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We review some recent results on multiwavelet methods for
solving integral and partial differential equations and present
an efficient representation of operators using discontinuous
multiwavelet bases, including the case for singular integral
operators. Numerical calculus using these representations
produces fast O(N) methods for multiscale solution of integral
equations when combined with low separation rank methods.
Using this formulation, we compute the Hilbert transform
and solve the Poisson and Schrödinger equations. For a
fixed order of multiwavelets and for arbitrary but finite-
precision computations, the computational complexity is O(N).
The computational structures are similar to fast multipole
methods but are more generic in yielding fast O(N) algorithm
development.

Introduction
Using the multiwavelet representations of functions
and operators, we present a multiscale solution
method for integral and differential equations and
integral transforms. The Hilbert transform, the Poisson
equation, and the Schrödinger equation provide
important examples with a wide range of applications
in computational chemistry, physics, and electromagnetic
and fluid dynamics. We also describe a representation
with a low separation rank (LSR), which is exact up to
arbitrary but finite precision.

Theoretically, it has been clear for some time [1] that a
multiresolution representation of homogeneous operators
should lead to useful numerical algorithms. However, the
straightforward transition from algorithms in one spatial
dimension to those in two, three, and beyond yields
algorithms that are too costly for high-accuracy practical
applications. Recently [2] it was observed that many
physically interesting operators have a low separation
rank. Using the low separation rank representation of
these operators with multiwavelets, we have developed
practical multiresolution algorithms in higher dimensions
for important classes of problems [3].

In this paper we summarize an approach using
multiwavelet bases which incorporates adaptive
refinement, and fast O(N) operations for a guaranteed

solution of arbitrary but finite precision. The advantages
of each of these concepts have been elucidated in the
literature. We have integrated them to solve some real-
world problems.

In the multiwavelet representation of functions, the
integral equation f(x) � �K(x, y)g(y)dy is converted to a
sparse matrix-vector multiplication, f � Ag, where f and g
are vectors of coefficients representing the function f(x)
and g(x), and A is the matrix of coefficients for the
representation of the kernel K(x, y).

In estimating the complexity of the algorithms discussed
in this paper, we select a fixed but arbitrary accuracy and
then estimate the number of operations or significant
coefficients to achieve that accuracy (in the operator norm).
We note that this count is somewhat different from
that obtained by estimating the number of arithmetic
operations necessary to obtain a solution with a given
accuracy, where the discretization of the operator depends
on accuracy as well.

Multiresolution analysis and low-separation-
rank representation
It has been shown in [1] that singular operators have
their most natural representation in multiresolution
bases. Using bases of compactly supported Daubechies
wavelets [4] (and their variations), and two-scale
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difference equations, one finds a regularization method for
computing such representations by solving a linear system
of equations [5]. By solving such a linear system, the issue
of discretizing kernels near its singularity is avoided.

In many problems, the choice of basis should
accommodate not only the integral operators but also
differential operators and the boundary conditions.
Multiwavelet bases developed in [6] satisfy many of these
requirements. As is well known, multiwavelet bases retain
some properties of wavelet bases, such as vanishing
moments, orthogonality, and compact support. The
basis functions do not overlap on a given scale and are
organized in small groups of several functions (thus,
multiwavelets) sharing the same support. On the other
hand, some of the basis functions are discontinuous,
similar to the Haar basis and in contrast to wavelets with
regularity. Because of the vanishing moments of the basis
functions, a wide class of integro-differential operators has
effectively sparse representations in these bases. (By an
effectively sparse matrix representation, we mean a
representation that differs from a sparse matrix by
a matrix with a small norm.) More recently, it was
demonstrated in [7] that such bases are useful for
adaptively solving partial differential equations (PDEs)
with boundary conditions.

As a part of the program to develop multidimensional
adaptive PDE solvers, we construct representations for
homogeneous convolution operators in dimensions d � 2,
3, and higher. Another method using representations of
low separation rank for functions and operators is
described in [2], and we outline this approach as well.
Let us start with the straightforward multiwavelet
generalization of [1]. For the multiwavelet bases, the
computational costs are O(k4N) in two dimensions and
O(k6N) in three dimensions, where order-k multiwavelets
are used and N is the number of boxes in which significant
coefficients exist. In many applications, such as
computational chemistry, it is too expensive to compute
with such algorithms. The algorithms that we present here
have computational complexity of O(k2N) and O(k3N),
respectively.

In our solution method, the use of a localized,
discontinuous, and adaptive basis of multiwavelets is
combined with a representation of functions and operators
that generalizes the separation of variables. This is all
performed with controlled accuracy in finite-precision
arithmetic. The notable features of multiwavelet
representation of operators are the following:

● Multiwavelets form an orthonormal basis.
● The basis functions have disjoint local support.
● The basis functions (except on the coarsest scale) have

vanishing moments.

● Two-scale relations are available for computing at
adjacent scales.

We also have

● A choice of interpolating basis for the scaling
functions.

● Adaptive representation and local refinement.
● A high-order approximation near the boundaries.

The computational advantages are the following:

● A sparse representation of a large class of operators.
● Fast algorithms with guaranteed precision for many

common operations, such as inversion, multiplication,
and addition within this class.

The LSR representation of a d-dimensional function,
f : Rd 3 R, generalizes the notion of separation of variables.
The separated representation of a function (or operator) in
many dimensions [2], to an arbitrary but finite precision
�, is a sum of products of functions of lower dimension
such that

 f� x1, x2, · · ·, xd� � �
i�1

m

si� 1
i � x1�� 2

i � x2� · · · �d
i � xd� � �.

The number of terms m, in the above sum, is called the
separation rank and is distinct from the operator rank.
This type of representation is important in obtaining fast
methods because in many situations the number of terms
scales as O(�log �) with respect to the threshold of
accuracy and as O(d) or even O(log d) with respect to
the number of variables [2]. The modern fast multipole
method (e.g., for the Poisson kernel 1/r) is based on
essentially this type of approximation, with the functions
being plane waves with the region of validity in selected
directions [8 –10]. In [2] a computational algorithm was
developed for LSR in which the set of functions {�l

i(xl)}
is not fixed, and one does not try to solve equations using
them as a basis. The sum is used as an approximation
technique for functions and operators, and an algorithm
was developed for minimizing the number of terms at
each step.

The benefits of LSR representations for many operators
are the following:

● All operations are one-dimensional.
● Storage requirements are low.
● Constructive algorithms exist for the reduction of

separation rank.
● For many physically significant operators it removes the

curse of dimensionality.
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Although it is not known whether all operators and
functions in practical applications have a short LSR
representation, many important operators, such as the
multiparticle Schrödinger operator and the inverse
Laplacian, can be efficiently represented in this form.

We apply our framework for numerical calculus of
operators. These operations are important in applications
in which functions of operators must be computed.
For example, the Schultz iteration 1 for the computation
of the inverse requires operator products and sums.

Let us start by providing a formal description of a
multiresolution analysis (MRA) for a multiwavelet
[11, 12]. Such an MRA is defined as an ascending chain of
embedded closed subspaces of the Hilbert space L2([0, 1]),

· · · � V0 � V1 � V2 � · · ·,

with the properties that

L2��0, 1�� � � jVj , � Vj � �0	 .

Additional requirements are as follows:

1. The subspace V0 is invariant under integer translations.
2. The subspaces Vj are all scaled version of one another.

One or more scaling functions � are in Vj if and only if
�(2 jx) is in V0.

3. One or more scaling functions � are in V0 such that their
rescaled and shifted versions, of the form 2 j/2�(2 jx � k),
constitute an orthonormal basis 2 of Vj.

Well-known examples are the Haar basis, in which the
scaling function is the characteristic function restricted
to the interval [0, 1], the Battle–Lemarie wavelet with
spline scaling function, and the Daubechies families of
wavelets [4], as well as multiwavelets [6]. For computational
purposes, we start from a coarse subspace V0 and generate
a finite ascending sequence of finer subspaces as needed.

Multiwavelets
In this section, we review fundamental properties of the
Legendre multiwavelet bases [6, 7] for L2([0, 1]).

For k � 1, 2, . . . and n � 0, 1, 2, . . ., the vector space
of scaling functions of level n and degrees 0 to k � 1 is

Vn
k

� �f : f
�2 �nl,2 �n

�l
1��
is a polynomial of degree

less than k, for l � 0, · · ·, 2 n
� 1, and 0 elsewhere� .

The space Vn
k has dimension 2nk and

V 0
k � V 1

k � · · · � Vn
k .

The multiwavelet subspace Wn
k, n � 0, 1, 2, . . ., is defined

as an orthogonal complement of Vn
k in Vn
1

k ,

Vn
1
k

� Vn
k

� Wn
k ,

and the dimension of Wn
k is 2nk. Therefore,

Vn
k

� V 0
k

� W 0
k

� W 1
k

� W 2
k

� · · · � Wn�1
k .

We define Vk � �n�0
� Vn

k and observe that Vk is dense in
the space of square integrable functions L2([0, 1]) with
respect to the L2 norm.

Given a basis �0, . . ., �k�1 of V0
k of scaling functions,

the space Vn
k is spanned by 2nk functions which are

obtained from �0, . . ., �k�1 by dilation and translation,

� jl
n� x� � 2 n/ 2�j�2 nx � l �, j � 0, · · ·, k � 1, l � 0, · · ·, 2 n

� 1.

We introduce the multiwavelet basis as a set of piecewise
orthonormal polynomials �0, . . ., �k�1 for W0

k,

�
0

1

�i� x��j� x�dx � �ij .

Since V0
k

� W0
k, the first k moments of �0, . . ., �k�1 vanish,

�
0

1

�j� x� x idx � 0, i, j � 0, 1, · · ·, k � 1.

The space Wn
k is spanned by 2nk functions obtained from

�0, . . ., �k�1 by dilation and translation �jl
n(x) � 2n/2�j(2

nx � l),
with j � 0, . . ., k � 1 and l � 0, . . ., 2n � 1. The support
of �jl

n is the interval [2�nl, 2�n(l 
 1)]. The condition of
orthonormality of the wavelet basis functions yields

�
0

1

� il
n� x�� jm

n' � x�dx � �ij�lm�nm' .

We note that in constructing multiwavelets there are two
natural choices in selecting the basis. One choice provides
additional vanishing moments for some of the basis functions
[6], whereas the other organizes the basis by the type of
singularity at the boundary between the subintervals [7].

Example: A multiwavelet basis can be constructed
using the system of the Legendre polynomials,
Pj(x), j � 0, . . ., k � 1, rescaled to the unit interval
(cf. Figures 1 and 2),

�j� x� � � �2 j � 1 Pj�2x � 1� x � �0, 1�,
0 x� �0, 1�.

If a function is projected to the level-n subspace Vn
k, it is

approximated on subintervals constructed by dividing the
interval [0, 1] into 2n equal subintervals. In the scaling
function basis, a function f projected onto Vn

k is
represented as

f� x� � �
l�0

2
n
�1 �

j�0

k�1

s jl
n� jl

n� x�;

1 The Schultz iteration Bk
1 � 2Bk � Bk ABk , B0 � 	A* with 	 
  A*A �1, is
used for computing A�1. The operator A* is the adjoint of A. It is easy to show
convergence to the inverse of A or its pseudo-inverse if A is singular.
2 Since we are using only orthonormal bases, the usual Riesz condition is replaced
by Condition 3.
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in the multiwavelet basis, the function f is expressed as

f� x� � �
j

sj� j0
0 � x� � �

n'�0

n�1 �
l�0

2
n
�1 �

j�0

k�1

djl
n'� jl

n'� x�.

The scalars sjl
n � � f(x)�jl

n(x)dx and djl
n' � � f(x)�jl

n'(x)dx
are respectively called the scaling and multiwavelet
coefficients. These can be computed directly using
Gauss–Legendre quadrature or by the following two-scale
relations from a fine scale to a coarse scale.

The scaling and multiwavelet functions satisfy the two-
scale relations

�i� x� � �2 �
j�0

k�1

�hij
�0��j�2x� � hij

�1��j�2x � 1��

and

�i� x� � �2 �
j�0

k�1

�g ij
�0��j�2x� � g ij

�1��j�2x � 1��,

where hij
(0), hij

(1), gij
(0), and gij

(1) are coefficients which are
easily computed given the scaling and multiwavelet basis.
By using these relations, further two-scale relations can be
derived for the scaling and multiwavelet coefficients from
scale n and n 
 1,

s il
n

� �2 �
j�0

k�1

�hij
�0� s j,2l

n
1
� hij

�1� s j,2l
1
n
1 �

and

dil
n

� �2 �
j�0

k�1

� g ij
�0� s j,2l

n
1
� g ij

�1� s j,2l
1
n
1 �.

Four scaling functions     at level n � 2: (a) j � 0; (b) j � 1; 

(c) j � 2; (d) j � 3.

Figure 1
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Similarly, there is an algorithm for reconstructing scaling
coefficients from multiwavelet representations. If the
scaling coefficients at level m have been computed,

s il
m
1

� �
j�0

k�1 � hji
�0� s jl

m
� g ji

�1� djl
m�

and

s i,2l
1
m
1

� �
j�0

k�1 � hji
�1� s jl

m
� g ji

�1� djl
m� .

These formulas are multiwavelet versions of the fast
wavelet transform and are a key ingredient for fast
algorithms.

In [7], interpolating multiwavelet bases are constructed
as a linear combination of the Legendre multiwavelets.
The advantage of interpolating bases is that the function
values and coefficients of scaling functions differ by only a
factor.

Scaling of homogeneous operators
Multiwavelet representation of linear homogeneous
operators of degree 	, T(f)(�x) � �	T(f)(x), can be obtained
by computing coefficients on only one scale.

Proposition
For a homogeneous convolution operator T of degree d,
the scaling coefficients,

�r lm
n �ij ��

2 �nl

2 �n�l
1�

� il
n� x�T� jm

n � x�dx,

are equal to 2nd[r0,l�m
0 ].

Since the derivative operator d/dx is homogeneous
of degree 1, the multiwavelet coefficients scale as
[rlm

n ]ij � 2n[r0,l�m
0 ]ij. The second derivative operator d2/dx2

scales as [rlm
n ]ij � 22n[r0,l�m

0 ]ij. Further descriptions of this
type of relations can be found in [13].

Nonstandard form
Given a multiresolution analysis and projection operators
Pn

k : L2[(0, 1]), 3 Vn
k onto the scaling function subspace,

and Qn
k : L 2��0, 1��3W n

k onto the multiwavelet subspace,
an operator T can be represented as a telescopic series,

T � T0 � �
n�0

�

� An
k

� Bn
k

� Cn
k�,

where An
k � Qn

kTQn
k, Bn

k � Qn
kTPn

k, Cn
k � Pn

kTQn
k, and

Tn
k � Pn

kTPn
k.

The nonstandard form is defined in [1] as a collection
of triples, T � {T0

k, (An
k, Bn

k, Cn
k)n�0,1, . . .}, where each triple

(An
k, Bn

k, Cn
k) corresponds to a particular scale. The

advantage of the nonstandard form over the usual

multiwavelet series expansion is the explicit separation of
scales.

We use the nonstandard form of operators in
multiwavelet bases. The nonstandard form does not
explicitly contain matrix elements that are responsible for
the interaction between different scales. This interaction is
accounted for by the projection that must be performed
after applying the nonstandard form. This projection
requires O(N) operations, resulting in algorithms that
scale as O(N), in contrast to the O(N log N) cost of
applying operators to functions in the standard form,
where scale-to-scale interactions are treated explicitly.

Most of the computation consists of a large number of
independent small dense matrix multiplications involving
small blocks of multiwavelet coefficients. Such operations
are well suited to modern cache-based computer
architectures.

Adaptivity
One of the attractive properties of multiwavelets is spatial
refinement. This is especially important near regions with
high gradients and discontinuities. By thresholding
coefficients (i.e., setting all multiwavelet coefficients to
zero when the absolute value of the coefficients is less
than a threshold of accuracy), spatial adaptivity is naturally
introduced. Figure 3 shows an example of the refinement
near the nuclear center of two hydrogen atoms in hydrogen
gas, H2, at level 8 with k � 7 and a precision of 10�5.

Cross-correlation of multiwavelet functions
We use tensor products of multiwavelets in higher
dimensions. For convolution operators, the integrals
expressing the coefficients involve only the cross-correlations

Adaptive refinement and thresholding are used to compute the 

energy levels of the hydrogen molecule, H
2
. A two-dimensional 

slice of the three-dimensional adaptive refinement of cubes for 

the nuclear potential of the hydrogen molecule [3] shows where 

significant scaling and multiwavelet coefficients are required.

Figure 3
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of the basis functions. For example, in two dimensions, the
coefficients for the kernel K(x, y) in a box with a corner
point l � (l1, l2),

�rl�ij ��K� x, y��i� x � l1��j� y � l2�dxdy,

must be calculated as a step in computing the nonstandard
form.

Recurrence relation of cross-correlation functions
For computing representations of the convolution
operators in the multiwavelet basis, we use the cross-
correlation functions, �ij(z) � ��i(z 
 y)�j(y)dy,

�rl�ij ���K� x � y��i� x � l1��j� y � l2�dxdy

��K� z��ij� z � l2 � l1�dz.

By substituting the recurrence relation for multiwavelets,
we obtain the following recurrence relation for �ij:

�ij� x� � �
i', j'

�hii'
�0� hjj'

�1� �i'j'�2x � 1� � �hii'
�0� hjj'

�0�
� hii'

�1� hjj'
�1���i'j'�2x�

� hii'
�1�hjj'

�0��i' j'�2x � 1��.

Consequently, for a homogeneous kernel of degree 	, the
coefficients [rl]ij satisfy a two-scale relationship, viz.,

�rl�ij � 2 �	�d �
i', j'

�hii'
�0�hjj'

�1��r2l�1� � �hii'
0 hjj'

�0�
� hii'

�1�hjj'
�1���r2l�

� hii'
�1�hjj'

�0��r2l
1��.

Among the cross-correlation functions we find some well-
known functions used in numerical analysis. For example,
the function �00 (x) is the so-called “hat function,” and
the function �i0(x) is a shifted version of a Gegenbauer
polynomial. The two-scale relations for the auto-
correlation and the cross-correlation functions of
multiwavelets are

��i� x � y��j� y�dy � �
i', j'

�hii'
�0�g jj'

�1��i'j'�2x � 1�

� �hii'
�0�g jj'

�0�
� hii'

�1�g jj'
�1��i'j'�2x�

� hii'
�1�g jj'

�0��i'j'�2x � 1��

and

��i� x � y��j� y�dy � �
i', j'

�g ii'
�0�g jj'

�1��i'j'�2x � 1�

� �g ii'
�0�g jj'

�0�
� g ii'

�1�g jj'
�1��i'j'�2x�

� g ii'
�1�g jj'

�0��i'j'�2x � 1��.

These relations are used to produce the coefficients of
the representation of the kernels.

Regularization
Beylkin and Cramer defined the notion of wavelet
regularization [5]. A multiwavelet version is presented
here. Simplistically, multiwavelet regularization is a
procedure which replaces the computation of the
multiwavelet coefficients using quadrature with a solution
of linear equations describing the interactions between
neighboring scales. The criteria for multiresolution
regularization are outlined below.

The classical approach to regularization of hypersingular
integrals interprets a divergent integral as a functional,
or generalized function, operating on a class of test
functions. The origin of the mathematical treatment of
generalized functions (distributions) goes back to the
theory introduced by L. Schwartz (e.g., [14]). Typically,
one considers a regularization which is natural in the
sense that the regularization of a sum of generalized
functions corresponds to the sum of the regularizations,
the derivative of a generalized function to the derivative
of its regularization, and the product of a generalized
function with an infinitely differentiable function to the
regularization of the product [15].

In [5] a multiresolution definition of the regularization
of singular and hypersingular homogeneous integrals was
introduced using wavelets. The classical regularization was
replaced by solving a system of linear equations consisting
of two-scale relations for wavelet coefficients representing
an integral operator in a multiresolution analysis. This
system of equations is complemented by knowledge of
the wavelet coefficients away from the singularity.
Multiresolution regularization is consistent with the
classical definition, since the classical regularization alters
neither the degree of homogeneity of the kernel nor its
asymptotic behavior at infinity. As it turns out, only these
two properties uniquely determine the multiresolution
definition of the regularized operator.

In this paper we generalize multiresolution
regularization to multiwavelets. Currently our construction
applies at most to singular operators. The accuracy of the
multiresolution regularization is controlled by the accuracy
of the solver for the linear system resulting from the
relations depending on the number of multiwavelets and
the number of levels.

It is sufficient to compute the scaling coefficients, since
the multiwavelet coefficients can be derived from the two-
scale relation. For practical purposes it is sufficient to
assume that the scaling coefficients satisfy the asymptotic
condition [rl]ij � Fij(l). Given an integral operator with
a homogeneous kernel, the multiresolution regularization
procedure is defined constructively and consists of the
following three steps:
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1. We assume that the scaling function coefficients [rl]ij are
known for a sufficiently large distance  l from the singularity.

2. The two-scale relations (e.g., for [rl]ij) are used to
compute [rl]ij for 1   l  n.

3. The two-scale relations produce a system of linear
equations for coefficients in the range  l 
 1.
Coefficients in this range appear on both sides of the
two-scale difference equations.

In general, this criterion is written as

2n
	r � Ar 
 b,

where r represents the vector of coefficients. The matrix A
consists of combinations of the coefficients of two-scale
relations.

Let x, y � Rn and let T be a convolution operator with
the kernel K(x, y), homogeneous of degree 	. Assuming that
the solution to the linear system in condition 3 exists, we
obtain a multiresolution kernel T0(x, y) with coefficients rl

from the construction above. We define the multiresolution
regularized operators to be Tj : Vj 3 Vj, j � Z, with kernels
Tj(x, y) � 2�j�nT0(2�jx, 2�jy) on the chosen MRA as j 3 �.

We illustrate this construction in one dimension. The
two-scale relations for the coefficients representing the
kernel with homogeneity degree 	 are

�rl�ij � 2 �n�	 �
i', j'�0

k�1

hii'
�0�hjj'

�1��r2l�1�i'j'


�hii'
�0�hjj'

�0�
� hii'

�1�hjj'
�1���r2l�i'j' � hii'

�1�hjj'
�1��r2l
1�i'j' ,

where [rl]ij � [rl0
0 ]ij.

If the kernel has singularity at the origin and the
multiwavelet coefficients are known for  l � 1, the two-
scale relations consist of three equations:

�r0�ij � 2 ��n
	� � �hii'
�0�hjj'

�1��r
�1�i'j'

� �hii'
�0�hjj'

�0�
� hii'

�1�hjj'
�1���r0�i'j' � hii'

�1�hjj'
�1��r1�i'j'}

� 2 ��n
	� � �hii'
�0�hjj'

�1��r
�1�i'j' � �hii'

�0�hjj'
�0�


hii'
�1�hjj'

�1�)�r0�i'j' � hii'
�1�hjj'

�1��r1�i'j'} ;

�r1�ij � 2 ��n
	� � hii'
�0�hjj'

�1��r1�i'j' � 2 ��n
	� � �hii'
�0�hjj'

�1��r1�i'j'


�hii'
�0�hjj'

�0�
� hii'

�1�hjj'
�1���r2�i'j'


hii'
�1�hjj'

�1��r3�i'j'} ;

and

�r
�1�ij � 2 ��n
	� �hii'

�1�hjj'
�1��r

�1�i'j' � 2 ��n
	� � �hii'
�0�hjj'

�1��r
�3�i'j'


�hii'
�0�hjj'

�0�
� hii'

�1�hjj'
�1���r

�2�i'j'


hii'
�1�hjj'

�1��r
�1�i'j'} .

We assume that the matrix coefficients [rl]ij with  l � 2
are known. The remaining coefficients become unknowns
in the linear system. The important feature is that the
relationships of coefficients at order k are recursive and
depend only on coefficients from order 0 to k � 1. We
use a preconditioned Generalized Minimal Residual
(GMRES) solver with restart for solving the resulting
linear system for each k.

The Hilbert transform
For singular integral operators, the multiwavelet coefficients
can easily be computed away from the singularities of the
kernel (e.g., by a quadrature). For the singular regions,
we can use the two-scale relations to accurately compute
the coefficients without using quadrature, as described
above. The vanishing moment property of multiwavelets
and the finite precision of the computation results in a
sparse representation.

We illustrate this by using the Hilbert transform as an
example:

Hf� y� �
1


p.v. � f� x�

x � y
dx.

The Hilbert transform appears in many important
applications to wave propagtion and signal processing.
The plot of the regularized Hilbert transform kernel
using the multiresolution regularization procedure
is shown in Figure 4.

The Poisson equation
The Poisson equation �� � � with the free-space
boundary conditions occurs commonly in physics. In the
differential form, wavelet and multiwavelet methods have
been applied to solve the Poisson equation [16, 17]. In
the integral formulation, for x, y � R3, the solution is

�� x� �
1

4 � �� y�

 y � x
dy.

In this formulation, the integral can be computed using
the fast multipole method as well as our multiwavelet
approach with the same complexity. The regularized
Poisson kernel is shown in Figure 5.

We illustrate the accuracy of such a computation by
the following example. Let

�� x, y, z� �
65 3

8
exp��65r�,

where

r � ��x � 1/2)2 
 (y � 1/2)2 
 (z � 1/2)2.

The relative error of multiwavelet solutions for various k
is shown in Figure 6.
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Schrödinger’s equation
In [3] a multiwavelet method is applied to solve the
Schrödinger equation:

��
1

2
� � V�� � E�.

The integral form of this equation in three dimensions is

��r� �
1

4 � e �k r�s

 r � s
V�s���s�ds,

where V is the potential, � is the wave function with
the free-space boundary condition, and k2 � �2E is the
energy [3, 18]. By using a fixed-point iteration scheme with
a Davidson-like acceleration, a large number of chemical
properties and reaction energies have been computed, so
far for small molecules, using either the Hartree–Fock or
density functional theory formulations. The total energy of
the benzene molecule and the computational geometric
features of our framework are shown in Table 1 and
Figure 7.

Conclusion
In this paper, we have reviewed multiwavelet methods for
solving integro-differential equations and have described

Plot of the regularized Hilbert kernel using multiwavelets of order 

(a) k � 3 and (b) k � 7.

Figure 4
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new O(N) multiscale simulation capabilities. The sparse
representations of these operators were used to produce
multiresolution methods for applying the Hilbert
transform and solving the Poisson and Schrödinger
equations.
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