SINGULAR PERTURBATION METHODS IN CONTROL: ANALYSIS AND DESIGN

PETAR V. KOKOTOVIĆ

Co-ordinated Science Laboratory University of Illinois Urbana, USA

HASSAN K. KHALIL

Department of Electrical Engineering and Systems Science Michigan State University East Lansing, USA

JOHN O'REILLY

Department of Electronic and Electrical Engineering University of Strathclyde Glasgow, UK

1986

ACADEMIC PRESS Harcourt Brace Jovanovich, Publishers

London • Orlando • San Diego • New York • Boston Austin • Tokyo • Sydney • Toronto

CONTENTS

v	
xii	

Acknow	ledgement	S
--------	-----------	---

1 TIME-SCALE MODELING

1.1	Introduction	1
1.2	The Standard Singular Perturbation Model	2
1.3	Time-Scale Properties of the Standard Model	9
	Case Study 3.1: Two-Time-Scale PID Control	15
1.4	Slow and Fast Manifolds	17
1.5	Construction of Approximate Models	22
1.6	From Nonstandard to Standard Forms	28
1.7	Case Studies in Scaling	35
	Case Study 7.1: Dimensionless ε in the DC-Motor Model	36
	Case Study 7.2: Parameter Scaling in an Airplane Model	37
	Case Study 7.3: State Scaling in a Voltage Regulator	40
1.8	Exercises	43
1.9	Notes and References	45

2 LINEAR TIME-INVARIANT SYSTEMS

2.1	Introduction	47
2.2	The Block-Triangular Forms	49
2.3	Eigenvalue Properties	56
2.4	The Block-Diagonal Form: Eigenspace Properties	60
2.5	Validation of Approximate Models	67
2.6	Controllability and Observability	75
2.7	Frequency-Domain Models	84
2.8	Exercises	88
2.9	Notes and References	90

CONTENTS

3	LINEAR FEEDBACK CONTROL	
3.1	Introduction	93
3.2	Composite State-Feedback Control	94
3.3	Eigenvalue Assignment	102
3.4	Near-Optimal Regulators	110
3.5	A Corrected Linear–Quadratic Design	128
3.6	High-Gain Feedback	136
3.7	Robust Output-Feedback Design	143
3.8	Exercises	151
3.9	Notes and References	155

4 STOCHASTIC LINEAR FILTERING AND CONTROL

4.1	Introduction	157
4.2	Slow-Fast Decomposition in the Presence of White-Noise Inputs	158
4.3	The Steady-State Kalman-Bucy Filter	166
4.4	The Steady-State LQG Controller	174
4.5	An Aircraft Autopilot Case Study	182
4.6	Corrected LQG Design and the Choice of the Decoupling Transformation	186
4.7	Scaled White-Noise Inputs	191
4.8	Exercises	194
4.9	Notes and References	198

. . .

5 LINEAR TIME-VARYING SYSTEMS

5.1	Introduction	201
5.2	Slowly Varying Systems	202
5.3	Decoupling Transformation	209
5.4	Uniform Asymptotic Stability	216
5.5	Stability of a Linear Adaptive System	221
5.6	State Approximations	226
5.7	Controllability	229
5.8	Observability	238
5.9	Exercises	243
5.10	Notes and References	247

6 OPTIMAL CONTROL

6.1	Introduction	249
6.2	Boundary Layers in Optimal Control	249
6.3	The Reduced Problem	260
6.4	Near-Optimal Linear Control	268
6.5	Nonlinear and Constrained Control	274
6.6	Cheap Control and Singular Arcs	280
6.7	Exercises	284
6.8	Notes and References	286

х

CONTENTS

7 NONLINEAR SYSTEMS	
7.1 Introduction	289
7.2 Stability Analysis: Autonomous Systems	290
7.3 Case Study: Stability of a Synchronous Machine	301
7.4 Case Study: Robustness of an Adaptive System	308
7.5 Stability Analysis: Nonautonomous Systems	312
7.6 Composite Feedback Control	315
7.7 Near-Optimal Feedback Design	321
7.8 Exercises	333
7.9 Notes and References	337
References	339
References added in proof	356
Appendix A Approximation of singularly perturbed systems driven by white no	pise 357
Appendix B	365
Index	367

xi