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SINGULAR LIMITS IN LIOUVILLE-TYPE EQUATIONS

MANUEL DEL PINO, MICHA L KOWALCZYK, AND MONICA MUSSO

Abstract. We consider the boundary value problem ∆u+ε
2
k(x) e

u =
0 in a bounded, smooth domain Ω in R2 with homogeneous Dirichlet
boundary conditions. Here ε > 0, k(x) is a non-negative, not identically
zero function. We find conditions under which there exists a solution uε

which blows up at exactly m points as ε → 0 and satisfies ε
2
∫

Ω
ke

uε →

8mπ. In particular, we find that if k ∈ C
2(Ω̄), infΩ k > 0 and Ω is not

simply connected then such a solution exists for any given m ≥ 1

1. Introduction and statement of main results

Let Ω be a bounded domain in R
2 with smooth boundary and ε > 0. This

paper is concerned with analysis of solutions to the boundary value problem






∆u + ε2 k(x) eu = 0, in Ω,

u = 0, on ∂Ω,
(1.1)

where k(x) is a non-negative, not identically zero function of class C2(Ω̄).
Sometimes called Liouville equation after [24], this problem and qualitatively
similar ones have attracted great attention over the last decades. In a two-
dimensional domain or a compact manifold this type of equation arises in
a broad range of applications, in particular in astrophysics and combustion
theory, see [10, 19, 26] and references, the prescribed Gaussian curvature
problem, [21, 12, 13], mean field limit of vortices in Euler flows, [8, 14], and
vortices in the relativistic Maxwell-Chern-Simons-Higgs theory [6, 9, 28, 23].

In the 20th. century, mathematical treatment of this problem traces back
at least to [7, 19, 20]. It is a standard fact that Problem (1.1) does not
admit any solutions for large ε, as testing against a first eigenfunction of
the Laplacian readily shows, while for small ε a solution close to zero exists,
which represents a strict local minimizer of the energy functional

E(u) =
1

2

∫

Ω
|∇u|2 − ε2

∫

Ω
k(x)eu. (1.2)

Moreover, Trudinger-Moser embedding yields necessary compacness to ap-
ply in this range of ε the mountain pass lemma thus getting a second so-
lution, which clearly becomes unbounded as ε ↓ 0. This second, “large”
solution of (1.1) was found in simply connected domains in [32] when k ≡ 1,
see also [11] for earlier work on existence. While subcritical in the sense
of Trudinger-Moser embedding, this problem exhibits loss of compactness

1



2 MANUEL DEL PINO, MICHA L KOWALCZYK, AND MONICA MUSSO

as ε → 0, similar to that present in equations at the critical exponent in
higher dimensions. For instance in the Brezis-Nirenberg problem in dimen-
sion N ≥ 4, [5],







∆u + ε2 u + u
N+2
N−2 = 0, in Ω,

u > 0 , u = 0, on ∂Ω,

(1.3)

in which the Mountain-pass solution ceases to exist by blowing-up as ε ↓
0. The behavior of blowing-up families of solutions to problem (1.1) when
infΩ k > 0 has become understood after the works [4, 22, 27, 30]. It is
known that if uε is an unbounded family of solutions for which ε2

∫

Ω k(x)euε

remains uniformly bounded, then necessarily

lim
ε→0

ε2
∫

Ω
k(x)euε = 8mπ, (1.4)

for some integer m ≥ 1. Moreover there are m-tuples of distinct points of Ω,
(xε

1, . . . , xε
m), separated at uniformly positive distance from each other and

from ∂Ω as ε → 0 for which uε remains uniformly bounded on Ω\∪m
j=1Bδ(x

ε
i )

and

sup
Bδ(xε

i
)
uε → +∞, (1.5)

for any δ > 0.
An obvious question is the reciprocal, namely existence of solutions of

Problem (1.1) with the property (1.4). In this paper we prove that such a
family indeed exists if Ω is not simply connected.

Theorem 1. Assume that Ω is not simply connected and that infΩ k > 0.
Then given any m ≥ 1 there exists a family of solutions uε to (1.1) with

lim
ε→0

ε2
∫

Ω
k(x)euε = 8mπ .

In case of existence, location of blowing-up points is well-understood: it
is established in [27, 30] that the m-tuple (xε

1, . . . , xε
m) in (1.5) converges,

up to subsequences, to a critical point of the functional

ϕm(y1, . . . , ym) = −
m∑

j=1

[2 log k(yj) + H(yj , yj)] −
∑

i 6=j

G(yi, yj),
(1.6)

where G(x, y) is the Green’s function of the problem

−∆xG = 8πδy(x), x ∈ Ω,

G(x, y) = 0, x ∈ ∂Ω,

and H its regular part defined as

H(x, y) = G(x, y) − 4 log
1

|x − y|
.
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The proofs in [27, 30] are actually for the case k ≡ 1 but, as pointed out
in [25], they apply to the general case. Obvious question is the recipro-
cal, namely presence of multiple-bubbling solutions with concentration at a
critical point of ϕm.

Baraket and Pacard [2] established that for k ≡ 1 and any nondegenerate
critical point of ϕm, a family of solutions uε concentrating at this point as
ε → 0 does exist. See also [33] for an extension of their technique in the
radial case for m = 1. As remarked in [2], their construction, based on a very
precise approximation of the actual solution and an application of Banach
fixed point theorem, uses nondegeneracy in essential way. This assumption,
however, is hard to check in practice and in general not true, an annulus
being an obvious example. Another construction of these solutions, for the
related mean field version of Problem (1.1) in a compact two-dimensional
Riemannian manifold was carried out by Chen and Lin as a major step in
their program for computation of degrees in [15]. Their construction shares
elements with that of [2] but the functional-analytic setting is closer to that
of [1, 29] where bubbling for problems at the critical exponent was analyzed.
This construction also seems to rely in essential way on the assumption that
the corresponding analogue of ϕm has only non-degenerate critical points.

In this paper we present a construction of blowing-up families of solutions
of (1.1) which lifts the nondegeneracy assumption of [2], and it is in particu-
lar enough for the proof of Theorem 1. More precisely, we consider the role
of non-trivial critical values of ϕm in existence of solutions of (1.1). Let Ωm

denote the cross product of m copies of Ω. We also denote

Ω̃ = {x ∈ Ω / k(x) > 0 }, (1.7)

set we always assume non-empty. An observation we make is that in any
compact subset of Ω̃m, we may define, without ambiguity,

ϕm(x1, . . . , xm) = −∞ if xi = xj for some i 6= j.

Let D be an open set in Ωm compactly contained in Ω̃m with smooth
boundary. We recall that ϕm links in D at critical level C relative to B and
B0 if B and B0 are closed subsets of D̄ with B connected and B0 ⊂ B
such that the following conditions hold: Let us set Γ to be the class of
all maps Φ ∈ C(B,D) with the property that there exists a function Ψ ∈
C([0, 1] × B,D) such that:

Ψ(0, ·) = IdB, Ψ(1, ·) = Φ, Ψ(t, ·)|B0 = IdB0 for all t ∈ [0, 1].

We assume

sup
y∈B0

ϕm(y) < C ≡ inf
Φ∈Γ

sup
y∈B

ϕm(Φ(y)) , (1.8)

and for all y ∈ ∂D such that ϕm(y) = C, there exists a vector τy tangent to
∂D at y such that

∇ϕm(y) · τy 6= 0 . (1.9)
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Under these conditions a critical point ȳ ∈ D of ϕm with ϕm(ȳ) = C
exists, as a standard deformation argument involving the negative gradient
flow of ϕm shows. Condition (1.8) is a general way of describing a change
of topology in the level sets {ϕm ≤ c} in D taking place at c = C, while
(1.9) prevents intersection of the level set C with the boundary. It is easy to
check that the above conditions hold if

inf
x∈D

ϕm(x) < inf
x∈∂D

ϕm(x), or sup
x∈D

ϕm(x) > sup
x∈∂D

ϕm(x) ,

namely the case of (possibly degenerate) local minimum or maximum points
of ϕm. The level C may be taken in these cases respectively as that of the
minimum and the maximum of ϕm in D. These hold also if ϕm is C1-close to
a function with a non-degenerate critical point in D. We call C a non-trivial
critical level of ϕm in D.

In the next result we assume k ≥ 0, k 6≡ 0 and k ∈ C(Ω̄) ∩ C2(Ω̃) where

Ω̃ is given by (1.7).

Theorem 2. Let m ≥ 1 and assume that there is an open set D compactly
contained in Ω̃m where ϕm has a non-trivial critical level C. Then, there
exists a solution uε, with

lim
ε→0

ε2
∫

Ω
k(x)euε = 8mπ .

Moreover, there is an m-tuple (xε
1, . . . , xε

m) ∈ D, such that as ε → 0

∇ϕm(xε
1, . . . , xε

m) → 0, ϕm(xε
1, . . . , xε

m) → C,

for which uε remains uniformly bounded on Ω \ ∪m
j=1Bδ(x

ε
i ), and

sup
Bδ(xε

i
)
uε → +∞,

for any δ > 0.

We will see that if Ω is not simply connected, such a set D actually
exists for any m ≥ 1, thus yielding the result of Theorem 1. For m = 1, a
multiplicity result is also available, see Remark 7.1. If Ω has d holes, then
there exist at least d + 1 solutions uε, with

lim
ε→0

ε2
∫

Ω
k(x)euε = 8π.

Theorem 2 is of course applicable to situations in which infΩ k = 0. As an
application in this direction we consider the following problem involving a
singular source,







∆u + ε2 eu − 4πα δP = 0, in Ω,

u = 0, on ∂Ω,
(1.10)

where δP denotes Dirac mass supported at P . Replacing u by −α
2 G(x, P )+u,

Problem (1.10) is then equivalent to (1.1) with k(x) = e−
α
2

G(x,P ), so that
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k is positive everywhere except at x = P and k(x) ∼ |x − P |2α. We have
the validity of the following result, analogue of Theorem 1, in which the
assumption of non-simply connectedness becomes replaced by the presence
of a source with sufficienly large weight.

Theorem 3. Assume that α > 0 and that 1 ≤ m < 1+α. Then there exists
a family of solutions uε to Problem (1.10) with

lim
ε→0

ε2
∫

Ω
euε = 8mπ .

The solutions found in the above result have concentration at points dif-
ferent from the locations of the source. The problem of finding solutions
with additional concentration around the source is of different nature. In
case they exist, they provide an extra contribution 8π(1 + α) to the above
limit, see [3, 31]. We do not treat this case in this paper, but we believe the
functional-analytic setting used in the proof Theorem 2 may render existence
results for this type of concentration phenomena.

The proof of Theorem 2 relies on the construction of an approximate
solution, different from those in [2, 15], which turns out to be precise enough,
not only with its local maxima near a critical point of ϕm but everywhere
in its domain. Then we carry out a finite dimensional variational reduction
for which the main ingredient is an analysis, of independent interest, of
bounded invertibility up to translations of the linearized operator in suitable
L∞-weighted spaces. This functional analytic setting yields in fairly smooth
way the reduced variational problem to be that of a functional C1-close
to ϕm on every compact subset of its domain. L∞-weighted spaces have
been used in [17, 18] to detect bubbling from above the critical exponent
in higher dimensional problems improving the method in [1, 29], both in
lifting criticality (or subcriticality) required there, and non-degeneracy of
critical points of the analogue of ϕm in that context. The local notion of
nontrivial critical value in (1.8)-(1.9) was introduced in [16] in the analysis
of concentration phenomena in nonlinear Schrödinger equations.

The rest of this paper will be devoted to the Proofs of Theorems 1 and 2.
In Sections §2 to §6, the hypotheses of Theorem 2 will always be assumed.

2. A first approximation of the solution

In this section we will provide an ansatz for solutions of problem (1.1).
The “basic cells” for the construction of an approximate solution of problem
(1.1) are the radially symmetric solutions of the problem







∆u + eu = 0, in R
2,

u(x) → −∞, as |x| → ∞,
(2.1)
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which are given by the one-parameter family of functions

ωµ(r) = log
8µ2

(µ2 + r2)2
,

where µ is any positive number.
Let m be a positive integer and choose m distinct points in Ω̃, say

ξ1, . . . , ξm with k(ξj) > 0. Let µj , j = 1, . . . ,m be positive numbers. We
observe that the function

uj(x) = log
8µ2

j

(µ2
jε

2 + |x − ξj |2)2k(ξj)
= ωµj

(
|x − ξj |

ε
) + 4 log

1

ε
− log k(ξj),

satisfies in entire R
2

∆uj + k(ξj)ε
2euj = 0.

We would like to take
∑m

j=1 uj as a first approximation to a solution of the
equation. We need to modify it in order to satisfy zero Dirichlet boundary
conditions. We consider Hj(x) solution of







−∆Hj(x) = 0, in Ω,

Hj(x) = −ωµj
(
|x−ξj |

ε
) − 4 log 1

ε
+ log k(ξj), on ∂Ω. (2.2)

We consider as initial approximation U =
∑m

i=1(uj+Hj), which by definition
satisfies the boundary conditions. This approximation is less accurate near
ξj than uj alone unless Hj(ξj) +

∑m
i=1,i6=j [Hi(ξj) + ui(ξj)] ∼ 0 as ε → 0.

We can achieve this by further adjusting the numbers µj . As we will justify
below, the good choice of these numbers is

log 8µ2
j = log k(ξj) + H(ξj , ξj) +

∑

l 6=j

G(ξl, ξj), (2.3)

where G and H are Green’s function and its regular part as defined in the
introduction. Thus we consider the first approximation

U =
m∑

i=1

(ui + Hi) =
m∑

i=1

(ωi(
|x − ξi|

ε
) − log k(ξi)ε

4 + Hi), (2.4)

where ωi = ωµi
and with the numbers µj defined in (2.3). Let us analyze

the asymptotic behavior of Hj as ε → 0. We observe that for x ∈ ∂Ω,

Hj(x) = −2 log
1

µ2
jε

2 + |x − ξj |2
− log

8µ2
j

k(ξj)

from where it follows that

Hj(x) = H(x, ξj) − log
8µ2

j

k(ξj)
+ O(µ2

jε
2), (2.5)
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uniformly in C2-sense for x on compact subsets of Ω. Observe also that,
away from each ξj

wj = log
8µ2

j

k(ξj)
+ 4 log

1

|x − ξj |
+ O(µ2

jε
2),

and hence

wj(x) + Hj(x) = G(x, ξj) + O(ε2), (2.6)

where the term O( ) is uniform in C2-sense on compact subsets of Ω̄ \ {ξj}.
A useful observation is that u satisfies equation (1.1) if and only if

v(y) = u(εy) − 4 log
1

ε

satisfies






∆v + k(εy) ev = 0, in Ωε,

u > 0, in Ωε, v = −4 log 1
ε
, on ∂Ωε.

(2.7)

where Ωε = ε−1Ω. We also write ξ′i = ε−1ξi and define the initial approxima-
tion in expanded variables as V (y) = U(εy) − 4 log 1

ε
. We want to measure

how well V solves the above problem. Let us fix a small number δ > 0 and
observe that k(εy)eV (y) = ε4k(x)eU(x) with x = εy, hence we see that

k(εy)eV (y) = O(ε4) if |y − ξ′j | >
δ

ε
for all j = 1, . . . , m. (2.8)

Similarly, ∆V (y) = ε2∆U(x) and (2.6) implies

∆V (y) = O(ε4) if |y − ξ′j | >
δ

ε
for all j = 1, . . . , m. (2.9)

On the other hand, assume that for certain j, |y − ξ′j | < δ. Then setting

y = ξ′j + z we get

k(εy)eV (y) = k(ξj + εz)
8µ2

j

k(ξj)(µ2
j + |z|2)2

×

exp



Hj(ξj + εz) +
∑

l 6=j

log[
8µ2

l

k(ξl)(µ
2
l ε

2 + |ξl − ξj + εz|2)2
] + Hl(ξj + εz)



 .

Now, by definition

log
1

|ξl − ξj |4
+ H(ξl, ξj) = G(ξl, ξj).

Taking into account this relation, the asymptotic expansion (2.5) and the
definition of the numbers µl in (2.3) we get then that

k(εy)eV (y) =
8µ2

j

(µ2
j + |y − ξ′j |

2)2
[1 + O(εz) + O(ε2)], |y − ξ′j | <

δ

ε
.
(2.10)
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We also have in this region

∆V (y) = ∆wµj
(|y − ξ′j |) + O(ε4) = −

8µ2
j

(µ2
j + |y − ξ′j |

2)2
+ O(ε4).

(2.11)

In summary, combining (2.8)-(2.11) we have established the following fact:
if we set

R = ∆V (y) + k(εy)eV (y), (2.12)

then

|R(y)| ≤ Cε
m∑

j=1

1

1 + |y − ξ′j |
3
. (2.13)

Let us stay in these expanded variables. In the rest of this paper we will
look for a solution v of Problem (2.7) of the form v = V + φ, where V is
defined as above. Let us set

W (y) = k(εy)eV (y).

In terms of φ, Problem (2.7) becomes






L(φ) := ∆φ + Wφ = −[R + N(φ)], in Ωε,

φ = 0, on ∂Ωε,
(2.14)

where

N(φ) = W [eφ − 1 − φ]. (2.15)

A main step in solving Problem (2.14) for small φ under a suitable choice
of the points ξj is that of a solvability theory for the linear operator L.
In developing this theory we will take into account the invariance, under
translations and dilations, of the problem ∆w + ew = 0 in R

2. We shall
devote the next section to prove bounded invertibility of the operator L
in this sense using L∞-norms naturally attached to the setting of Problem
(2.14).

3. Analysis of the linearized operator

In this section we will develop a solvability theory for the linearized op-
erator under suitable orthogonality conditions. Thus we set

L(φ) = ∆φ + W (y)φ,

for functions φ defined on Ωε, where

W (y) =
m∑

j=1

8µ2
j

(µ2
j + |y − ξ′j |

2)2
[1 + θε(y)],

and θε has the property that for some constant C independent of ε,

|θε(y)| ≤ Cε
m∑

j=1

[|y − ξ′j | + 1] .
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If we center the system of coordinates at, say ξ′j by setting z = y − ξ′j , then

the operator formally approaches the linear operator in R
2,

Lj(φ) = ∆φ +
8µ2

j

(µ2
j + |z|2)2

φ,

namely, equation ∆v + ev = 0 linearized around the radial solution vj(z) =

log
8µ2

j

(µ2
j
+|z|2)2

. An important fact to develop the desired solvability theory

is the non-degeneracy of vj modulo the natural invariance of the equations
under translations and dilations, ζ 7→ vj(z − ζ) and s 7→ vj(sz) − 2 log s.
Thus we set,

zij(z) = ∂
∂ζi

vj(z + ζ) |ζ=0, i = 1, 2,

z0j(z) = ∂
∂s

[vj(sz) + 2 log s] |s=1.

It turns out that the only bounded solutions of Lj(φ) = 0 in R
2 are precisely

the linear combinations of the zij , i = 0, 1, 2, see [2] for a proof. Let us denote
also Zij(y) := zij(y − ξ′j).

Additionally, let us consider a large but fixed number R0 > 0 and a non-
negative function χ(ρ) with χ(ρ) = 1 if ρ < R0 and χ(ρ) = 0 if ρ > R0 + 1.
We denote

χj(y) = χ(|y − ξ′j |).

Given h of class C0,α(Ωε), we consider the linear problem of finding a func-
tion φ and scalars cij i = 1, 2, j = 1, . . . ,m such that

L(φ) = h +
2∑

i=1

m∑

j=1

cijχjZij , in Ωε, (3.1)

φ = 0, on ∂Ωε, (3.2)
∫

Ωε

χjZijφ = 0, for all i = 1, 2, j = 1, . . . , m. (3.3)

Our main result for this problem states its bounded solvability, uniform in
small ε and points ξj uniformly separated from each other and from the
boundary. Thus we consider the norms

‖ψ‖∞ = sup
y∈Ωε

|ψ(y)|, ‖ψ‖∗ = sup
y∈Ωε





m∑

j=1

(1 + |y − ξ′j |)
−3 + ε2





−1

|ψ(y)|.

Proposition 3.1. Let δ > 0 be fixed. There exist positive numbers ε0 and
C, such that for any points ξj, j = 1, . . . ,m in Ω, with

dist (ξj , ∂Ω) ≥ δ, |ξl − ξj | ≥ δ for l 6= j , (3.4)

there is a unique solution to problem (3.1)–(3.3) for all ε < ε0. Moreover

‖φ‖∞ ≤ C(log
1

ε
)‖h‖∗. (3.5)
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We observe that the orthogonality conditions in the problem above are
only taken with respect to the elements of the approximate kernel due to
translations.

The proof of this result consists of some steps. The first step is to prove
uniform a priori estimates for the problem (3.1)–(3.3) when φ satisfies addi-
tionally orthogonality under dilations. Specifically, we consider the problem

L(φ) = h, in Ωε, (3.6)

φ = 0, on ∂Ωε, (3.7)
∫

Ωε

χjZijφ = 0, for i = 0, 1, 2, j = 1, . . . ,m, (3.8)

and prove the following estimate.

Lemma 3.1. Let δ > 0 be fixed. There exist positive numbers ε0 and C,
such that for any points ξj, j = 1, . . . ,m in Ω, which satisfy relations (3.4),
and any solution φ to (3.6)-(3.8), one has

‖φ‖∞ ≤ C‖h‖∗, (3.9)

for all ε < ε0.

Proof. We will carry out the proof of the a priori estimate (3.9) by con-
tradiction. We assume then the existence of sequences εn → 0, points
ξn
j ∈ Ω which satisfy relations (3.4), functions hn with ‖hn‖∗ → 0, φn

with ‖φn‖∞ = 1 ,

L(φn) = hn, in Ωε, (3.10)

φn = 0, on ∂Ωε, (3.11)
∫

Ωε

χjZijφn = 0, for all i = 0, 1, 2, j = 1, . . . , m. (3.12)

A key step in the proof is the fact that the operator L satisfies maximum
principle in Ωε outside large balls centered at the points ξ′j . Consider the

function z0(r) = r2−1
1+r2 , radial solution in R

2 of

∆z0 +
8

(1 + r2)2
z0 = 0.

Define a comparison function in Ωε,

Z(y) =
m∑

j=1

z0(a|y − ξ′j |), y ∈ Ωε

Let us observe that

−∆Z =
m∑

j=1

8a2(a2|y − ξ′j |
2 − 1)

(1 + a2|y − ξ′j |
2)3
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So that for |y − ξ′j |
2 > 100a−2 for all j,

−∆Z ≥ 2
m∑

j=1

a2

(1 + a2|y − ξ′j |
2)2

≥
m∑

j=1

a−2

|y − ξ′j |
4
.

On the other hand, in the same region,

WZ ≤ C
m∑

j=1

1

|y − ξ′j |
4
.

Hence if a is taken small and fixed, and R > 0 is chosen sufficiently large
depending on this a, then we have that L(Z) < 0 in Ω̃ε := Ωε\∪

m
j=1B(ξ′j , R).

Since Z > 0 in this region we then conclude that L satisfies Maximum
principle, namely if L(ψ) ≤ 0 in Ω̃ε and ψ ≥ 0 on ∂Ω̃ε then ψ ≥ 0 in Ω̃ε.
Let us fix such a number R > 0 which we may take larger whenever it is
needed. Now, let us consider the “inner norm”

‖φ‖i = sup
∪m

j=1B(ξ′
j
,R)

|φ|.

We make the following claim: there is a constant C > 0 such that if L(φ) = h
in Ωε then

‖φ‖∞ ≤ C[‖φ‖i + ‖h‖∗]. (3.13)

We will establish this with the use of suitable barriers.
Let M be a large number such that for all j, Ωε ⊂ B(ξ′j ,

M
ε

). Consider
now the solution of the problem

−∆ψj = 2
|y−ξ′

j
|3

+ 2ε2, R < |y − ξ′j | < M
ε

,

ψj(y) = 0 for |y − ξ′j | = R, |y − ξ′j | = M
ε

.

A direct computation shows that

ψ(r) =
1

R
−

1

r
− ε2(r − R) −

[
1

R
−

1

r
− ε2

(
M

ε
− R

)]
log r

R

log M
εR

,

hence these functions have a uniform bound independent of ε as long as
1 < R < 1

2ε
. On the other hand, let us consider the function Z(y) defined

above, and let us set

φ̃(y) = 2‖φ‖iZ(y) + ‖h‖∗

m∑

j=1

ψj(y).

Then, it is easily checked that, choosing R larger if necessary, L(φ̃) ≤ h,

φ̃ ≥ φ on ∂Ω̃ε. Hence φ ≤ φ̃ on Ω̃ε. Similarly, φ ≥ −φ̃ on Ω̃ε and the claim
follows.

Let us now go back to the contradiction argument. The above claim
shows that since ‖φn‖∞ = 1, then for some κ > 0, ‖φn‖i ≥ κ. Let us set

φ̂n(z) = φn(ξn
j + z) where the index j is such that sup|y−ξn

j
|<R |φn| ≥ κ.

With no loss of generality we assume that this index j is the same for all n.
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Elliptic estimates readily imply that φ̂n converges uniformly over compacts
to a bounded solution φ̂ 6= 0 of the problem in R

2

∆φ +
8µ2

j

(µ2
j + |z|2)2

φ = 0.

This implies that φ̂ is a linear combination of the functions zij , i = 0, 1, 2.
However, our assumed orthogonality conditions on φn pass to the limit and
yield

∫
χ(|z|)zijφ̂ = 0 and hence necessarily φ̂ ≡ 0, a contradiction from

which the result of the lemma follows. �

We want to establish next an a priori estimate for problem (3.6)-(3.8) with
the orthogonality conditions

∫
χjφZ0j = 0 dropped, namely the problem

L(φ) = h, in Ωε, (3.14)

φ = 0, on ∂Ωε, (3.15)
∫

Ωε

χjZijφ = 0, for i = 1, 2, j = 1, . . . , m. (3.16)

Lemma 3.2. Let δ > 0 be fixed. There exist positive numbers ε0 and C,
such that for any points ξj, j = 1, . . . , m in Ω which satisfy (3.4), and any
solution φ to problem (3.14)-(3.16), one has

‖φ‖∞ ≤ C(log
1

ε
)‖h‖∗, (3.17)

for all ε < ε0.

Proof. Let R > R0 + 1 be a large and fixed number, and let ẑ0j be the
solution of the problem

∆ẑ0j +
8µ2

j

(µ2
j
+|y−ξ′

j
|2)2

ẑ0j = 0,

ẑ0j(y) = z0j(R) for |y − ξ′j | = R, ẑ0j(y) = 0 for |y − ξ′j | = δ
3ε

.

A direct computation shows that this function is explicitly given by

ẑ0j(y) = z0j(r)






1 −

∫ r
R

ds
sz2

0j
(s)

∫ δ
3ε

R
ds

sz2
0j

(s)







, r = |y − ξ′j |.

Next we consider smooth cut-off functions η1(r) and η2(r) with the following
properties: η1(r) = 1 for r < R, η1(r) = 0 for r > R + 1, |η′1(r)| ≤ 2.
η2(r) = 1 for r < δ

4ε
, η2(r) = 0 for r > δ

3ε
, |η′2(r)| ≤ Cε, |η′′2(r)| ≤ Cε2.

Then we set

η1j(y) = η1(|y − ξ′j |), η2j(y) = η2(|y − ξ′j |). (3.18)

and define a test function

z̃0j = η1jZ0j + (1 − η1j)η2j ẑ0j , Z0j(y) = z0j(|y − ξ′j |).
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Intuitively, z̃0j resembles the eigenfunction of the operator L associated to
the invariance of L under dilations when L is considered in the whole R

2.
Let φ be a solution to (3.14)-(3.16). We will modify φ so that the orthog-

onality conditions with respect to Z0j ’s are satisfied. We set

φ̃ = φ +
m∑

j=1

dj z̃0j

where the numbers dj are defined as

dj

∫

Ωε

χj |Z0j |
2 +

∫

Ωε

χjZ0jφ = 0.

Then

L(φ̃) = h +
m∑

j=1

djL(z̃0j), (3.19)

and
∫

Ωε
χjZ0iφ̃ = 0 for all i and all j. The previous lemma thus allows us

to estimate

‖φ̃‖∞ ≤ C[‖h‖∗ +
m∑

j=1

|dj |‖L(z̃0j)‖∗]. (3.20)

Testing equation (3.19) against z̃0l we find

〈φ̃, L(z̃0l)〉 = 〈h, z̃0l〉 + dl〈L(z̃0l), z̃0l〉.

where 〈f, g〉 =
∫

Ωε
fg. This relation in combination with (3.20) gives us that

dl〈L(z̃0l), z̃0l〉 ≤ C‖h‖∗[1 + ‖L(z̃0l)‖∗] + C
m∑

j=1

|dj |‖L(z̃0j)‖
2
∗ .

(3.21)

We will measure next the size of ‖L(z̃0j)‖∗. We have

L(z̃0j) = 2∇η1j∇(Z0j − ẑ0j) + ∆η1j(Z0j − ẑ0j)

+2∇η2j∇ẑ0j + ∆η2j ẑ0j + O(ε4).

Let us observe first that, for r ∈ (R,R + 1), r = |y − ξ′j |, we have

ẑ0j − Z0j = −z0j(r)

∫ r
R

ds
sz2

0j
(s)

∫ δ
3ε

R
ds

sz2
0j

(s)

,

so that

|ẑ0j − Z0j | ≤
C

log 1
ε

,

in this region. Similarly,

|ẑ′0j − Z ′
0j | ≤

C

log 1
ε

.
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On the other hand for r ∈ ( δ
4ε

, δ
3ε

),

ẑ0j(r) ≤
C

log 1
ε

,

and

|ẑ′0j(r)| ≤
Cε

log 1
ε

.

We observe then that from the definition of the *-norm,

‖L(z̃0j)‖∗ ≤
C

log 1
ε

, (3.22)

where the number C depends in principle of the chosen large constant R.
Now we want to measure the size of 〈L(z̃0l), z̃0l〉. We decompose

〈L(z̃0l), z̃0l〉 =

∫

R<r<R+1
L(z̃0l)z̃0l +

∫

δ
4ε

<r< δ
3ε

L(z̃0l)z̃0l + O(ε)

= I + II + O(ε).

We have that

|II| ≤ C

∫

|∇η2l||∇ẑ0l||ẑ0l| + C

∫

|∆η2l||ẑ0l|
2 + O(ε2),

hence from the above obtained estimates,

|II| ≤
C

(log 1
ε
)2

.

Let us estimate now I. We have

I = 2

∫

∇η1∇(Z0j − ẑ0j)ẑ0j +

∫

∆η1(Z0j − ẑ0j)ẑ0j + O(ε).

Thus integrating by parts we find

I =

∫

∇η1∇(Z0j − ẑ0j)ẑ0j −
∫

∇η1(Z0j − ẑ0j)∇ẑ0j + O(ε).

Now, we observe that in the considered region, r ∈ (R, R + 1) with r =
|y − ξ′j |, |ẑ0j − Z0j | ≤

C

log 1
ε

, while |ẑ′0j | ∼
1

R3 + 1
R

1
log 1

ε

. In conclusion (R is

large but independent of ε) we find
∣
∣
∣
∣

∫

∇η1(ẑ0j − Z0j)∇ẑ0j

∣
∣
∣
∣ ≤

D

R3

1

log 1
ε

,

where D may be chosen independent of R. Now,
∫

∇η1∇(Z0j − ẑ0j)ẑ0j =

∫ R+1

R
η′1(z0j − ẑ0j)

′ẑ0j rdr

=
1

∫ δ
3ε

R
ds

sz2
0j

∫ R+1

R
η′1



1 +
(µjr)

2z0j

∫ r
R

ds
sz2

0j

1 + (µjr)2



 dr + O(
1

log 1
ε

)

= −
E

log 1
ε

[1 + O(
1

log 1
ε

)],
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where E is a positive constant independent on ε. Thus we conclude, choosing
R large enough, that I ∼ − E

log 1
ε

Combining this and the estimate for II we

find

〈L(z̃0l), z̃0l〉 ≤ −
E

log 1
ε

[1 + O(
1

log 1
ε

)]. (3.23)

Combining relations (3.23) with (3.21) and (3.22) we finally get that

|dj | ≤ C(log
1

ε
)‖h‖∗,

for all j = 1, . . . ,m. We thus conclude from estimate (3.20) that

‖φ‖∞ ≤ C(log
1

ε
)‖h‖∗.

The proof is complete. �

We are now ready for the proof of our main result of this section.
Proof of Proposition 3.1 We begin by establishing the validity of the a
priori estimate (3.5). The previous lemma yields

‖φ‖∞ ≤ C(log
1

ε
)[‖h‖∗ +

2∑

i=1

m∑

j=1

|cij |], (3.24)

hence it suffices to estimate the values of the constants |cij |. Let us consider
the cut-off function η2j introduced in (3.18). We test equation (3.1) against
Zijη2j to find

〈L(φ), η2jZij〉 = 〈h, η2jZij〉 + cij

∫

Ωε

χj |Zij |
2 . (3.25)

Now,

〈L(φ), η2jZij〉 = 〈φ,L(η2jZij)〉.

We have

L(η2jZij) = ∆η2jZij + 2∇η2j∇Zij + εO((1 + r)−3),

with r = |y − ξ′j |. Since ∆η2j = O(ε2), ∇η2j = O(ε), and besides Zij =

O(r−1), ∇Zij = O(r−2), we find

L(η2jZij) = O(ε3) + εO((1 + r)−3).

Thus

|〈φ, L(η2jZij)〉| ≤ Cε‖φ‖∞.

Combining this estimate with (3.25) and (3.24) we obtain

|cij | ≤ C[‖h‖∗ + ε log
1

ε

∑

l,k

|clk|],
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which implies |cij | ≤ C‖h‖∗. It follows finally from (3.24) that ‖φ‖∞ ≤
C(log 1

ε
)‖h‖∗ and the a priori estimate has been thus proven. It only remains

to prove the solvability assertion. To this purpose we consider the space

H =

{

φ ∈ H1
0 (Ωε) :

∫

Ωε

χjZij φ = 0 for i = 1, 2, j = 1, . . . , m

}

,

endowed with the usual inner product [φ, ψ] =
∫

Ωε
∇φ∇ψ. Problem (3.1)-

(3.3) expressed in weak form is equivalent to that of finding a φ ∈ H, such
that

[φ, ψ] =

∫

Ωε

[−Wφ + h] ψ dx, for all ψ ∈ H.

With the aid of Riesz’s representation theorem, this equation gets rewritten
in H in the operator form φ = K(φ) + h̃, for certain h̃ ∈ H, where K is a
compact operator in H. Fredholm’s alternative guarantees unique solvability
of this problem for any h provided that the homogeneous equation φ = K(φ)
has only the zero solution in H. This last equation is equivalent to (3.1)-
(3.3) with h ≡ 0. Thus existence of a unique solution follows from the a
priori estimate (3.5). This finishes the proof. �

The result of Proposition 3.1 implies that the unique solution φ = T (h)
of (3.1)-(3.3) defines a continuous linear map from the Banach space C∗ of
all functions h in L∞ for which ‖h‖∗ < ∞, into L∞, with norm bounded
uniformly in ε.

It is important for later purposes to understand the differentiability of the
operator T with respect to the variables ξ′i. Fix h ∈ C∗ and let φ = T (h).
Let us recall that φ satisfies the equation

L(φ) = h +
∑

i, j

cij Zijχj ,

and the vanishing and orthogonality conditions, for some (uniquely deter-
mined) constants cij . We want to compute derivatives of φ with respect to
the parameters ξ′kl. Formally Z = ∂ξ′

kl
φ should satisfy

L(Z) = −∂ξ′
kl

(W )φ +
2∑

i=1

cil ∂ξ′
kl

(Zilχl) +
∑

i, j

dij Zijχj ,

where (still formally) dij = ∂ξ′
kl

(cij). The orthogonality conditions now

become
∫

Ωε

ZijχjZ = 0, if j 6= l

∫

Ωε

ZilχlZ = −
∫

∂ξ′
kl

(Zilχl)φ, i = 1, 2.

We will recast Z as follows. Let us consider η2l, a smooth cut-off function
as in (3.18) for j replaced by l. We consider the constants bil defined as

bil

∫

Ωε

χl|Zil|
2 ≡

∫

Ωε

φ ∂ξ′
kl

(χlZil),
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and the function

f ≡ −
2∑

i=1

[

bil L(η2l Zil) − cil ∂ξ′
kl

(χlZil)
]

+ ∂ξ′
kl

(W )φ.

Then the function Z above can be uniquely expressed as

Z = T (f) +
2∑

i=1

bil η2l Zil.

This computation is not just formal. Arguing directly by definition it shows
that indeed ∂ξ′

kl
φ = Z. Moreover, using Proposition 3.1 we find that ‖f‖∗ ≤

C(log 1
ε
)‖h‖∗, hence

‖∂ξ′
kl

T (h)‖∞ ≤ C (log
1

ε
)2‖h‖∗ for all k = 1, 2, l = 1, . . . ,m.

(3.26)

This estimate is of crucial importance in the arguments to come.

4. The nonlinear problem

In what follows we keep the notation introduced in the previous sections.
We recall that our goal is to solve Problem (2.14). Rather than doing so
directly, we shall solve first the intermediate problem

L(φ) = −[R + N(φ)] +
2∑

i=1

m∑

j=1

cijχjZij , in Ωε, (4.1)

φ = 0, on ∂Ωε, (4.2)
∫

Ωε

χjZijφ = 0, for all i = 1, 2, j = 1, . . . ,m, (4.3)

using the theory developed in the previous section. We assume that the
conditions in Proposition 3.1 hold. We have the following result.

Lemma 4.1. Under the assumptions of Proposition 3.1 there exist positive
numbers C and ε0, such that Problem (4.1)-(4.3) has a unique solution φ
which satisfies

‖φ‖∞ ≤ C ε| log ε|.

Proof. In terms of the operator T defined in Proposition 3.1, Problem
(4.1)-(4.3) becomes

φ = T (−(N(φ) + R)) ≡ A(φ) . (4.4)

For a given number γ > 0, let us consider the region

Fγ ≡ {φ ∈ C(Ω̄ε) : ||φ||∞ ≤ γ ε| log ε|}.

From Proposition 3.1, we get

‖A(φ)‖∞ ≤ C| log ε|
[

‖N(φ)‖∗ + ‖R‖∗
]

.
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Estimate (2.13) implies that ‖R‖ ≤ Cε. Also, the definition of N in (2.15)
immediately yields ‖N(φ)‖∗ ≤ C ‖φ‖2

∞. It is also immediate that N satisfies,
for φ1, φ2 ∈ Fγ ,

‖N(φ1) − N(φ2)‖∗ ≤ Cγε| log ε| ‖φ1 − φ2‖∗,

where C is independent of γ. Hence we get

‖A(φ)‖∞ ≤ C| log ε|ε
[

γ2 ε| log ε|2 + 1
]

,

‖A(φ1) − A(φ2)‖∞ ≤ C γ ε| log ε|2 ‖φ1 − φ2‖∗ .

It follows that for all sufficiently small ε we get that A is a contraction
mapping of Fγ , and therefore a unique fixed point of A exists in this region.
This concludes the proof. �

Since R depends continuously (in the *-norm) on the m-tuple

ξ′ = (ξ′1, . . . , ξ′m),

the fixed point characterization obviously yields so for the map ξ′ 7→ φ. We
shall next analyze the differentiability of this map. Assume for instance that
the partial derivative ∂ξ′

kl
φ exists. Then, formally,

−∂ξ′
kl

N(φ) = ∂ξ′
kl

W (eφ − φ − 1) + W [eφ − 1]∂ξ′
kl

φ .

It is readily found that ‖∂ξ′
kl

W‖∗ is uniformly bounded. Hence we conclude

‖∂ξ′
kl

N(φ)‖∗ ≤ C
[

‖φ‖∞+‖∂ξ′
kl

φ‖∞
]

‖φ‖∞ ≤ C
[

ε| log ε|+‖∂ξ′
kl

φ‖∞
]

ε| log ε| .

Also observe that we have

∂ξ′
kl

φ = (∂ξ′
kl

T )
(

− (N(φ) + R)
)

+ T
(

− ∂ξ′
kl

[

N(φ) + R
])

so that, using (3.26),

‖∂ξ′
kl

φ‖∞ ≤ C | log ε|
[

| log ε|‖(N(φ) + R)‖∗ + ‖∂ξ′
kl

N(φ)‖∗ + ‖∂ξ′
kl

R‖∗)
]

.

Since it is also easily checked that ‖∂ξ′
kl

R‖ ≤ Cε, we conclude from the

above computation that

‖∂ξ′
kl

φ‖∞ ≤ C ε| log ε|2, for all k = 1, 2, l = 1, . . . ,m.

The above computation can be made rigorous by using the implicit func-
tion theorem and the fixed point representation (4.4) which guarantees C1

regularity in ξ′. Thus we have the validity of the following:

Lemma 4.2. Consider the map ξ′ 7→ φ into the space C(Ω̄ε). Under the
assumptions of Proposition 3.1 and Lemma 4.1 the derivative Dξ′φ exists
and defines a continuous function of ξ′. Besides, there is a constant C > 0,
such that

‖Dξ′φ‖∗ ≤ C ε| log ε|2.
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After Problem (4.1)-(4.3) has been solved, we will find solutions to the full
problem (2.14) (or equivalently (1.1)) if we manage to adjust the m-tuple ξ′

in such a way that cij(ξ
′) = 0 for all i, j. A nice feature of this system of

equations is that it turns out to be equivalent to finding critical points of a
functional of ξ which is close, in appropriate sense, to the energy of the first
approximation V . We make this precise in the next sections.

5. Variational reduction

As we have said, after Problem (4.1)-(4.3) has been solved, we find a
solution to Problem (2.14) and hence to the original problem if ξ′ is such
that

cij(ξ
′) = 0 for all i, j. (5.1)

This problem is indeed variational: it is equivalent to finding critical points
of a function of ξ = εξ′. To see that let us consider the energy functional Jε

associated to Problem (1.1), namely

Jε(u) =
1

2

∫

Ω
|∇u|2 dx − ε2

∫

Ω
k(x)eu dx. (5.2)

We define

F (ξ) ≡ Jε(U(ξ) + φ̃(ξ)), (5.3)

where U is the function defined in (2.4) and φ̃ = φ̃(ξ) = φ̃(x, ξ) is the

function defined on Ω from the relation φ̃(x, ξ) = φ(x
ε
, ξ

ε
), with φ the solu-

tion of Problem (4.1)–(4.3) given by Proposition 3.1. Critical points of F
correspond to solutions of (5.1) for small ε, as the following result states.

Lemma 5.1. Under the assumptions of Proposition 3.1, the functional F (ξ)
is of class C1. Moreover, for all ε > 0 sufficiently small, if DξF (ξ) = 0 then
ξ satisfies System (5.1).

Proof. Define

Iε(v) =
1

2

∫

Ωε

|∇v|2 dy −
∫

Ωε

k(εy)ev dy. (5.4)

Let us differentiate the function F (ξ) with respect to ξ. Since Jε(U + φ̃) =
Iε(V +φ), we can differentiate directly Iε(V +φ) under the integral sign, so
that

∂ξkl
F (ξ) = ε−1DIε(V + φ)

[

∂ξ′
kl

V + ∂ξ′
kl

φ
]

= ε−1
2∑

i=1

m∑

j=1

∫

Ωε

cij χjZij

[

∂ξ′
kl

V + ∂ξ′
kl

φ
]

.

From the results of the previous section, this expression defines a continuous
function of ξ′, and hence of ξ. Let us assume that DξF (ξ) = 0. Then

2∑

i=1

m∑

j=1

∫

Ωε

cij χjZij

[

∂ξ′
kl

V + ∂ξ′
kl

φ
]

= 0, k = 1, 2, l = 1, . . . , m.
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We recall that we proved ‖Dξ′φ‖∞ ≤ Cε | log ε|2, thus we directly check that
as ε → 0, we have ∂ξ′

kl
V + ∂ξ′

kl
φ = −[Zkl + o(1)] with o(1) small in terms of

the L∞ norm, as ε → 0.
We get that DξF (ξ) = 0 implies the validity of a system of equations of

the form

m∑

i=1

2∑

j=1

cij

∫

Ωε

χjZij [Zkl + o(1)] = 0, k = 1, 2, l = 1, . . . , m,

with o(1) small in the sense of the L∞ norm as ε → 0. The above system
is diagonal dominant and we thus get cij = 0 for all i, j. This concludes the
proof of the lemma. �

In order to solve for critical points of the function F , a key step is its
expected closeness to the function Jε(U), which we will analyze in the next
section.

Lemma 5.2. The following expansion holds

F (ξ) = Jε(U) + θε(ξ) ,

where

|θε| + |∇θε| → 0,

uniformly on points satisfying the constraints in Proposition 3.1.

Proof. Since Iε(V ) = Jε(U), Iε(V + φ) = Jε(U + φ̃), it is enough to show

that θ̃ε(ξ
′) = θε(εξ

′) satisfies

|θ̃| + ε−1|∇ξ′ θ̃ε| = o(1).

Taking into account DIε(V + φ)[φ] = 0, a Taylor expansion gives

Iε(V + φ) − Iε(V ) (5.5)

=

∫ 1

0
D2Iε(V + tφ)[φ]2 (1 − t) dt (5.6)

=

∫ 1

0

(∫

Ωε

[N(φ) + R] φ +

∫

Ωε

k(εy)eV [1 − etφ]φ2
)

(1 − t) dt .

Since ‖φ‖∞ ≤ Cε| log ε|, we get

Iε(V + φ) − Iε(V ) = θ̃ε = O(ε2| log ε|3) .

Let us differentiate with respect to ξ′. We use the representation (5.6)
and differentiate directly under the integral sign, thus obtaining, for each
k = 1, 2, l = 1, . . . , m,

∂ξ′
kl

[Iε(V + φ) − Iε(V )]

=

∫ 1

0

(∫

Ωε

∂ξ′
kl

[(N(φ) + R)φ] +

∫

Ωε

∂ξ′
kl

[k(εy)eV [1 − etφ] φ2]

)

(1 − t) dt .
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Using the fact that ‖∂ξ′φ‖∗ ≤ C ε| log ε|2 and the computations in the proof
of Lemma 4.2 we get

∂ξ′
kl

[Iε(V + φ) − Iε(V )] = ∂ξ′
kl

θ̃ε = O(ε2| log ε|4) .

The continuity in ξ of all these expressions is inherited from that of φ and
its derivatives in ξ in the L∞ norm. The proof is complete. �

6. Asymptotics of energy of approximate solution

The purpose of this section is to give an asymptotic estimate of Jε(U)
where U is the approximate solution defined in (2.4) and Jε is the energy
functional (5.2) associated to Problem (1.1).

We have the following result.

Lemma 6.1. Let δ > 0 be a fixed small number and U be the function
defined in (2.4). With the choice (2.3) for the parameters µj, the following
expansion holds

Jε(U) = −16mπ + 8mπ log 8 − 16mπ log ε + 4πϕm(ξ) + εΘε(ξ)
(6.1)

where the function ϕm is defined by

ϕm(ξ1, . . . , ξm) = −
m∑

j=1

[2 log k(ξj) + H(ξj , ξj)] −
∑

i6=j

G(ξi, ξj).
(6.2)

Here G and H are the Green function for the Laplacian on Ω with Dirich-
let boundary condition and its regular part, as defined in section 1. In
(6.1), Θε is a smooth function of ξ = (ξ1, . . . , ξm), bounded together with
its derivatives, as ε → 0 uniformly on points ξ1, . . . , ξm ∈ Ω that satisfy
dist (ξi, ∂Ω) > δ and |ξi − ξj | > δ.

Remark 6.1. In the sequel, by θε, Θε we will denote generic functions of ξ
that are bounded, together with its derivatives, in the region dist (ξi, ∂Ω) > δ
and |ξi − ξj | > δ.

Proof. We will first evaluate the quadratic part of the energy evaluated
at U , that is

1

2

∫

Ω
|∇U |2 dx =

1

2







m∑

j=1

∫

Ω
|∇Uj |

2 dx +
∑

j 6=i

∫

Ω
∇Uj∇Ui dx






(6.3)

Let j be fixed. Using Uj(x) = uj(x) + Hj(x), we write

1

2

∫

Ω
|∇Uj |

2 dx =
1

2

∫

Ω
|∇uj |

2 dx +

∫

Ω
∇uj∇Hj dx +

1

2

∫

Ω
|∇Hj |

2 dx.
(6.4)

Since Hj is harmonic in Ω and Uj is zero on the boundary ∂Ω, we first get
∫

Ω
∇uj∇Hj dx +

1

2

∫

Ω
|∇Hj |

2 dx =

∫

∂Ω
uj

∂Hj

∂ν
dσ +

1

2

∫

∂Ω
Hj

∂Hj

∂ν
dσ
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= −
1

2

∫

∂Ω
Hj

∂Hj

∂ν
dσ (6.5)

where ν denotes the unitary outer normal of ∂Ω.
We will now evaluate

∫

Ω |∇uj |
2 dx. Observe first that

∇uj(x) = ∇ωj(
|x − ξj |

ε
) = −

4(x − ξj)

µ2
jε

2 + |x − ξj |2
.

Let now δ̃ > 0 be small and fixed, independent of ε. We will split the
previous integral into two pieces, namely

∫

Ω
|∇uj |

2 dx =

∫

B(ξj ,δ̃)
|∇ω̃j |

2 dx +

∫

Ω\B(ξj ,δ̃)
|∇ω̃j |

2 dx, (6.6)

with ω̃j(x) = ωj(
|x−ξj |

ε
). Now, a direct computation yields

∫

B(ξj ,δ̃)
|∇ω̃j |

2 dx = 16

∫

B(ξj ,δ̃)

|x − ξj |
2

(µ2
jε

2 + |x − ξj |2)2
dx

= 16

∫

B(0, δ̃
µjε

)

|y|2

(1 + |y|2)2
dy (y =

x − ξj

εµj
)

= 32π

∫ δ̃
εµj

0

r3

(1 + r2)2
dr = 16π





∫ δ̃
εµj

0

2r

(1 + r2)
−

∫ δ̃
εµj

0

2r

(1 + r2)2





= 16π

[

−2 log εµj − 1 + log[(εµj)
2 + δ̃2] +

(εµj)
2

(εµj)2 + δ̃2

]

(6.7)

On the other hand,
∫

Ω\B(ξj ,δ̃)
|∇ω̃j |

2 dx = 16

∫

Ω\B(ξj ,δ̃)

|x − ξj |
2

(µ2
jε

2 + |x − ξj |2)2
dx

= 16

∫

Ω\B(ξj ,δ̃)

1

|x − ξj |2
dx + (εµj)

2Θδ̃(ξj),

where Θδ̃(ξj) is a function dependent on δ̃ which has the explicit form

Θδ̃(ξj) =
∫

Ω\B(ξj ,δ̃)
1

|x−ξj |6
dx + o(εµj), where o(εµj) is uniform in the re-

gion dist (ξj , ∂Ω) > δ.
Since Γ(x, y) = 4 log 1

|x−y| , we have

16

∫

Ω\B(ξj ,δ̃)

1

|x − ξj |2
dx =

∫

Ω\B(ξj ,δ̃)
|∇Γ(x, ξj)|

2 dx

=

∫

∂Ω
Γ

∂Γ

∂ν
dσ −

∫

∂B(ξj ,δ̃)
Γ

∂Γ

∂ν
dσ

= −
∫

∂Ω
H(x, ξj)

∂Γ

∂ν
dσ − 32π log

1

δ̃
,

where we use the fact that H = −Γ on ∂Ω. The last integral is a direct
computation.
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So we have
∫

Ω\B(ξj ,δ̃)
|∇ω̃j |

2 dx = −
∫

∂Ω
H(x, ξj)

∂Γ

∂ν
dσ − 32π log

1

δ̃
+ (εµj)

2Θδ̃

= −
∫

Ω
H(x, ξj)∆Γ(x, ξj) dx+

∫

∂Ω
H(x, ξj)

∂H

∂ν
(x, ξj) dσ − 32π log

1

δ̃
+ (εµj)

2Θδ̃

= 8πH(ξj , ξj) +

∫

∂Ω
H(x, ξj)

∂H

∂ν
(x, ξj) dσ − 32π log

1

δ̃
+ (εµj)

2Θδ̃.
(6.8)

Noticing that the integral on the left hand side in (6.6) is independent from

δ̃, (6.7) and (6.8) imply that

1

2

∫

Ω
|∇uj |

2 dx = −8π + 16π log
1

εµj
+ 4πH(ξj , ξj)

+
1

2

∫

∂Ω
H(x, ξj)

∂H

∂ν
(x, ξj) dσ + (εµj)

2Θε(ξj), (6.9)

with the term Θε bounded in the region dist (ξj , ∂Ω) > δ and independent

from δ̃.
A direct application of (2.5) yields

∫

∂Ω
H(x, ξj)

∂H

∂ν
(x, ξj) dσ −

∫

∂Ω
Hj(x)

∂Hj

∂ν
(x) dσ = O((εµj)

2).

From (6.5) and (6.9) we thus conclude that, for j = 1, . . . ,m,

1

2

∫

Ω
|∇Uj |

2 dx = −8π + 16π log
1

εµj
+ 4πH(ξj , ξj) + ε2Θε.

(6.10)

We next deal with the mixed term in (6.3). Fix i 6= j.
Notice that ∆Ui = ∆ui + ∆Hi = ε−2∆ωi = −ε−2eωi . Moreover Ui = 0

on ∂Ω. Hence we can write
∫

Ω
∇Ui∇Uj dx = ε−2

∫

Ω
eω̃iUj dx

=

∫

Ω

8µ2
i ε

2

((εµi)2 + |x − ξi|2)2

[

ωj(
|x − ξj |

ε
) + log

1

k(ξj)ε4
+ Hj(x)

]

dx =

∫

1
εµi

(Ω−ξi)

8

(1 + |y|2)2

[

ωj(
|εµiy + ξi − ξj |

ε
) + log

1

k(ξj)ε4

]

dy

+

∫

1
εµi

(Ω−ξi)

8

(1 + |y|2)2
Hj(ξi + εµiy) dy

=

∫

1
εµi

(Ω−ξi)

8

(1 + |y|2)2

[

log
1

(ε2µ2
j + |εµi + ξi − ξj |2)2

+ log
8µ2

j

k(ξj)

]

dy
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+

∫

1
εµi

(Ω−ξi)

8

(1 + |y|2)2
Hj(ξi + εµiy) dy

=

∫

1
εµi

(Ω−ξi)

8

(1 + |y|2)2
[log

1

(ε2µ2
j + |εµiy + ξi − ξj |2)2

− 4 log
1

|ξi − ξj |
] dy

+

∫

1
εµi

(Ω−ξi)

8

(1 + |y|2)2
[Hj(ξi + εµiy) − Hj(ξi)] dy

+

∫

1
εµi

(Ω−ξi)

8

(1 + |y|2)2
[Hj(ξi) − H(ξj , ξi) + log

8µ2
j

k(ξj)
] dy

+

∫

1
εµi

(Ω−ξi)

8

(1 + |y|2)2
[H(ξi, ξj) + 4 log

1

|ξi − ξj |
] dy

= 8πG(ξi, ξj) + O(ε2 log
1

ε
) + O(ε2), (6.11)

where O(·) terms have uniform bounds in ξ the region considered.
Summing up all the previous information contained in (6.10) and (6.11)

we finally get the estimate for (6.3), namely

1

2

∫

Ω
|∇U |2 dx = −8mπ +

m∑

j=1

16π log
1

εµj

+4π





k∑

j=1

H(ξj , ξj) +
∑

i6=j

G(ξi, ξj)



 + ε2 log
1

ε
Θε. (6.12)

Let us now evaluate the second term in the summation in (5.2). We have

ε2
∫

Ω
k(x)eU dx = ε2





m∑

j=1

∫

B(ξj ,δ̃)
k(x)eU dx



 + Aε. (6.13)

First observe that

Aε = ε2Θε(ξ) (6.14)

with Θε a uniformly bounded function as ε → 0. Now,

ε2
∫

B(ξj ,δ̃)
k(x)eU dx = ε2

∫

B(ξj ,δ̃)
k(x)eUje

∑

i6=j
Ui dx

= ε2
∫

B(ξj ,δ̃)

k(x)8µ2
je

Hj

k(ξj)(ε2µ2
j + |x − ξj |2)2

e

∑

i6=j
(log

8µ2
i

ε4k(ξi)(µ
2
i
+

|x−ξi|
2

ε2
)2

+Hi(x))

dx

(using (2.5))

=
1

ε2µ4
j

∫

B(ξj ,δ̃)

k(x)eH(x,ξj)+O(ε2µ2
j )

(1 + (
|x−ξj |

εµj
)2)2

e

∑

i6=j
[log 1

(ε2µ2
i
+|x−ξi|

2)2
+H(x,ξi)+O(ε2µ2

i )]
dx
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(x − ξj = εµjy)

=
1

µ2
j

∫

B(0, δ̃
εµj

)

k(ξj + εµjy) × eH(ξj+εµjy,ξj)

(1 + |y|2)2

×e

∑

i6=j
[log 1

(ε2µ2
i
+|εµjy+ξj−ξi|

2)2
+H(ξj+εµjy,ξi)]

dy + O(ε2)

= π
k(ξj)

µ2
j

e
H(ξj ,ξj)+

∑

i 6=j
G(ξi,ξj) + εΘε(ξ).

From (6.13), (6.14) and the choice (2.3) for the µi’s, we get

ε2
∫

Ω
k(x)eU dx = 8mπ + εΘε(ξ). (6.15)

Using again the expression for the µi’s by (2.3), together with formulas
(6.12) and (6.15), we can write the whole asymptotic expansion of the energy
(5.2) evaluated at the U , namely

Jε(U) = −16mπ + 8mπ log 8 − 16mπ log ε + 4πϕm(ξ) + εΘε(ξ)
(6.16)

where the function ϕm is given by (6.2). The C1-closeness is a direct con-
sequence of the fact that Θε(ξ) is bounded together with its derivatives in
the considered region. �

7. Proofs of theorems

In this section we carry out the proofs of our main results.

7.1. Proof of Theorem 2. Let us consider the set D as in the statement
of the theorem, C the associated critical value and ξ ∈ D. According to
Lemma 5.1, we have a solution of Problem (1.1) if we adjust ξ so that it
is a critical point of F (ξ) defined by (5.3). This is equivalent to finding a
critical point of

F̃ (ξ) = F (ξ) + 16mπ log ε.

On the other hand, from Lemmas 5.2 and 6.1, we have that for ξ ∈ D, such
that its components satisfy |ξi − ξj | ≥ δ,

αF̃ (ξ) + β = ϕm(ξ) + εΘε(ξ)

where Θε and ∇ξΘε are uniformly bounded in the considered region as
ε → 0, and α 6= 0 and β are universal constants.

Let us observe that if M > C, then assumptions (1.8), (1.9) still hold
for the function min{M,ϕm(ξ)} as well as for min{M, ϕm(ξ) + εΘε(ξ)}. It

follows that the function min{M, αF̃ (ξ)+β} satisfies for all ε small assump-
tions (1.8),(1.9) in D and therefore has a critical value Cε < M which is close

to C in this region. If ξε ∈ D is a critical point at this level for αF̃ (ξ) + β,
then since

αF̃ (ξε) + β ≤ Cε < M
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we have that there exists a δ > 0 such that |ξε,j − ξε,i| > δ, dist(ξε,j , ∂Ω) >

0. This implies C1-closeness of αF̃ (ξ) + β and ϕm(ξ) at this level, hence

∇ϕm(ξε) → 0. The function uε = U(ξε) + φ̃(ξε) is therefore a solution as
predicted by the theorem. �

7.2. Proof of Theorem 1. According to the result of Theorem 2, it is
sufficient to establish that given m ≥ 1, ϕm has a nontrivial critical value in
some open set D, compactly contained in Ωm. Our choice of D is just given
by

D = {y ∈ Ωm / dist (y, ∂Ωm) > δ}

where δ is a small positive number yet to be chosen. We observe that in
this set function

∑m
j=1 H(yj , yj) is bounded and

∑

i 6=j G(yi, yj) is bounded
below. Consequently function ϕm(y) is also bounded below in D.

Let Ω1 be a bounded nonempty component of R
2 \ Ω̄, and consider a

closed, smooth Jordan curve γ contained in Ω which encloses Ω1. We let S
to be the image of γ, B0 = ∅ and B = S × · · · × S = Sm.

Then define

C = inf
Φ∈Γ

sup
z∈B

ϕm(Φ(z)), (7.1)

where Φ ∈ Γ if and only if Φ(z) = Ψ(1, z) with Ψ : [0, 1]×B → D continuous
and Ψ(0, z) = z.

Lemma 7.1. There exists K > 0, independent of the small number δ used
to define D such that C ≥ −K.

Proof. We need to prove the existence of K > 0 independent of small δ
such that if Φ ∈ Γ, then there exists a z̄ ∈ B with

ϕm(Φ(z̄)) ≥ −K. (7.2)

Let us assume that 0 ∈ Ω1 and write

Φ(z) = (Φ1(z), . . . ,Φm(z)).

Identifying the components of the above m-tuple with complex numbers, we
shall establish the existence of z̄ ∈ B such that

Φj(z̄)

|Φj(z̄)|
= e

2jπi
m for all j = 1, . . . ,m. (7.3)

Clearly in such a situation, there is a number µ > 0 depending only on m
and Ω such that

|Φj(z̄) − Φl(z̄)| ≥ µ.

This, and the definition of ϕm clearly yields the validity of estimate (7.2) for
a number K only dependent of Ω. To prove (7.3), we consider an orientation-
preserving homeomorphism h : S1 → S and the map f : Tm → Tm defined
as f(ζ) = (f1(ζ), . . . , fm(ζ)) with

Tm = S1 × · · · × S1
︸ ︷︷ ︸

m

,
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and

fj(ζ1, . . . , ζm) =
Φj(h(ζ1), . . . , h(ζm))

|Φj(h(ζ1), . . . , h(ζm))|
.

We define a homotopy F : [0, 1] × Tm → Tm by

Fj(t, ζ) =
Ψj(t, h(ζ1), . . . , h(ζm))

|Ψj(t, h(ζ1), . . . , h(ζm))|
.

Notice that F (1, ζ) = f(ζ) and

F (0, ζ) = (
h(ζ1)

|h(ζ1)|
, . . . ,

h(ζm)

|h(ζm)|
),

which is a homeomorphism of Tm. The existence of z̄ such that relation
(7.3) holds follows from establishing that f is onto, which we show next.

The torus Tm can be identified with the closed manifold embedded in
R

m+1 parameterized as

ζ : (θ1, . . . , θm) ∈ [0, 2π)m 7→

(ρ1e
iθ1 , 0m−1) + (01, ρ2e

iθ2 , 0m−2) + · · · + (0m−1, ρmeiθm),

where 0 < ρm < · · · < ρ1 and we have denoted 0k = (0, . . . , 0)
︸ ︷︷ ︸

k

, eiθj =

(cos θj , sin θj). We consider as well the solid torus T̂m parameterized as

(θ1, . . . , θm, ρ) ∈ [0, 2π)m × [0, ρm] 7→

(ρ1e
iθ1 , 0m−1) + (01, ρ2e

iθ2 , 0m−2) + · · · + (0m−1, ρeiθm).

Obviously ∂T̂m = Tm in R
m+1.

With slight abuse of notation, we consider the map f : Tm → Tm, induced
from the original f under the above identification, namely

f(ζ) = (ρ1f1(ζ), 0m−1) + (01, ρ2f2(ζ), 0m−2) + · · · + (0m−1, ρmfm(ζ)).

f then can be extended continuously to the whole solid torus as f̃ : T̂m →
Rm+1 defined simply as

f(ζ, ρ) = (ρ1f1(ζ), 0m−1) + (01, ρ2f2(ζ), 0m−2) + · · · + (0m−1, ρfm(ζ)).

f̃ is homotopic to a homeomorphism of T̂m, along a deformation which
applies ∂T̂m into itself. Thus if P ∈ int(T̂m) then deg(f̃ , T̂m, P ) 6= 0 and

hence there exists Q ∈ T̂m such that f̃(Q) = P . Thus if we fix angles
(θ∗1, . . . , θ∗m) ∈ [0, 2π)m and ρ∗ ∈ (0, ρm) then there exist ζ∗∗ ∈ Tm and
ρ∗∗ ∈ (0, ρm) such that

(ρ1f1(ζ
∗∗), 0m−1) + (01, ρ2f2(ζ

∗∗), 0m−2) + · · · + (0m−1, ρ
∗∗fm(ζ∗∗)) =

(ρ1e
iθ∗1 , 0m−1) + (01, ρ2e

iθ∗2 , 0m−2) + · · · + (0m−1, ρ
∗eiθ∗m).

A direct computation shows then that fj(ζ
∗∗) = eiθ∗j for all j and also

ρ∗ = ρ∗∗. It then follows that f is onto. This concludes the proof. �
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The second step we have to carry out to make Theorem 1 applicable is to
establish the validity of assumption (1.9). To this end we need to establish
a couple of preliminary facts on the half plane

H = {(x1, x2) : x1 ≥ 0}.

Lemma 7.2. Consider the function of k distinct points on H

Ψk(x1, . . . , xk) = −4
∑

i6=j

log |xi − xj |.

Let I+ denote the set of indices i for which x1
i > 0 and I0 that for which

x1
i = 0. Then, either

∇xi
Ψk(x1, . . . , xk) 6= 0, for some i ∈ I+,

or
∂

∂xi2
Ψk(x1, . . . , xk) 6= 0, for some i ∈ I0.

Proof. We have that

∂

∂λ
Ψk(λx1, . . . , λxk)|λ=1 =

∑

i∈I+

∇xi
Ψk(x1, . . . , xk) · xi +

∑

i∈I0

∂xi2Ψk(x1, . . . , xk)xi2.

On the other hand,

∂

∂λ
Ψk(λx1, . . . , λxk)|λ=1 = −4

∂

∂λ
[k(k − 1) log λ]|λ=1 6= 0,

and the result follows. �

A second result we need concerns the analogue of the function ϕk, for the
half-plane H.

Let x = (x1, x2), y = (y1, y2). Then regular part of Green’s function in
H is now given by

H(x, y) = −4 log
1

|x − ȳ|
, ȳ = (y1,−y2).

Then

G(x, y) = 4 log
1

|x − y|
− 4 log

1

|x − ȳ|
.

Hence the associated function ϕ̄k is given by

ϕ̄k(x1, . . . , xk) = 4
k∑

i=1

log
1

|xi − x̄i|
+ 4

∑

i6=j

log
|xi − xj |

|xi − x̄j |
.

With identical proof as the previous lemma we now get

Lemma 7.3. For any k distinct points xi ∈ int(H) we have

∇ϕ̄k(x1, . . . , xk) 6= 0.
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We will recall here some straightforward to verify facts about the regular
part of the Green function H(x, y) = G(x, y) − 4 log 1

|x−y| . Let y ∈ Ω be a

point close to ∂Ω and let ȳ be its uniquely determined reflection with respect
to ∂Ω. Set

ψ(x, y) = H(x, y) + 4 log
1

|x − ȳ|
.

Then it can be shown that ψ(x, y) is bounded in Ω̄ × Ω̄ and

|∇xψ(x, y)| + |∇yψ(x, y)|. ≤ C1 (7.4)

Using (7.4) one can derive the following estimates

|∇xH(x, y)| + |∇yH(x, y)| ≤ C1 min{
1

|x − y|
,

1

dist (y, ∂Ω)
} + C2.

(7.5)

Now we are ready to prove the validity of assumption (1.9) which in this
case reads as follows:

Lemma 7.4. Given K > 0, there exists a δ > 0 such that if (ξ1, . . . , ξm) ∈
∂D, and |ϕm(ξ1, . . . , ξm)| ≤ K, then there is a vector τ , tangent to ∂D such
that

∇ϕm(ξ1, . . . , ξm) · τ 6= 0.

Proof. Let us assume the opposite, namely the existence of a sequence
δ → 0 and of points ξ = ξδ for which ξ ∈ ∂D and such that

∇ξi
ϕm(ξ1, . . . , ξm) = 0 if ξi ∈ Ωδ, (7.6)

and

∇ξi
ϕm(ξ1, . . . , ξm) · τi = 0 if ξi ∈ ∂Ωδ, (7.7)

for any vector τi tangent to ∂Ωδ at ξi, where Ωδ = {x ∈ Ω : dist (x, ∂Ω) >
δ}.

From the assumption of the lemma it follows that there is a point ξl ∈ ∂Ωδ,
such that H(ξl) → −∞ as δ → 0. Since the value of ϕm remains uniformly
bounded, necessarily we must have that at least two points ξi and ξj that
are becoming close. Let δn = 1

n
, ξn = (ξn

1 , . . . , ξn
m) ∈ Ωδn be a sequence of

points such that (7.6), (7.7) hold, and

ρn = inf
i 6=j

|ξn
j − ξn

i | → 0, as n → ∞.

Without loss of generality we can assume that ρn = |ξn
1 − ξn

2 |. We define

xn
j =

ξn
1 − ξn

j

ρn
. (7.8)

Clearly there exists a k, 2 ≤ k ≤ m such that

lim
n→∞

|xn
j | < ∞, j = 1, . . . , k and lim

n→∞
|xn

j | = ∞, j > k.

For j ≤ k we set
x̃j = lim

n→∞
xn

j

We consider two cases:
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(1) either
dist (ξn

1 , ∂Ωδn)

ρn
→ ∞;

(2) or there exists c0 < ∞ such that for almost all n we have

dist (ξn
1 , ∂Ωδn)

ρn
< c0.

Case 1. It is easy to see that in this case we actually have

dist (ξn
j , ∂Ωδn)

ρn
→ ∞, j = 1, . . . , k.

Furthermore points ξn
1 , . . . , ξn

k are all interior to Ωδn hance (7.6) is satisfied
for all partial derivatives ∂ξlj

, j ≤ k. Define

ϕ̃m(x1, . . . , xm) = ϕm(ξ1 + ρnx1, . . . , ξ1 + ρnxm).

We have for all l = 1, 2, j = 1, . . . , k

∂xlj
ϕ̃m(x) = ρn∂ξlj

ϕm(ξn
1 + xρn).

Then at x̃ = (x̃1, . . . , x̃k, 0, . . . , 0) we have

∂xlj
ϕ̃m(x̃) = 0.

On the other hand, using (7.5) and letting ρn → 0, we get

lim
n→∞

ρn∂ξlj
ϕm(ξn

1 + xρn) = −4
∑

i 6=j,i≤k

∂xlj
log

1

|x̃j − x̃i|
= 0.

Since this last equality is true for any j ≤ k, l = 1, 2 we arrive at a contra-
diction with Lemma 7.2 which proves impossibility of the Case 1 above.

It remains to consider:
Case 2. In this case there exists a constant C such that

dist (ξn
j , ∂Ωδn)

ρn
≤ C, j = 1, . . . , k.

If there points ξn
j are all interior to Ωδn then after scaling with ρn we argue

as in Case 1 above to reach a contradiction with Lemma 7.3.
Therefore, if Case 2 is to hold, we assume that for certain j = j∗ we have

dist (ξn
j∗, ∂Ωδn) = 0.

Assume first that there exists a constant C such that δn ≤ Cρn. Consider
the following sum (summation here is taken with respect to all i 6= j)

sn =
∑

i6=j

G(ξn
j , ξn

i )

The leading part, as n → ∞, of sn comes just from the points that become
close as n → 0. We can isolate groups of those points according to the
asymptotic form of their mutual distances. For example we can define:

ρ1
n = inf

i6=j,i,j>k
|ξn

j − ξn
i |,
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and consider those points whose mutual distances are O(ρ1
n), and so on.

For each group of those points (also those with indices higher than k) the
argument given above in the Case 1 applies. This means that not only
those points become close to one another but also that their distance to
the boundary ∂Ωδn is comparable with their mutual distance. Applying the
asymptotic formula for the Green’s function we see that

sn = O(1), as n → ∞. (7.9)

On the other hand we have
∑

j

H(ξn
j , ξn

j ) ≤ H(ξn
j∗ , ξ

n
j∗) + C ≤ −4 log

1

|ξn
j∗ − ξ̄n

j∗ |
+ C.

Since |ξn
j∗ − ξ̄n

j∗ | ≤ 2δn (because ξn
j∗ ∈ ∂Ωδn) we have that

∑

j

H(ξn
j , ξn

j ) → −∞, as n → ∞,

which together with (7.9) contradicts the fact that ϕm(ξn) is bounded uni-
formly in n.

Finally assume that ρn = o(δn). In this case after scaling with ρn around
ξn
j∗ and arguing similarly as in the Case 1 we get a contradiction with Lemma

7.2 since those points ξn
j that are on ∂Ωδn , after passing to the limit, give

rise to points that lie on the same straight line. Thus Case 2 cannot hold.
In summary we reached now a contradiction with the assumptions of the

Lemma. The proof is complete. �

Remark 7.1. If Ω has d holes, namely d bounded components for its com-
plement, then at least d + 1 solutions uε with

lim
ε→0

ε2
∫

Ω
k(x)euε = 8π

exist. We observe that ϕ1(ξ) = H(ξ). Since H(ξ) approaches +∞ as ξ
approaches ∂Ω, Ljusternik-Schnirelman theory yields that H has at least
cat(Ω) = d+1 critical points with critical levels characterized through d+1
min-max quantities. The same property is thus inherited for F (ξ) and the
fact is thus established.

7.3. Proof of Theorem 3. We want to apply Theorem 2 in this situation.
Observe that the function ϕm now becomes

ϕm(y1, . . . , ym) =
m∑

j=1

[αG(yj , P ) − H(yj , yj)] −
∑

i6=j

G(yi, yj),

so we want to investigate the existence of a nontrivial critical value for this
function. We proceed similarly as in the proof of Theorem 1, except that
now the domain D is chosen as D = Ωm

δ where now

Ωδ = {y ∈ Ω / dist (y, ∂Ω) > δ, |y − P | > δ }
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where δ is a small positive number. We consider the same min-max quantity
C as in (7.1), except that now the curve γ is chosen to enclose the point
P . We need to get that C is uniformly bounded below independently of δ.
Assume P = 0. Arguing exactly as in Theorem 1, this fact follows if we find
that for y ∈ D with the property

yj

|yj |
= e

2iπj
m , j = 1, . . . , m

we have that

A ≡
m∑

j=1

αG(yj , 0) −
∑

l 6=j

G(yl, yj) ≥ −K

Then |yl − yj | ≥ C|yl| for all j 6= l. Clearly we have

A = α
m∑

l=1

log
1

|yl|
−

∑

j 6=l

log
1

|yl − yj |
+ O(1)

where O(1) is a quantity uniformly bounded independently of δ. We have,
for a fixed l, that

α log
1

|yl|
−

∑

j 6=l

log
1

|yl − yj |
≥ α log

1

|yl|
− (m − 1) log

1

|yl|
+ O(1).

Since α > m − 1 by assumption, the above quantity is uniformly bounded
below, hence the value C is bounded below independently of δ, as desired.

To prove the assertion of tangential derivatives being non-zero over the
boundary of D for uniformly bounded values of ϕm, provided that δ is small
enough, we argue by contradiction in similar terms as those in Theorem 1.
The situation we end up with now, with exactly same proof, is that all
points ξi that are close to one another, say by ρ(δ) → 0, as δ → 0, must be
at O(ρ) distance from ∂Ωδ. Scaling arguments as in the proof of Theorem
1 work as long as those points remain interior to Ωδ or ρ = o(δ). Once
this is excluded, we only need to consider the case Cρ > δ. But this is
impossible as well, since on the one hand for points ξi that are at O(ρ)
from ∂Ω, G(ξi, ξj) remains uniformly bounded, while for those close either
to P (or to ∂Ωδ), their contribution to the total value of ϕm is at least of
unbounded of order [α − (m − 1)] log 1

ρ
(or O(log 1

ρ
) due to the asymptotic

behavior of H); in any case this is in contradiction with the fact that ϕm is
uniformly bounded. Hence Theorem 2 becomes applicable to this situation
and the proof is concluded. �
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