Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

GIUSEPPE BUTTAZZO

GIANNI DAL MASO

Singular perturbation problems in the calculus of variations

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^{*e*} *série*, tome 11, n° 3 (1984), p. 395-430

<http://www.numdam.org/item?id=ASNSP_1984_4_11_3_395_0>

© Scuola Normale Superiore, Pisa, 1984, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Singular Perturbation Problems in the Calculus of Variations (*).

GIUSEPPE BUTTAZZO (**) - GIANNI DAL MASO (**)

1. - Introduction.

In this paper we study the following singular perturbation problem in the Calculus of Variations; given an integral functional of the form

$$F(u) = \int_{\Omega} f(x, u, Du, D^2u, \dots, D^mu) dx;$$

determine the asymptotic behaviour (as $\varepsilon \rightarrow 0^+$) of the infima of the functionals

$$F_{\varepsilon}(u) = \int_{\Omega} f(x, u, \varepsilon Du, \varepsilon^2 D^2 u, ..., \varepsilon^m D^m u) dx$$

(here $D^k u$ denotes the vector $(D^k u)_{|x|=k}$ of all k-th order partial derivatives of u).

By means of the Γ -convergence theory we prove that, under suitable assumptions on the integrand f, there exists a convex integrand $\psi: \Omega \times \mathbb{R} \to \mathbb{R}$ such that for every $\varphi \in L^q(\Omega)$

$$\begin{split} \lim_{\varepsilon \to 0^+} \inf \left\{ F_{\varepsilon}(u) + \int_{\Omega} \varphi u \, dx \colon u \in W^{m,r}(\Omega) \cap L^p(\Omega) \right\} \\ &= \lim_{\varepsilon \to 0^+} \inf \left\{ F_{\varepsilon}(u) + \int_{\Omega} \varphi u \, dx \colon u \in W^{m,r}_0(\Omega) \cap L^p(\Omega) \right\} \\ &= \min \left\{ \int_{\Omega} [\psi(x, u) + \varphi u] \, dx \colon u \in L^p(\Omega) \right\}, \end{split}$$

(*) Partially supported by a research project of the Italian Ministry of Education.
 (**) The authors are members of the Gruppo Nazionale per l'Analisi Funzionale
 e le sue Applicazioni of the Consiglio Nazionale delle Ricerche.

Pervenuto alla Redazione il 2 Novembre 1983.

where the exponents r and p are related to the behaviour of the integrand f and 1/p + 1/q = 1. Moreover a formula for the function ψ is given.

There is an intimate relationship between this kind of problems and some singular perturbation problems in Optimal Control Theory. Consider for example a control problem with a cost functional of the form

$$J(u, v) = \int_{\Omega} [N|v(x)|^{2} + |u(x) - b(x)|^{p} [dx]$$

and with a singularity perturbed state equation of the form

$$(E_{\varepsilon}) \left\{ egin{array}{l} arepsilon^2 \varDelta u + g(u) = v \ u \in H^1_0(\Omega) \ . \end{array}
ight.$$

 $(N > 0, b \in L^p(\Omega), \text{ and } g: \mathbb{R} \to \mathbb{R}$ are given; u and v are respectively the state variable and the control variable). Problems of this kind have been studied by J. L. Lions in his courses at the Collège de France in 1981-82 and 1982-83, and by A. Bensoussan [2], A. Haraux and F. Murat [11], [12], and V. Komornik [13]. By substituting $v = \varepsilon^2 \Delta u + g(u)$ in the cost functional, the study of the asymptotic behaviour (as $\varepsilon \to 0^+$) of

$$\inf \{J(u, v): (u, v) \text{ is a solution of } (E_{\varepsilon})\}$$

is reduced to the study of

$$\inf\left\{\int_{\Omega} \left[N|\varepsilon^2 \Delta u + g(u)|^2 + |u - b(x)|^p\right] dx \colon u \in H^2_{\text{loc}}(\Omega) \cap H^1_0(\Omega)\right\},$$

which is the problem considered in Section 5.

Some of the results proved in this paper were announced without proof in [4].

We wish to thank Prof. E. De Giorgi for many helpful discussions on this subject.

2. – Γ -convergence.

In this section we collect some known results of Γ -convergence theory that are used in the sequel. For a general exposition of this subject we refer to [6] and [7].

Let Λ , X be two topological spaces (we consider Λ as a space of parameters, in general $\Lambda = \overline{\mathbb{N}} = \mathbb{N} \cup \{+\infty\}$ or $\Lambda = \mathbb{R}$); let $\Lambda_0 \subseteq \Lambda$ and $X_0 \subseteq X$

with X_0 dense in X; for every $\lambda \in \Lambda_0$ let F_{λ} be a function from X_0 into $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$; let $\lambda_0 \in \Lambda$, $x \in X$ with $\lambda_0 \in \overline{\Lambda}_0$; following [8] we define

(2.1)
$$\Gamma(\Lambda^{-}, X^{-}) \lim_{\substack{\lambda \to \lambda_{o} \\ y \to x}} F_{\lambda}(y) = \sup_{\substack{U \in \mathfrak{I}(x) \\ \lambda \in \Lambda_{o}}} \liminf_{\substack{\lambda \to \lambda_{o} \\ \lambda \in \Lambda_{o}}} F_{\lambda}(y) ,$$

(2.2)
$$\Gamma(\Lambda^+, X^-) \lim_{\substack{\lambda \to \lambda_0 \\ y \to x}} F_{\lambda}(y) = \sup_{\substack{U \in \mathfrak{J}(x) \\ \lambda \in \lambda_0}} \limsup_{\substack{\lambda \to \lambda_0 \\ \lambda \in \lambda_0}} \inf_{y \in U \cap X_0} F_{\lambda}(y),$$

where $\mathfrak{I}(x)$ denotes the family of all neighbourhoods of x in the space X. When the Γ -limits (2.1) and (2.2) coincide, their common value is indicated by

$$\Gamma(\Lambda, X^{-}) \lim_{\substack{\lambda \to \lambda_0 \\ y \to x}} F_{\lambda}(y) .$$

The main properties of Γ -limits are given by the following propositions, proved in [3] and [9].

PROPOSITION 2.1. For every $x \in X$ define

$$egin{aligned} F^-(x) &= \varGamma(\varLambda^-,\,X^-) \lim_{\substack{\lambda o \lambda_0 \ y o x}} F_\lambda(y) \ F^+(x) &= \varGamma(\varLambda^+,\,X^-) \lim_{\substack{\lambda o \lambda_0 \ y o x}} F_\lambda(y) \,. \end{aligned}$$

The functions $F^-: X \to \overline{\mathbb{R}}$ and $F^+: X \to \overline{\mathbb{R}}$ are lower semicontinuous on X.

PROPOSITION 2.2. Suppose that X has a countable base for the open sets. For every sequence (F_h) of functions from X_0 into $\overline{\mathbb{R}}$, there exists a subsequence (F_{h_h}) and a function $F: X \to \overline{\mathbb{R}}$ such that

$$F(x) = \Gamma(\overline{\mathbf{N}}, X^{-}) \lim_{\substack{k o \infty \ y o x}} F_{h_k}(y)$$

for every $x \in X$.

PROPOSITION 2.3. If $G: X \to \mathbb{R}$ is lower semicontinuous at the point $x \in X$, then

$$\begin{split} &\Gamma(\Lambda^{-}, X^{-}) \lim_{\substack{\lambda \to \lambda_{0} \\ y \to x}} [G + F_{\lambda}](y) \geqslant G(x) + \Gamma(\Lambda^{-}, X^{-}) \lim_{\substack{\lambda \to \lambda_{0} \\ y \to x}} F_{\lambda}(y) \\ &\Gamma(\Lambda^{+}, X^{-}) \lim_{\substack{\lambda \to \lambda_{0} \\ y \to x}} [G + F_{\lambda}](y) \geqslant G(x) + \Gamma(\Lambda^{+}, X^{-}) \lim_{\substack{\lambda \to \lambda_{0} \\ y \to x}} F_{\lambda}(y) ; \end{split}$$

if in addition G is continuous at the point x, then the above inequalities are equalities.

PROPOSITION 2.4. Suppose that there exists $F: X \to \overline{\mathbb{R}}$ such that

$$F(x) = \Gamma(\Lambda, X^{-}) \lim_{\substack{\lambda o \lambda_0 \ y o x}} F_{\lambda}(y)$$

for every $x \in X$. Assume further that the functions F_{λ} are equicoercive on X, i.e. for every $s \in \mathbb{R}$ there exists a compact subset K_s of X (independent of λ) such that $\{x \in X_0: F_{\lambda}(x) \leq s\} \subseteq K_s$ for every $\lambda \in \Lambda_0$.

Then we have

$$\min_{X} F = \lim_{\lambda \to \lambda_0} \left[\inf_{X_0} F_{\lambda} \right].$$

Moreover, if $(x_{\lambda})_{\lambda \in A_0}$ is a family of elements of X_0 such that $\lim_{\lambda \to \lambda_0} \lambda_{\lambda} = x$ and $\lim_{\lambda \to \lambda_0} \left[F_{\lambda}(x_{\lambda}) - \inf_{X_0} F_{\lambda} \right] = 0$, then x is a minimum point of F in X.

Let $S_0(\lambda_0)$ be the set of all sequences in Λ_0 converging to λ_0 in Λ , and let S(x) be the set of all sequences in X_0 converging to x; we define (the subscript seq stands for sequential)

(2.3)
$$\Gamma_{\text{seq}}(\Lambda^{-}, X^{-}) \lim_{\substack{\lambda \to \lambda_{o} \\ y \to x}} F_{\lambda}(y) = \inf_{(\lambda_{h}) \in S_{o}(\lambda_{o})} \inf_{(x_{h}) \in S(x)} \liminf_{h \to \infty} F_{\lambda_{h}}(x_{h})$$

(2.4)
$$\Gamma_{seq}(\Lambda^+, X^-) \lim_{\substack{\lambda \to \lambda_0 \\ y \to x}} F_{\lambda}(y) = \sup_{(\lambda_h) \in S_0(\lambda_0)} \inf_{(x_h) \in S(x)} \limsup_{h \to \infty} F_{\lambda_h}(x_h).$$

REMARK 2.5. If the spaces Λ and X satisfy the first axiom of countability it is possible to prove (see [3]) that the Γ_{seq} -limits (2.3) and (2.4) coincide respectively with the Γ -limits (2.1) and (2.2).

REMARK 2.6. It is not difficult to see that in the case $\Lambda = \overline{\mathbb{N}}, \Lambda_0 = \mathbb{N}, \lambda_0 = \infty$, the Γ_{seq} -limits (2.3) and (2.4) of a sequence $(F_h)_{h\in\mathbb{N}}$ of functions reduce respectively to

$$\inf_{(x_h)\in S(x)} \liminf_{h\to\infty} F_h(x_h) \quad \text{and} \quad \inf_{(x_h)\in S(x)} \limsup_{\lambda\to\infty} F_h(x_h) \,.$$

Suppose that X is a reflexive separable Banach space with dual X'. Let (x'_{λ}) be a sequence dense in the unit ball of X'; we introduce the metric δ

398

on X defined by

$$\delta(x, y) = \sum_{h=1}^{\infty} 2^{-h} |\langle x'_h, x - y \rangle|.$$

It is known that the metric space (X, δ) is separable. Let us denote by w the weak topology of X. We shall use the following proposition proved in [1].

PROPOSITION 2.7. Assume that X is a reflexive Banach space, that λ_0 has a countable neighbourhood base in Λ , and that there exist two constants $c_1, c_2 \in \mathbb{R}$, with $c_2 > 0$, such that

$$F_{\lambda}(x) \geqslant c_1 + c_2 \|x\|$$

for every $\lambda \in \Lambda_0$, $x \in X_0$. Then for every $x \in X$

$$\begin{split} \Gamma_{\mathrm{seq}}(\Lambda^-, w^-) & \lim_{\substack{\lambda \to \lambda_0 \\ y \to x}} F_{\lambda}(y) = \Gamma(\Lambda^-, w^-) & \lim_{\substack{\lambda \to \lambda_0 \\ y \to x}} F_{\lambda}(y) = \Gamma(\Lambda^-, \delta^-) & \lim_{\substack{\lambda \to \lambda_0 \\ y \to x}} F_{\lambda}(y) \\ \Gamma_{\mathrm{seq}}(\Lambda^+, w^-) & \lim_{\substack{\lambda \to \lambda_0 \\ y \to x}} F_{\lambda}(y) = \Gamma(\Lambda^+, w^-) & \lim_{\substack{\lambda \to \lambda_0 \\ y \to x}} F_{\lambda}(y) = \Gamma(\Lambda^+, \delta^-) & \lim_{\substack{\lambda \to \lambda_0 \\ y \to x}} F_{\lambda}(y) \,. \end{split}$$

Using Proposition 2.3 and some general properties of Γ -limits (see [3], [8]) it is easy to obtain the following proposition.

PROPOSITION 2.8. Under the hypotheses of Proposition 2.7, for every $x \in X$, $s \in \mathbb{R}$ the following conditions are equivalent:

i)
$$\Gamma(\Lambda, w^{-}) \lim_{\substack{\lambda \to \lambda_0 \\ y \to x}} F_{\lambda}(y) = s$$

ii) for every sequence (λ_h) in Λ_0 converging to λ_0 in Λ there exists a subsequence (λ_{h_n}) such that

$$\Gamma(\overline{\mathbf{N}}, w^{-}) \lim_{\substack{k o \infty \ y o x}} F_{h_k}(y) = s \, .$$

3. - Statement of the result.

Let Ω be a bounded open subset of \mathbb{R}^n , let $m \ge 1$ be an integer, and let p, r be two real numbers with p > 1, $1 \le r \le p$.

We indicate by d = d(n, m) the number of multi-indices $\alpha \in \mathbb{N}^n$ such that $1 \leq |\alpha| \leq m$, by $\mathcal{A}(\mathbb{R}^n)$ the family of all bounded open subsets of \mathbb{R}^n , and by $\mathcal{A} = \mathcal{A}(\Omega)$ the family of all open subsets of Ω .

For every k = 1, 2, ..., m and every $u \in W^{m,r}_{loc}(A)$, with $A \in \mathcal{A}(\mathbb{R}^n)$, we denote by $D^k u$ the vector $(D^{\alpha}u)_{|\alpha|=k}$ of all k-th order partial derivatives of u.

The integrands we shall consider are Borel functions $f: \Omega \times \mathbb{R} \times \mathbb{R}^d$ $\rightarrow [0, +\infty[$ which satisfy the following properties:

(3.1) there exist $c \ge 1$ and $a \in L^1(\Omega)$ such that

$$-a(x) + |s|^{p} \leq f(x, s, z) \leq a(x) + c[|s|^{p} + |z|^{r}]$$

for every $x \in \Omega$, $s \in \mathbb{R}$, $z \in \mathbb{R}^d$;

(3.2) there exist $a \in L^1(\Omega)$, an increasing continuous function $\sigma: [0, +\infty[$ $\rightarrow [0, +\infty[$ with $\sigma(0) = 0$, and a Borel function $\omega: \Omega \times \mathbb{R}^n \rightarrow [0, +\infty[$ with

$$\lim_{y\to 0} \int_{\Omega} \omega(x, y) dx = \int_{\Omega} \omega(x, 0) dx = 0,$$

such that

$$\begin{aligned} |f(y, t, w) - f(x, s, z)| &\leq \omega(x, y - x) \\ &+ \sigma(|y - x| + |t - s| + |w - z|)(a(x) + f(x, s, z)) \end{aligned}$$

for every $x \in \Omega$, $s \in \mathbb{R}$, $z \in \mathbb{R}^d$;

- (3.3) there exists $a \in L^1(\Omega)$, a Borel function $\gamma \colon \mathbb{R} \times \mathbb{R}^d \to [0, +\infty[$, and a function $\lambda \colon \mathcal{A}(\mathbb{R}^n) \times \mathcal{A}(\mathbb{R}^n) \to [0, +\infty[$ such that
 - (i) for every $x \in \Omega$, $s \in \mathbb{R}$, $z \in \mathbb{R}^d$

$$\gamma(s,z) \leqslant f(x,s,z) + |s|^p + a(x)$$

(ii) for every pair $A, A' \in \mathcal{A}(\mathbb{R}^n)$ with $A \subset A'$ and for every $u \in W^{m,r}(A')$

$$\int_{A} \sum_{|\alpha| \leq m} |D^{\alpha}u|^r dx \leq \lambda(A, A') \int_{A'} \gamma(u, Du, D^2u, \dots, D^mu) dx$$

(iii) for every pair $A, A' \in \mathcal{A}(\mathbb{R}^n)$ with $A \subset A'$

$$\limsup_{t\to+\infty}\lambda(tA,tA')<+\infty.$$

For every $\varepsilon > 0$ we consider the functional $F_{\varepsilon}(u, A)$ defined for every $A \in \mathcal{A}$ and for every $u \in W^{m,r}_{loc}(A)$ by

(3.4)
$$F_{\varepsilon}(u, A) = \int_{A} f(x, u, \varepsilon Du, \varepsilon^2 D^2 u, ..., \varepsilon^m D^m u) dx.$$

400

It is possible to verify (see section 6) that hypotheses (3.1), (3.2), (3.3) are fulfilled, for example, by the functionals

$$\begin{split} F_{\varepsilon}(u,A) &= \int_{A} \left[\left(\varepsilon |Du| + P_{k}(u) + a(x) \right)^{2} + |u - b(x)|^{2k} \right] dx \,, \\ F_{\varepsilon}(u,A) &= \int_{A} \left[|\varepsilon^{2} \Delta u + P_{k}(u) + a(x)|^{2} + |u - b(x)|^{2k} \right] dx \,, \\ F_{\varepsilon}(u,A) &= \int_{A} \left[\varphi(x,u,\varepsilon Du,\varepsilon^{2} D^{2}u) |\varepsilon^{2} \Delta u + P_{k}(u) + a(x)|^{2} + |u - b(x)|^{2k} \right] dx \,, \end{split}$$

where $k \ge 1$ is an integer, P_k is a polynomial of degree less than or equal to k, $a \in L^2(\Omega)$, $b \in L^{2k}(\Omega)$, and $\varphi: \Omega \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ is uniformly continuous and satisfies $0 < \inf \varphi \leq \sup \varphi < +\infty$.

Other examples of functionals verifying hypotheses (3.1), (3.2), (3.3) can be found in Section 5.

Define now for every $A \in \mathcal{A}$, $u \in L^p(A)$

(3.5)
$$T(u, A) = \begin{cases} 0 & \text{if } u \in W_0^{m,r}(A) \\ +\infty & \text{otherwise.} \end{cases}$$

Let us denote by $w - L^{p}(A)$ the weak topology of $L^{p}(A)$. The main result we prove in this paper is the following.

THEOREM 3.1. Let $f: \Omega \times \mathbb{R} \times \mathbb{R}^d \to [0, +\infty[$ be a Borel function satisfying hypotheses (3.1), (3.2), (3.3), and let F_{ε} be the functionals defined by (3.4). Then there exists a Borel function $\psi: \Omega \times \mathbb{R} \to [0, +\infty[$ such that

(i) for every
$$A \in \mathcal{A}$$
, $u \in L^{p}(A)$, $w_{0} \in W^{m,r}(A) \cap L^{p}(A)$

$$\int_{A} \psi(x, u) dx = \Gamma(\mathbb{R}, w - L^{p}(A)^{-}) \lim_{\substack{\varepsilon \to 0^{+} \\ v \to u}} F_{\varepsilon}(v, A)$$

$$= \Gamma(\mathbb{R}, w - L^{p}(A)^{-}) \lim_{\substack{\varepsilon \to 0^{+} \\ v \to u}} [F_{\varepsilon}(v, A) + T(v - w_{0}, A)];$$

- (ii) for every $x \in \Omega$ the function $s \to \psi(x, s)$ is convex on \mathbb{R} ;
- (iii) for every $(x, s) \in \Omega \times \mathbb{R}$

$$f^{-}(x, s, 0) \leqslant \psi(x, s) \leqslant f^{+}(x, s, 0)$$

where $f^+(x, s, z)$ is the greatest function convex in s which is less than or equal to f(x, s, z) and $f^-(x, s, z)$ is the greatest function convex in (s, z) which is less than or equal to f(x, s, z).

Moreover the following representation formulae for ψ hold for a.a. $x \in \Omega$ and all $s \in \mathbb{R}$:

$$\begin{split} \psi(x,s) &= \lim_{\varepsilon \to 0^+} \inf \left\{ F_{\varepsilon}(x,u) \colon u \in W^{m,r}(Y) \cap L^p(Y), \int_Y u \, dy = s \right\} \\ &= \lim_{\varepsilon \to 0^+} \inf \left\{ F_{\varepsilon}(x,u) \colon u - s \in W^{m,r}_0(Y) \cap L^p(Y), \int_Y u \, dy = s \right\} \\ &= \inf \left\{ F_{\varepsilon}(x,u) \colon \varepsilon > 0, \, u - s \in W^{m,r}_0(Y) \cap L^p(Y), \int_Y u \, dy = s \right\} \\ &= \inf \left\{ F_{\varepsilon}(x,u) \colon \varepsilon > 0, \, u \in W^{m,r}_f(Y) \cap L^p(Y), \int_Y u \, dy = s \right\}, \end{split}$$

where Y denotes the unit cube $]0, 1[^n, W^{m,r}_{\#}(Y)$ denotes the space of all Y-periodic functions of $W^{m,r}_{loc}(\mathbb{R}^n)$, and

$$F_{\varepsilon}(x, u) = \int_{Y} f(x, u(y), \varepsilon Du(y), \varepsilon^2 D^2 u(y), ..., \varepsilon^m D^m u(y)) dy.$$

COROLLARY 3.2. Let $w_0 \in W^{m,r}(\Omega) \cap L^p(\Omega)$, let $W(w_0) = \{u \in L^p(\Omega): u - w_0 \in W^{m,r}_0(\Omega)\}$, and let V be a set such that $W(w_0) \subseteq V \subseteq W^{m,r}_{loc}(\Omega) \cap L^p(\Omega)$. Then we have

(3.6)
$$\lim_{\varepsilon \to 0^+} \inf \left\{ F_{\varepsilon}(u, \Omega) dx + \int_{\Omega} g u dx : u \in V \right\} = \min \left\{ \int_{\Omega} \psi(x, u) dx + \int_{\Omega} g u dx : u \in L^{p}(\Omega) \right\}$$

for every $g \in L^q(\Omega)(1/p + 1/q = 1)$.

PROOF. It follows from Theorem 3.1, Proposition 2.3 and Proposition 2.4 that

$$\begin{split} \min\left\{ \int_{\Omega} \psi(x,u) \, dx + \int_{\Omega} gu \, dx \colon u \in L^p(\Omega) \right\} \\ &= \lim_{\varepsilon \to 0^+} \inf\left\{ F_{\varepsilon}(u,\Omega) + \int_{\Omega} gu \, dx \colon u \in W^{m,r}_{\text{loc}}(\Omega) \cap L^p(\Omega) \right\} \\ &= \lim_{\varepsilon \to 0^+} \inf\left\{ F_{\varepsilon}(u,\Omega) + \int_{\Omega} gu \, dx + T(u - w_0,\Omega) \colon u \in W^{m,r}_{\text{loc}}(\Omega) \cap L^p(\Omega) \right\} \\ &= \lim_{\varepsilon \to 0^+} \inf\left\{ F_{\varepsilon}(u,\Omega) + \int_{\Omega} gu \, dx \colon u \in W(w_0) \right\}. \end{split}$$

Since $W(w_0) \subseteq V \subseteq W_{\text{loc}}^{m,r}(\Omega) \cap L^p(\Omega)$ we obtain (3.6).

402

4. - Proof of the result.

In this section we prove Theorem 3.1.

The function f and the functionals F_{ε} are supposed to satisfy the hypotheses of the theorem. In what follows we shall write briefly $f(x, u, \varepsilon^k D^k u)$ instead of $f(x, u, \varepsilon Du, \varepsilon^2 D^2 u, \ldots, \varepsilon^m D^m u)$. Let (ε_h) be a sequence in $]0, +\infty[$ converging to 0. For every $A \in \mathcal{A}, u \in L^p(A)$ set

$$F^+(u,A) = \Gamma(\overline{\mathbb{N}}^+, w - L^p(A)^-) \lim_{\substack{h \to \infty \\ v \to u}} F_{\varepsilon_k}(u,A) \, .$$

LEMMA 4.1. For every $A \in \mathcal{A}$, $u \in L^{p}(A)$ we have

$$F^+(u,A) \leqslant \int_A f(x,u,0) dx$$
.

PROOF. Let $A \in \mathcal{A}$, $u \in L^{p}(A)$. Let ϱ be a non-negative function in $C_{0}^{\infty}(\mathbb{R}^{n})$ such that $\int \varrho dx = 1$, let $\theta = 1/(n+m+1)$, let $\varrho_{h}(x) = \varepsilon_{h}^{-n\theta} \varrho(\varepsilon_{h}^{-\theta}x)$, and let $u_{h} = \varrho_{h} * u$. We have

$$F_{\varepsilon_h}(u_h, A) = \int_A f(x, \varrho_h * u, \varepsilon_h^k D^k \varrho_h * u) dx.$$

•

It is easy to see that $(\varrho_h * u)_h$ converges to u in $L^p(A)$ and that $(\varepsilon_h^k D^k \varrho_h * u)_h$ converges to 0 in $L^p(A)$ (hence in $L^r(A)$) for k = 1, 2, ..., m. Since f(x, s, z) is continuous in (s, z), inequalities (3.1) ensure that

$$\int_{A} f(x, u, 0) dx = \lim_{h \to \infty} \int_{A} f(x, \varrho_h * u, \varepsilon_h^k D^k \varrho_h * u) dx.$$

By Remark 2.6 and Proposition 2.7 we have

$$F^+(u, A) \leq \limsup_{\hbar \to \infty} F_{\varepsilon_\hbar}(u_\hbar, A) = \int_A f(x, u, 0) dx$$

and the lemma is proved.

LEMMA 4.2. Let $A, B, C \in \mathcal{A}$ with $C \subset A \cup B$. For every $u \in L^p(A \cup B)$ we have

$$F^+(u, C) \leq F^+(u, A) + F^+(u, B)$$
.

PROOF. Let $K = \overline{C} - B$ and let A_0 , B_0 be two open sets, with meas $(\partial A_0) = \text{meas}(\partial B_0) = 0$, such that $K \subseteq A_0 \subset C B_0 \subset C A$. Fix an integer ν and a family $(A_i)_{1 \leq i \leq \nu}$ of open sets, with meas $(\partial A_i) = 0$, such that $A_0 \subset A_1 \subset C \ldots \subset A_{\nu} \subset C B_0$. Define $S_i = C \cap (A_i - \overline{A}_{i-1})$ and $S = C \cap (B_0 - A_0)$. For every $i = 1, 2, \ldots, \nu$ there exists $\varphi_i \in C_0^{\infty}(A_i)$ such that $0 < \varphi_i < 1$ and $\varphi_i = 1$ on A_{i-1} .

In what follows the letter e will denote various positive constants (independent of h, i, ν), whose value can change from one line to the next.

Fix $u \in L^p(A \cup B)$ and $\eta > 0$; there exists a sequence (u_h) in $W^{m,r}_{loc}(A) \cap L^p(A)$, converging to u weakly in $L^p(A)$ and a sequence (v_h) in $W^{m,r}_{loc}(B) \cap L^p(B)$ converging to u weakly in $L^p(B)$ such that

$$F^{+}(u, A) + \eta \ge \limsup_{h \to \infty} F_{\varepsilon_h}(u_h, A) \quad \text{and} \quad F^{+}(u, B) + \eta \ge \limsup_{h \to \infty} F_{\varepsilon_h}(v_h, B).$$

For every $i = 1, 2, ..., \nu$ and for every $h \in \mathbb{N}$ set

$$w_{i,h} = \varphi_i u_h + (1 - \varphi_i) v_h \, .$$

Using (3.1) we obtain

$$\begin{split} F_{\varepsilon_{h}}(w_{i,h}, C) &\leq F_{\varepsilon_{h}}(u_{h}, C \cap A_{i-1}) + F_{\varepsilon_{h}}(v_{h}, C - \overline{A}_{i}) \\ &+ c \int_{S_{i}} \left[[a(x) + |w_{i,h}|^{p} + \sum_{k=1}^{m} |\varepsilon_{h}^{k} D^{k} w_{i,h}|^{r} \right] dx \\ &\leq F_{\varepsilon_{h}}(u_{h}, A) + F_{\varepsilon_{h}}(v_{h}, B) + c \int_{S_{i}} \left\{ a(x) + |u_{h}|^{p} + |v_{h}|^{p} + \sum_{k=1}^{m} [|\varepsilon_{h}^{k} D^{k} u_{h}|^{r} + |\varepsilon_{h}^{k} D^{k} v_{h}|^{r}] \right. \\ &+ c_{r} \sum_{k=1}^{m} \varepsilon_{h}^{k} \sum_{j=0}^{k-1} [|D^{j} u_{h}|^{r} + |D^{j} v_{h}|^{r}] \Big\} dx \,, \end{split}$$

where c_{ν} depends on $\sup |D^{\alpha}\varphi_i|$ for $i = 1, 2, ..., \nu$ and $|\alpha| \leq m$. Since the strips S_i are pairwise disjoint, for every $h \in \mathbb{N}$ there exists an index $i_h \in \{1, 2, ..., \nu\}$ such that

$$\int_{S_{t_h}} \{\ldots\} dx \leqslant \frac{1}{\nu} \int_{S} \{\ldots\} dx.$$

Define $w_h = w_{i_h,h}$. Then

$$\begin{split} F_{\varepsilon_{h}}(w_{h}, C) &\leqslant F_{\varepsilon_{h}}(u_{h}, A) + F_{\varepsilon_{h}}(v_{h}, B) + \frac{c}{v} \int_{S} \Big\{ a(x) + |u_{h}|^{v} + |v_{h}|^{v} \\ &+ \sum_{k=1}^{m} \Big[|\varepsilon_{h}^{k} D^{k} u_{h}|^{r} + |\varepsilon_{h}^{k} D^{k} v_{h}|^{r} \Big] + c_{v} \sum_{k=1}^{m} \varepsilon_{h}^{kr} \sum_{j=0}^{k-1} \Big[|D^{j} u_{h}|^{r} + |D^{j} v_{h}|^{r} \Big] \Big\} dx \,. \end{split}$$

Let $E = A \cap B$. Since $S \subset E$, there exists $S' \in \mathcal{A}$ such that $S \subset S' \subset E$. Since (u_{λ}) and (v_{λ}) are bounded in $L^{p}(S')$, using inequalities as

$$\int_{S} |D^{k}w|^{r} dx \ll \sigma \int_{S'} |D^{m}w|^{r} dx + c_{\sigma} \int_{S'} |w|^{r} dx$$

(which hold for $1 \leq k \leq m$ and for every $\sigma > 0$) we get

$$(4.1) F_{\varepsilon_h}(w_h, C) \leq F_{\varepsilon_h}(u_h, A) + F_{\varepsilon_h}(v_h, B) + \frac{c}{\nu}(1 + \varepsilon_h c_{\nu,\sigma}) \\ + \frac{c}{\nu}(1 + \sigma c_{\nu}) \int_{S'} \sum_{k=1}^m \left[|\varepsilon_h^k D^k u_h|^r + |\varepsilon_h^k D^k v_h|^r \right] dx \,.$$

Define now $U_{\hbar}(x) = u_{\hbar}(\varepsilon_{\hbar}x)$ and $V_{\hbar}(x) = v_{\hbar}(\varepsilon_{\hbar}x)$; then, using (3.3), we get

$$(4.2) \qquad \int_{S'} \int_{k=1}^{m} \left[|\varepsilon_{h}^{k} D^{k} u_{h}|^{r} + |\varepsilon_{h}^{k} D^{k} v_{h}|^{k} \right] dx$$

$$= \varepsilon_{h}^{n} \int_{k=1}^{m} \left[|D^{k} U_{h}|^{r} + |D^{k} V_{h}|^{r} \right] dx < \lambda(\varepsilon_{h}^{-1} S', \varepsilon_{h}^{-1} E) \varepsilon_{h}^{n} \int_{s_{h}^{-1} E} (\gamma(U_{h}, D^{k} U_{h}) + \gamma(V_{h}, D^{k} V_{h})) dx$$

$$= \lambda(\varepsilon_{h}^{-1} S', \varepsilon_{h}^{-1} E) \int_{E} [\gamma(u_{h}, \varepsilon_{h}^{k} D^{k} u_{h}) + \gamma(v_{h}, \varepsilon_{h}^{k} D^{k} v_{h})] dx$$

$$< \lambda(\varepsilon_{h}^{-1} S', \varepsilon_{h}^{-1} E) [c + F_{\varepsilon_{h}}(u_{h}, A) + F_{\varepsilon_{h}}(v_{h}, B)].$$

Since the sequences $(w_{i,k})$ converge to u weakly in $L^p(C)$, it is easy to see that the sequence (w_h) converges to u weakly in $L^p(C)$. Therefore, passing to the limit in (4.1) as $h \to \infty$, and using (4.2) and (3.3) (iii) we get

$$\begin{split} F^{+}(u, C) \leqslant F^{+}(u, A) + F^{+}(u, B) + 2\eta + \frac{c}{\nu} \\ &+ \frac{c}{\nu} (1 + \sigma c_{\nu}) M[c + F^{+}(u, A) + F^{+}(u, B) + 2\eta] \,, \end{split}$$

where $M = \limsup_{t \to +\infty} \lambda(tS', tE)$. Passing to the limit first as $\sigma \to 0$, then as $v \to +\infty$, and finally as $\eta \to 0$, we obtain

$$F^+(u, C) \leq F^+(u, A) + F^+(u, B)$$
.

REMARK 4.3. In the same way we can prove that for every $A, B \in \mathcal{A}$,

with $B \subset A$, and for every compact subset K of B

$$F^+(u, A) \leq F^+(u, B) + F^+(u, A - K)$$

for every $u \in L^{p}(A)$. This fact, combined with Lemma 4.1 and inequalities (3.1), implies that

$$F^+(u, A) = \sup \{F^+(u, B) \colon B \in \mathcal{A}, B \subset A\}.$$

LEMMA 4.4. There exist a subsequence (ε_{h_k}) of (ε_h) and a functional F such that

(4.3)
$$F(u, A) = \Gamma(\overline{\mathbb{N}}, w - L^{p}(A)^{-}) \lim_{\substack{k \to \infty \\ v \to u}} F_{\varepsilon_{h_{k}}}(v, A)$$

for every $A \in \mathcal{A}$ and for every $u \in L^{p}(A)$. Moreover for every $u \in L^{p}(\Omega)$ the set function $A \to F(u, A)$ is the trace on \mathcal{A} of a regular Borel measure defined on Ω .

PROOF. Let \mathfrak{U} be a countable base for the open subsets of Ω , closed under finite unions; note that for every $A, B \in \mathcal{A}$ with $A \subset B$, there exists $U \in \mathfrak{U}$ such that $A \subset U \subset B$. By the compactness of Γ -convergence (see Propositions 2.2 and 2.7) there exists a subsequence of (ε_h) (which we still denote by (ε_h)) such that for every $B \in \mathfrak{U}$, $u \in L^p(B)$ there exists the Γ -limit

$$G(u,B) = \Gamma(\overline{\mathbb{N}}, w - L^{p}(B)^{-}) \lim_{\substack{h \to \infty \\ v \to u}} F_{\varepsilon_{h}}(v,B) \,.$$

For every $A \in \mathcal{A}$, $u \in L^p(A)$ we set

$$F(u, A) = \sup \left\{ G(u, B) \colon B \in \mathfrak{U}, B \subset A \right\}.$$

It is easy to see that for every $u \in L^p(\Omega)$ the set function $A \to G(u, A)$ is superadditive on U, so $A \to F(u, A)$ is superadditive on \mathcal{A} . It follows from Lemma 4.2 that $A \to F(u, A)$ is subadditive. So $A \to F(u, A)$ is increasing, superadditive, subadditive, and inner regular. By a result of measure theory (see [10] Proposition 5.5 and Theorem 5.6) this implies that $A \to F(u, A)$ is the trace on \mathcal{A} of a regular Borel measure defined on Ω . It remains to prove (4.3). Let

$$F^{-}(u,A) = \Gamma(\overline{\mathbb{N}}^{-}, w - L^{p}(A)^{-}) \lim_{\substack{h \to \infty \\ v \to u}} F_{\varepsilon_{h}}(v,A)$$

406

and

$$F^+(u,A) = \Gamma(\overline{\mathbf{N}}^+, w - L^p(A)^-) \lim_{\substack{h \to \infty \\ v \to u}} F_{\varepsilon_h}(v,A) \,.$$

By Remark 4.3 we have

$$egin{aligned} F^+(u,A) &= \sup \left\{F^+(u,B)\colon B\in\mathcal{A}, B\subset A
ight\} \ &= \sup \left\{G(u,B)\colon B\in\mathcal{A}, B\subset A
ight\} = F(u,A) \leqslant F^-(u,A) \leqslant F^+(u,A)\,, \end{aligned}$$

which proves (4.3).

LEMMA 4.5. Let F be the functional introduced in Lemma 4.4. There exists a Borel function $\psi: \Omega \times \mathbb{R} \to [0, +\infty[$ such that

(i) for every $A \in \mathcal{A}$, $u \in L^p(A)$

$$F(u, A) = \int_{A} \psi(x, u) dx,$$

- (ii) for every $x \in \Omega$ the function $s \to \psi(x, s)$ is convex on **R**,
- (iii) for every $x \in \Omega$, $s \in \mathbb{R}$

$$-a(x) + |s|^{p} \leq \psi(x,s) \leq f^{+}(x,s,0)$$
.

PROOF. Let us denote by $\mathfrak{B} = \mathfrak{B}(\mathfrak{Q})$ the class of all Borel subsets of \mathfrak{Q} . For every $u \in L^p(\mathfrak{Q})$ we denote by $\Phi(u, \cdot)$ the measure on \mathfrak{B} which extends $F(u, \cdot)$; it is easy to see that for every $B \in \mathfrak{B}$

$$\Phi(u, B) = \inf \left\{ F(u, A) \colon A \in \mathcal{A}, A \supseteq B \right\}.$$

First of all we prove that the functional Φ is local on \mathfrak{B} , that is: if u = v a.e. on a Borel set B, then $\Phi(u, B) = \Phi(v, B)$. Let $u, v \in L^p(\Omega)$ and let $B \in \mathfrak{B}$ with u = v a.e. on B; without loss of generality we may suppose that u = v everywhere on B and $u \leq v$ everywhere on Ω . By Lusin's theorem, for every $\varepsilon > 0$ there exists $A_{\varepsilon} \in \mathcal{A}$, with meas $(A_{\varepsilon}) < \varepsilon$, such that the restrictions $u|_{\Omega-A_{\varepsilon}}$ and $v|_{\Omega-A_{\varepsilon}}$ are continuous. Then the set $B_{\varepsilon} = A_{\varepsilon}$ $\cup \{x \in \Omega: v(x) < u(x) + \varepsilon\}$ is open; moreover $B_{\varepsilon} \supseteq B$. Define now

$$u_{\varepsilon}(x) = \left\{egin{array}{ll} v(x) & ext{if } x \in B_{\varepsilon} \ u(x) + \varepsilon & ext{if } x \in \Omega - B_{\varepsilon}; \end{array}
ight.$$

it is easy to see that (u_{ε}) converges to u strongly in $L^{p}(\Omega)$ as $\varepsilon \searrow 0$. For every $\eta > 0$ there exist an open set A and a compact set K such that $K \subseteq B \subseteq A \subseteq \Omega$, $F(u, A) < \Phi(v, B) + \eta$ and $\int [a(x) + c|u|^{p}] dx < \eta$.

Since $F(\cdot, A)$ is lower semicontinuous with respect to the weak topology of $L^{p}(A)$ (see Proposition 2.1) and F is local on A, using Lemma 4.1 and inequalities (3.1) we obtain

$$\begin{split} \Phi(u,B) \leqslant F(u,A) \leqslant \liminf_{\varepsilon \to 0^+} F(u_\varepsilon,A) \leqslant \liminf_{\varepsilon \to 0^+} [F(v,A \cap B_\varepsilon) + F(u_\varepsilon,A-K)] \\ \leqslant F(v,A) + \liminf_{\varepsilon \to 0^+} \int_{A-K} [a(x) + c |u_\varepsilon|^p] \, dx \leqslant \Phi(v,B) + 2\eta \, . \end{split}$$

Since $\eta < 0$ was arbitrary, we get

$$\Phi(u, B) \leqslant \Phi(v, B)$$
.

The opposite inequality can be proved in a similar way.

So the functional $\Phi: L^p(\Omega) \times \mathfrak{B} \to [0, +\infty[$ is local on B, for every $u \in L^p(\Omega)$ the set function $\Phi(u, \cdot)$ is a measure, and the function $\Phi(\cdot, \Omega)$ is lower semicontinuous in the weak topology of $L^p(\Omega)$. This implies (see [5]) that there exists a non-negative Borel function $\psi(x, s)$, convex in s, such that

$$\Phi(u, B) = \int_{B} \psi(x, u) dx$$

for every $u \in L^p(\Omega)$, $B \in \mathfrak{B}$. Since $\Phi(u, A) = F(u, A)$ for every $A \in \mathcal{A}$, we obtain (i) and (ii). Finally, (iii) follows from inequalities (3.1) and from Lemma 4.1.

LEMMA 4.6. For every $A \in \mathcal{A}$ and for every $u \in W^{m,r}(A) \cap L^p(A)$ we have

$$F^{+}(u, A) \geq \Gamma(\overline{\mathbb{N}}^{+}, w - L^{p}(A)^{-}) \lim_{\substack{h \to \infty \\ v \to u}} [F_{\varepsilon_{h}}(v, A) + T(v - u, A)]$$

where T is the functional defined by (3.5).

PROOF. Let $A \in \mathcal{A}$, $u \in W^{m,r}(A) \cap L^p(A)$, and $\eta > 0$. There exists a sequence (u_{λ}) in $W^{m,r}_{loc}(A) \cap L^p(A)$ converging to u weakly in $L^p(A)$ such that

$$F^+(u,A) + \eta \ge \limsup_{h\to\infty} F_{\varepsilon_h}(u_h,A).$$

408

Let A_0 , B_0 be two open sets with $A_0 \subset B_0 \subset A$ and $\text{meas}(\partial A_0) = \text{meas}(\partial B_0) = 0$. Fix an integer ν and, for $i = 1, 2, ..., \nu$, define A_i and φ_i as in Lemma 4.2. Set

$$w_{i,h} = \varphi_i u_h + (1 - \varphi_i) u;$$

we have $T(w_{i,h} - u, A) = 0$. With the same argument used in the proof of Lemma 4.2 we get

$$\begin{split} F_{\varepsilon_h}(w_{i_h,h},A) &\leqslant F_{\varepsilon_h}(u_h,A) + F_{\varepsilon_h}(u,A-\overline{A}_0) + \frac{c}{\nu}(1+\varepsilon_h c_{\nu,\sigma}) \\ &\quad + \frac{c}{\nu}(1+\sigma c_{\nu})\lambda(\varepsilon_h^{-1}S',\varepsilon_h^{-1}A)[c+F_{\varepsilon_h}(u_h,A) + F_{\varepsilon_h}(u,A-\overline{A}_0)]\,, \end{split}$$

where $B_0 - \overline{A}_0 \subset S' \subset A$. Since $(w_{ih,h})$ converges to u weakly in $L^p(A)$ we have

$$\begin{split} \inf \left\{ \limsup_{h \to \infty} \left[F_{\varepsilon_h}(v_h, A) + T(v_h - u, A) \right] : v_h \to u \text{ in } w - L^p(A) \right\} \\ < F^+(u, A) + \eta + \int_{A - \overline{A}_0} \left[a(x) + c |u|^p \right] dx + \frac{c}{\nu} \\ + \frac{c}{\nu} (1 + \sigma c_\nu) M \left\{ c + F^+(u, A) + \eta + \int_{A - \overline{A}_0} \left[a(x) + c |u|^p \right] dx \right\}, \end{split}$$

where $M = \limsup_{t \to +\infty} \lambda(tS', tA)$. Passing to the limit first as $\sigma \to 0$, next as $v \to +\infty$, then as $\eta \to 0$, and finally as $A_0 \uparrow A$, we get the thesis.

LEMMA 4.7. Assume that

$$\int_{A} \psi(x, u) dx = \Gamma(\overline{\mathbf{N}}, w - L^{p}(A)^{-}) \lim_{\substack{h \to \infty \\ v \to u}} F_{\varepsilon_{h}}(v, A)$$

for every $A \in \mathcal{A}$ and for every $u \in L^p(A)$. Then

$$\int_{A} \psi(x, u) dx = \Gamma(\overline{\mathbb{N}}, w - L^{p}(A)^{-}) \lim_{\substack{h \to \infty \\ v \to u}} [F_{\varepsilon_{h}}(v, A) + T(v - w_{0}, A)]$$

for every $A \in \mathcal{A}, \ u \in L^p(A), \ w_0 \in W^{m,r}(A) \cap L^p(A).$

PROOF. Let $A \in \mathcal{A}$, $u \in L^{p}(A)$, $w_{0} \in W^{m,r}(A) \cap L^{p}(A)$. There exists a sequence (u_{k}) in $W^{m,r}(A) \cap L^{p}(A)$ converging to u strongly in $L^{p}(A)$ such that

 $u_k - w_0 \in W_0^{m,r}(A)$. Using Lemma 4.6 we obtain for every $k \in \mathbb{N}$

$$\begin{split} \int\limits_{A}^{\Psi(x,\,u_k)dx \geqslant \Gamma(\overline{\mathbf{N}}^+,\,w-L^p(A)^-) \lim_{\substack{h \to \infty \\ v \to u_k}} \left[F_{\varepsilon_h}(v,A) + T(v-u_k,A)\right] \\ &= \Gamma(\overline{\mathbf{N}}^+,\,w-L^p(A)) \lim_{\substack{h \to \infty \\ v \to u_k}} \left[F_{\varepsilon_h}(v,A) + T(v-w_0,A)\right]. \end{split}$$

Since Γ -limits are lower semicontinuous (see Proposition 2.1) and $\int_{\mathcal{A}} \psi(x, v) dx$ is continuous in $L^{p}(\mathcal{A})$ (see Lemma 4.5), passing to the limit as $k \to +\infty$ we obtain

$$\begin{split} \int_{A} & \psi(x,u) \, dx \geqslant \Gamma(\overline{\mathbf{N}}^+, w - L^p(A)^-) \lim_{\substack{h \to \infty \\ v \to u}} \left[F_{\varepsilon_h}(v,A) + T(v - w_0, A) \right] \\ & > \Gamma(\overline{\mathbf{N}}^-, w - L^p(A)^-) \lim_{\substack{h \to \infty \\ v \to u}} \left[F_{\varepsilon_h}(v,A) + T(v - w_0, A) \right] \ge \int_{A} \psi(x,u) \, dx. \quad \blacksquare$$

Let $Y =]0, 1[^n \text{ and let } W^{m,r}_{\#}(Y)$ be the space of all Y-periodic functions of $W^{m,r}_{\text{loc}}(\mathbb{R}^n)$; for every $\varepsilon > 0$, $x \in \Omega$, $s \in \mathbb{R}$ we set

$$\begin{cases} W(s) = \left\{ u \in W^{m,r}(Y) \cap L^{p}(Y) : \int_{Y} u(y) dy = s \right\} \\ W_{0}(s) = \left\{ u \in W^{m,r}(Y) \cap L^{p}(Y) : \int_{Y} u(y) dy = s, \ u - s \in W_{0}^{m,r}(Y) \right\} \\ W_{\#}(s) = \left\{ u \in W_{\#}^{m,r}(Y) \cap L^{p}(Y) : \int_{Y} u(y) dy = s \right\} \\ m^{\varepsilon}(x,s) = \inf \left\{ \int_{Y} f(x, u(y), \varepsilon^{k} D^{k} u(y)) dy : u \in W(s) \right\} \\ m^{\varepsilon}_{0}(x,s) = \inf \left\{ \int_{Y} f(x, u(y), \varepsilon^{k} D^{k} u(y)) dy : u \in W_{0}(s) \right\} \\ m^{\varepsilon}_{\#}(x,s) = \inf \left\{ \int_{Y} f(x, u(y), \varepsilon^{k} D^{k} u(y)) dy : u \in W_{\#}(s) \right\} \\ m_{0}(x,s) = \inf \left\{ m^{\varepsilon}_{0}(x,s) : \varepsilon > 0 \right\} \\ m_{\#}(x,s) = \inf \left\{ m^{\varepsilon}_{\#}(x,s) : \varepsilon > 0 \right\}. \end{cases}$$

LEMMA 4.8. For every $x \in \Omega$, $s \in \mathbb{R}$

$$m_0(x,s) = \lim_{\varepsilon \to 0^+} m_0^{\varepsilon}(x,s) \, .$$

410

PROOF. Let $x \in \Omega$, $s \in \mathbb{R}$, $u \in W_0(s)$, ε , $\eta \in \mathbb{R}$ with $0 < \eta < \varepsilon$. Let v be the Y-periodic extension of u, that is the function which satisfies v(x + y) = v(x) for every $x \in \mathbb{R}^n$, $y \in \mathbb{Z}^n$ and v(x) = u(x) for every $x \in Y$. There exist $N \in \mathbb{N}$ and $\delta \in [0, 1[$ such that $\varepsilon = (N + \delta)\eta$. Define for every $y \in Y$

$$w(y) = egin{cases} v\left(rac{arepsilon}{\eta}y
ight) & ext{if } y \in Nrac{\eta}{arepsilon} Y \ s & ext{otherwise} \,. \end{cases}$$

Then $w \in W_0(s)$ and

$$\int_{\mathbf{Y}} f(x, w(y), \eta^{k} D^{k} w(y)) dy < \left(N \frac{\eta}{\varepsilon} \right)_{\mathbf{Y}}^{n} \int_{\mathbf{Y}} f(x, u(y), \varepsilon^{k} D^{k} u(y)) dy + n \frac{\delta \eta}{\varepsilon} f(x, s, 0) < \int_{\mathbf{Y}} f(x, u(y), \varepsilon^{k} D^{k} u(y)) dy + n \frac{\eta}{\varepsilon} f(x, s, 0)$$

This implies that for every $\varepsilon, \eta \in \mathbf{R}$, with $0 < \eta \leq \varepsilon$

$$m_0^{\eta}(x,s) \leqslant m_0^s(x,s) + n \frac{\eta}{\varepsilon} f(x,s,0) ,$$

and from this inequality it follows that

$$\inf_{\varepsilon>0} m_0^{\varepsilon}(x,s) = \lim_{\varepsilon\to 0^+} m_0^{\varepsilon}(x,s) \,. \quad \blacksquare$$

LEMMA 4.9. Suppose that the function f does not depend on the variable x and that

$$\int_{A}^{} \psi(u) dx = \Gamma(\overline{\mathbf{N}}, w - L^{p}(A)^{-}) \lim_{\substack{h \to \infty \\ v \to u}} F_{\varepsilon_{\mathbf{A}}}(v, A)$$

for every $A \in \mathcal{A}$, $u \in L^{p}(A)$. Then m^{ε} , m^{ε}_{0} and m_{0} do not depend on x and

$$\lim_{h\to\infty} m^{s_h}(s) = m_0(s) = \psi(s)$$

for every $s \in \mathbf{R}$.

PROOF. Let $s \in \mathbb{R}$ and let (u_h) be a sequence converging to s weakly in $L^p(Y)$ such that $u_n - s \in W_0^{m,r}(Y)$; let $\varphi \in C_0^{\infty}(Y)$ with $\int \varphi dx = 1$; there exists a sequence (η_h) converging to 0 in \mathbb{R} such that $\int_Y [u_h(y) + \eta_h \varphi(y)] dy = s$ for every $h \in \mathbb{N}$. Then by hypothesis (3.2) we have

$$m_0^{s_h}(s) < F_{s_h}(u_h + \eta_h \varphi, Y) < F_{s_h}(u_h, Y) + \sigma(\eta_h M) \Big[\int_Y a(x) dx + F_{s_h}(u_h, Y) \Big],$$

where $M = \sup_{|\alpha| \le m} |D^{\alpha} \varphi|$. Passing to the limit as $h \to +\infty$ we obtain

$$m_0(s) \leq \liminf_{h \to \infty} F_{\varepsilon_h}(u_h, Y)$$

Since (u_h) is arbitrary, by Lemma 4.7 we get

(4.5)
$$m_0(s) \leqslant \Gamma(\overline{\mathbf{N}}, w - L^p(A)) \lim_{\substack{h \to \infty \\ v \to s}} [F_{\varepsilon_h}(v, A) + T(v - s, A)] = \psi(s).$$

Consider now a subsequence (ε_{h_k}) such that $\liminf_{h\to\infty} m^{\varepsilon_h}(s) = \lim_{h\to\infty} m^{\varepsilon_h}(s)$. For every $k \in \mathbb{N}$ there exists $w_k \in W(s)$ such that $F_{\varepsilon_{h_k}}(w_k, Y) \leq m^{\varepsilon_h}(s) + 1/k$. By hypothesis (3.1) the sequence (w_k) is bounded in $L^p(Y)$; thus for a suitable subsequence (w_{k_i}) , we have that (w_{k_i}) converges weakly in $L^p(Y)$ to a function u such that $\int_Y u(y) dy = s$. Therefore, using Jensen's inequality, Remark 2.6, Lemma 4.8 and inequality (4.5), we get

$$\begin{split} m_{\mathbf{0}}(s) \leqslant \psi(s) &= \psi\left(\int_{Y} u(y) \, dy\right) \leqslant \int_{Y} \psi(u) \, dy = \Gamma(\overline{\mathbf{N}}, \, w - L^{p}(Y)^{-}) \lim_{\substack{h \to \infty \\ v \to u}} F_{\varepsilon_{h}}(v, \, Y) \\ & \leqslant \liminf_{i \to \infty} F_{\varepsilon_{h_{k_{i}}}}(w_{k_{i}}, \, Y) \leqslant \lim_{k \to \infty} m^{\varepsilon_{h}}(s) = \liminf_{h \to \infty} m^{\varepsilon_{h}}(s) \\ & \leqslant \limsup_{h \to \infty} m^{\varepsilon_{h}}(s) \leqslant \limsup_{h \to \infty} m^{\varepsilon_{h}}(s) = m_{\mathbf{0}}(s) . \end{split}$$

LEMMA 4.10. Suppose that the function f does not depend on the variable x. Then there exists a convex function $\psi \colon \mathbb{R} \to [0, +\infty[$ such that

(4.6)
$$\int_{A}^{\Psi(u)} dx = \Gamma(\mathbb{R}, w - L^{p}(A)^{-}) \lim_{\substack{\varepsilon \to 0^{+} \\ v \to u}} F_{\varepsilon}(v, A)$$
$$= \Gamma(\mathbb{R}, w - L^{p}(A)^{-}) \lim_{\substack{\varepsilon \to 0^{+} \\ v \to u}} [F_{\varepsilon}(v, A) + T(v - w_{0}, A)]$$

for every $A \in \mathcal{A}$, $u \in L^{p}(A)$, $w_{0} \in W^{m,r}(A) \cap L^{p}(A)$. Moreover m^{e} , m_{0}^{e} , m_{0} do not depend on x and

$$\psi(s) = m_0(s) = \lim_{s \to 0^+} m_0^s(s) = \lim_{s \to 0^+} m^s(s)$$

for every $s \in \mathbb{R}$.

PROOF. Let (ε_h) be a sequence in R converging to 0 such that $\varepsilon_h > 0$ for every $h \in \mathbb{N}$. By Lemmas 4.4, 4.5 and 4.7 there exist a subsequence (ε_{h_*})

of (ε_h) and a Borel function $\psi(x, s)$, convex in s, such that

$$\begin{split} \int_{A}^{P} & \psi(x, u) \, dx = \Gamma(\overline{\mathbb{N}}, \, w - L^p(A)^-) \lim_{\substack{k \to \infty \\ v \to u}} F_{\varepsilon_{h_k}}(v, A) \\ & = \Gamma(\overline{\mathbb{N}}, \, w - L^p(A)^-) \lim_{\substack{k \to \infty \\ v \to u}} [F_{\varepsilon_{h_k}}(v, A) + T(v - w_0, A)] \end{split}$$

for every $A \in \mathcal{A}$, $u \in L^{p}(A)$, $w_{0} \in W^{m,r}(A) \cap L^{p}(A)$. Since f does not depend on x, it is easy to see that $\int_{y+A} \psi(x, u(x-y)) dx = \int_{A} \psi(x, u(x)) dx$ for every $A \in \mathcal{A}$, $u \in L^{p}(A)$ and for every $y \in \mathbb{R}^{n}$ such that $y + A \subseteq \Omega$. This implies that ψ does not depend on x, that is $\psi(x, s) = \psi(s)$.

By Lemma 4.9 we have

$$\psi(s) = m_0(s)$$

for every $s \in \mathbb{R}$. So the function ψ does not depend on the sequence (ε_h) . By Proposition 2.8 this implies (4.6).

By Lemma 4.9 we have $m_0(s) = \lim_{k \to \infty} m^{\epsilon_{h_k}}(s)$. Since the limit does not depend on the sequence (ϵ_h) , we obtain

$$m_0(s) := \lim_{\varepsilon \to 0^+} m^{\varepsilon}(s)$$
.

The equality $m_0(s) = \lim_{s \to 0^+} m_0^s(s)$ has already been proved in Lemma 4.8.

PROOF OF THEOREM 3.1. Let (ε_h) be a sequence in $]0, +\infty[$ converging to 0. By Lemmas 4.4, 4.5 and 4.7 there exist a subsequence (ε_{h_k}) of (ε_h) and a Borel function $\psi: \Omega \times \mathbb{R} \to [0, +\infty[$, which satisfies condition (ii) of the theorem, such that

$$\int_{A}^{W} \psi(x, u) dx = \Gamma(\overline{\mathbf{N}}, w - L^{p}(A)^{-}) \lim_{\substack{k \to \infty \\ v \to u}} F_{\varepsilon_{h_{k}}}(v, A)$$

$$= \Gamma(\overline{\mathbf{N}}, w - L^{p}(A)^{-}) \lim_{\substack{k \to \infty \\ v \to u}} [F_{\varepsilon_{h_{k}}}(v, A) + T(v - w_{0}, A)]$$

for every $A \in \mathcal{A}, \ u \in L^{p}(A), \ w_{0} \in W^{m,r}(A) \cap L^{p}(A).$

In order to prove (i), by Proposition 2.8 we have only to show that

(4.7)
$$\psi(x,s) = m_0(x,s) = \lim_{s \to 0^+} m^s(x,s) = m_g(x,s)$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$, where m_0 and m^s are defined by (4.4).

Let $N \ge 1$ be an integer; for every $j \in \mathbb{Z}^n$ we set $Y_N^j = (1/N)(Y+j)$ and $\Omega_N^j = \Omega \cap Y_N^j$ (here $Y =]0, 1[^n)$). Define $f_N \colon \Omega \times \mathbb{R} \times \mathbb{R}^d \to [0, +\infty[$ by

$$f_N(x, s, z) = \int \limits_{\Omega^j_N} f(y, s, z) dy \quad ext{ for } x \in \Omega^j_N \,,$$

where \oint_{A} denotes the average over the set A. Define

$$F^N_{\varepsilon}(u, A) = \int_A f_N(x, u, \varepsilon^k D^k u) dx$$

and let $(m_N)^{\mathfrak{s}}(x,s)$, $(m_N)^{\mathfrak{s}}_0(x,s)$, $(m_N)_0(x,s)$ be the functions related to f_N defined as in (4.4). Since f_N is piecewise constant with respect to the variable x, by Lemmas 4.5 and 4.10 there exists a Borel function $\psi_N(x,s)$, piecewise constant in x and convex in s, such that

$$\int_{A} \psi_{\mathbb{N}}(x,u) dx = \Gamma(\overline{\mathbb{N}}, w - L^{p}(A)^{-}) \lim_{\substack{s \to 0^{+} \\ v \to u}} F_{s}^{\mathbb{N}}(v, A)$$

for every $A \in \mathcal{A}$, $u \in L^{p}(A)$; moreover

(4.8)
$$\psi_{\mathbf{N}}(x,s) = (m_{\mathbf{N}})_0(x,s) = \lim_{\varepsilon \to 0^+} (m_{\mathbf{N}})_0^\varepsilon(x,s) = \lim_{\varepsilon \to 0^+} (m_{\mathbf{N}})^\varepsilon(x,s)$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.

Let $Q_N = [-1/N, 1/N[^n]$. If $Y_N^i \subseteq \Omega$, using condition (3.2) we obtain for every $x \in Y_N^i$, $s \in \mathbb{N}$, $z \in \mathbb{R}^d$

$$\begin{split} |f_{x}(x,s,z) - f(x,s,z)| &= \left| \int_{Y_{x}^{j} - x} [f(x+y,s,z) - f(x,s,z)] dy \right| \\ &\leq 2^{n} \int_{Q_{N}} |f(x+y,s,z) - f(x,s,z)| dy \leq 2^{n} \int_{Q_{N}} \{\omega(x,y) + \sigma(|y|)[a(x) + f(x,s,z)]\} dy \\ &\leq 2^{n} \int_{Q_{N}} \omega(x,y) dy + 2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right) [a(x) + f(x,s,z)]. \end{split}$$

This implies that

$$(4.9) \qquad \left[1 - 2^n \sigma\left(\frac{\sqrt{n}}{N}\right)\right] f(x, s, z) - 2^n \sigma\left(\frac{\sqrt{n}}{N}\right) a(x) - 2^n \int_{Q_N} \omega(x, y) \, dy$$
$$< f_N(x, s, z) < \left[1 + 2^n \sigma\left(\frac{\sqrt{n}}{N}\right)\right] f(x, s, z) + 2^n \sigma\left(\frac{\sqrt{n}}{N}\right) a(x) + 2^n \int_{Q_N} \omega(x, y) \, dy$$

for every $s \in \mathbb{R}$, $z \in \mathbb{R}^d$ and for every $x \in \Omega$ such that dist $(x, \mathbb{R}^n - \Omega) > \sqrt{n}/N$. Passing to the Γ -limit along the sequence (ε_{h_k}) we obtain

$$(4.10) \qquad \left[1 - 2^n \sigma\left(\frac{\sqrt{n}}{N}\right)\right] \int_A^{A} \psi(x, u) dx - 2^n \sigma\left(\frac{\sqrt{n}}{N}\right) \int_A^{A} a(x) dx - 2^n \int_A^{A} dx \int_{Q_N}^{A} \omega(x, y) dy$$
$$< \int_A^{A} \psi_N(x, u) dx < \left[1 + 2^n \sigma\left(\frac{\sqrt{n}}{N}\right)\right] \int_A^{A} \psi(x, u) dx$$
$$+ 2^n \sigma\left(\frac{\sqrt{n}}{N}\right) \int_A^{A} a(x) dx + 2^n \int_A^{A} dx \int_{Q_N}^{A} \omega(x, y) dy$$

for every $A \in \mathcal{A}$ with $d(A, \mathbb{R}^n - \Omega) > \sqrt{n}/N$ and for every $u \in L^p(A)$. By (3.2) we have

(4.11)
$$\lim_{N\to\infty} \int_A dx \oint_{Q_N} \omega(x,y) dy = \lim_{N\to\infty} \int_{Q_N} dy \int_A \omega(x,y) dx = 0$$

for every $A \in A$ with $A \subset \Omega$. Thus, passing to the limit in (4.10) as $N \to +\infty$ we get

(4.12)
$$\int_{A} \psi(x, u) dx = \lim_{N \to \infty} \int_{A} \psi_N(x, u) dx$$

for every $A \in \mathcal{A}$ with $A \subset \mathcal{Q}$ and for every $u \in L^p(A)$.

Using the definitions of m^{ε} and $(m_N)^{\varepsilon}$, from (4.9) we obtain that

$$\begin{bmatrix} 1 - 2^n \sigma\left(\frac{\sqrt{n}}{N}\right) \end{bmatrix} m^{\varepsilon}(x,s) - 2^n \sigma\left(\frac{\sqrt{n}}{N}\right) a(x) - 2^n \int_{Q_N} \omega(x,y) \, dy$$
$$< (m_N)^{\varepsilon}(x,s) < \left[1 + 2^n \sigma\left(\frac{\sqrt{n}}{N}\right) \right] m^{\varepsilon}(x,s) + 2^n \sigma\left(\frac{\sqrt{n}}{N}\right) a(x) + 2^n \int_{Q_N} \omega(x,y) \, dy$$

for every $x \in \Omega$ with dist $(x, \mathbb{R}^n - \Omega) > \sqrt{n}/N$ and for every $s \in \mathbb{R}$. Letting $\varepsilon \to 0^+$ and using (4.8) we get

(4.13)
$$\left[1-2^{n}\sigma\left(\frac{\sqrt{n}}{N}\right)\right] \limsup_{s \to 0^{+}} m^{\varepsilon}(x,s) - 2^{n}\sigma\left(\frac{\sqrt{n}}{N}\right)a(x) - 2^{n}\int_{Q_{N}} \omega(x,y)\,dy$$
$$< \lim_{s \to 0^{+}} (m_{N})^{\varepsilon}(x,s) = \psi_{N}(x,s) < \left[1+2^{n}\sigma\left(\frac{\sqrt{n}}{N}\right)\right] \liminf_{\varepsilon \to 0^{+}} m^{\varepsilon}(x,s)$$
$$+ 2^{n}\sigma\left(\frac{\sqrt{n}}{N}\right)a(x) + 2^{n}\int_{Q_{N}} \omega(x,y)\,dy .$$

Equality (4.11) implies that there exists an increasing sequence of integers (N_k) such that $\lim_{k\to\infty} \oint_{Q_{N_k}} \omega(x, y) dy = 0$ for a.a. $x \in \Omega$. Letting $N \to +\infty$ in (4.13) along the sequence (N_k) , we get that there exists

$$\lim_{\varepsilon\to 0^+} m^\varepsilon(x,s) = m(x,s)$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$, and that

$$m(x,s) = \lim_{k \to \infty} \psi_{N_k}(x,s)$$

for a.a. $x \in Q$ and for all $s \in \mathbb{R}$. In the same way we prove that

$$m_0(x,s) = \lim_{k \to \infty} \psi_{N_k}(x,s) \, .$$

Using (4.12) we obtain

$$\int_{A} m(x,s) dx = \int_{A} m_0(x,s) dx = \lim_{k \to \infty} \int_{A} \psi_{\mathcal{R}_k}(x,s) dx = \int_{A} \psi(x,s) dx$$

for every $A \in \mathcal{A}$ with $A \subset \mathcal{Q}$ and for every $s \in \mathbb{R}$.

Since m, m_0, ψ are continuous in s (indeed they are convex), this implies that

(4.14)
$$m(x, s) = m_0(x, s) = \psi(x, s)$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.

In order to prove (4.7) it is enough to show that

$$(4.15) \qquad \qquad \psi(x,s) = m_{\#}(x,s)$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$. Since $W_0(s) \subseteq W_{\#}(s) \subseteq W(s)$ we have

$$m^{\varepsilon}(x,s) \leqslant m^{\varepsilon}_{\#}(x,s) \leqslant m^{\varepsilon}_{0}(x,s);$$

thus from (4.14) it follows that

(4.16)
$$\psi(x,s) = \lim_{\varepsilon \to 0^+} m_{\#}^{\varepsilon}(x,s) \, .$$

By a change of variables, it is easy to verify that $m_{\#}^{2e}(x,s) \ge m_{\#}^{e}(x,s)$ for

every $\varepsilon > 0$. Therefore (4.16) yields

$$\psi(x,s) = \lim_{\varepsilon \to 0^+} m_{\#}^{\varepsilon}(x,s) = \inf_{\varepsilon > 0^+} m_{\#}^{\varepsilon}(x,s) \, .$$

This proves (4.15).

It remains to prove property (iii). The inequality $\psi(x,s) \leq f^+(x,s,0)$ follows from Lemma 4.1 and from the convexity of $\psi(x,\cdot)$.

Let $x \in \Omega$, $s \in \mathbb{R}$, $u \in W_0(s)$, $\varepsilon > 0$; by Jensen's inequality we have

$$f^-(x, s, 0) = f^-\left(x, \int_Y u(y) dy, \varepsilon^k \int_Y D^k u(y) dy
ight)$$

 $\leq \int_Y f^-(x, u(y), \varepsilon^k D^k u(y)) dy \leq \int_Y f(x, u(y), \varepsilon^k D^k u(y)) dy.$

Thus by the representation formula for ψ we have

$$f^{-}(x, s, 0) \leq \psi(x, s)$$
.

5. - Some examples.

In this section we give some examples and applications of Theorem 3.1. In particular we show that the inequalities

(5.1)
$$f^{-}(x, s, 0) \leq \psi(x, s) \leq f^{+}(x, s, 0)$$

cannot be improved; in fact, there are some examples where $\psi(x, s) = f^{-}(x, s, 0)$ (see Proposition 5.9 and Remark 5.10), and some other examples where $\psi(x, s) = f^{+}(x, s, 0)$ (see Proposition 5.2). In the case $f^{-}(x,s,0) = f^{+}(x, s, 0)$ the integrand $\psi(x, s)$ is determined by the inequalities (5.1); this allows us to generalize some results of A. Bensoussan [2] and V. Komornik [13] (see Proposition 5.5 and Proposition 5.6).

For every $p \ge 2$ we denote by \mathbb{S}_p the class of functions $g: \mathbb{R} \to \mathbb{R}$ such that

(5.2)
$$|g(s)| \leq c(1 + |s|^{p/2})$$

(5.3)
$$|g(t) - g(s)| \leq \varrho(|t - s|)(1 + |s|^{p/2})$$

for every s, $t \in \mathbb{R}$, where c is a positive constant and $\varrho: [0, +\infty[\rightarrow [0, +\infty[$

is an increasing continuous function with $\rho(0) = 0$. Examples of functions of the class \mathfrak{G}_n are the polynomials of degree less than or equal to p/2.

Let N > 0, $b \in L^p(\Omega)$, $g \in \mathbb{G}_p$; after some simple calculations (see section 6) one can verify that the functionals

$$F_{\varepsilon}(u, A) = \int_{A} [N|\varepsilon^2 \Delta u + g(u)|^2 + |u - b(x)|^p] dx$$

satisfy all hypotheses of Theorem 3.1, with m = r = 2,

$$\begin{split} f(x,s,z) &= N \left| \sum_{i=1}^{n} z_{ii} + g(s) \right|^{2} + |s - b(x)|^{p} \quad \left(\text{here } z = (z_{ij})_{1 \le i+j \le 2} \right), \\ \gamma(s,z) &= c_{1} \left[\left| \sum_{i=1}^{n} z_{ii} \right|^{2} + s^{2} \right], \\ \lambda(A',A) &= c_{2} \max \left\{ 1, \operatorname{dist} (A', \mathbf{R}^{n} - A)^{-4} \right\}, \end{split}$$

where c_1 , c_2 are suitable positive constants.

Let $\psi(x, s)$ be the function, convex in s, such that

$$\int_{A} \psi(x, u) dx = \Gamma(\mathbb{R}, w - L^{p}(A)^{-}) \lim_{\substack{\varepsilon \to 0^{+} \\ v \to u}} F_{\varepsilon}(v, A)$$

for every $A \in \mathcal{A}$, $u \in L^p(A)$.

PROPOSITION 5.1. If g is an affine function, then

 $\psi(x, s) = f(x, s, 0) = N|g(s)|^2 + |s - b(x)|^p$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.

PROOF. Since in this case $f(x, s, z) = f^{-}(x, s, z) = f^{+}(x, s, z)$, the proposition follows from (5.1).

In the following proposition we give a new proof of a result due to A. Haraux and F. Murat [11].

PROPOSITION 5.2. Let g be a decreasing function of the class \mathbb{G}_{p} , let $b \in L^{p}(\Omega)$, and let N > 0. Then

$$\psi(x,s)=f^+(x,s,0)$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.

PROOF. Let $x \in \Omega$, $s \in \mathbb{R}$, $\varepsilon > 0$, $u \in W_0(s)$ (see (4.4)). Then

(5.4)
$$\int_{Y} \left[N |\varepsilon^{2} \Delta u(y) + g(u(y))|^{2} + |u(y) - b(x)|^{p} \right] dy$$
$$= \int_{Y} \left[N \varepsilon^{4} |\Delta u(y)|^{2} + N |g(u(y))|^{2} + 2N \varepsilon^{2} \Delta u(y) g(u(y)) + |u(y) - b(x)|^{p} \right] dy$$

Let us prove that

(5.5)
$$\int_{Y} g(u) \Delta u \, dy \ge 0 \; .$$

There exists a sequence (g_h) of decreasing functions of class C^1 , with bounded derivatives, such that $g(s) = \lim_{h} g_h(s)$ for every $s \in \mathbb{R}$, and $|g_h(s)| \leq c(1+|s|^{p/2})$ for every $h \in \mathbb{N}$, $s \in \mathbb{R}$.

By the dominated convergence theorem

$$\int_{\mathbf{Y}} g(u) \, \Delta u \, dy = \lim_{h} \int_{\mathbf{Y}} g_h(u) \, \Delta u \, dy$$

Since $u - s \in W_0^{2,2}(Y)$ we have

$$\int_Y g_{\hbar}(u) \Delta u \, dy = - \int_Y g'_{\hbar}(u) |Du|^2 dy \ge 0 ,$$

so (5.5) is proved. From (5.4), (5.5) and Jensen's inequality it follows that

$$\int_{Y} [N|\varepsilon^{2} \Delta u(y) + g(u(y))|^{2} + |u(y) - b(x)|^{p}] dy \\ > \int_{Y} [N|g(u(y))|^{2} + |u(y) - b(x)|^{p}] dy > \int_{Y} f^{+}(x, u(y), 0) dy > f^{+}(x, s, 0) .$$

Since $\varepsilon > 0$ and $u \in W_0(s)$ are arbitrary, the representation formula for ψ implies $\psi(x, s) \ge f^+(x, s, 0)$. The opposite inequality follows from (5.1).

We construct now an example which shows that the equality $\psi(x, s) = f^+(x, s, 0)$ does not hold for an arbitrary function $g \in \mathfrak{S}_p$.

PROPOSITION 5.3. Let n = 1, m = p = r = 2, $\Omega =]0, 1[$ and let g be defined by

$$g(s) = \left\{egin{array}{ll} s & ext{if } s < 0 \ s/4 & ext{if } s \geqslant 0 \ . \end{array}
ight.$$

If $N > 6\pi^2 - 16$ and $b \in L^2(\Omega)$, then

$$\psi(x,s) < f^+(x,s,0) = f(x,s,0) = N|g(s)|^2 + |s-b(x)|^2$$

for a.a. $x \in \Omega$ and for all s > 0. If in addition b(x) > 0 for a.a. $x \in \Omega$, then

$$\lim_{\varepsilon\to 0^+} \inf \left\{ F_{\varepsilon}(u,\Omega) \colon u \in W^{2,2}(\Omega) \right\} < \min \left\{ \int_{\Omega} f^+(x,u,0) \, dx \colon u \in L^2(\Omega) \right\}.$$

PROOF. Define on $[-\pi, 2\pi]$

$$u(x) = \begin{cases} \frac{k}{2} \sin x & \text{if } x \in [-\pi, 0] \\ \\ k \sin \frac{x}{2} & \text{if } x \in [0, 2\pi] \end{cases}$$

(k > 0 is a parameter) and extend u to \mathbb{R} by periodicity (the period is 3π). Set $u_{\varepsilon}(x) = u(x/\varepsilon)$; as $\varepsilon \to 0^+$ we have that (u_{ε}) converges to k/π and $(|u_{\varepsilon}|^2)$ converges to $\frac{3}{5}k^2$ weakly in $L^2(0,1)$. Since $\varepsilon^2 u_{\varepsilon}'' + g(u_{\varepsilon}) = 0$, for every $A \in \mathcal{A}$, $b \in L^2(A)$ we have

$$\begin{split} \int_{\mathcal{A}} &\psi\left(x,\frac{k}{\pi}\right) dx \leq \liminf_{\varepsilon \to 0^+} \int_{\mathcal{A}} \left[N|\varepsilon^2 u'' + g(u_\varepsilon)|^2 + |u_\varepsilon - b(x)|^2 \right] dx \\ &= \lim_{\varepsilon \to 0^+} \int_{\mathcal{A}} \left[|u_\varepsilon|^2 - 2u_\varepsilon b(x) + b(x)|^2 \right] dx = \int_{\mathcal{A}} \left[\frac{3}{8} k^2 - \frac{2k}{\pi} b(x) + |b(x)|^2 \right] dx \,. \end{split}$$

Therefore, for a.a. $x \in [0, 1[$ and for all s > 0, we have

$$\psi(x,s) \leqslant \frac{3}{8}\pi^2 s^2 - 2sb(x) + |b(x)|^2.$$

On the other hand

$$\begin{split} f^+(x,s,0) &= f(x,s,0) = N |g(s)|^2 + |s-b(x)|^2 \\ &= \begin{cases} (N+1) \, s^2 - 2sb(x) + |b(x)|^2 & \text{ if } s < 0 \\ \\ \left(\frac{N}{16} + 1\right) s^2 - 2sb(x) + |b(x)|^2 & \text{ if } s > 0 \,. \end{cases} \end{split}$$

Therefore, if $N > 6\pi^2 - 16$, then $\psi(x, s) < f^+(x, s, 0)$ for a.a. $x \in \Omega$ and for

all s > 0. If in addition b(x) > 0, we obtain from Corollary 3.2

$$\begin{split} \lim_{s \to 0^+} \inf \left\{ F_{\varepsilon}(u, \Omega) \colon u \in W^{2, 2}(\Omega) \right\} &= \lim_{s \to 0^+} \inf \left\{ F_{\varepsilon}(u, \Omega) \colon u \in W^{2, 2}_{0}(\Omega) \right\} \\ &= \min \left\{ \int_{\Omega} \psi(x, u) \, dx \colon u \in L^{2}(\Omega) \right\} {<} \left(1 - \frac{8}{3\pi^{2}} \right) \int_{\Omega} |b(x)|^{2} \, dx \\ &< \left(1 - \frac{16}{N+16} \right) \int_{\Omega} |b(x)|^{2} \, dx = \min \left\{ \int_{\Omega} f^{+}(x, u, 0) \, dx \colon u \in L^{2}(\Omega) \right\}. \quad \blacksquare \end{split}$$

We give now another example where g is a polynomial and the equality $\psi(x, s) = f^{+}(x, s, 0)$ is not satisfied.

PROPOSITION 5.4. Let n = 1, m = r = 2, p = 6, $\Omega =]0, 1[$, and let g be defined by

$$g(s)=s^3+s-\frac{5}{8}.$$

Then there exist $s_0 \in [0, \frac{1}{2}[$ and $K \in [0, +\infty[$ with the following property: if $b \in L^{\infty}(\Omega)$ and $N > K[1 + ||b||_{L^{\infty}(\Omega)}^{4}]$, then

$$\psi(x, s_0) < f^+(x, s_0, 0) = f(x, s_0, 0) = N|g(s_0)|^2 + |s_0 - b(x)|^6$$

for a.a. $x \in \Omega$.

PROOF. Let u be the solution of the Cauchy problem

$$\begin{cases} u'' + u^3 + u - \frac{5}{8} = 0 \\ u(0) = u'(0) = 0 . \end{cases}$$

The function u is periodic with period 2T where

$$T = \int_{0}^{\sigma} \left(\frac{5}{4} s - s^2 - \frac{1}{2} s^4 \right)^{-\frac{1}{2}} ds$$

and σ is the unique positive solution of $\frac{5}{4}s - s^2 - \frac{1}{2}s^4 = 0$. Let s_0 be defined by

.

$$s_0 = \frac{1}{2T} \int_0^{2T} u(x) dx = \frac{1}{T} \int_0^T u(x) dx$$

Since

$$u' = \left(\frac{5}{4}u - u^2 - \frac{1}{2}u^4\right)^{\frac{1}{2}}$$
 in $[0, T]$

we have

$$\int_{0}^{T} u(x) dx = \int_{0}^{\sigma} s \left(\frac{5}{4} s - s^{2} - \frac{1}{2} s^{4} \right)^{-\frac{1}{2}} ds .$$

We prove that $s_0 < \frac{1}{2}$; this is equivalent to show that

(5.6)
$$\int_{0}^{\sigma} \left(s - \frac{1}{2}\right) \left(\frac{5}{4}s - s^{2} - \frac{1}{2}s^{4}\right)^{-\frac{1}{2}} ds < 0.$$

Let $v(s) = (\frac{5}{4}s - s^2 - \frac{1}{2}s^4)^{\frac{1}{2}}$; the function v is increasing in $[0, \frac{1}{2}]$ and decreasing in $[\frac{1}{2}, \sigma]$. Let $v_0 = \sqrt{11/32}$, let $w_1: [0, v_0] \rightarrow [0, \frac{1}{2}]$ be the inverse of the function $v|_{[0,\frac{1}{2}]}$ and let $w_2: [0, v_0] \rightarrow [\frac{1}{2}, \sigma]$ be the inverse of the function $v|_{[\frac{1}{2},\sigma]}$; then (5.6) is equivalent to

(5.7)
$$\int_{0}^{v_{0}} 2\left(w_{1}(t)-\frac{1}{2}\right) \left[\frac{5}{4}-2w_{1}(t)-2\left(w_{1}(t)\right)^{3}\right]^{-1} dt \\ < \int_{0}^{v_{0}} 2\left(w_{2}(t)-\frac{1}{2}\right) \left[\frac{5}{4}-2w_{2}(t)-2\left(w_{2}(t)\right)^{3}\right]^{-1} dt.$$

Since the function $(s-\frac{1}{2})(\frac{5}{4}-2s-2s^3)^{-1}$ is increasing in $[0, +\infty[$ and $0 < w_1(t) < w_2(t)$, we obtain (5.7). This proves that $s_0 < \frac{1}{2}$, hence

$$(s_0^3 + s_0 - \frac{5}{8})^2 > 0$$
.

Let $u_T(x) = u(2Tx)$; note that u_T is 1-periodic and $s_0 = \int_0^1 u_T(x) dx$; by the representation formula for ψ we get for every $b \in L^6(\Omega)$

(5.8)
$$\psi(x, s_0) < \int_{0}^{1} \left[N \left| \frac{1}{(2T)^2} u_T''(y) + (u_T(y))^3 + u_T(y) - \frac{5}{8} \right|^2 + |u_T(y) - b(x)|^8 \right] dy = \int_{0}^{1} |u_T(y) - b(x)|^8 dy.$$

 $\mathbf{422}$

Using the facts that $s_0 = \int_0^1 u_T(y) dy$ and that $0 < u_T(y) < \sigma < 1$, we obtain

$$\int_{0}^{1} |u_{T}(y) - b(x)|^{6} dy = |s_{0} - b(x)|^{6} + \sum_{i=0}^{6} {\binom{6}{i}} (-b(x))^{i} \left[\int_{0}^{1} u_{T}(y)^{6-i} dy - s_{0}^{6-i} \right]$$

$$\leq |s_{0} - b(x)|^{6} + \sum_{i=0}^{4} {\binom{6}{i}} |b(x)|^{i} < |s_{0} - b(x)|^{6} + 56[1 + ||b||_{L^{\infty}(\Omega)}^{4}]$$

Let $K = 56(s_0^3 + s_0 - \frac{5}{8})^{-2}$; if $N \ge K[1 + \|b\|_{L^{\infty}(\Omega)}]$ we obtain from (5.8)

$$\psi(x, s_0) < |s_0 - b(x)|^6 + N\left(s_0^3 + s_0 - \frac{5}{8}\right)^2 = f^+(x, s_0, 0) = f(x, s_0, 0),$$

and the proposition is proved.

REMARK 5.5. For every N > 0 let $b_N = s_0 + [(N/3)(s_0^3 + s_0 - \frac{5}{8})(3s_0^2 + 1)]^{\frac{1}{2}}$. There exists $N_0 > 0$ such that for every $N \ge N_0$ we have $N \ge K[1 + b_N^4]$. If in the previous proposition we take $N \ge N_0$ and $b(x) = b_N$ for every $x \in \Omega$, then we obtain from Corollary 3.2

$$\begin{split} \lim_{\varepsilon \to 0^+} \inf \left\{ F_{\varepsilon}(u, \Omega) \colon u \in W^{2,2}(\Omega) \right\} &= \lim_{\varepsilon \to 0^+} \inf \left\{ F_{\varepsilon}(u, \Omega) \colon u \in W^{2,2}_0(\Omega) \right\} \\ &= \min \left\{ \int_{\Omega} \psi(x, u) \, dx \colon u \in L^6(\Omega) \right\} \leqslant \int_{\Omega} \psi(x, s_0) \, dx < \int_{\Omega} f(x, s_0, 0) \, dx \\ &= \min \left\{ \int_{\Omega} f(x, u, 0) \, dx \colon u \in L^6(\Omega) \right\}. \end{split}$$

The following proposition generalizes some results proved by V. Komornik in [13].

PROPOSITION 5.6. Let g be a non-negative convex function of the class \mathbb{G}_p , let $b \in L^p(\Omega)$, and let N > 0. Then for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$

$$\psi(x, s) = f^{-}(x, s, 0) = f(x, s, 0) = N|g(s)|^{2} + |s - b(x)|^{p}.$$

PROOF. Since $f(x, s, 0) \leq \psi(x, s) \leq f(x, s, 0)$, it is enough to prove that for a.a. $x \in \Omega$ and for all $s_0 \in \mathbb{R}$ we have

(5.9)
$$f^{-}(x, s_0, 0) = f(x, s_0, 0)$$
.

In order to prove (5.9) we show that

(5.10)
$$f(x, s, z) \ge f(x, s_0, 0) + \frac{\partial f}{\partial s}(x, s_0^+, 0)(s - s_0) + \sum_{i=1}^n \frac{\partial f}{\partial z_{ii}}(x, s_0, 0)z_{ii}$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$, $s_0 \in \mathbb{R}$, $z \in \mathbb{R}^d$. Inequality (5.10) is equivalent to

(5.11)
$$N\left(\sum_{i=1}^{n} z_{ii}\right)^{2} + 2N[g(s) - g(s_{0})]\sum_{i=1}^{n} z_{ii} \\ + \{|s - b(x)|^{p} + N|g(s)|^{2} - |s_{0} - b(x)|^{p} - N|g(s_{0})|^{2} \\ - [p|s_{0} - b(x)|^{p-1} \operatorname{sign}(s_{0} - b(x)) + 2Ng(s_{0})g'(s_{0}^{+})](s - s_{0})\} \ge 0.$$

Since the left hand side of (5.11) is a polynomial of the second order in $\sum_{i=1}^{n} z_{ii}$, inequality (5.11) is equivalent to

$$(5.12) |s - b(x)|^{p} - p |s_{0} - b(x)|^{p-1} \operatorname{sign} (s_{0} - b(x))(s - s_{0}) - |s_{0} - b(x)|^{p} + 2Ng(s_{0})[g(s) - g'(s_{0}^{+})(s - s_{0}) - g(s_{0})] \ge 0.$$

Putting $\varphi(s) = |s - b(x)|^p + 2Ng(s_0)g(s)$, inequality (5.12) can be written in the form $\varphi(s) - \varphi'(s_0^+)(s - s_0) - \varphi(s_0) \ge 0$ which is always satisfied because the function φ is convex.

The following proposition generalizes some results proved by A. Bensoussan in [2].

PROPOSITION 5.7. Suppose that g is a function which is convex and nonnegative for $s \ge 0$, concave and non-positive for s < 0, and which satisfies $|g(s)| < c|s|^{p/2}$ for every $s \in \mathbb{R}$. Then there exists $N_0 > 0$ (depending only on the constants p and c) such that for every $N \in [0, N_0]$ and for every $b \in L^p(\Omega)$ we have

$$\psi(x, s) = f^{-}(x, s, 0) = f(x, s, 0) = N|g(s)|^{2} + |s - b(x)|^{2}$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.

PROOF. As in Proposition 5.6 we have only to prove that

(5.13)
$$|s-b|^{p}-p|s_{0}-b|^{p-1}\operatorname{sign}(s_{0}-b)(s-s_{0})-|s_{0}-b|^{p}$$

+ $2Ng(s_{0})[g(s)-g'(s_{0}^{+})(s-s_{0})-g(s_{0})] \ge 0$

for all $s, s_0, b \in \mathbb{R}$. Let $\varphi(s) = |s - b|^p + 2Ng(s_0)g(s)$; if $s_0 \ge 0$ the function φ

is convex on $[0, +\infty[; \text{ if } s_0 \leq 0 \text{ the function } \varphi \text{ is convex on }]-\infty, 0]$. Therefore, if $ss_0 \geq 0$

(5.14)
$$\varphi(s) - \varphi'(s_0^+)(s - s_0) - \varphi(s_0) \ge 0$$
,

hence (5.13) is proved in the case $ss_0 \ge 0$. Suppose now $s_0 > 0$ and s < 0; let

$$\begin{aligned} \alpha(s, b) &= |s - b|^{p} - p |s_{0} - b|^{p-1} \operatorname{sign} (s_{0} - b)(s - s_{0}) - |s_{0} - b|^{p} \\ &+ 2Ng(s_{0})[g(s) - g'(s_{0}^{+})(s - s_{0}) - g(s_{0})]; \end{aligned}$$

we want to prove that $(\partial \alpha/\partial s)(s^+, b) \leq 0$. We have

$$\begin{aligned} \frac{\partial \alpha}{\partial s}(s^+, b) &= p |s - b|^{p-1} \operatorname{sign}(s - b) - p |s_0 - b|^{p-1} \operatorname{sign}(s_0 - b) \\ &+ 2Ng(s_0)[g'(s^+) - g'(s_0^+)]; \end{aligned}$$

therefore

$$\max_{b \in \mathbb{R}} \frac{\partial \alpha}{\partial s}(s^+, b) = \frac{\partial \alpha}{\partial s} \left(s^+, \frac{s+s_0}{2} \right) = -p 2^{2-p} |s-s_0|^{p-1} + 2Ng(s_0)[g'(s^+) - g'(s_0^+)]$$

$$< -p^{2-p} (s_0 + |s|)^{p-1} + 2NK(c, p) s_0^{p/2} |s|^{-1+p/2}$$

$$< (-p 2^{2-p} + 2NK(c, p))(s_0 + |s|)^{p-1}$$

where $K(c, p) = c(p/2)(p/(p-2))^{-1+p/2}$ if p > 2, K(c, p) = c if p = 2.

If $0 < N < (p2^{1-p}/K(c, p))$ we have $(\partial \alpha/\partial s)(s^+, b) < 0$ for every $s < 0, b \in \mathbb{R}$. This implies that $\alpha(s, b) > \alpha(0, b) = \varphi(0) + \varphi'(s_0^+)s_0 - \varphi(s_0)$; therefore by (5.14) we get $\alpha(s, b) > 0$, hence (5.1) is proved for $s_0 > 0$, s < 0. The case $s_0 < 0$, s > 0 can be proved in the same way.

The previous proposition applies for instance to the case $g(s) = s|s|^{-1+p/2}$ and to the case considered in Proposition 5.3.

If $b \in L^{p}(\Omega)$ and if g satisfies the conditions of Proposition 5.7, it is possible to prove that the set

$$\{N \in]0, +\infty[: \psi(x,s) = N|g(s)|^2 + |s-b(x)|^p \text{ for a.a. } x \in \Omega \text{ and for all } s \in \mathbf{R}\}$$

is an interval. In fact the following result holds.

PROPOSITION 5.8. Let f(x, s, z) be a function satisfying (3.1), (3.2), (3.3) and let $b \in L^p(\Omega)$. For every $\lambda > 0$ let

$$f_{\lambda}(x, s, z) = f(x, s, z) + \lambda |s - b(x)|^p,$$

and let $\psi_{\lambda}(x, s)$ be the integrand of the Γ -limit associated to f_{λ} by Theorem 3.1. If there exists $\lambda_0 > 0$ such that $\psi_{\lambda_0}(x, s) = f_{\lambda_0}(x, s, 0)$ for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$, then for all $\lambda > \lambda_0$ we have $\psi_{\lambda}(x, s) = f_{\lambda}(x, s, 0)$ for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.

PROOF. Let $\lambda > \lambda_0$; by Proposition 2.3 and by (5.1)

$$\begin{split} f_{\lambda}(x,s,0) &= f_{\lambda_0}(x,s,0) + (\lambda - \lambda_0) |s - b(x)|^p \\ &= \psi_{\lambda_0}(x,s) + (\lambda - \lambda_0) |s - b(x)|^p \leqslant \psi_{\lambda}(x,s) \leqslant f_{\lambda}(x,s,0) \end{split}$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.

We show now a situation where $\psi(x, s) = f(x, s, 0)$.

PROPOSITION 5.9. Let n = 1 (hence d = m) and let f(x, s, z) be a function satisfying (3.1), (3.2), (3.3). Suppose that

$$f(x, s, z) = f_1(x, s) + f_2(x, z_m)$$
 for all $x \in \Omega$, $s \in \mathbb{R}$, $z \in \mathbb{R}^m$.

Then, if $\psi(x, s)$ is the integrand of the Γ -limit associated to f by Theorem 3.1, we have for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$

$$\psi(x, s) = f^{-}(x, s, 0) = \bar{f}_{1}(x, s) + \bar{f}_{2}(x, 0),$$

where $\overline{f}_1(x, s)$ denotes the greatest function convex in s which is less than or equal to $f_1(x, s)$ and $\overline{f}_2(x, z_m)$ denotes the greatest function convex in z_m which is less than or equal to $f_2(x, z_m)$.

PROOF. By (5.1) it is enough to prove that

(5.15)
$$\psi(x,s) \leq f_1(x,s) + f_2(x,0)$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$. Fix $x \in \Omega$, $s \in \mathbb{R}$, $\eta > 0$; there exist z > 0, w < 0, and $0 < \lambda < 1$ such that $\lambda z + (1 - \lambda)w = 0$ and

$$\lambda f_2(x,z) + (1-\lambda) f_2(x,w) < \eta + f_2(x,0).$$

For every $h \in \mathbb{N}$ set

$$I_{\hbar} = \bigcup_{k=-\infty}^{+\infty} \left[\frac{k}{\hbar}, \frac{k+\lambda}{\hbar} \right[\text{ and } J_{\hbar} = \bigcup_{k=-\infty}^{+\infty} \left[\frac{k+\lambda}{\hbar}, \frac{k+1}{\hbar} \right];$$

it is easy to prove that there exists a unique 1-periodic function u_h such that

$$\int_0^1 u_h(y) \, dy = s \quad \text{and} \quad u_h^{(m)} = \begin{cases} z & \text{on } I_h \\ w & \text{on } J_h \end{cases}.$$

By the representation formula for ψ we have

$$\psi(x,s) \leq \int_{0}^{1} [f_1(x, u_h(y)) + f_2(x, u_h^{(m)}(y))] dy$$

= $\int_{0}^{1} f_1(x, u_h(y)) dy + \lambda f_2(x, z) + (1 - \lambda) f_2(x, w) .$

.

Since (u_h) converges to s uniformly and $f_1(x, s)$ is continuous in s we have

$$\psi(x, s) \leq f_1(x, s) + \overline{f}_2(x, 0) + \eta$$
.

Since η was arbitrary we obtain (5.15) and so the proposition is proved.

REMARK 5.10. The previous proposition applies for example to the case

$$F_{\varepsilon}(u, A) = \int_{A} \left[|(\varepsilon^2 u'')^2 - a(x)|^2 + |u - b(x)|^4 \right] dx$$

with $a \in L^2(\Omega)$ and $b \in L^4(\Omega)$. In this case we obtain

$$\psi(x, s) = f^{-}(x, s, 0) = (a(x) \wedge 0)^{2} + |s - b(x)|^{4}$$

while $f^+(x, s, 0) = |a(x)|^2 + |s - b(x)|^4$.

6. – Appendix.

In this section we prove that the function

$$f(x, s, z) = N \Big| \sum_{i=1}^{n} z_{ii} + g(s) + a(x) \Big|^{2} + |s - b(x)|^{p}$$

 $(z = (z_{ij})_{1 \le i+j \le 2})$ satisfies condition (3.2) whenever N > 0, $p \ge 2$, $g \in \mathfrak{S}_p$, $a \in L^2(\Omega)$, $b \in L^p(\Omega)$, where \mathfrak{S}_p is the class of functions defined in section 5. Condition (3.1) is trivial for f and condition (3.3) follows from well known estimates for the Laplace operator.

First of all we extend the functions a and b to all of \mathbb{R}^n , by setting a(x) = b(x) = 0 for $x \in \mathbb{R}^n - \Omega$; so the function f is extended to $\mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^d$.

We shall use the following elementary inequalities, which hold for every $\alpha > 0$, $\beta > 0$, p > 1:

$$\alpha\beta \leq \frac{1}{p}\alpha^{p} + \frac{1}{q}\beta^{q}$$
$$|\alpha^{p} - \beta^{p}| \leq p(1 \vee 2^{p-2})(\alpha^{p-1}|\alpha - \beta| + |\alpha - \beta|^{p})$$
$$(\alpha + \beta)^{p} \leq 2^{p-1}\alpha^{p} + 2^{p-1}\beta^{p}.$$

The last inequality implies that

$$|s|^{p} \leq 2^{p-1} f(x, s, z) + 2^{p-1} |b(x)|^{p}$$
.

In what follows q = p/(p-1) and c_1 , c_2 , c_3 are positive constants independent of x, y, s, t, z, w. Let $\eta: \mathbb{R}^n \to [0, +\infty[$ be an arbitrary function with $\eta(0) = 0$ and $\eta(y) > 0$ for $y \neq 0$, and let $\eta^*: \mathbb{R}^n \to [0, +\infty[$ be defined by $\eta^*(0) = 0$ and $\eta^*(y) = \eta(y)^{-1}$ for $y \neq 0$. For every $x, y \in \mathbb{R}^n$, $s, t \in \mathbb{R}, z, w \in \mathbb{R}^d$ we have

$$\begin{aligned} (6.1) & |f(x+y,s+t,z+w)-f(x,s,z)| \\ & < c_1 \bigg\{ \bigg| \sum_{i=1}^n z_{ii} + g(s) + a(x) \bigg| \bigg[\sum_{i=1}^n |w_{ii}| + \varrho(|t|)(1+|s|)^{p/2} + |a(x+y) - a(x)| \bigg]^2 \\ & + \bigg[\sum_{i=1}^n |w_{ii}| + \varrho(|t|)(1+|s|)^{p/2} + |a(x+y) - a(x)| \bigg]^2 \\ & + |s-b(x)|^{p-1} \big[|t| + |b(x+y) - b(x)| \big] + \big[|t| + |b(x+y) - b(x)|^p \big] \big\} \\ & < c_2 \bigg\{ f(x,s,z)^{i} \sum_{i=1}^n |w_{ii}| + f(x,s,z)^{i} \varrho(|t|)(f(x,s,z) + |b(x)|^p + 1)^{i} \\ & + f(x,s,z)^{i} |a(x+y) - a(x)| + \bigg(\sum_{i=1}^n |w_{ii}| \bigg)^2 \\ & + \varrho(|t|)^2 (f(x,s,z) + |b(x)|^p + 1) + |a(x+y) - a(x)|^2 \\ & + f(x,s,z)^{1/q} |t| + f(x,s,z)^{1/q} |b(x+y) - b(x)| + |t|^p + |b(x+y) - b(x)|^p \bigg\} \\ & < c_3 \bigg\{ (f(x,s,z) + |b(x)|^p + 1) \bigg[\sum_{i=1}^n |w_{ii}| + \varrho(|t|) + \bigg(\sum_{i=1}^n |w_{ii}| \bigg)^2 \\ & + \varrho(|t|)^2 + |t| + |t|^p \bigg] + \eta(y) f(x,s,z) \\ & + \eta^*(y) |a(x+y) - a(x)|^2 + |a(x+y) - a(x)|^2 \\ & + \eta(y)^{s/p} f(x,s,z) + |b(x)|^p + 1 \big) \lambda(y,t,w) \\ & + c_3 (1 + \eta^*(y)) \big[|a(x+y) - a(x)|^2 + |b(x+y) - b(x)|^p \big] \end{aligned}$$

428

where

$$\begin{split} \lambda(y, t, w) \\ &= c_3 \bigg[\sum_{i=1}^n |w_{ii}| + \varrho(|t|) + \bigg(\sum_{i=1}^n |w_{ii}| \bigg)^2 + \varrho(|t|)^2 + |t| + |t|^p + \eta(y) + \eta(y)^{q/p} \bigg]. \end{split}$$

Since $a \in L^2(\mathbb{R}^n)$ and $b \in L^p(\mathbb{R}^n)$, we have

$$\lim_{y\to 0} \int_{\mathbf{R}^n} \left[|a(x+y)-a(x)|^2 + |b(x+y)-b(x)|^p \right] dx = 0.$$

Therefore there exists a continuous function $\eta: \mathbb{R}^n \to [0, +\infty[$ such that $\eta(0) = 0, \ \eta(y) > 0$ for $y \neq 0$, and

$$\lim_{y\to 0} (1 + \eta^*(y)) \int_{\mathbf{R}^n} [|a(x+y) - a(x)|^2 + |b(x+y) - b(x)|^p] dx = 0.$$

For every $x, y \in \mathbb{R}^n$ we set

$$\omega(x, y) = c_3(1 + \eta^*(y)) \left[|a(x + y) - a(x)|^2 + |b(x + y) - b(x)|^p \right].$$

Since λ is continuous and $\lambda(0, 0, 0) = 0$, there exists an increasing continuous function $\sigma: [0, +\infty[\rightarrow [0, +\infty[$, with $\sigma(0) = 0$, such that

$$\lambda(y, t, w) \leq \sigma(|y| + |t| + |w|)$$

for every $y \in \mathbb{R}^n$, $t \in \mathbb{R}$, $w \in \mathbb{R}^d$.

Therefore from (6.1) it follows that

|f(x + y, s + t, z + w) - f(x, s, z)|

$$\leq \sigma(|y| + |t| + |w|)(f(x, s, z) + |b(x)|^{p} + 1) + \omega(x, y)$$

for every $x, y \in \mathbb{R}^n$, $s, t \in \mathbb{R}$, $z, w \in \mathbb{R}^d$. This shows that condition (3.2) is satisfied.

REFERENCES

- A. AMBROSETTI C. SBORDONE, Γ-convergenza e G-convergenza per problemi non lineari di tipo ellittico, Boll. Un. Mat. Ital., (5) 13-A (1976), pp. 352-362.
- [2] A. BENSOUSSAN, Un résultat de perturbations singulières pour systèmes distribués instables, C. R. Acad. Sci. Paris, Sér. I, 296 (1983), pp. 469-472.

- [3] G. BUTTAZZO, Su una definizione generale dei Γ-limiti, Boll. Un. Mat. Ital., (5), 14-B (1977), pp. 722-744.
- [4] G. BUTTAZZO G. DAL MASO, Γ-convergence et problèmes de perturbation singulière, C. R. Acad. Sci., Sér. I, 296 (1983), pp. 649-651.
- [5] G. BUTTAZZO G. DAL MASO, On Nemyckii operators and integral representation of local functionals, Rend. Mat., 3 (1983), pp. 491-509.
- [6] E. DE GIORGI, Convergence problems for functionals and operators, Proceed. Int. Meeting on « Recent Methods in Nonlinear Analysis », Rome, May 1978, ed. by E. DE GIORGI, E. MAGENES and U. Mosco, Pitagora, Bologna, 1979, pp. 131-188.
- [7] E. DE GIORGI, G- operators and Γ-convergence, Proceedings of the International Congress of Mathematicians, Warsaw, August 1983 (to appear).
- [8] E. DE GIORGI T. FRANZONI, Su un tipo di convergenza variazionale, Atti Acc. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), 58 (1975), pp. 842-850.
- [9] E. DE GIORGI T. FRANZONI, Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia, 3 (1979), pp. 63-101.
- [10] E. DE GIORGI G. LETTA, Une notion générale de convergence faible pour des fonctions croissantes d'ensemble, Ann. Sc. Norm. Sup. Pisa Cl. Sci., (4), 4 (1977), pp. 61-99.
- [11] A. HARAUX F. MURAT, Perturbations singulières et problèmes de contrôle optimal. Première partie: deux cas bien posés, C. R. Acad. Sci. Paris, Sér. I, 297 (1983), pp. 21-24.
- [12] A. HARAUX F. MURAT, Perturbations singulières et problèmes de contràle optimal. Deuxième partie: un cas mal posé, C. R. Acad. Sci. Paris, Sér. I, 297 (1983), pp. 93-96.
- [13] V. KOMORNIK, Perturbations singulières de systèmes distribués instables, C. R. Acad. Sci, Paris, Sér, I, 294 (1983), pp. 797-799.

Scuola Normale Superiore Piazza dei Cavalieri 7 I-56100 Pisa

Istituto di Matematica Via Mantica 3 I-33100 Udine