4.28)

Let w,, denote the volume of the unit ball. In what follows we suppose that
Ry 1s a small enough positive constant such that

d
wnRY < 3 (4.29)

Next we return to formula (4.17) which we integrate on Af p = {|y|, y €
AT} N (Ro, 1) and A5 p = {lyl, y € A5} N (Ko, 1) and apply (4.28).

[, f, cepiss

= |A°(t / f —ua(o,t))pN_laN_ldadp\
Al Ry
= e [ 0 [ oo
AR A5 Ry
—[ u (o, t)aN_lda/ pN_ldp‘
E,RO i,RO
el 2 7y ae
> X (8|57, 141 = wn B [145] - wn Rp'
2
> \As(t)\NZ (do — waRY')? (4.30)

n
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Furthermore we deduce from (4.17) that

(o, p)dodp
1 WRp
0
<e / / (/ ufuidr) oM N g dp
Af, Ry A3, Rg o
[ [, (0~ @500ty
1 ,Rp

N -1)

2
/ / (] dr) pN eV ldo dp
‘iRU

+ B /i /§H [F(u®(p,t)) — F(u (o, t))]pN_lcrN_ldadp

(/ uidr) oV eV o dp
1 Ry 2 R

=h+IL+I3+14+ 15 (4.31)

First we estimate [, we have that

1—R
I < 0 ]\utu5|rN Ldr

. 1/2 1 1/2
< — (/ |u§|2'rN_1dr> (/ |ui]2’rN_1d’r>
RO 0 0
1 1/2
< VeC(Ry) (/ IU§\2TN_1dT) , (4.32)
0
where we have used [4.7). We also deduce from that
Iy, I3, 14 < C(Ry) (4.33)
Next we estimate [s. We have the equality
P p
/ vius dr = (vu){p, t) — (v ut) (o, t) — f vyu dr,
a a

which we multiply by ¢V ~1pV~1 and integrate in o on Ai,Ro and in p on
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A5 g, respectively, to deduce that
o)
/ / (/ U dr) NN ldo dp
iRO g,RO g
1 1/2
<c(ro)( [ fuprtar)
0

1 1/2 1 1/2
ve|2rN dr + / ve|2rN 1y ]
(s ™ ([ )
< Ci(Ro).

This together with (4.31), (4.32) and implies that

/ f G(o, p)dod p
A5 o A

2,Rp
1 1/2
1+ e ([ |u§\2rN_1d'r) } (4.34)
0

Then it follows from (4.29), (4.30) and (4.34) that

1 1/2
1+ /¢ (/ ]u§|2rN_1dr) ] ,
0

which in view of yields

T T 1
[ wora<ciman v [ [ et < curo
0 0 0

This completes the proof of Lemma 4.4l O

< Ca(Ro)

|X°(t)] < C3(Ryo)

Corollary 4.5 There exists a sequence {e,}, which we denote again by
{¢} and Xy € L?(0,T) such that

A — X\g weakly in L*(0,T) as €] 0.

5. Definition and properties of the jumps of u

5.1. First definition and properties
Let Ry € (0,1). From now on we suppose that §2 < %, and let @ € (0,1)
be such that F(Q) > 7. We set
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ARO = U (to —T{)(5, Ro,to),to+Tg(5, R(),t())). (5.1)
to@€N(6,Rp)

We remark that by definition Ag, is an open set and that its complement
is the finite set N(§, Rp). We choose an increasing sequence of open sets
{DR,} such that D)} C Ap, and UDE = Ap,. Theset D} and hence D,
can be covered by finetely many interval of the form (to — T (6, Ro, to), to -+

To(0, Ro, tp)). In what follows we omit the upper index m and write Dg,
instead of Dy .

Lemma 5.1 There exists a real a® € (0,Q) and a collection of graphs
{t — s5(t)} defined on intervals If and taking their values in (Ry,1) such
that u®(si(t),t) = a® and

C(R
duss (62t < S0 (5.2)
Is Q
Proof. In view of [Theorem 4.3 we have the inequality
2
1
SIuE? > < on the subset {(r,) € (Ro,1) x Dig, [u(r.1)| < Q}.
(5.3)

which is essential for what follows. Using the implicit function theorem we
deduce that for all b € (—Q, Q) there exist functions ¢t — s(t, b) defined on
a time interval I} (b) such that {(r,t) € (Ro, 1) x Dpg,, uv®(r,t) = b} consist
of a collection of graphs s;(.,b). Moreover we have

Ou® (85 (¢, ), t) + O4s5 (¢, b)Opu® (85 (t,b),t) =0 (5.4)
Ops3 (t,0)0ru(s(t,b),t) = 1. (5.5)

Using the coarea formula (see for instance Theorem 2 Section 3.4.3 in [6])
we have that

L] B0,
Dp, J{r&(Ro,1),lu(r,t)|<Q} |u (T t)l

£ 2
_ [ (Z [Oeu(r, ) t):l dt)db
—Q\“ Jr |ui(r,t)]

Thus using we have that
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€ 2
/ / \8,51:; (nOF ;4
Dy J{re(Ro 1) Jus(rt)| <@} U5 (75 1)]

f (Z 8,55 (b, )| Zdt)db (5.6)

Moreover using and (5.3) we deduce that

f / [Beu(r O
DRO {7‘6 Ro, 1), lus(r )| <@} "U, (T t)‘

< 25] f B (r, )2drdt < C(Ry).  (5.7)
Dg, v Ro
Using and we obtain
Q
[ 3] xcwlasio.opad < cr),

where x§ is the characteristic function of the interval I7. By the mean value
theorem we deduce that there exists a® € (0, @) such that

C(R
st 1) P < ST
I Q
which coincides with (5.4). O

Moreover by [Theorem 4.3 we note that u®(1,%) # a°. Indeed if at t =
t*, u¥(1,t*) = a® < @ then F(a®) > F(Q) > % so that e2us(1,t*) > 8,
which contradicts the homogeneous neumann boundary condition. Thus
either the function { — s¢(t, a®) exists for all t € Dp, or it stops existing by

hitting the line r = Ry.

Definition 5.2 We call a®-zero of u*(.,t) a point r € (Rp, 1) such that
ut(r,t) =

Next we state a Lemma, whose proof is very similar to that of Lemma 4.3
n .
Lemma 5.3 Let t € Dg,. There exists eg(Rg,t) such that for all ¢ <
eo(Ro, t) we have,

ME(t) = #{r € (Ro, 1], w*(r, t) = a®} < C(Ry).
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Thus there erists a subsequence {e,}, which we denote again by {c} such
that Me(t) = M(t) for € small enough.

5.2. A definition of “jumps” of u and properties
We denote by

AL(t):={re(0,1), u(r,t) =1}
A_(t) == {re (0,1), u(r,t) = -1}
Definition 5.4 Let t € Ag, we call 7(¢) a jump point of u(.,t) in (0,1) if

{ [F(t) — p, 7(t) + p] N Ay ()] > 0
[F(t) — p,7(t) + p] N A_()] > 0

for all p > 0 small enough.
Next we state some preliminary results.

Lemma 5.5 Let 7(t) > Ry be a jump of u(.,t). Forall p > 0, there exists
gg > 0 such that there exists an at-zero

s°(t) € (T(t) — p,7(t) + p)
of ut(.,t) for all & < <.

Proof.  We first set Ay (p,t) := {r € (F(t) — p,7(t) + p) N (Ro, 1), u(r,t) =
+1}, so that |A; (p,t)] > 0. The fact that u®(.,t) converges to u(.,t) in
L1(Q) (see (3.18)) implies that

1
f (= ) (r, )Y N < C, (5.8)
Ro

for any positive constant C' and & small enough. In particular we can choose
C = R) ™' (1 — Q)|A4(p, t)|. Next we prove that there exists r; € (7(t) —
p,T(t) + p) such that u®(r1,¢) > a°. Suppose that u®(r,t) < af for all r €
(7(t) — p, 7(t) + p), then we have that (u —u®)(.,t) > 1 ~af in A, (p,t). This
in turn implies that

1
|(w—w®)(r, t)|rN ~tdr > (1 —as)/ rNLdy
A+(p,t)

> (1-a)Ry A (p, 1)),

which contradicts (5.8). Thus we deduce that there exists r; € (7(t) —

Ry
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p,T(t)+p) such that u®(ry,t) > a°. Similarly one can prove that there exists
ro € (F(t) — p,T(t) + p) such that u®(rg,t) < a®. Therefore we conclude that
there exists r € (F(t) — p,7(t) + p) such that u®(r,t) = a®. This completes
the proof of Lemma 5.5

Next we give two results, which are proven in [4]. Their proofs are
based on the fact that the Lyapunov functional E®(u®) is bounded and
on the central estimate in [Theorem 4.3. These quantities are identical for
Problem (P*) and for the fourth order problem consider in [4]. O

Corollary 5.6 Let t € Ag, and Ny(t) be the number of jumps of u(.,t)
in (Rp, 1). This number is finite.

Lemma 5.7 Let 71(t) and T2(t) be two consecutive jumps of u(.,t); then
either u(.,t) =1 a.e. in (71(t),72(t)) or u(.,t) = -1 a.e. in (F1(t),T2(t)).

Definition 5.8 Let 7(t) be a jump of u(.,t) and » small enough such that
there is no other jump of w(.,t) in [F(t) — n,7(t) + n]; we set
1 if u(.,t)=-1 on [F—n,7) and
. u(.t)=1 on (7747
v(r(t)) = : _ o
—1 if u(,t)=1 on [F—n,7) and
u(.,t)=—-1 on (7,7 + 1.

We are now in a position to make precise the convergence of the a*-zeros

of u®.

Theorem 5.9 Let 7(t) be a jump of u(.,t); there exists a time interval
(t1,%2), which contains t and there exist M(t) functions t — ri(t) define on
[t1, o] satisfying
u*(ri(t),t) =a® and 1>ri(t) >r5t) > - > Tj\/{(a(t) > Ry
for all t € [ty, o]
and such that
(1)  M(%) is odd;
(i) v(7) and uy (rf\/{(f)(f),f) have the same sign;
(iii) If p is a a®-zero of u®(.,t) such that p > ri(t) or p < Tf\A(Z)(t) orif p
is equal Rg or 1 then we have |r5(t) — p| > €% and lrjw(f)(t) —p| >
el/4 for all t € [t1,1o).
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The functions t — r;(t) define on [t1,ta] satisfy
(iv}) 78 — r; uniformly on [t;,t2] as € | 0,
(v) 8r§ — Opr; weakly in L2(f,%3) as € | 0,
(vi) ri(t) =7(7),

(vit) r; is Holder continuous of exponent 1/2

for all i € [1,...,M(t)]. Moreover there exist k > j such that (j, k) €
[1,..., M(t)] and

Ry < - <ri(t)— P <rf(t) < o <ri(ty < rS(t) + 25 < < 1,

(5.9)
for all t € [t1,12] and & small enough. We set

m(F(®) =k — j + 1. (5.10)

Proof. We first note that (i) implies (ii). Moreover we only consider the
case where that v(7) = 1 since by symmetry one can check similar properties
in the case that v(F) = —1. In view of Lemma 5.3 there exist M (%) a
zeros, pi, of u(.,?) such that Ry < pyp(t) <--- < p1(f) < 1. Extractmg
a subsequence, which we denote again by {5} we may suppose that p;(t)
converges to a limit 5;(f) as € | 0 for all ¢ € [1, M (¢)]. We denote by r{(f) >

e > M(t)( ) the a®-zeros of u®(., %) which converge to 7(£). There exists
n > 0 such that 7(£) is the only limit in [7() — 7, 7(¢) + 1] C [Ro, 1] and such
that for £ small enough

ri(t),. . ST (t) are the only a®-zeros of u®(.,%)
n (F(E) — g,F(f) + g) (5.11)
Let £ such that
gze/ (5.12)

which in particular implies that
i) <1—e"* and rS,;(8) > Ro+e'/*, (5.13)

Using the fact that «(.,?) is constant between two jumps and that v(7) = 1
we deduce that

u(.,t) = —1 a.e. on [F(t) —n,7(t))

u?(.,t) = 1 ae. on (F(t),7(f) + 7.
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By (5.11) u® — a° has a constant sign on (r(?),7(f) + 1] and u® converges
to 1 so that u® > a° on (r{(£),7(¢) + %]. Similarly we have that u® < a°
on [7(t) — %, Tj\/[(z)(t)}. This implies in particulary that M(t) is odd and
that uf(rS , @ (t),f) > 0, so that (i) and (ii) are satisfied. Furthermore using
the implicit function theorem we have that there exists an interval [t], ¢5],
which contains # such that 7$ € C1([t],t)]). Next we prove (iii). If p = Ry
or p = 1, the result follows from (5.13) and the continuity of r{ and 9.
Otherwise it follows from (5.11) and the continuity of r{ that there exists
an interval [t1, t3] containing ¢ such that

175 (t) — p| > g and [rf e (t) = p| 2 g for all t € [f,h).

So that the result of (iii) follows from (5.12). In view of (5.2) the functions
r for i € [1,..., M(f)]} are Hélder continuous of exponent 3 uniformly in
; using the Ascoli theorem we deduce that there exist a subsequence £,
which we denote again by ¢, and M(%) functions »; for i € [1,..., M(?)]

+1

o u(D)

Fig. 1. A possible configuration of the zeros
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define on [t1, 3] such that ase | 0
r¢ — r; uniformly on [£;, %] and r;(f) = 7(%),

for all 7 € [1,..., M(#)], which proves (iv) and (vi). Finally since by (5.2)
we have that fftf |0¢re|2dt is bounded we also have for a subsequence that

Ay — Oyr; weakly in L2(f;,%2) as € | 0. This completes the proof of
[Theorem 5.9. O

6. First approximation

Theorem 6.1 Let 6 > 0, there exists by(6) > 0 and K(§) > 0 such that
bo(8) — oo and K(8) — 0 as & | 0 satisfying for € < eo(6) the following
properties
(i) Suppose that there exist a time interval {t1,ts}] C Apg, and two
functions t — r2(t) and t — r%(t) such that u®(re.(t),t) = u*(rS(1),t) =
a® and r°.(t), r5.(t) are two successives a®-zeros of u°(.,t) for allt € [t1,t].
Then denoting by 7° the sign of u* — a® on (r%,7%) we have that
1

E[Ti(t) — 7% (8)] = 2(bo(8) + 1) for all t € [t1,19], (6.1)

and u® satisfies

Wl (7)) — tanh('re(r————gé(—t—)) + us) < K(9) (6.2)
for all (r,t) € [ro(t),ro(t) + bo(6)] X [t1,ta],
ut(r,t) + tanh(TE(T—_—:;t@) — pf) < K(§) (6.3)

for all (r,t) € [r5.(t) — bo(0),r5.(t)] x [t1,t2] and finally

[Ts {uf(r, £) — ([1 — 5, 1)] tanh(Tf(f-i—-f——@) + ;f)

-t an(e () ) )] <x0) 64

€

for all (r,t) € [rS, 78] x [t1,ta], where p* = tanh™'(a®) and £° is a smooth
function on (r°(t),r5.(t)), such that 0 <& <1
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ro(t
0 #f rE(t)<r<— 5 —€
£(r 1) =
L () + ()
1 if
2

(ii) Suppose that r<(t) is a a®-zero of u®(., t) and that there exists of €
(r¥(t), 1) be such that of — re(t) > £'/* and that u¢ — a® does not vanish on
the interval (r®(t), ). Then denoting by ¢ the sign of u® — a° we have for
e <ep(d) that

o (w(r,0) ~ mn re (T =0 )| <xe 6

for all (r,t) € [re(t), 75(t) + /%] x [ty, ta].

(iii) Suppose that v°(t) is a a®-zero of u®(.,t) and that there exists
af € (Ry,75(t)) be such that r<(t) — of > /4 and u® — a° does not vanish
on the interval (of,7°(t)). Then denoting by 7° the sign of u® —a° we have
for e <eo(d) that

[TE (uf(r, t) + tanh (* (f—%i@) + ;f))

for all (r,t) € [r5(t) — €¥/5,75(1)] x [t1,tq].

+e<r<ri(t).

< K(4) (6.6)

Note that £° is well defined since by (6.1) we have r{ — ¢ > 2¢ for ¢
small enough.

In view of [I'heorem 4.3 and the definition of Ag, (Definition 5.1) the
function U®(z,t) = u®(r, t) where z = L satisfies

30207 = PO ) S

As in the proof of Theorem 5.1 in we have to state properties of the
solutions of the differential equation

(E) (¢)°-2F(p)=g, in R

where g is a smooth function such that ||g||oc < 82. Following the proofs of
Lemmas 5.2 and in |4} one can check the two following results.

Lemma 6.2 Let ¢ be a solution of Equation (E) such that there exist z_
and z4 satisfying ¢(2—) = ¢(z+) = of and ¢(z) > a° for all z € (2-,24).
Let 6 > 0; there exists by = bg(8) > 0 such that lim; ,; bo(d) = +o00 and a
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positive constant K such that
2, —2_>2by+1) = +00 as 610 (6.7)
|¢(z) — tanh(z — z_ + p°)| < K\/g, forall z € [z_,z_+by], (6.8)
|¢(z) + tanh(z — zy — )| < K\/g, forall z € [z — by, z4]. (6.9)
d(z) > 1— K\/g, for all z € [z— + by, z4+ — bo). (6.10)
Moreover let ¢ € (z_, z4) be such that ¢,(c) =0. Then
¢ € [z— + by, 24 — b (6.11)

Lemma 6.3 Let ¢ be a solution of (E) and let z_ be such that ¢(z.)
ac. Suppose that ¢(z) > a for all z € [z_, A] where A — 2_ > 2= then

there exists a positive constant Ky such that

sup  [¢(z) —tanh(z — 2_ + pf)]_ < Kl\/g (6.12)
-]

As it is done in [4] one can deduce then Theorem 6.1 from the Lem-
mas 6.2 and 6.3.

Lemma 6.4 Set U(z,t) = u®(r,t) where z = L and suppose that there
exist a time interval [ty, t2] and two functions t — 25 (t) and t — 25 (t) such
that U(2°.(t),t) = U%(25.(t),t) = a® and U* does not take the value a° for
all z € [25.(t), 25.(t)). There exists a function b§(t) such that

2 (t) — 25 (8) > 2(bg(t) + 1) with lim b(t) = +o0 (6.13)

e—0

for a.e. t € [t1,t2]. Moreover suppose that ¢(t) € (25(t),25(t)) satisfies
us(c(t),t) = 0. Then c*(t) € [25(¢) + by(t), 25.(t) — bG(t)].

Proof. Using we have that £2 fOT fol |uf|?dr dt < Ce, which implies
that {e? fol |u$|?dr} tends to zero in L'(0,T) as € | 0. Thus there exists a
subsequence, which we denote again by {¢} and a constant C; depending
on Ry and t such that for a.e. t € (0,T)

1
juf |2 dr < C1(Ro, t)e 2.
Ry
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Substituting this into (4.13) we deduce that

1
W07 = FO )] gy 4y < Col e
for a.e. t € [t;,t2]. Applying for the function U¢ and with § =
[C(Ro, t)e'/?]1/2 we deduce that there exists bo(8}(t), which we denote by
bg(t) satisfying 25 (t) —2° (t) > 2(b§(t)+1) and lim._. b5(t) = +o0 and such
that for all points ¢*(t) € [2° (), 29 (¢)] satisfying us(cf(¢),t) = 0 we have
c® € [25 () + bg, 25.(t) — b)), which completes the proof of Lemma 6.4. O

Following the proof of the [Corollary 5.6] in {4] we obtain the following
result.

Lemma 6.5 Suppose the hypotheses of Theorem 6.1 (i) hold. Then u§ is
such that

lim sup[rs_(twim r€ () 7€ (1) lug — 1| =0, (6.14)
2

e—0 —g, 5 +s] X [t1,t2]

Lim. SUP e (4) 4 b= (6) —cbo] x[ta 2] | (W0)r] = O- (6.15)

e—0

Consequently we also have

|(ug)r] = 0. (6.16)

lim SUPT £ (£)4rE (1) € (1)47rE (t
g-—yO [T‘_ )2 + —e, _( )27’+( )+E])([t1’t2]

7. Approximation of u¢

Introduction and preliminary definitions

Let 7() be a jump of u(.,) and Ry € (0,1) such that 7#(f) > Ry. In
view of [Theorem 5.9 there exists a time interval (%1, 2), which contains Z
and there exist m(7(f)) (see for the definition of m(7(f))) functions
t — 75 (t) define on [ty 5] satisfying

u*(ri(t),t) =« and
Ry < <ri(t) =P <rf(t) < <rs(t) <r(t) + 2P < - < 1,
ri —riy > 2¢ forall 1 <i<m(F(f)) -1, (7.1)

and such that (i)-(vi) of are satisfied. We first state some notations and
definitions. In order to simplify the notation we replace m(7(t)) by m in all
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the proofs of Section 6. We introduce a new variable namely,

2(t) == "“_84“)

moreover we set for all ¢ € (£, 5]

ripj—1(t) — 5 (1)

z(t) = , forall ie[l,m]
3
and also

R =T

Z5(t) 1= 2 . L2 ()= . /
Ro—rt 1—7rt

25 (t) := Lo 28 (t) = ]

(1) = () =

Thus on [t1, 3] we have that

zE_<zfn+1<—£_3/5+zfn<zfn<zfn_l<...

--'<zf:0<z§+€_3/5<z8<zi,

From now on we use capital letters for functions defined in the new
variable z, so that

Uf(z,t) = u(r,t),
VE(z,t) = v°(r, t).

In the z-variable equation (4.1) becomes

—cug (ez +ri(t), t) + %Ufz(z, t) + %—;—:\;Uﬁ&, t)
+ éf(UE(z, t)) — V(z,t) = A°(t) = 0. (7.2)

Next we give some definitions

1. Let {Ef(z,t)}1<i<m be a partition of unity, such that the func-

tiosn Ei(z,t) hsas Support in (zf“% -1, % +1) and Ef(z,t) = 1 on
[z_m_i+12+zi 41,2 +2Z"—1 — 1} for all i € [2,m — 1], while E{(z,t) has support

in (% —1,00) and Ef(z,t) = 1 on (2 + 1,00); Ep(z,t) has support in
(—oo, %’1’—1 + 1) and E,,(z,t) =1 on (—oo, %‘—1 — 1). Moreover we
suppose that (EY);, and (Ef),, are uniformly bounded in . By (7.1) this



596 M. Henry, D. Hilhorst and Y. Nishiura

construction makes sense; similar computations have already been made in
Section 5.

Ef 4 E§
21 zfj;l';zf—l _,
Fig. 2. The partition of unity
2. We set
=m
Us(z,t) = > Ef(z,)Us(2, 1),
i=1

where U, (z,t) = tanh[(—1)"*1(z — 25(¢)) + ] where u® = tanh™! @® and

t=m

Ui(z,t) :== Y B (2, )U(2,1),

=1

where U}, is a solution of the system

(Ufz‘)zz + f,(Ugi)Ufi =V +A°
UL (£ (t),t) =0

3. Finally we set for all z € [2%, 27|
O (2, 1) = v(F) (=1 (U5 (2, 1) + eUf (2, 1)),
where v(7) is defined by [Definition 5.8 and
U (z,t) := U(z,t) — ©%(z, t).
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Construction of the approximation In this Section we prove that
U*® is well approximated by ©¢; more precisely we prove the following result.

Theorem 7.1 Let £° be a smooth function with values in [0, 1] such that
: L. _1
o | B O i (0e)
O : ~3/5 ~3/5
0 in R\ (=& 425 5, (8),67%),
0 <€ <1 and ||£5||pe < Ce3/5. Then we have

to
[ f (1052 + |9°[2) (6°)2 dz dt < e85
4 —oo,zfn(F(E)))U(O,oo)

and

e—0 7

f2
lim / (JWE)? + | ¥°|?) dz dt = 0.
v )

We first note that

28 <l —e S — e 2t <

-~-<zf:0<€"1/2<5"3/5<zi

and that U¢(.,t) does not take the value a® on (25,(t) — e7%/%, 2¢ (¢)) and
in (2§ = 0,e~3/ %) for all t € [f;,%3]. Next we prove preliminary lemmas,
which will be useful to prove [Theorem 7.1. In each proof we only consider
the case where v(7)(—1)/ = 1 since by symmetry one can obtain the same
result in the case that (7)(—1)? = —1. In the following lemma, we give the

equation satisfied by ¥¢ and we refer to [4] for the proof.

Lemma 7.2 Setting
He(z,1) = ~05,(2,1) = F(O%(2,0)) +eVE(2,) +eX(t)  (7.3)

and
€

Ge(z,t) :== —e%us(ez + ri(t), ) + (N - 1) U (z,t)

£
€z+rj

= U, (2,t) = f(U(2,t)) + eV(z,t) + eA*(1), (7.4)
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we have
i=m(7(t))
He = ) E (6UG(UR)" + 2¢(U7)°)
=1
i=m(F(D)—1
+ ) (85 —65) [(¢F)=s + 2EFES,, ((1+ EF)(65)?
i=1
+ (B —2)(0541)% + (1 - 2E))6507,; )]
i=m(F(D)—1
D DR CAECH R R (7.5)
i=1
where (§ = ’,z:; E}. Moreover U, satisfies
—0%, (2, 8) = f(6°(2,1))U%(2, 1) — 2 (36°(L%)? + (T°)°) (2, 1)
+ G*(z,t) — H(z, 1) (7.6)

WE(2E(1), £) = 0
Next we give a bound for UF.

Lemma 7.3 There exist constants C1(Ry) and Cy(Ryp) such that U sat-

isfies
U (o Ol mrooee 22y < Cr{Ro)(1+ A (F)]), for all t €[t t2] (7.7)
and
sup [ UF (-, )| roees o5y < Co(Ro)e™ /2. (7.8)
te(t,t2]

Proof. Applying [[4], Lemma A.3] we deduce that for all t € [f;, 5]
UG Olrioegae 2oy < 1200V (Ol pee ot + N (B
for all ¢ € [1,m]. (7.9)

Using (4.9) we deduce that ||U(., )| greer,. »,y) < Ki{Ro)(1 + [A5(t)]), for
all ¢ € [1,m]. Finally using the definition of U] and the fact that Ef and
(E?), are uniformly bounded in ¢ we deduce that

NUT () grse(ee ey < Ka(Ro)(1+1A°(2)]), forall t¢€ [t1, fo].

This coincides with (7.7). Moreover using the bound on A® given in (3.11)
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we deduce (7.8). This completes the proof of Lemma 7.3. Next we state a
lemma, which will be useful to prove [Theorem 7.1.. [

Lemma 7.4

lim (27 (t) — 25 (t)) = —o0, for almost t € (f1,1,) (7.10)

£—0

forall i € [1,m(7(f))—1]. Moreover there exists K(8) > 0 such that K (5) —
0 as 6 | 0 satisfying

[U°6°)- < K(8) for all (2,t) € [~™%/% 4 22, oo &%/ x [f1, Ba).
(7.11)

Proof. (7.10) is a direct consequence of (6.13). Next we prove (7.11). By
definitions of ¥* and ©° we first note that

[T°0°(2, )] < [(U° = Ug)Ug) (2, )] - + | (U° = U§) (2, )||UT (2, t))|
+ el U5 (2, O|U5 (2, 1) + €*|UF (2, )

for all (z,t) € [~e™3/% +25,,673/%] x [t1, ). Using (4.10), (7.8) and the fact
that |Uj| < 1 we deduce that

[W0%(2,1)] - < [(U° = U5)U§) (2, )] + C(Ro, t)e/? (7.12)

for all (2,t) € [—e73/5 + 28, e73/5] x [f1,%y]. Next we prove that
[((UF =UG)U5) (2, )] - < K(8), forall (z,t) € [25,q,25] x [t1,La).
(7.13)

We denote by 7; the sign of U*(.,#) — a® on the interval (2f ,, 2f) and we
note that 7; = (—1)".
We first consider the case that 7 is even. We have in this case that

Us(z,t) = Ef j tanh(z — 25,1 + 1) + E tanh(zf — 2z + pf)
> E7, 4 tanh(pf) + Ef tanh(u®) > a® > 0, (7.14)
for all z € {27, 2{]. This with the fact that (ab)_ = (a)_b for b > 0 implies

that [(U® — Us)Usl- = [U* - Us]-[Ug], on [25,4, 2] x [£1,%2]. Therefore
using the fact that 7; > 0 and [Theorem 6.1 we deduce that

[((UF =U5)US)(z,t)]- < K(8), for all (2, )25, 1, 25) x [t1, Ea].
(7.15)
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This implies (7.13).
In the case that 7 is odd we have that

Us (2,1) = By tanh(—2 + £, + ) + B tanh(—25 + 2 + 4°),
(7.16)
so that —U§(z,t) > 0 for all (z,t) € [25,, + p%, 25 — p] x [t;,t2]. The

inequality (7.13) then follows in a similar way. In the same way one can
deduce from the results (ii) and (iii) of [Theorem 6.1 that

[({(U* = Us)Ug) (2, 1)] - < K(4) (7.17)

for all z € [—e™3/5 4 25, 28 | U [25, 2§ +e73/% and t € [f1,%,]. Finally [7.12],
(7.13) and imply (7.11). This completes the proof of Lemma 7.4l
L

Next we give a bound for G*. More precisely we prove the following
result

Lemma 7.5 There exists a constant Cs(Ryp) such that G* satisfies

ta 24
/_ f G (2 8)[2dz dt < C(Ro)e (7.18)
tl Z—

Proof. By definition of G* (7.4) we have

fz Z+ fz z4
[ / G (2, )2z < 26t f / (2 + 5, 1)|Pdz dt
tl 2 t1
_Jzzjwfﬂuﬁztﬁz
i1 z ISZ + T.E |2
After performing the change of variable r = ez + r; we obtain
1o t2
/ [ 1G5(2,)[*dz < 2¢° f f S (r, t)|2dr dt
i Z-
12 1 el2
f f [u; l Zrldrdt.

Finally using we deduce that f [ |GE(2, t)[Pdz dt < Co(Rg)e”
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Next we give a bound on H®. More precisely we prove the following
result.

Lemma 7.6 There exists a constant Cy(Rg) such that H® satisfies

ta
f / |H(2,1)2dzdt < C4(Ro)e™®. (7.19)
El 6_3/5+Z€ 2E ) ( ,5—3/5)

Moreover we have that

t2
lim / |H(2,t)|°dzdt = 0. (7.20)

e—{

Proof. Using the definition of the partition of unity {Ef} we have Ef = 0
for all ¢ € [1,m — 1] and ES, = 1 on [z.,25)]. This together with (7.5)
implies that

H*(2,1) = €% (6U§,,,(U,n)* + 26(Ui,)?) (2, ),
for all (z,t) € [2°, 2] x [t1, T2] (7.21)

Moreover we have that Ef = 0 for all 4 € [2,m] and Ef = 1 on [2f, 28] x
[t1, t2], which implies that

H*(z,t) = €* (6U§,(Uf))* + 2e(Uf)°) (2, 1),
for all (z,t) € [2],25] x [t1, ta). (7.22)
Moreover we have
{U§i|Lm((zu’z+)X(m2)) <1, forall i€ [l,m] (7.23)
In view of (7.21), (7.22) and (7.23) we deduce that

ta
f / HE (2, ) [2d2 dt
t1 J(—e 35428, 22 YU(25,£73/5)

) E|D
< Ce* { |U1 Loo((22,25 ) % (T1,82)) +€‘Ulle((Zi,Zi)X(Eljz))

+ U513 e35ty — 1)

(z—,24)x (3152))]
Applying we deduce that

132
] / \HE(Z,t)|2dzdt < 03(30)67/5.
f J(—e 3542z 28 W(25 £3/5)
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This completes the proof of (7.19). Next we prove (7.20). We set

1=m

Hi(z) = €* ) | B{(6UG;(UR,)* + 26(UF,)°)

1=1
i=m—1
H3(2) = ‘ (05,1 — O)[(¢5)ax + 2BLEL (1 + E£)(65)?
- b (B 205, + (1 - 2500767,
t=m—1
H3(z) = Z (0711 — 67)(¢)z
1=1
so that
H¢(z,t) = Hi(z,t) + H5(z,t) + H5(2, ). (7.24)

We deduce that

0 0 0
[t opa <c| [ HiGopds [ 5P

m Zm

+ /O \H§(z,t)|2dz] (7.25)

m

Next we prove that

ty O
/: / |HS(z, )|’ dzdt - 0 as | 0. (7.26)
tl zfn

Using (7.7) (7.23) and the fact that |25,| is bounded by 1 we obtain that
foralli e [1,m

1
t2
J

r pig 0
coat] [* [ (wprwiyt+ s paan |

)
0
/ |HS(z,t)|*dz dt

ki

- EZ
€ €112
< Ce3 L(l +[ ‘/\ (t)lzdt) ||U1 H (2,25 ) x (t1,t2))

t1

to
4
12 (1+/_ P\g(t)lg_dt)HUiE||Loo((z6_,z6+)x(51,fz))}

t
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Applying and (7.8) we obtain

ty 0
[ ] @ (st s S | < ke,

which implies (7.26). Moreover as it is done in {[4], Lemma 6.6] one can
check that. Next we prove that

0
/ |H5(z,1)]?°dz — 0 for ae. te (I),1), (7.27)
and
0 —_ —_
/ |H5(z,t)|*dz — 0 for a.e. t€ (t1,8), (7.28)

as € | 0. Moreover since HS and HS are uniformly bounded we deduce from
the dominated convergence theorem and from (7.25), (7.26), (7.27) and

(7.28) that lim._,g f;f fzos |H?(z,t)|?dzdt = 0. This completes the proof of
Lemma 7.6 O

We are now in a position to prove [Theorem 7.1.

Proof of Theorem 7.1. Multiplying by |£°|2¥¢ and integrating the re-
sult on I x (Z1,%2), where I = (—o00, 25,) U (0, +00) or (2£,,0) we obtain that

] | (v - renw) wie
— -6 [ Jerwe i -2 / Jwyer
N f /IGEQE|§E‘2_ / /I Hw |

Using Lemma A .4 in Appendix of [4] we deduce that
s ta
s [ [ [ [loeper
i1 I 51 I
1 t2 g121p€42 1 & €12|¢€12 f2 €12 €12
<o | JIEPIEr+ o L LIGTFIEE+ | [HEEE
Sl t1 I SQ J 1 I t: I

t2
+6([95‘1’5]m)L°°((—E‘3/5+z?n,s‘3/5)X(flb))/z ]I‘\PEP’&EF
1
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This implies that

t2
s [P
ty JI

3 E\[s€
+ (152 - 6([(—) LG ]—)L"O((—E_?’/5+zfn,€_3/5 tl tQ / /I\IJE‘ I&-EIQ

22 1 fz
il \IJ€2 €2 GE‘Z 52 HE 2
[ [wrer s o ([0 [lepers [* feeer)
(7.29)

By (7.11) we may choose 4 small enough so that

1
([O°T°)) poo(fae on ] x [ a]) < 2202

Substituting this into (7.29) we obtain

] [ D272 + ] [ e
| [I !W€!2!£§IQ+S—2( [ [ 16epie + ] / IHE\QEEIQ)-

(7.30)

We first consider the case that I = [2£,,0]. Using (7.30) lemmas 7.5 and 7.6
and the fact that in this case £ = 1 we deduce that

to
lim f (JTE % + |T¢2) dzdt = 0.
2, ,0)

e—0

Next we consider the case that I = (—o0, 25,] or [0, +00). Using (7.30) and
the Lemmas [/.5 and [7.6 we deduce that

tg i2
slft j|<v||s 2y 2[ [l@fl?lﬂ?

<3 [ [lwrers ke v (7.31)

Next we estimate fztf ,1W%%1€51%. Using the fact that |€5] < Ce¥® we
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deduce that

22 EQ —5_1/2+an 52 673/5
[ [reper<cos] [ ] e [ ]
t JI I J—e 354 t, Jem1/2
(7.32)

As it is done by Henry in [4] one can deduce from (7.32) the estimate
[Pl < co e (7.33
1

Finally using and integrating (7.33) on [t1, #2] we deduce that

fz EQ
] ] el + [ f BRI < C(Ro)e
t I i I

This completes the proof of [Theorem 7.1. O

As in |4] one can then deduce from [Theorem 7.1 the following result.

e [ —1/2 €
Corollary 7.7 Let J = [ g - zm(F(f))’

Zin(?(f))] U [0,e7Y2); we have

that
L0t < RO, (7.34)
(2
lim [ 10 ) regoe =0, (7.35)
ta
tiy | N0 8) = VOISOl o vyt =0
(7.36)
/: N0 (s t) = (P UG (e ) 2gr.m syt < C(RO)ES, (7.37)
2]
Jimg | IO 8) = )T Bl go,ee, 3t = 0. (7.38)

1
8. The limitase | 0

Let 7(Z) be a jump of u(.,t) and Rp € (0,1) such that 7(¢) > Rp. We
refer to the introduction of Section 7 for the properties of 7(f). Moreover
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we set

v(ri(s)) if r;(s) is a jump
0 if r;(s) is not a jump.

plri(s), ) = {

In this Section we derive the motion equation of a jump 7. To that purpose
we first obtain the equation of the limit function r;.

8.1. Evolution equation for the limit r;
Lemma 8.1 For each j € [1,...,m(7(1))] we have
N-1 3

ry(8) = =~ (0, Da(8) + vl (), 1), (8.1)

a.e. in [ty, ta].

Proof. For the sake of simplicity we only prove in the case that
the function r — (u® — a®)(r,t) only has one zero for all t € [t],%5]. This
amounts to suppose that m = 1 so that j = 1 and z;, = 2] = 0. We refer to
for the proofs in the general case where the function u® — ¢® may have
m zeros close to each other. Moreover we also suppose that v = 1. Note
that the function Uj, which is given by

Ug(z) = tanh(z 4+ ) where u° = tanh™!(a%), (8.2)
does not depend on time. Moreover we have that
Ce—1/2
lim (Ug).dz = 2, (8.3)
e—=0 J_.—1/2
and
e—1/2
lim (UE),)2dz = = (8.4)
e—0 J _.—1/2 3

We write (4.1) in the variable z := r;lm, this gives that

N_1U§—§f(UE)+VE+AE:O

1
UFf — [0:75(DUE — =UE, —
cUy [trl( )] z o %2 EZ—FTf

(8.5)

Multiplying (8.5) by ((¢)Us(z,t) where ¢ is a smooth test function with
compact support in (,%3) and integrating the result on (—e~1/2 ¢71/2) x
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(t1,t2) we obtain

1/2 N—l

1 —
° € £ £\2
‘/tl stlfz CUt U ~/t1 /;5“1/2 C[aﬂ‘l z+ 7"6 1] (U )
12 tz
/ ] CVEUE [ ] [ F(UE):l
ty J-eml/2 T Joe1/2

1/2

to
]t fﬁm CUSN =0 (8.6)

In order to pass to the limit in , we first prove the following lemma.
O

z

Lemma 8.2

lim — f / { —F(UE)] dzdt =0
e—0 & 0 —g—1/2 2

Proof. We note that

e [ Foe)|
ST

< lice [ {2 (were <U§>2<—e—1/2,t>)

+F(US(eY2 1)) + F(US (&2, t))} dt  (8.7)

Moreover we have that

US 12 < (U2 = (U§):] + 1(UF):D? < 2 [JU7 = (U§):I* +|(UG):I] -

8.8)
Using the definition of Uj we obtain
(UE) (e V)| = 1 — tanh? (e 712 + pf) (8.9)
and
(UE) (=712 = 1 — tanh?(—e V2 + 1f), (8.10)

so that applying at the points —e~1/2 and e71/2 and also using the
fact that the points —e 1/2 and £~1/2 are in the interval J defined in the
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Corollary 7.7 we deduce that
U(e7 12, 8)|2 + U (—e~ 12, 1)|2
< AUS — (US)=1C. )y + 201 tanb? (=2 4 )2
#2(1 — tan? (72 ) 1)

for all ¢ € [f;,ts]. Furthermore we have that
1
F(UG(e™%) = 5[t — tanh®(e™/2 4 7))
and
_ 1
F(US(-72) = 11— tanb?(—e /2 4 )2

This implies that

F(US(e7V2,)) <|(F(U°) = F(U)) (V2 1)
%[1 — tanh?(e71/2 4 )F)]2 (8.12)
and
F(U*(—e7'2,)) < [(F(U*) = F(U§))(—" V2, 1)]
+ %[1 — tanh®(—e=1/2 4 )2 (8.13)
for allt € [t;,#2]. Substituting (8.11), (8.12), and (8.13) into (8.7) we obtain

/:2 /_/ 5 - Pwe)| dea

2 t2 &€ £
< C(T>||cuoo(g [ 10 = )l

ty

1
+ é[l — tanh?(e7Y2 4 1)) + g[l — tanh?(—¢ 172 4 ;f))2

b2 rwn) - gy ) a

1 [t
-4
£ zl

(F(U®) — F(U))(—e~ Y2, t)l dt) (8.14)



Singular limit of a second order nonlocal parabolic equation 609

Moreover there exists U between US(E_I/ 2) and Us(~1/2,t) such that
(F(U") = F(U5))(e™/%,1)
e __ JreN2(—1/2
_ (Us _ US)(E_I/z,t)F’(US(E_l/z)) 4 (U U0)2 (5 :t)
From (4.10) and from the fact that |U§| < 1 we deduce that F’(z) is bounded
for all U between Ug(c~1/2) and U=(¢~1/2,t) and moreover since {F'(U¢)| <
2[1 — tanh?(¢71/2 + ;)] we obtain that

F(U).

1/ (R - FUE) (e, 1)l dt

Ezl

52 1/2
<c( [1 — tanh?(e™Y/2 + )] (f |U§(£_1/2)—UE(e‘l/Q,t)|2dt)
(3}

to
+ %[ |U§(6_1/2) — U6(6_1/2,t)|2dt>.

ty

Using (7.37) we deduce that

1f2§(F(U5)—F(US))(e_l/Q,t)|dt—>0, as £ 10,

e Jy,
Similarly one can prove that

ta
é[ (F(U®) — F(US)))(—e™ Y2, 8)|dt — 0, as ¢ | 0.
t1

Coming back to (8.14) and using again (7.37) we deduce the result of
Lemma 8.2. OJ

Lemma 8.3

ta 4 2 N—-1
€ €\2
U dzdt = = + o dt
gm(l) fe 2 [52 -+ 8#1] ( z) z 3 «L C[ Tl t?“l}

Proof. We first prove that

1 1
lim / (UE) dzdt = hm f —(U§)2dz dt
e—0 ~1/2 EZ + 75 _e—1/2 EZ +r§
(8.15)
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and that

e—(

2
lim / C(’? r$(US)*dzdt = hm / C@trl(UO) dz dt.
—1/2 _e—1/2

(8.16)

Since ez 4+ r{ = r > Ry we have
L, e 1/? .
AV £ 2
L (09 - sy asan
I, pe—l/2
| [ cans[we? - (ws.p]
1 —g—1/2
- e—1/2
< HCHoo/t?f ! +ori] ) |(UD)? — (US)2] dz dt
- T, Joe-1/2\€2+ 1"51: < z

—1/2

fg 1 g 1/2
<o [ { (G +10051) | [, 102 - w5

—1/2

€ 1/2
U Us + (Ug)z|2] }dt (8.17)
_e—1/2
e—1/2

1
4
U + (UE),2dz < — / 2N =14r 4 2 < O(R
/_6_1/2|z+(0)’ Z‘R{,"‘l ROIUTIT r+ 3 < C(Ro),

1t follows from and that

which we substitute into (8.17) to obtain
e 1 ] 2 2
oril [(US)* — ((U§).
L[ i o] ey - o

to 1 A 1/2 EQ 5‘1/2 1/2
<aura([“[oviantl] ) ([ o)
{1 0 t1 —_e—1/2

Using (7.36) and the fact that 8;r§ is bounded in L?(%;,%;) (cf. Theorem 5.9)
we obtain (8.15) and (8.16). Moreover we deduce from [8.4), (8.16) and the
the fact that 9;r§ tends to Ory weakly in L?(%;,%,) that

t2

ia 4
lim / Catrl(UE)zdzdt 3 COyridt (8.18)

e—0 tl
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Next we prove that

_1/2 7

ta ] 4 : X

gl—llr(l) f 12 €Z+T1(t)((UO)Z)2dzdt_ 5,/31 C(t)ﬁ(t) dt.

(8.19)
We have
To pe1/2 1 1
_Ew1/2<(52+7‘1(t) rl(t))((UO))
<! R% / // ri(t) — r§(0)] +£72) (U5).)?
_ ¢l

=R ({?ﬁ%’rl()_Tl()H‘El/z)(tQ"tl)f_e_llz((US)z)de

(8.20)

Using and the fact that r{ tends to r{ uniformly on [t;, %] (cf. The-

orem 5.9) we deduce (8.19). Finally follows from (8.15),
and (8.19). ]

Lemma 8.4

~1/2

limf / DA (DU (2, t)dzdt = 2/ C(t)Ao(t)dt
e—-0 Jg, _€~1/2

Proof. We first prove that

io
lim f COON (DU d dt
—5—1/2

e—0
-1/2

2
= lim f t{U5). dz dt. (8.21)

e—0 E~l/2

We have that

fy pe—1/2
/E f_ 172 CON MUz — (Us):] dZdt\

-1/ " (e[ - U0 - 0 - U 0)) dt‘

ty

7 ) 1/2 ; 1%y ; 1/2
szncuw(ff D) dt) (] ||U€—U5||Loo(.,)dt) ,
1 1
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which in view of and (7.37) implies (8.21). Moreover using the
definition of U§ given in (8.2) we have

tg “1/2
/ f (tHU;)» dz dt
t1 FE—I/Q
t2

= [tanh(e_l/2 + 1) — tanh(—e" V% 4 ;f)] CAEdt

t

Letting ¢ tends to zero and using [Corollary 4.5 and (8.21) we deduce
I 3.4. O

Lemma 8.5

lim f_ SOV Uz izt = 2 / CHu(r(t), )dt

£—0 tl

Proof. We prove below that

e—0

lim / C()VE (2, ) Uz, t)dz dt
—1/2

= Jim / COVE (2, )UE) (2, 1) dz . (8.22)
_1/2

e—0

Integrating by parts the integral f 1/2 VE(U: — (U§).)dz and also using
the bound of v*, (4.9), we obtain

172

[ v - g

e—1/2

e—1/2

12 e
:|[V5(U Uo)} - 1/2‘[ s Vz (U —US)dz

< C(Ro, T|U® = Ul poe )

1/2 1/2

) (e o

Moreover the energy estimate implies that

e—1/2 1
[ (VE)2dz < 5/ (v5)%dr < eC(Ry), (8.24)

_g—1/2 Ry
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which we substitute in (8.22) and (8.23) to obtain

/: je N OV=(z,t)(U; - (Ug)z)(z,t)dzdtl

e 1/2

< ¢l C(Ro, T)

1/2 to 1/2
(/ 1U® = Ug 700 s dt) +el/? (/ ] US\dedt> ]
2 _5—1/2

Using (7.36) and (7.37) we deduce (8.22). Next we prove that

t2
lim f C(t VE(z2,)(U5) (2, t)dz dt = 2 lim C(t)v"(ry, t)dt.
e—0 _e—1/2 e—( 1

(8.25)
We first note that v°(r{,t) = V(0,t). We have that

12 /2 %
[ [ SOV (e ) (T).dzd — 2 ((t)ve(r’f,t)dt|
ty J—e"1/2 4

3
CIVE (2, 8) — V0, 8)] (UE)ods dt
_e1/2
19 5—1/2
+ guf(ri,t)U (Ug)zdz—Z}dt‘
3 Y

slICHoo(f;z{f - (/ |V€2dz)1/2|z|1/2|(U0) \dz}

e—1/2
(Ug)zdz—QD.

/—5“1/2

ta ta
f f OVE (2 (U )adzdt — 2 [ c(ty(re, t)dt‘
ty J—e— l/2 1

+ |10%[ Loo ([ Ro 1) x [0, (F2 — 1)

In view of (8.24) and (4 9) this gives that

e—1/2

e 1/2
< ¢llsoC(Bo, T) (51/4 [ W=+ | / (Ug)zdz—QD.
—e—1/2 _e—1/2

Together with (8.3) this implies (8.25). We now prove that

t2

2 lim g() “(rf, t)dt =2 | g() (r1, t)dt. (8.26)

£—0 tl
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We have that
ot
W = ](ry ) = — [ vids + v5(r5, £) — v(re, b). (8.27)
1

Moreover we note that

r1(t)+h (1)
/ [f (v — v].(s,t) ds] dr
™ (t) T

r1(t)+h
:/(t) (0° — v](r(8), t) — [v* — o] (r 8))dr
ri(t)+h

= hv® — v](r1(t),t) — / [v& —v](r, t)dr, (8.28)

T (t)

for all A > 0. Substituting (8.27) into (8.28) we obtain that

vE(ri(t),t) — v(ra(t), t)

r{(t) 1 [ (&)+h  pri(t)
= f v (s, t)ds + — / / (v° — ) dsdr
ri(1) hifow I

1 Tl(t)—‘rh
+ Ef o [v® — v](r, t)dr (8.29)
T

Multiplying [8.29) by ¢ and integrating the result on [f;, 5] we deduce that

i OO (), ) — o(ra (), )] dt‘ < H +2J° 4+ K°,  (8.30)

t1

where we have set

&

o r§(t) 1/2
o= [t -rore( [ ) e wan
3] r(t

and

1 s ri{t)+h 172 T 5 5 1/2
e [wen [ e n@pe([ k) dra
t1 r1(t) r1(t)
(8.32)

and

1] ftz pri(t)+h
K= n /f f o C(t)[v° —v)](r, t)drdt}. (8.33)
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Using and the fact that r{ tends to ry uniformly on [¢, 3] we deduce
that

lim HE = 0. (8.34)

e—0

Next we estimate J°. For all 1 > A > 0 and r € [r|,r; + h] we have

] L[ [rh R IREY
rtl ([ = (e )
r1(t)
to 1/2
U f (02 + vy [2) drdt] (8.35)

Since frT((tt)Hh Ir — ()| 2dr < h3/2, also using and the fact that v
€ L2(0,T, HY(2)) we deduce from (8.35) that

J* < C(Ro, T)h' ¢ oo (8.36)
Using the fact that v° tends to v weakly in L2(0, T, L?(Q)) we deduce that

lim K¢ = 0. (8.37)

g—0

Letting £ tends to zero into (8.30) and using (8.34), [8.36) and [8.37) we
obtain

b2

; C(t) [ (ri(8), £) — v(r1(t), )] dt| < C(Ro, T)|I¢]|ch'?,

1

for all A > 0. So that letting h tends to zero we obtain [8.26]. Finally
(8.22), (8.25), and imply the result of Lemma 8.5, O

Lemma 8.6

lim
e—0

fg g
lim ¢ [ / COUEUZ) (2, t)dz dt = 0.
El _5—1/2

e—0

Proof. We first prove that

ta to
limef/ f UtUEdzdt—hma/ / (t)U; (Uj).dz dt.
e=0 i, Joe-1/2 7 *5—1/2
(8.38)
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Indeed

<f/>(//>

(8.39)

Moreover we have that

T, pe—l/?
ff \UE | dz dt
7 Joem1/2
1o
<’ f [ (g + 1By [S]2) dr dt
€ Jt, JRo
t2
< G K[ ] |2 1drdt>
£ 51
EQ 1/2 22 1 1/2
+(j |atrﬂ?) (/ [ iui\er‘ldrdt) ]
t 11 0

Using and the fact that fglg 10,r¢|? is bounded (cf. Lemma 5.1) we
deduce that

I, pel/2
/ f Us|*(2, t)dzdt < C?’(fo). (8.40)
t —e—1/2 £

Substituting into (8.39) and also using (7.36) we obtain (8.38). Next
we check that

2

2
1
- —8t’f'1U€ + \gaﬂ“iUE dz dt

_1/2

lima/tle_ V(US(UE)) (2, )dz dt = 0 (8.41)

e—0 e—1/2

Integrating by parts the integral ft ()U; (U§) . dt and using the fact that
[(U§) 2]t = 0 we obtain that
t2 z?

CUL(US) .d [CUEUO} GUS(UG) ., dt,

El tl
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so that

EZ &.71/2
sf ] CUf(Ug)zdzdt‘
El —671/2

< €722 Cllooll || Lo 1Ro 11 x[0,1))

e—1/2
+ el = Wl ool [ 1Ol (842
e
Using (4.10) and (8.3) we deduce (8.41). Finally (8.38) and (8.41) imply
the result of Lemma 8.6. O

We now return to the proof of Lemma 8.1
Letting € tends to zero into and using Lemmas B.2-8.6 we obtain

that
N-1 3 L
() + 5[)\0(75) +v(r1(¢),t)], a.e. in (f1,%2),

which coincides with [8.1).

8tr1 (t) = —

8.2. Evolution equation of the jumps

The geometrical context

From now on we suppose that the number Ay of jumps of « is finite and
constant in time on a time interval [¢,ts]. Let {t — 7;(¢)} be the jumps of
u(.,t) for t € [t1,t2]. We choose Rg such that

Ro <Tp(t) < - <7 () < 1,

for all £ € [t1,t2]. Let t € [ty,t2] N AR, (cf. (5.1) for the definition of Ag,).
In view of [Theorem 5.9 there exist, for each jump 7;(f), an interval [f;, ;]
such that # € [y, 2] C [t1,2] N Ag, and functions {t — r;;(t)} and {t —
r;.(t)}, defined on [t1,f2], where i € [1,...,my(7i(f))] such that r,(t) >

e > Ty (F) for all £ € [t1,f2]. Moreover 75, tends to r;; uniformly

on [t1,12] and 7;,(t) = 7(t). In order to simplify the notation we replace
m(7(t)) in this Section. In particular, we have

1>T’1,1>---Tm1’1 > 2> T4l > "'>7‘ml+1,[+1 >’I“1,l>7"2,1>---

"'>rm1,l>"'>T1,No>'°'>TmNO,N0"'>RU'

This implies that there exists a box [Fy(t) — h, 7)(£) + h] x [f1, t3] such that
t € [t1,12] C [t1, 2] and such that the solutions of the equation u®(r,t) = a°
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are the pairs (r{ (¢}, t) where t € [f1,%2] and i € [1,...,m;]. We set
w _ - h L
U = {(1", t), 7i(t) — 5 <7< Tmy (t) and t€ [tl,tg]},

_ h - .
U+ = {(r, O, rat) <7 <FB)+ 5 and te [tl,tg]}.

We suppose the case that v(7;(f)) = 1. Since u® — a° is of constant sign on
U~ and on U™, we have that u = 1 a.e. inUY" and u = —1 a.e. in Y ~. Thus

i

rz2,1

LT3

71,4

r2.4

7"3’4

Fig. 3. A possible configuration of the limits
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we deduce that there exists a jump of u(.,t) in [F1(f) — h, 7 (f) + h] for all
t € [t1,%s]. Using the fact that the number of jumps is finite we choose h
small enough such that for all [ € [1,...,Np] there exists a jump of u(.,t)
n [7(t) — h,7i(t) + k] for all t € [t;1,#3]. Therefore in each Ny box defined
by [71(t) — h,Ti(t) + h] x [t1,f2] there is only one jump of u(.,t). Thus for
each jump 7; we obtain that

v(T(t)) = v(Ti(t)) for all ¢ € [f1,%2), which we rewrite (7).
(8.43)

Moreover we also have shown that for all t € [t], 3] there exists i := i(¢) €
[1,...,my] such that

ﬂ(t) = Tz',l(t) (8.44)

Lemma 8.7 Let ¢ € [t1,t2] N Ap, there exist an interval [, fg] C [t1,t2] M
AR, such that for all 1 € [1,...,Ny] the function ) is Holder continuous of
exponent 1/2 on [t1,t3] and moreover

o (t) = — ]\;l(_t)l + u(ﬂ)g (Aolt) + v(T(t), 1), (8.45)

for a.e. t € [t1,13].

Proof. We first prove that the functions {Fl}le[l,m, N, are Holder continu-
ous of exponent 1/2 on [, #9]. Let I € [1,...,Np]. Using (8.44) and the fact
that the functions {r;;} are Holder continuous of exponent 1/2 we deduce
that there exist K > 0 such that

[ﬂ(t) —ﬁ(f)‘ = ‘Ti,l(t) — T,;,l(z)| < K ‘t ——ﬂ, for all t e [fl,fg].

Thus the function 7 is Holder continuous of exponent 1/2 locally on all the
intervals [fl,fg] with the same constant K. So that 7; is Holder continuous
of exponent 1/2 on [t1, #2]. Moreover setting

R; = {t € [t1,ts], 7i(t) = ri(t)}, forall i€ [1,...,my,
we deduce from Theorem A.4 [7] that 8,7, = d,r;; a.e. in R; and thus using
Lemma 8.1, (8.44) and the fact that u(m(7(t),t)) = v(7¥;) we deduce that
N-—-1

oTi(t) = — ﬂ(t)

+ I/(F[)g—v(ﬁ(t), t) + Z/(ﬁ))\o(t)
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a.e. in R; for all i € [1,...,my] and s0 a.e. in [f1, 4] = Uiet,...my Ri- This
gives (8.45).

Identification of )\j.

Lemma 8.8 The function Ay is given by

2N =) TS )Y 2 - S em), o )
)\o(t) 3 Z~N-0 FN 1(t) ?

=1 i

fot all t € [51, 52]
Proof. We have that

/u(a:,t)d:c
Q
g (1) No 1 7i(t)
—V(FNO)f N ldr 4 Z V(Tiv1 / rNLdy
0

i=1 Tit1(t)
1
+ v(7 rV=ldr
) fFl(t)
1 No—1
N (ﬁy(FNU)(FNo(t))N + Y v [(FE)Y = Fa )]
i=1

F )l - (ﬂ(t))N]), (8.47)

for all ¢ € [{1, t5]. By (8.43) we remark that v(7;) does not depend on time.
Thus differentiating (8.47) we obtain in view of (1.6) that

hV(FNo ) (FNO (t))N_latFNo (t)
No—1

+ Z v(Fit) [(F OV T0(Fit)) — Fisa ()Y 1 0(Fira (1))
- V("‘l)("‘l(t)) ~la(F1(8) = 0.

This implies that
No

> u(F) (7 ()N i) = 0,

=1
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for all ¢ € [f1,%5]. This with imply that

No B
Z v(T;) {_J\T]i(t)l + gu(ﬂ(t))()\o(t) Fo(m(), ) | (N = 0,

for a.e. t € [f1, ], so that

2 (N 1)Y= (mn() 22% W(Fi(t), )7 (1)

Aolt) = =
for a.e. t € [t1,t]. This completes the proof of Lemma 8.8. O
We now are in position to prove [Theorem 1.1. O

Proof of Theorem 1.1. Let € € [t1, 2] N Ar,. By Lemmas 8.7 and there
exist an interval [f1,%2] C [t1,%2] N Ag, such that for all I € [1,..., Nj]
the function 7; is Holder continuous of exponent 1/2 on [f1, f3] and equal-

ities and (8.46) hold. Substituting (8.46) into we obtain the
evolution equation for the jump; for all [ € [1,..., Ap] we have that

Oyri(t) = —A;l(_t)l + V(Fz)gv(ﬁ(t),t)
(N = 1) S0 um)m)N -2 = 3/2 500 o(m (1), O)m(6) !
Ziii“” F(N ! |
(8.48)

+VI/(_T_'1)

a.e. [t1,f3]. Finally we check that the function 7; is Lipschitz continuous on
[t1, ta]. implies that ¢ — Ag() is bounded and thus by (8.48)
0T 1(t) is also bounded, which implies that 7; is Lipschitz continuous locally
on all the intervals [£}, ] with the same Lipschitz constant. Therefore 7; is
Lipschitz continuous on [f1, #3]. This completes the proof of Theorem 1.1.
O
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