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Abstract

A stable linear time-invariant classical digital control system with several widely different

small coefficients multiplying the lowest functions is considered. It is formulated as a

multi-parameter singularly perturbed system. Perturbation methods are developed for both

initial and boundary value problems based on asymptotic expansions of the perturbation

parameters. The approximate solution consists of an outer solution and a number of

boundary layer correction solutions equal to the number of initial conditions lost in the

process of degeneration. An example is provided for illustration.

1. Introduction

The dynamics of many continuous-time and digital systems are described by high

order differential and difference equations, respectively. Frequently, the presence of

small parameters such as time constants, masses, moments of inertia, inductances and

capacitances is the source of increased order in the system. A system in which the

suppression of a small parameter is responsible for the degeneration of the dimension

of the system is called a singularly perturbed system. Such a system possesses widely

separated clusters of eigenvalues exhibiting slow and fast phenomena or time-scale

phenomena. The high dimensionality coupled with the time-scale behaviour makes

the system computationally stiff resulting in the use of extensive numerical routines.

We frequently encounter boundary value problems (BVPs) in optimal control [17].

The solution of BVPs is always a concern. The solution of two-point boundary

value problems (TPBVPs) of stiff systems requires special methods such as shooting

techniques [16]. Even these special methods are trial and error methods. The singular

perturbation methods, which are not trial and error methods, remove stiffness, reduce
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the order of the system and satisfy the specified boundary conditions of the system. The

crux of singular perturbation theory is as follows. The degenerate system, obtained

by suppressing the perturbation (small) parameters is of reduced order and can satisfy

the specified boundary conditions of the slow modes only. The rest of the specified

boundary conditions of the fast modes are lost in the process of stiffness removal

(degeneration). Boundary layers are formed due to the nonuniform convergence of

the exact solution to the degenerate solution. Boundary layers correspond to the rapid

region of transition in the exact solution. Now boundary layer corrections have to be

added to recover the lost boundary conditions and to improve the degenerate solution.

Also boundary layer corrections should ensure that the solution is unique.

Singular perturbation theory in continuous-time control systems is well documented

and has reached a level of maturity [1,4,11,14,18]. Singular perturbation analysis

of digital systems is gaining momentum [2,3,5-13,15,19]. Research into singular

perturbation analysis of digital systems started with one small parameter (two-time-

scales) [12,15] and then extended to two small parameters (three-time-scales) [9,10].

These singular perturbation methods were applied to optimal control problems [2,7,8].

Now they are being extended to multi-parameters with multi-time-scales. Multi-time-

scale problems are prevalent in engineering and other applications [11]. Already

singular perturbation methods, for initial and boundary value problems of multi-

parameter multi-time-scale linear time-invariant (LTI) digital control systems with

stable fast modes giving rise to boundary layers at the initial point (k = 0), are being

reported in state space form [6]. In the present paper, we consider the same system in

classical form and formulate it as a multi-parameter system and develop perturbation

methods for initial and boundary value problems.

2. Statement of the problem

We consider an VI (=m + n+p+q-i h s)th-order stable linear time-invariant

digital control system described by a difference equation as

(2.1)

where the coefficients dt form distinct groups based on the order of magnitude:

O(A), i = 0 5 - 1 ,

) , i = s, ...,m-m-n-p - 1,

« O(d,), i = 91 - m, . . . .
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In other words, the system is a multi-time-scale one with clusters of eigenvalues

of different orders of magnitude giving rise to slow, fast, faster and fastest modes.

The basic idea of one- and two-parameter problems and the relationship between

the coefficients and eigenvalues is explained in the Appendix where a second-order

system is considered.

Based on the two-parameter problem [10, Appendix] and multi-parameter problem

[6], by a suitable choice of coefficients, (2.1) may be written as

w(k + m) + a<n-iw(k + <H - 1) + • • • + a<n-mw(k + 71-m)

+ a<n_m_i/i,tu(fc + 9t — m — 1)

+ • • • + a<n-m-nh1w(k + 71-m-n)

7X-m-n-l)

h"2w(k + 7X-m-n-p)

(k + 7\-m-n-p-l)

+ ••• + a<)h™-
m
h2

n
-

m
-

n
h™-

m
-

n
-

p
 •••h}w(k) = bu(k), (2.2)

where h\, h2, h^,..., hf are the interrelated perturbation parameters corresponding

to the groups of coefficients which are smaller in magnitude and b = d/d<n- These

perturbation parameters approach zero simultaneously.

If the boundary conditions of the system (2.2) are

w(j) = w(k=j), j= 0 ,1 ,2 , . . . , m-1, (2.3)

where w(k =j) are given values, then the problem at hand is an initial value problem

(IVP).

If the boundary conditions of the system (2.2) are given as

w(j) = w{k=j), j= 0,1,2 m - m - 1 (2.4a)

and

w(N -i) = w(k = N -i), i = m - 1, m - 2, ..., 1, 0, (2.4b)

then we have a BVP, where N is a fixed integer indicating the final time.

The degenerate system corresponds to slow eigenvalues ignoring the fast groups

of eigenvalues. The degenerate system, obtained by suppressing the perturbation

parameters in (2.2) simultaneously, is given by

w°-\k+y\) + a<juw
0J>

(k+yi-l) + - • •+avUnw°~°(k + m-m) = bu(k). (2.5)

Equation (2,5) is of order m and naturally can satisfy m initial conditions (correspond-

ing to the slow modes) w(j),j = 71 — m, 71 — m + 1 , . . . , 71 — 1, in the case of an
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FVP or boundary conditions (2.4b) in the case of a B VP. The remaining (9t — m) initial

conditions (2.4a) (corresponding to fast modes) are lost in the process of degeneration

and (9t — m) boundary layers are formed. Hence the above IVP and BVP are said to

be in singularly perturbed form. These 01 — m) initial conditions are recovered by the

following perturbation method where the approximate solution consists of an outer

solution (solutions outside the boundary layers) and the number of boundary layer

correction solutions (solution inside the boundary layers) equals the number of initial

conditions lost in the process of degeneration. The external input u(k) is independent

of the perturbation parameters and will not be affected by their suppression.

3. Singular perturbation method

3.1. Outer solution We assume asymptotic expansions in the perturbation param-

eters for the outer solution as

8

wo(k) = J2 w
ii
-

r
{k)h%---h

r
f, (3.1)

where g is the desired order of approximation. Substituting (3.1) into (2.2) and equat-

ing the coefficients of like powers of the perturbation parameters, a set of equations will

be obtained. For the zeroth-order approximation (h!\h\ • • • ft"), the resulting equation

is the same as that given by (2.5). For the first-order approximation:

+ a<n-m-iw
0
-\k + m-m-l) = 0, (3.2a)

w
a
(k + Vl) + am.,w

a
{k + VX-!)+••• + a<n_mw

a
(k + W. - m)

+ avt_m_lw
a
(k + <n-m-l) = 0, (3.2b)

where a = 010.. . 0 , . . . , 0 . . . 01.

3.2. Boundary layer correction (BLC) solutions The transformations to be ap-

plied to (2.2), to generate transformed systems corresponding to each perturbation

parameter, are

c = yi-m-l,...,m-m-n, (3.3a)

wd(k) = w(k)/(hlh2)
k
-

d
, d = <n-m-n-l,...,yi-m-n-p, (3.3b)

ke
, e = <n-m-n-p-l s, (3.3c)

v =s - l,s-2.....0. (3.3d)
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We also assume the BLC solutions as asymptotic expansions in the perturbation

parameters as

g

wr(k)= J2 <-
r
^)h\h

i
2---h

r
r (3.4)

i,j r>0

where r = c, d, e,..., v of (3.3).

Substitute (3.4) in the corresponding transformed system and collect the coefficients

of like terms of the perturbation parameters. This process gives BLC equations that

are to be solved to obtain the total series solution.

3.3. Total series solution The total series solution is given as the sum of the outer

series solution (3.1) and the BLC solutions (3.4) as

g

w
g
(k)= J2 w

iJ
-

r
(k)h\hi'--h

r
f

i,j r>0

p+q+-+s g

+ E
 h

T
c
 E <-

r
(*)/'

i
>i•••/*;

c=n+p+q+-+s-\ i,j r>0

+ E ^
h
2)

k
~" E u>i

d=p+q+-+s-\ i,j r>0

e=q-i l-J-1 i,j,-,r>0

0 g

+ ••• + E ^ 1 ' ' " ' 1 / ) * " E w
»''"

r
 (k)h\hii • • • hj. (3.5)

u=j-l i,j r>0

In (3.5) the terms with negative powers for the perturbation parameters of the trans-

formations are defined to be zero.

3.4. Boundary conditions The boundary conditions, required to solve the outer

equations (2.5) and (3.2) and the BLC equations resulting from Section 3.2, should be

known a priori. These are furnished from the fact that the total series solution (3.5)

should satisfy the given boundary conditions. This results in the following relations

in the case of an IVP:

w° °(i) = w(i), i = <Jl-l,...,<n-m, (3.6a)

Wj (j) = w[j) — w (j), j = Ji — m — 1 , . . . , 1,0, (J.ob)

u;10-°(i) = 0, i = 9 t - l f . . . , « n - m + l, (3.6c)

u;io...0(^ -m) = -u4fm_,(9t - m), (3.6d)
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w
1
j
oo

(j) = -w
lo

-
o
(j)-wfz°l(j), j=yi-m-l gr i -m-n+l , (3.6e)

w]° -°(i) = -w
i0 -°(i), i = m-m-n 1,0, (3.6f)

w°-°\i)=0, i = « n - l , . . . , 9 t - m , (3.6g)

w;°-OI0') = -u '0-0 10') . ; = * n - w - l f . . . , l , 0 . (3.6h)

Note: In the above equations only one initial condition is specified for each correction

equation. The other initial conditions required to solve each correction equation are

of zero value.

In the case of a BVP where N—(m—l) >
 <

Jl—m, the following boundary conditions

are to be used in place of (3.6a), (3.6c), (3.6d) and (3.6g) for the outer equations. The

initial conditions required for BLC solutions remain the same as given above:

w°"°(N - i) = w(N - i), w
a
(N-i) = 0; (3.7)

here or = 1 0 . . . 0 , . . . , 0 . . . 01, i = m — I,... ,1,0. Furthermore this selection

process of boundary conditions ensures that the total series solution (3.5), which

consists of the transformations (3.3), is unique.

3.5. Asymptotic correctness In order to prove the asymptotic correctness of the

formal series expansions of (3.5), it needs to be shown that

w(k) - w ' ( k ) = O(h[h{ •••h
r
f), i + j + . . . + r = g + l,

where w(k) and w
g
(k) are the exact and gth-order solutions, respectively. The proof

for asymptotic correctness may be obtained in a similar way as in [6].

3.6. Algorithm For a particular order of approximate solution, first find the outer

solution. Next, add the BLC corresponding to the least singular transformation. Con-

tinuing this process add the BLC corresponding to the most singular transformation

finally.

4. Illustrative example

Consider the system

io(Jfc + 4 ) - 1.011iuOt + 3) + 0.1011u>(ifc + 2)

- 0.00109iu(/t + 1) + 0.000000SM&) = u(k) (4.1a)

with boundary conditions w(0) = 12500, w(l) = 100, io(2) = 10, tu(10) = 5;

where u(k) is the unit step function. Here the coefficients

0.0000009 « 0.00109 « 0.1011 « 1.011.
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The eigenspectrum of the system (0.9, 0.1, 0.01, 0.001) clearly indicates its multi-

time-scale nature with stable slow, fast, faster and fastest modes (four-time-scales).

Now (4.1a) may be written in the form of (2.2), with m = n = p=q=l,s = 0,

as

10(Jk + 4) - 1.0Uw(k + 3) + l.OUh^ik + 2)

- l.3625h]h2w(k + 1) + 1.5625h]h\h3w(k) = w(Jfc), (4.1b)

where the perturbation parameters are hi = 0.1, h2 — 0.08 and /i3 = 0.09.

This problem requires three corrections wc(k), wd(k) and we(k). Various series

solutions are obtained from the total series solution (3.5) as follows.

The degenerate solution (no correction terms) is given by

w(k) = w°°°(k), 0 < k < 10.

The zeroth-order solution (incorporating correction terms not involving parameter

terms) is given by

u/>(0) = w
000

®) + tof°(O), iu°(l) = w°°°(l) + u>°°°(l),

io°(2) = w°°°(2) + wf°(2), w°(k) = w°°°(k), 3 < k < \0.

The first-order solution (incorporating correction terms up to first-order parameter

terms) is

u;'(0) = u;
000

^) + w™(0) + /Miy
10O

(0) + A2u;
010

(0)

^°°(0) + h2w°e
10

(0) + h3w™
l
(0),

iu2°°(l) + /i,u;100(l) + h2w
0l

\l) + h3w°°\l)

(l) + h2w°d
l0

(l) + h3w?*{l),

w\2) = u,«»(2) + wf°(2) + hlW
m
(2) + h2w

m
(2)

w\k) = w
m
(k) + hiw

m
(k) + h2w

m
(k) + h3w

m
(k), 3 < k < 10.

These series solutions are compared with the exact solution in Table 1.

From Table 1, we note that

(i) The degenerate solution, obtained by making h\, h2 and h^ equal to zero in

(4.1), is unable to satisfy the initial conditions w(2), io(l) and w(O).

(ii) The zeroth-order solution, obtained using (3.5), incorporates BLCs and hence

it recovers the initial conditions io(2), w(l) and u>(0). Thereafter, that is, for k > 2,

it remains equal to the degenerate solution.
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TABLE 1. Comparison of various series solutions with the exact solution of system (4.1).

[8]

w(k)

w(0)

w(l)
w{2)
w(3)
w(4)

w(5)

w(6)
w(J)
io(8)

w(9)

u>(10)

Degenerate
Solution

-2.074985

-2.097810

-2.120886

-2.144216

-1.156802

-0.158527

0.850729

1.871087

2.902669

3.945598

5

Zeroth-order
Solution

12500

100

10

-2.144216

-1.156802

-0.158527

0.850729

1.871087

2.902669

3.945598

5

First-order
Solution

12500

100

10

-2.166506

-0.964915

0.252251

1.382978

2.425218

3.376886

4.235865

5

Exact
Solution

12500

100

10

-0.443200

-0.361325

0.690318

1.733950

2.682840

3.537800

4.307370

5

(iii) Also note the very big boundary layer jumps at k = 0 (from 12500 to

-2.074985), at it = 1 (from 100 to -2.09781) and at k = 2 (from 10 to -2.120886),

between the exact and degenerate solutions, indicating the nonuniform convergence

and the effects of multi-time-scales (change in magnitudes of boundary layer jumps).

(iv) The first-order solution improves the zeroth-order solution and is much closer

to the exact solution in the mean square sense.

5. Main results and contributions of the paper

(1) Development of a system model, in classical form, amenable to singular per-

turbation analysis for a class of linear time-invariant stable multi-time-scale digital

control systems with several small parameters of widely different magnitudes.

(2) Transformations required, for boundary layer corrections that result in a unique

solution, are provided.

(3) Perturbation methods are developed for possible initial and boundary value

problems of the system considered.

6. Conclusions

So far singular perturbation methodology has been developed for mainly one- and

two-parameter problems in digital control systems. The generalisation process of

singular perturbation methodology, for any number of parameters in digital control

systems represented in state space form, has already started [5,6]. The main aim
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of this paper is to present a generalised singular perturbation methodology for initial

and boundary value problems of digital control systems represented in classical form.

Accordingly singular perturbation methods have been developed for initial and bound-

ary value problems of a stable linear time-invariant multi-parameter multi-time-scale

digital control system with small parameters multiplying the lowest functions. Please

note that the large number of corrections does not pose a problem due to the fact that

all corrections need be evaluated for only a limited number of values of k depending

on the order of approximation, as shown in the illustrative example. The methods

are given up to first-order approximation and can be easily extended to higher order

approximations if required.
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Appendix A.

Consider a linear stable second-order difference equation [10]

w(k + 2) + d^wik + 1) + dow(k) = 0, (A.I)

with initial conditions u>(0) and w(l). Here do and dx are two small coefficients which

are of different orders of magnitude such that do «C dx «; 1. These two coefficients

approach zero simultaneously in an interrelated manner.

The characteristic roots (eigenvalues) of (A.I) are

zi.2 = dx (-0.5 ± 0.5^1 - 4do/df) .

The exact solution of (A.I) is

u>(jfc) = {(w(0)z2 - w(l))zf + (u;(l) - w(0)Zi)z
k
2)/(z2 - z,). (A.2)

We obtain the trivial solutions demanded by (A.I) when we suppress the small

coefficients for the following two limiting cases:

(1) d0 = d\ as d\ —> 0; this is one-parameter problem with perturbation parameter

h = dx and characteristic roots zi,2 = /i(—0.5±0.5\/^3), a pair of complex conjugate

roots representing fast modes. Now (A.I) may be written as

w(k + 2) + hw(k + 1) + h
2
w(k) = 0.
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(2) (<io/d,2) —> 0 as d\ —>• 0+
; this is a two-parameter problem with modified

perturbation parameters hx = d\ and h2 = do/d*. The characteristic roots

zIi2 = fc, (-0.5 ± 0.5^/1 - 4ft2) (A.3)

are a pair of real roots representing fast and faster modes. Now (A.I) may be written

in terms of these new parameters as

w(k + 2) + hxw(k + 1) + h\h2w(k) = 0. (A.4)

When we suppress hx and h2 in (A.4), we get a trivial solution and the initial conditions

ui(0) and w{Y) are lost in this degeneration process. These two initial conditions are

to be recovered from the transformed equations. To find the corresponding transfor-

mations we approximate the roots of (A3), assuming \4h2\ < 1, using the binomial

expansions

and z2 = - * i ( l - h2). (A.5)

By substituting (A.5) in (A.2), the zeroth-order solution of (A.2) may be obtained as

w(k) = {-wa)h\-
]
 + w(0)(M2)*) (-!)*• (A.6)

The form of (A.6) indicates that the transformations to be applied to (A.4) are

k1
 2)

k
. (A.7)

If we add a slow stable mode (which gives rise to a coefficient of 0(1), as the slow

eigenvalues are of 0(1) in digital systems) to the system (A.I), case (1) becomes a

two-time-scale system whereas case (2) becomes a three-time-scale system.
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