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Abstract— Offline algorithm to detect the intractable epileptic 

seizure of children has vital role for surgical intervention. In this 

paper, after preprocessing and windowing procedure by Discrete 

Wavelet Transform (DWT), EEG signal is decomposed to five 

brain rhythms. These rhythms are formed to 2D pattern by 

upsampling idea. We have proposed a novel scenario for feature 

extraction that is called Singular Lorenz Measures Method 

(SLMM). In our method, by Chan’s Singular Value Decomposition 

(Chan’s SVD) in two phases including of QR factorization and 

Golub-Kahan-Reinsch algorithm, the singular values as energies 

of the signal on orthogonal space for pattern of rhythms in all 

windows are obtained. The Lorenz curve as a depiction of 

Cumulative Distribution Function (CDF) of singular values set is 

computed. With regard to the relative inequality measures, the 

Lorenz inconsistent and consistent features are extracted. 

Moreover, the hybrid approach of K-Nearest Neighbor (KNN) 

and Scatter Search (SS) is applied as optimization algorithm. The 

Multi-Layer Perceptron (MLP) neural network is also optimized 

on the hidden layer and learning algorithm. The optimal selected 

attributes using the optimized MLP classifier are employed to 

recognize the seizure attack. Ultimately, the seizure and non-

seizure signals are classified in offline mode with accuracy rate of 

90.0% and variance of MSE 1.47×10-4.       

Keywords— Epileptic seizure; SVD method; Lorenz curve; KNN 

algorithm; Scatter search.  

I.  INTRODUCTION 

The seizure diagnosis for decision on surgical intervention 
and prescribing the drugs using EEG analysis plays the 
important role [1]. The EEG time series as stochastic process 
has nondeterministic comportment. The seizure attack as 
clinical disorder has the symptoms on the recorded brain signals 
[1, 2]. For diagnosis and prognosis of these anomalies, many 
offline and online algorithms are frequently used. In recent 
studies, the common offline algorithm is usually observed [3]. 
At a glance on these researches, after signal conditioning the 
signals are decomposed to 5 or 6 dominant rhythms using 
Discrete Wavelet Transform (DWT) [4], Gabor filter [5] and the 
periodogram-based methods [6]. In the next step, the convenient 
features are extracted. This stage is as important section of 
seizure detection algorithms. For this purpose, the different 
tools and measures are employed. The time and frequency 
attributes such as the extracted features of transform-based 
methods are considered [7]. The features based on the energy 

or power using the coefficients of the signal decomposition in 
time-frequency domain [7, 8], applying the periodogram 
pattern feature on the EEG signals [6], also the entropy 
features with the definition of higher-order moments and 
using the statistical distribution of the signal are frequently 
used [7, 8].  

In the developed attitude, these extracted features for 
improving the classification are optimized. The evolutionary, 
biotic and abiotic algorithms such as Genetic Algorithm (GA) 
[1], Ant Colony Optimization (ACO) [6], Particle Swarm 
Optimization (PSO) algorithms [8] in combination with neural 
network such as MLP [6] and probabilistic nets [4] or statistical 
pattern recognizer [9] and the different approximations of the 
Bayesian classifier are used to select the optimal features for 
final classification step. With regard to the specified frequency 
band width of EEG signal and randomly behavior of it, the 
robust algorithm for different patients and the different types 
of seizure attack is necessary. In this paper, our first main 
challenge is proposing a novel method based on the signal 
decomposition and providing a basis for feature extraction. 
The second issue is introducing the suitable features with 
exclusive specifications to detect the seizure and non-seizure 
signals. 

II. PROPOSED OFFLINE SEIZURE DETECTION ALGORITHM

Our offline seizure detection algorithm has been represented 
in Fig. 1. Each epoch of the EEG signal is denoised then by 
applying the windowing procedure the signal is decomposed to 
five rhythms using DWT filter bank in the each window. The 
2D pattern of rhythms is formed with naive upsampling. We 
have introduced a novel algorithm for feature extraction that is 
named Singular Lorenz Measures Method (SLMM). In this 
method, the mean of singular values for the patterns of all 
windows are computed based on the Chan’s SVD. Then, the 
Lorenz curve of this set is plotted and two models of statistical 
attributes using consistent and inconsistent measures are 
extracted. Ultimately, 8 features for each EEG signal are 
attained. These features with hybrid optimization algorithm of 
KNN-SS are reduced and the optimal features with high 
efficiency are selected. Moreover, the optimized MLP classifier 
with Levenberg-Marquardt training algorithm is employed for 
diagnosing the seizure attack. The stages of our proposed 
algorithm are presented following in details.   
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Fig. 1.  Block diagram of offline epileptic seizure detection algorithm.

III. FEATURE EXTRACTION

For offline EEG signal detection into seizure and non-
seizure classes, after preprocessing the convenient features for 
describing the comportment of signal during the attack should 
be extracted. In this section of paper, our proposed features with 
novel combination of statistical measures and algebraic-based 
methods are represented. 

A. Dataset Preprocessing 

In this paper, the EEG dataset of pediatric patients and the 

children with intractable seizure disease that collected at the 

Children’s Hospital Boston (CHB-MIT) is considered [10]. To 

decide surgical intervention, the subjects for up to several days 

following withdrawal of anti-seizure medication are monitored. 

In our application, 104 hours of dataset have been employed. 

The sampling frequency of signal is 256 Hz with 16-bit 

resolution [10]. Each signal with the length of 1 hour is divided 

to 120L = epochs with time of 30 seconds. In totally, 10440 

normal signals and 2040 epochs with the symptoms of seizure 

(about 16.3% of used dataset) are investigated. 

1) EEG Signal Filtering

 To eliminate the noise, motion artifacts and the undesirable 
components the EEG signal using band pass Kaiser-Bessel 
window as a FIR method is filtered [11]. The cutoff frequencies 

1C
f  and 

2C
f  are tuned on 0.5 and 35 Hz, respectively. The 

authorized ripples of 0.05
PB

δ =  for passband and 0.01
SB

δ =  

for stopbands are considered [6]. 

2) Windowing and Rhythms Decomposition by DWT

The 4-term Blackman-Harris window as Hamming family 

with truncating on 60N =  samples and overlapping of 50% 

for unbiased estimation of signal and obtaining the minimum loss 

of information is periodically used [6]. This windowing procedure 

for 0 1n N≤ ≤ −  is applied on the signal ( )S n , 
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where 
0 1 2
, ,c c c and 

3
c  are equal to 0.35875, 0.48829, 0.14128 

and 0.01168, respectively. By supposing the ( )S n  as a Wide 

Sense Stationary (W.S.S.) and Mean Ergodic (M.E.) stochastic 

process the windowed epoch is determined [12].  

The static DWT filter bank is used for EEG rhythms 

decomposition [12]. By performing the filter bank in the first 

level on the windowed epoch, the detail and approximation 

sequences of two half-band filters are attained. For the next 

level, DWT is applied on the approximation time series to 

decompose the rhythm. In four levels and Daubechies of 

order 4 (Daub4) as a kernel of DWT the five brain rhythms: 

Delta [0.5,4] Hz, Theta [4,8] Hz, Alpha [8,13] Hz, Beta 

[13,22] Hz and Gamma [22,30] Hz are obtained by these 

details and the final approximation [4, 12]. With lowpass 

interpolation algorithm as upsampling method the number of 

time-sample for each rhythm is equaled to N ′ . With regard 

to Fig. 1 a pattern of the interpolated rhythms is formed as, 
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where ( )iR n is the rhythm i-th (for 1, 2,... , 5i = ) and n is the 

sample number of rhythm sequences. This presented 2D pattern 

is used as a basis of our proposed feature extraction method. 
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B. Singular Lorenz Measures Method (SLMM) 

Here, we introduce a novel scenario for feature extraction 

to detect the seizure attack in offline mode. The eigenvalues or 

in the extensive concept the singular values of the pattern 

demonestrate the energies on each axis of the orthogonal space. 

1) Chan’s SVD

To compute the SVD the Golub-Kahan-Reinsch algorithm 

when 5N ′ ≥   can be enhanced if the matrix PR is decomposed 

to QR then the bidiagonalization procedure is performed on 

the smaller upper triangular matrix of decomposition [13]. 

This method is frequently presented in two steps. 

a) QR Factorization

The QR decomposition of matrix PR is calculated by [14], 

1

0

T
R

Q PR = (3)

b) Golub-Kahan-Reinsch Algorithm

The Golub-Kahan-Reinsch (GKR) is standard algorithm to 

compute the singular values and singular vectors. This algorithm as 

a stage of Chan’s SVD procedure is accomplished in two phases. 

Phase I: the matrix 1R  with order of  5N ′×  using the orthogonal 

equivalence is converted to upper bidiagonal matrix with [13], 

0 1 0
0

T
B

U R V B= = (4) 

where B as the 5 5×  bidiagonal matrix with elements 
i j

b is:  

11 12

22 23

33 34

44 45

55

0 0

0 0

0 0

b b

b b

B b b

b b

b

= (5) 

Phase II: by using the Implicit QR Iteration algorithm in 

suitable repetitions [14], the matrix PR  is converted to upper 

Hessenberg matrix by right shift also with proving the 

algebraic relationships and computing the Givens rotations the 

bidiagonal matrix B is reduced to diagonal matrix  as 

follows [13, 14]: 

( )1 1 1 ,...,
T

nU B V diag σ σ= =  (6) 

where singular decomposition of matrix PR  is carried out 

to form of: 

0

T
U PR V = (7) 

where ( )( )0 1 5
,

N
U U diag U I ′−

= and 
0 1

V V V= . The singular 

values of 1R  are the same singular values of matrix PR  that 

are assigned by the specific set of { }1
,... ,

n
σ σ for 5n = [14]. 

2) Lorenz Curve

The singular values of our proposed pattern of rhythms are 

obtained. This set is sorted to form of low to the highest value. 

This new sorted list of singular values is denoted as, 

{ }1
ˆ ˆ ˆ,... ˆ, ,... ,

i n
σ σ σ σ= (8)

where ˆ
i

σ  is representative of sorted singular value i-th. The 

cumulative probability of singular values population is as, 

{ }ˆ , 1, 2, ... , 5i

i
P i

n
σ = = (9)

where in our application 5n = . Ultimately, the Cumulative 

Distribution Function (CDF) using Lorenz method is defined 

with the following equation [15], 
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So, the assigned singular values are depicted by 

graphical presentation using Lorenz curve as a CDF. This 

CDF is plotted for ˆ
i

L σ based on the { }ˆ
i

P σ  [15]. Fig. 2 is a 

schema of the Lorenz curve as a prototype for distribution 

of decomposed singular values of a seizure EEG signal. 

3) Relative Inequality Measures

To extract the suitable attributes of the Lorenz curve for 

feature extraction part of signal classification four basic 

properties are described [16]. If the σ̂  as a perfect set has 

been converted to set ξ̂  using an operator on the same space, 

these properties are defined using the symmetry (anonymity) 

condition by permutation, replication invariance (population 

principle) and scale invariance or zero-degree homogeneity 

are satisfied if ( ) ( )ˆˆI Iσ ξ= and the transfer principle is correct

when  ( ) ( )ˆˆI Iσ ξ> [16, 17].

4) Lorenz Inconsistent Features

This section of our proposed features is based on the 

statistical measures with regard to violate one or more of the 

four mentioned basics such as transfer principle or scale 

invariance [17]. For each windowed epoch of signal five 

singular values are determined, so to detect definitely seizure 

and non-seizure signals the singular values are averaged on all 

windows. Therefore, for each signal mean set of singularities 

is obtained. In this part of paper, four Lorenz inconsistent 

features are extracted and introduced in details [15, 17]. 

a) Range

This feature presents the gap of maximum and minimum of 

the extracted set that is achieved by [15, 17], 

( )
5
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1

5
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i
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σ σ

σ

σ
=

−
=  (11)

where σ  is the sorted set on the averaging singular values 

with five elements.  
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b) Simon Kuznets Ratio

A convenient feature for considering the high quility 

singularity versus the set distribution as a comparison analysis 

is called Kuznets ratio [16]. This feature is expressed with: 

( )
{ }

( ){ }
1 1

; , i

i
i

L r
KR p r

L P p

σ

σ

σ
σ

− −
=

=
 (12) 

where r is the highest measure of singular values distribution 

and  p is also the low level values. To extract this feature, it 

has been supposed that ( )3
r p P σ= = .

c) ( )90 /10   Ratio

The ratio of the 90-th and 10-th percentiles of the set 

proposes the type of distribution and the severity of the 

slope in the probability distribution function (pdf) of σ  

[16]. This feature is computed by, 

( )
( )
( )90/10

0.9
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Pe
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Pe

σ

σ
σ = (13)

where ( )Pe mσ  is the m-th percentile of the data.

d) Relative Mean Deviation

In this section, the feature of relative mean deviation is 

prefered to use the variance of the singular values for each signal 

[17]. The relative mean deviation feature is obtained as [16], 
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5) Lorenz Consistent Features

The consistent inequality measures that achieved from the 

Lorenz curve satisfy the four basic axioms. Here, in addition 

to extract the inconsistent measures, four features as consistent 

features of the set distribution are introduced [15-17].  

a) Gini Coefficient

The Gini coefficient as a criterion of distribution based 

on the Lorenz curve is computed with the following [15]: 
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σ σ σ σ

σ
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= + − + + +   (15) 

where n is the length of the σ  and equal to 5. In this 

equation, we have 
1 2 n

σ σ σ≥ ≥ ≥ . At a glance, the Gini 

coefficient indicates the area between the perfectly equal 

distribution (Area (2)) and the Lorenz curve (Area (1)) [15]. 

The GC feature is frequently in the interval of [0,1].  

b) Squared Coefficient of Variation

The squared coefficient of variation as a feature represents 

the validity rate of the singular values [15]. This feature is based 

on the variance of the normalized distribution [15, 16], 

Fig. 2.  Lorenz curve as distribution model of sorted singular values for a 

sample of seizure EEG signal. 
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c) Theil’s First

Due to the Shannon’s entropy measure and as a specific 

state of the generalized entropy computation the useful feature 

based on the model of density for singular values in the 

cumulative content from the Lorenz curve is obtained [15]. 

This feature is Theil’s first with definition of below, 
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d) Theil’s Second

This feature is as another branch of generalized entropy. 

On the other hand, it is known with mean logarithmic 

deviation of the set [17]. By considering the ThS to form of: 
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Finally, we have proposed an algebraic-statistical scenario 

to extract the 8 features based on the decomposition contents 

for each pattern of the EEG rhythms. In this paper, this 

algorithm is named Singular Lorenz Measures Method 

(SLMM). So, for each signal is a feature vector with the 

length of 8 that is used to detect the seizure and non-seizure 

classes in the offline mode. 

Area (1) 

Area (2) 

( )
( )

(2)

(1) (2)

Area

Area Ar
C

a
G

e
σ =

+

70



IV. OPTIMAL FEATURE SELECTION ALGORITHM

To improve the performance of the signal classification the 

optimal features based upon a hybrid approach of K-Nearest 

Neighbor (KNN) and Scatter Search (SS) algorithm are introduced. 

By our optimization algorithm the optimal attributes of signal 

are selected to employ in the final pattern detection. 

A. Hybrid Algorithm of KNN and Scatter Search 

The KNN algorithm is considered as a particular state of 

non-parametric estimation of the probability density function 

(PDF). With choosing the appropriate neighborhood parameter 

K, this method is convenient approximation of Bayesian 

classifier. To evaluate the classification the hyper-sphere in 

the feature space with the center of test feature vector so that 

K samples are in the hyper-sphere is analyzed [18]. For class 

 i
ω using the sub feature vector of  f the classification duty 

is carried out by the probability relationship of bellow, 

( ) , 1, 2i
i

N

K
P f i

K
ω = = (19) 

where iK is the number of samples for class i-th and NK is the 

total samples in the desired area of space [19]. At first, to combine 

this method with SS algorithm the eight extracted features are 

classified one-by-one and eight inverse of accuracy rates of 

classification by KNN are stored as the weights for implementing 

in the search algorithm (presented in Table I). In the diversification 

generating step, the preliminary random sub feature vector by 

set of binary string is presented [20]. For each sub feature vector 

the KNN accuracy rate as objective function is evaluated. The 

mean of the weights for each sub feature vector is also calculated 

[21]. By using the following recursive method the diverse 

generation is accomplished using the initial random seeds by, 

1 11 , 1mk mkf f m n+ +′ = − ≤ −  (20) 

where 0, 1,..., nk
m

=  and the new population are different.

To improve the trial solutions with considering the values of 

objective function based on the mean of the weights for each 

sub vector, existence of the features in the new iteration are 

analyzed [20, 21]. Therefore, after updating the reference set, the 

sub set with dimension of 2d =  up to 8d =  are generated in 

this stage. In the solution combination step, the score criterion for 

mutation in the sub feature vector is returned as, 

 (21) 
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where 
i

FV is the sub feature vector i-th and D is the sub set 

dimension for the interval of 2 up to 8 [20, 21]. The next 

iteration of scatter search is run by considering the threshold on 

the score function to create the sub feature vector FV ′ for 

solution combination stage as [20],        

( )
( )

1 ,

0 ,

i

i

i

Score FV Threshold
FV

Score FV Threshold

>
′ =

≤
 (22) 

where 0 and 1 return the existence of the special features. So, 

the hybrid algorithm of KNN and scatter search is converged to 

the optimal features with the high performance for classifying 

with KNN method.  

V. EXPERIMENTAL RESULTS 

A. Optimal Features 

Our proposed optimization algorithm is finally converged 

to the optimal features with suitable complexity in the feature 

space and high efficiency for seizure detection. These obtained 

features are: (90/10) ratio, Kuznets ratio, Gini coefficient and 

Theil’s first. The schema of optimal features distribution using 

the Inter Quartile Range (IQR) interpretation is presented in 

Fig. 3 for comparing our features in seizure and non-seizure modes. 

B. MLP Optimization and Holdout Cross Validation 

For final signal classification the Multi-Layer Perceptron 

(MLP) neural network with a hidden layer is used [6]. In the 

architecture of net four neurons equal to the length of optimal 

feature vector in input layer have been applied [3]. To analyze 

and choose the best method of learning, the net is trained with 

four training algorithms [11]. In each training procedure using 

the holdout cross validation method to partition the dataset 

appropriately by parameter 0.3p =  we have used from 70% 

of dataset for training, 20% for test and 10% for validation 

check, also the number of hidden neurons is optimized with 

trial and error [3, 6]. Ultimately, the optimized classifier with 

the suitable process to train is considered for final signal 

classification. The results of MLP optimization and the details 

of dataset are represented in Table I.   

C. Final Classification 

After optimizing the MLP classifier, we have considered the 

Levenberg-Marquardt algorithm (LMA) to learn and 22 neurons in 

the hidden layer of net. So, to recognize the seizure attack with 

our optimal features the holdout cross validation is employed 

and 70% of dataset for training, 20% for test and 10% are used 

for validation check procedures. At last, by using our proposed 

algorithm to extract the features and feature optimization the 

optimized MLP classifier recognized the EEG signals into 

seizure and non-seizure classes with the rate accuracy of 90.0%, 

variance of error in 1.47×10
-4

 and mean values for Mean Square 

Error (MSE) of 0.0875. The final results of seizure detection in 

details for classifying with optimal features and without optimal 

features are represented in Table I.      

VI. CONCLUSION 

The combination of algebraic and statistical methods to 
evaluate the seizure attack is a convenient procedure. Our 
proposed SLMM algorithm to extract the features based on 
decomposing the pattern of EEG rhythms is a suitable basis 
for describing the seizure behavior. Moreover, the hybrid 
optimization algorithm using KNN and Scatter Search as the 
machine learning scenarios could analyze the attributes for 
selecting the optimal state with the appropriate performance of 
classification. Ultimately, the optimized MLP neural network 
classifier for recognizing the epileptic seizure attack has been 
applied and the disorder has been detected.    
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(a) (b) (c) (d)

Fig. 3.  The schema of (a), (b), (c) and (d) for optimal features distributions based on the IQR measure in sieuzre and non-seizure EEG signals. 

TABLE I.  FINAL RESULTS OF OUR ALGORITHM FOR EEG SEIZURE DETECTION. 

Classification without Optimal Features 

Parameter 
Time of EEG Signal (min) Accuracy rate (%) 

Seizure Non-Seizure Correct Wrong

Training 714 – (70%) 3654 – (70%) 87.1 12.9

Test 204 – (20%) 1044 – (20%) 73.3 26.7

Validation 102 – (10%) 522 – (10%) 66.7 33.3

Total 1020– (100%) 5220 – (100%) 82.0 18.0

Accuracy Rate of the Optimal Features in KNN-Scatter Search (%)

Features K=3 K=5 K=7 K=9

Gini Coefficient 46.67 30.00 33.30 36.66

(90/10) Ratio 36.67 46.66 40.00 56.67

Kuznets Ratio 26.60 23.33 16.66 13.33

Theil’s First 16.66 20.00 20.00 46.67

Classification with Optimal Features 

Learning 
Algorithm 

Levenberg-
Marquardt 

Bayesian 
Regulation 

Scaled 
Conjugate 
Gradient 

Resilient 
Method 

Training  90.0% 82.9% 55.7% 75.7%

Test 93.3% 80.0% 46.7% 80.0%

Validation 86.7% 73.3% 66.7% 86.7%

Total 90.0% 81.0% 56.0% 78.0%

Optimized Number of Hidden Neurons and Error

MSE 0.0712 0.1309 0.4074 0.1715

Number 22 5 45 34

Final Results of Seizure Detection with Optimized MLP Classifier

Detection Accuracy Results Optimized Parameters Results

Mean of Accuracy 90% Hidden Neurons 22

Mean of MSE 0.0875 Learning Algorithm LMA 

Variance of MSE 1.47×10-4 
EEG Channel C3-P3 
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