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Singular Perturbation Problems
in the Calculus of Variations (*).

GIUSEPPE BUTTAZZO (**) - GIANNI DAL MASO (**)

1. — Introduction.

In this paper we study the following singular perturbation problem in
the Calenlus of Variations; given an integral functional of the form

F(u) = f F(, w, D, D*u, ..., Dmu)da ;
0

determine the asymptotic behaviour (as ¢ —0+) of the infima of the functionals

Fe(u) =ff(w, u, eDu,e2 Du, ..., g™ Dmu)do
2

(here D*u denotes the vector (D*%) 4y~ 0f all k-th order partial derivatives
of u).

By means of the I-convergence theory we prove that, under suitable
assumptions on the integrand f, there exists a convex integrand y: 2 XR—R
such that for every ¢ e L*(02)

lim inf {Fe(u) 1 f pude: ue Wmr(Q) N LP(Q)}
2

&0+t

&0t

— lim inf{ (u) +- fqpudm: we Wi (2) N LP(.Q)}
2

= min {;!W(x’ u) + pulde: ueLP(.Q)} ,

(*) Partially supported by aresearch project of the Italian Ministry of Education.
(**) The authors are members of the Gruppo Nazionale per I’Analisi Funzionale
© le sue Applicazioni of the Consiglio Nazionale delle Ricerche.
Pervenuto alla Redazione il 2 Novembre 1983.
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where the exponents r and p are related to the behaviour of the integrand f
and 1/p 4+ 1/¢g =1. Moreover a formula for the function ¢ is given.

There is an intimate relationship between this kind of problems and some
singular perturbation problems in Optimal Control Theory. Consider for
example a control problem with a cost functional of the form

T, v) = [[N]o(@)] + |u(a) — b@)P [do
Q

and with a singularity perturbed state equation of the form

e2du + g(u) =
ue Hi(0).

(¥>0, be L?(2), and ¢g: R —R are given; » and » are respectively the
state variable and the control variable). Problems of this kind have been
studied by J. L. Lions in his courses at the Collége de France in 1981-82
and 1982-83, and by A. Bensoussan [2], A. Haraux and F. Murat {11], [12],
and V. Komornik [13]. By substituting v = 24w + g(%) in the cost func-
tional, the study of the asymptotic behaviour (as ¢ — 0+) of

inf {J(u, v): (u, v) is a solution of (Fe)}

is reduced to the study of

int { [[¥e2 A+ g@) + Ju— b)) dw: we HE(Q) Hg(!))} ,

Q

which is the problem considered in Section 5.

Some of the results proved in this paper were announced without
proof in [4].

We wish to thank Prof. E. De Giorgi for many helpful discussions on
this subject.

2. — I-convergence.

In this section we collect some known results of I-convergence theory
that are used in the sequel. For a general exposition of this subject we
refer to [6] and [7].

Let A, X be two topological spaces (we consider A as a space of param-
eters, in general A = N = N U {4 oo} or 4 =R); let 4,€ 4 and X,CX
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with X, dense in X; for every A€/, let I, be a function from X, into
R=RU {— o0, 4 oo}; let lye A, s X with },€,; following [8] we define

(2.1) I'A-, X-) hm F,(y) = sup liminf inf F,(y),
Uel(x) I—>A, veUnX,
w—)a{; Aed,
(2.2) I'(A+, X~) lim F,(y)= sup limsup inf F,(y),
A2, Ued(x) }}.:Al“ velUnX,
Yz o

where J(z) denotes the family of all neighbourhoods of # in the space X.
‘When the I-limits (2.1) and (2.2) coincide, their common value is indicated by

I'A, X-) lim F,(y).
vy
The main properties of I-limits are given by the following propositions,
proved in [3] and [9].

PROPOSITION 2.1. For every x € X define

F-(o)=I'4-, X )im;l Fi(y)

F(z) = I(A*, X-) lim Fy(y).
A—1,

The functions F-: X —R and F+: X —R are lower semicontinuous on X.

PropOSITION 2.2. Suppose that X has a countable base for the open sets.
For every sequence (IF,) of functions from X, into R, there exists a subsequence
(F,) and a function F: X —R such that

F(x) =I'(N, X-) im F, (y)
k—>o00

for every xe X.

ProposiTION 2.3. If G: X —>R is lower semicontinuous at the point
v e X, then

I'A-, X7) lim [G + Fil(y) > G(w) + I'(A-, X7) Lim Fyy)

I+, X-) 1111? (G + Fa)(y) > G(@) + T'(AF, X7) %111111 Ty 5

] Yz
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if in addition G is continuous at the point x, then the above inequalities are
equalities.

PROPOSITION 2.4. Suppose that there exists F: X — R such that

F(a) = I'(4, X7) Lim Fy(y)

Y—>z

for every x € X. Assume further that the functions F, are equicoercive on X,
i.e. for every s € R there ewists a compact subset K, of X (independent of A)
such that {xe€ X,: Fi(w)<s}C K, for every 1€ A,.
Then we have
min F =lim [inf F,] .
X A—dy "X,

Moreover, if (w);eq, t5 @ family of elements of X, such that lim 2, =z and
Jim [Fz(wl) —ig.fFA] =0, then x is a minimum point of F in X.

Let 8,(4,) be the set of all sequences in A, converging to 4, in A4, and
let S(z) be the set of all sequences in X, converging to x; we define (the
subscript seq stands for sequential)

(2.3) Teq(A~, X) lim Fy(y) = inf inf liminf F; (2,)
A=A, (An)e8y(4y) (zn)eS(x) h—>oo
y—>

(2.4) oA+, X=) lim Fy(y) = sup inf limsup F, ().
A, (An)eBa(2s) (2n)E8(x) h—>oo
y—>r

ReEMARK 2.5. If the spaces 4 and X satisfy the first axiom of countability
it is possible to prove (see [3]) that the I, -limits (2.3) and (2.4) coincide
respectively with the [-limits (2.1) and (2.2).

REMARK 2.6. It is not difficult to see that in the case 4 = N, 4, = N,
Ay = o0, the I -limits (2.3) and (2.4) of a sequence (F,),« of functions

seq
reduce regpectively to

inf liminf#,(z,) and inf limsup F(x;) .
(xn)ES(x) h—>oo (zn)eS(x) A—»>o0

Suppose that X is a reflexive separable Banach space with dual X'.
Let (x,',) be a sequence dense in the unit ball of X'; we introduce the metric §
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on X defined by
(o, 9) = 3 22(Ca}, o — 9],

It is known that the metric space (X, d) is separable.
Let us denote by w the weak topology of X.
We shall use the following proposition proved in [1].

PROPOSITION 2.7. Assume that X is a reflexive Banach space, that 4, has
a countable neighbourhood base in A, and that there exist two constants ¢, ¢, € R,
with ¢, > 0, such that

@) >e, + 6]

for every Ae A,, xe X,.
Then for every x€ X

Tiea( A~y w7) }[mzl Fily) = I'(4~ w) lim Fy(y) = I'(4~, 67) lim Fy(y)

A2, A2,
Y=z V> vz
Ta( A%, w™) lim Fy(y) = I'(4%, w7) Him Fy(y) = I'(4*, 6-) Lim Fy(y).
A2 A4, A2,
y—>z Y—>2 Y>>z

Using Proposition 2.3 and some general properties of I™limits (see [3], [81)
it is easy to obtain the following proposition.

PropPoSITION 2.8. Under the hypotheses of Proposition 2.7, for every
xe X, seR the following conditions are equivalent:

1) I'(A,w™) lim F,(y) =s
=
ii) for every sequence (A,) in A, converging to A, in A there ewists a sub-
sequence (4,) such that
(N, w) lim F, (y) =s.

k—>c0
Y>>

3. — Statement of the result.

Let Q2 be a bounded open subset of R?, let m>1 be an integer, and let p,
be two real numbers with p >1, 1<r<p.

We indicate by d = d(n, m) the number of multi-indices « € N* such
that 1<la|<m, by A(R") the family of all bounded open subsets of R=,
and by &= A(£2) the family of all open subsets of £.
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For every k=1,2,...,m and every ue Wis(4), with A e A(R"), we

loc
denote by D*u the vector (D*w),,_, of all k-th order partial derivatives of u.

The integrands we sghall consider are Borel functions f: QxR xRé
— [0, 4 co[ which satisfy the following properties:

(3.1) there exist ¢>1 and a € L) such that

—a(@) + s <f(=,s,2) <a(@) + c[Is| + [o]]
for every xe€Q, seR, zc RY;

(3.2) there exist aec LY(Q), an increasing continuous funciion o:[0, - oof
— [0, 4 oo[ with 6(0) = 0, and a Borel function w: 2 X R* — [0, -+ oo
with

lim [w(z, y)dz =fw(x, 0)dz =0,

Q

y—>0 a9

such that
[y, 8, w) — f(, 8, 2)| <o(z, y — »)

+ o{ly — | + [t— 5] + o — 2l)(a(@) + f(x, 5,2))
for every xe 2, se R, ze R?;

(3.3) there exists ac L (£2), a Borel function y: RxR? [0, 4 oof, and
a function A: A(R") X A(R") — [0, -} oo such that

(i) for every x€ £, seR, zeR?
y(s, 2) <f(, 8, 2) + |s|* 4 a(x)
(ii) for every pair A, A'e A(R"*) with A cc A’ and for every u € Wmr(A')

fl > |[Drufrde< (4, A’)fy(u, Du, D*u,..., D™u)dx
&

ajsm
4 s

(iii) for every pair A, A'e A(R") with Acc A’

limsup A(t4,t4') < 4 oo.
t—+ o0
For every £ > 0 we consider the functional F¢(u, A) defined for every 4 € £
and for every ue Wii(4) by
(3.4) Fo(u, A) = f #(%, u, sDu, e2 D4, ..., en D) ds .
4



SINGULAR PERTURBATION PROBLEMS IN THE CALCULUS OF VARIATIONS 401

It is possible to verify (see section 6) that hypotheses (3.1), (3.2), (3.3) are
fulfilled, for example, by the functionals

Fu(u, 4) =[[(e|Du] + Pyla) + a(@))? + |u— b(o) ] do,
A

Fulu, A) = [[Je* A -+ Pulw) + a@)]? -+ lu — bi) ] da,
A

Fe(u, A) :j[(p(w, u, eDu, e2 D2u)|e2 Au -+ Pi(u) + a(2)|2 + |u — b(z)|2*] dz,
A

where k>1 is an integer, P,is a polynomial of degree less than or equal to %,
a€ L2 (Q), be L2*(0), and ¢: 2XRXR? - R is nniformly continuous and
satisfies 0 << infe <sup ¢ < + co.

Other examples of functionals verifying hypotheses (3.1), (3.2), (3.3)
can be found in Section 5.

Define now for every Ae A, ue L?(4)

0 if we Wy'(A)
(3.5) T(u, Ay =
-+ oo otherwise.

Let us denote by w — L?(A) the weak topology of L#(A4). The main result

we prove in this paper is the following.
E 4

THEOREM 3.1. Let f: @ XRXR? —[0, + oof be a Borel function satis-
fying hypotheses (3.1), (3.2), (3.3), and let F. be the functionals defined by (3.4).
Then there ewists a Borel function y: QxR —> [0, + oo such that

(i) for every Ae A, ue L*(4), wyc Wmr(A) N Lr(4)

>0+t
v

f (@, u)dz = [ (R, w— L*(4)-) lim Fy(v, 4)
A

= I'(R, w— L7(A)") lim [Fe(0, 4) + T(0— w0y, A)];

(i) for every x c Q2 the function s — yw(x, s) is convex on R;
(iii) for every (z,s)e QxR

f (@8, 0)<y(a,s) <f+(m7 $,0)

where [z, s, z) is the greatest function convex in s which is less than or equal
to f(x, s, 2) and {7 (x, s, ) is the greatest function convexr in (s, z) which is less
than or equal to f(x, s, 2).
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Moreover the following representation formulae for w hold for a.a. z€ Q2
and all seR:

p(w,8) = lim inf {Fg(w, u): we Wmr(Y) N L2(Y), fudy = s}
Y

>0t

= lim inf{Fs(w, u):u—seWp'(Y) ﬂLP(Y),fudy = s}
Y

e—>0+

— inf {Fs(w, w)ie> 0, u—se W (Y) nLv(Y),fudy — s}
Y

— inf{Fg(w; w)i > 0, ue Wi (¥) 0 LX), [udy = s},
Y

where Y denotes the unit cube 10, 1[*, W3*'(Y) denotes the space of all Y-periodic
functions of Win'(R*), and

loc

Fu(w, u) = [{(2, u(y), eDu(y), & D*u(y), ..., e D u(y))dy .
Y

COROLLARY 3.2. Let w,c Wmr ()N L7(2), let W(w,) = {uec L?(£2):
u— w, € Wg'(2)}, and let V be a set such that W(w,) S VC Wii(2) N L2(2).
Then we have

(3.6) 1lim inf {Fe(u, Q)de + gf qude: ue V}

&0+

= min { fw(x, w)da —i—ﬂfgudac: M eL?(Q)}

2
for every ge LX) (1/p + 1/q =1).

Proor. It follows from Theorem 3.1, Proposition 2.3 and Proposition 2.4
that

min { gf (@, w)dw -+ J quds: ueLP(Q)}

e—>0*

—1lim inf {Fg(u, Q) + f quds: we Wrr(Q) N Lﬂ(.Q)}
2

—1lim inf {F,s(u, Q)+ f quds - T(u— 1wy, Q): we WI(2) A Lw(Q)}
2

e—>0+

= lim inf {Fe(u, 0) —|—!}j‘gudw: ue W(/wo)} .

>0t

Since W(w,)C V< Wi'(2) N L*(L2) we obtain (3.6). m
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4. — Proof of the result.

In thig section we prove Theorem 3.1.

The function f and the functionals F, are supposed to satisfy the hypo-
theses of the theorem. In what follows we shall write briefly f(x, u, e*D*u)
instead of f(x, u, eDu, e2.D*u, ..., e D™u). Let (¢,) be a sequence in ]0, 4 cof
converging to 0. For every Ac A, ue L?(4) set

Fr(u, A) = I'(N*, w— L?*(A)~) lim Fe,(u, 4).
h—>o0

Lemma 4.1. For every Ae A, we L*(A) we have

Fr(u, 4) < [f@,u,0)do
A

ProO¥. Let A € A, uc I?(A). Let o be a non-negative function in €5’ (R")
such that fedr =1, let 6 =1/(n + m + 1), let g,(x) = &, 0(c;°®), and let
Uy, = o %k u. We have

F,,(un, 4) =[f(z, 02 %0, s Dy kw)do .

A

It is easy to see that (g, % u), converges to » in L?(A4) and that (e;.D*p, ku),
converges to 0 in L?(A4) (hence in Lr(4)) for k =1,2, ..., m. Since f(z, s, 2)
is continuous in (s, #), inequalities (3.1) ensure that

f f(@, u, 0)dw = Lim (f(z, o * u, £ D* 0, % w)da .
A

h—>o0
By Remark 2.6 and Proposition 2.7 we have
Ft(u, A) <limsup Fe,(us, 4) =J‘f(w, u, 0)dx
h—o0
A4

and the lemma is proved. =

LeMMA 4.2. Let A, B, Ce £ with Ccc AU B. For every ue L*(A U B)
we have
Fr(u, C)<F*+(u, A) + F+(u, B).
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Proor. Let K = C — B and let 4,, B, be two open sets, with meas
(04,) = meas (0B,) = 0, such that K< A,cc B,ccA. Fix an integer v and
a family (4,),<;<, of open sets, with meas (04;) =0, such that A4,cc4,
cC...cc A,cc B,. Define 8, = 0N (4;—A4,_,) and § = C N (B,— 4,). For
every i =1, 2, ..., » there exists ¢, € (;°(4,) such that 0<¢@;<1 and ¢, =1
on 4, .

In what follows the letter ¢ will denote various positive consgtants (in-
dependent of &, %, »), whose value can change from one line to the next.

Fix u € IL?(4 U B) and 5 > 0; there exists a sequence (u,) in Wpr(4)
N L?(A), converging to wu weakly in IL?(4) and a sequence (v,) in
Wpr(B) N L*(B) converging to w weakly in L?(B) such that

loc

Ft(u, Ay + n>limsup P, (u,, A) and FH(u,B) - 5 >limsup Fe,(v,, B) .
h~>c0

h—>o0

For every i =1,2,...,» and for every heN set

W n =@+ (1— ;) 0.
Using (3.1) we obtain

-Fen(wi,hy 0) <F8h(uhy O N -A-i—_l) —I— Feh(’l)h, C—Zz)

-+ Cf[[“(a” + [w;al? +k§1137£pkwi,hl'] dw

8i
m
<Fop(tn, 4) + Fey(vs, B) + ¢ f {a(w) + a4 ol + 3 [lekD o+ |5 D]
St -
m k—1
+ c,,kz exr > [IDius |+ [Df'vh]']}dx,
=1 i=o
where ¢, depends on sup [D*g;| for i =1,2,...,v and |x|< m. Since the

strips 8; are pairwise disjoint, for every he N there exists an index
in€{1,2,...,7} such that

f{...}dw<%f{...}dw.

Define w, = w;, ;. Then

—Fth(why C) <F8h(uh, -A-) + Feh(vh’ B) + gf{a(w) + luh!p+ lvh!p
8

m m k=1
+k21 [IekD*us|" + |ex D*u,]"] -+ c,kgls,’f' zo[ | Diuy |+ ]D"?Jﬂ']}dm .
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Let E= AN B. Since SccE, there exists §'e £ such that Scc8'cc k.
Since (u,) and (v,) are bounded in IL?(8'), using inequalities as

f|Dkw|’dx<aJ‘lew|'dw + caflwl’dx
8 s s’
(which hold for 1 <k <m and for every ¢ > 0) we get
¢
(4.1)  Fe(wsy O)<Fop(tny A) + Fe\(v2y B) + > (1 + &n0s,0)

+2(1 + o0y f 3 [letD*un + 16 D*v, ] dor.
k=1
J

Define now U,(x) = u,(e,x) and Vi(x) = v,(e,2); then, using (3.3), we get
(4.2) f S [|eED*u,f + |t Do, *] do
k=1
&

=8: kZ[IDkUhI'+ |.Dthlr] dm < }.(S;llg’7 E;IE)&':.[[}/( Uh, .Dk Uh) + y(Vh, Dth)]dw
=1

&s &'E
— M8, 51 B) [Ty, £ D ) -+ (o, AP 0n) )
E
<l(8;1‘8,7 &' B)e 4 Fep(tny A) 4 Fe,(v4y B)].
Since the sequences (w;;) converge to u weakly in L#(0), it is easy to see

that the sequence (w,) converges to u weakly in L?(C). Therefore, passing
to the limit in (4.1) as & — oo, and using (4.2) and (3.3) (iii) we get

Fr(u, 0) <F*(u, A) + F+(u, B) + 29 -+ =

+ ;—"(1 + o0,) M(e + F*(u, A) + F+(u, B) + 271,

where M = limsup A(t8', ¢H). Passing to the limit first as o — 0, then as
t—>+oo
vy — - co, and finally as 5 —0, we cbtain

F+(u, C)<F+(u, A) + F+u, B). m

REMARK 4.3. In the same way we can prove that for every 4, Be A,
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with Bcc 4, and for every compact subset K of B
F+(u, A)<F*(u, B) + F+(u, A — K)

for every u € L?(4). This fact, combined with Lemma 4.1 and inequalities
(3.1), implies that

F+(u, A) = sup {F*(u, B): Be £, Bcc A}.

LeMMA 4.4. There exist a subsequence (e,) of (&) and a functional F
such that

(4.3) F(u, A) = T (N, w— L(A4)") lim F,, (v, 4)
ko0

v>Uu

for every A e & and for every ue Lr(A). Moreover for every we L*(22) the
set function A — F(u, A) is the trace on A of a regular Borel measure defined
on Q.

PrOOF. Let U be a countable base for the open subsets of £, closed under
finite unions; note that for every 4, B e 4 with A cc B, there exists UeW
such that Acc UccB. By the compactness of I-convergence (see Propo-
sitions 2.2 and 2.7) there exists a subsequence of (¢,) (which we still denote
by (&) such that for every Be W, u e L?(B) there exists the I-limit

6(u, B) = I'(N, w— L*(B)~) ]}im F.(v,B).

For every Ae A, ue L?(A) we set
F(u, A) = sup {G(u, B): Be W, Bcc A}.

It is easy to see that for every u € L?(2) the set function A — G(u, A) is
superadditive on U, so 4 — F(u, A) is superadditive on . It follows
from Lemma 4.2 that 4 — F(u, A) is subadditive. So 4 — F(u, A) is in-
creasing, superadditive, subadditive, and inner regular. By a result of measure
theory (see [10] Proposition 5.5 and Theorem 5.6) this implies that
A — F(u, A) is the trace on #£ of a regular Borel measure defined on £2.
It remains to prove (4.3). Let
F-(u, 4) = P(N-, w— L*(A)") lim F,,(v, 4)

h—>co
U
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and

FHu, A) = I'N+, w— L?(A)") lim F,,(v,4).
h—>c0

By Remark 4.3 we have

F+(u, A) = sup {F+(u, B): Be £, Bcc A}
= sup {G(u, B): Be #, Bcc A} = F(u, A)<F~(u, A) <F*(u, A),

which proves (4.3). m

LEMMA 4.5. Let F be the functional introduced in Lemma 4.4. There exists
a Borel function p: 2 XR — [0, 4+ oo[ such that

(i) for every Aec A, ue L*(A)

F(u, 4) = [p(a, u)da,
4

(ii) for every x e £2 the function s — y(x,s) is convex on R,

(iii) for every € Q, seR
—a(@) + |sP<y(=,s)<f*(=,s,0).

PrOOF. Let us denote by B = H(L2) the class of all Borel subsets of Q.
For every u € L#(Q2) we denote by ®(u,-) the measure on $ which extends
F(u,-); it is easy to see that for every Be B

®D(u, B) = inf {F(u, A): Ae £, A2 B}.

First of all we prove that the functional @ is local on B, that is: if
% = v a.e. on a Borel set B, then ®(u, B) = D(v, B). Let u, v e L?(2) and
let Be $ with 4 — v a.e. on B; without loss of generality we may suppose
that 4 = v everywhere on B and 4 <v everywhere on 2. By Lusin’s the-
orem, for every &> 0 there exists A.e A, with meas (4.) < e, such that
the restrictions #|,_,, and v|y_,, are continuous. Then the set B:= A,
U {re Q2: v(x) < u(x) + ¢} is open; moreover B,2 B. Define now

(%) if ze B,
ug(ﬁ) -
u(x) + ¢ if € Q— Be;
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it is easy to see that (u.) converges to 4 strongly in L?(£2) as e\ 0. For every
7> 0 there exist an open set 4 and a compact set K such that
ECBCACQ, F(u, A)< ®(v, B) +n and [[a() + clul?]dz <.

A—K

Since F(-, A) is lower semicontinuous with respect to the weak topology
of I»(4) (see Proposition 2.1) and F is local on #, using LLemma 4.1 and
inequalities (3.1) we obtain

®(u, B) < F(w, A) <liminf F(u., 4) <liminf[F(v, 4 N Be) + F(ue, A — K)]

>0+t >0+

< F(v, A) - liminf f [a(@) + o|us|?] dor < D(v, B) + 21
=0t Ik
Since 1 << 0 was arbitrary, we get
D(u, By < D(v, B) .

The opposite inequality can be proved in a similar way.

So the funectional @: LP(2) X B — [0, + oo is local on B, for every
u & L?(Q) the set function D(u,-) is a measure, and the function D(-, Q)
is lower semicontinuous in the weak topology of L#(£2). This implies (see [5])
that there exists a non-negative Borel function y(x, s), convex in s, such that

@d(u, B) :J.y)(m, u)dx
B

for every u e L»(2), Be $. Since O(u, A) = F(u, A) for every A e £, we
obtain (i) and (ii). Finally, (iii) follows from inequalities (3.1) and from
Lemma 4.1. =

LeMMA 4.6. For every A € £ and for every we Wmr(A) N L*(A) we have

FH(u, 4) > T(N*, w— L2(4)") lim [F,,(v, 4) + T(v— 1, 4)]
h~—> o0

V=Y
where T is the functional defined by (3.5).

ProoF. Let Ae A, ue Wmr(4d) N L*(4), and > 0. There exists a
sequence (u,) in Wi'(4) N L?(A) converging to u weakly in L?(4) such that

loc

Fr(t, 4) + n>lmsup Fo(u,, 4).

h—>o0
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Let A,, B, be two open sets with A,cc B,cc 4 and meas(04,) = meas(0B,)=0.
Fix an integer » and, for ¢ =1, 2, ..., », define 4; and ¢; as in Lemma 4.2.
Set

W,p = QU+ (1 — @)u;

we have T'(w,;, —u, A) = 0. With the same argument used in the proof
of Lemma 4.2 we get

Fsb(wih,hy 'A') <-F&r.(uln 'A) + Fﬁn(u’ A— ZO) + g (1 + 8hcv,a)

+ (14 o0 Me' 8, 5 A)le + Foylun, 4) + Foyfu, A— AT,

where B, — A,cc 8'cc A. Since (w;, ) converges to w weakly in Ir(4)
we have

infdlimsup [ Fe, (05, 4) + T(v,— %, A)]: v, — 4 in w— LP(A)}

h—>co

<P, 4) -+ 1+ [ [at0) + oful]ds - £

A—A4,

+ %(1 + oc,,)M{c + Ftu, A) - g —I—f[a(w) + elul?] dw},

A—A4,

where M = limsup A(#8’, tA). Passing to the limit first as o — 0, next as
>+ o0
v — -+ oo, then as 5 —0, and finally as A} A, we get the thesis. m

LEMMA 4.7. Assume that

f w(@,w)da = T(N, w— L*(A)") lim Fe,(v, A)
h—>o0
A P>

for every A e A and for every we LP(A). Then

f w(@, w)de = (N, w— Ir(A)) im [Fo (v, A) + T(o— 1wy, A)]
h—>co0
A v

for every Aec £, uwe Lr(A), woe Wnr(A) N Lr(A).

Proor. Let Ae A, ueL?(Ad), w,€ Wmr(A) N L*(A). There exists a
sequence (u;) in Wmr(A) N Lr(A) econverging to « strongly in L*(4) such that
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—wy € Wp'(4). Using Lemma 4.6 we obtain for every ke N

f,,, (@, w) dw> T(N+, w— L(A)~) lim [Fop(v, 4) + T(0— w0, A)]
h—o0

= I'(N+, w— L*(4)) lim [Fe,(v, A) + T(v— w,, 4)].
h—o00

Since [“-limits are lower semicontinuous (see Proposition 2.1) and f p(x, v)dr
4

is continuons in I?(4) (see Lemma 4.5), passing to the limit as & — + oo
we obtain

fw(w w)dw> I(N*, w— L(A)") im [Fo (v, 4) + T(v— 1y, A)]
h—>o0

>I'(N-, w— L2(A) ) lim [P0, 4) + T(v—wo,A)]>f1p(m wde. m

v-»u

Let ¥ =10,1[" and let W3'"(¥) be the space of all ¥-periodic functions
of Wir(R); for every ¢ >0, xe£2, seR we set

W(s) — {ue W™(¥) 0 I(Y): [uly)dy = s}
Y

Wits) = {ue W™(¥) A I2(T): [uly)dy = 5, u— se Wpr(1)}
Y

Wys) = {u & Wy (Y) A I2(1): [u(y)dy = s}
Y

) me(x, 8) = inf {Jf(w, u(y), & Dru(y))dy: ue W(s)}

mi(@, 5) = inf{ [, uty), & D*uty) dy: we W)}

mi(, 5) = 1nf{ [1(, uly), e DPu) ay: ueW#(s)}

me(x, 8) = int {m§(x, 8): ¢> 0}

my(w, s) = inf {mf(x, s): £ >0} .

LEMMA 4.8. For every v, se€R

my(z, 8) =1lim mg(x, 8) .

&0t
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ProOF. Let 28, seR, uec Wy(s), &,neR with 0 <n<e. Let v be
the ¥-periodic extension of u, that is the function which satisfies
o + y) = v(z) for every xR, yeZ* and v(x) = u(x) for every x€e¥.
There exist N € N and 6 € [0, 1] such that e = (¥ 4 d)n. Define for every
yey

) 1
v(ﬂy) if yeNEY

s otherwise .

w(y) =
Then we Wy(s) and
” 8
j flw, wiy), n*D*w(y))dy < (N ’—Z:) f f@, u(y), & D*u(y)) dy + n = {(@,3,0)
Y Y

< [fto, utw), oD 0t dy + 0 2,3, 0).
Y

This implies that for every ¢, 7eR, with 0 <#<e

mi(@, 5) <mi(@, s) + n 7 f(=,3,0),
and from this inequality it follows that

infmg(x, 8) = lim mg(xz,8). W
£>0 e~—»0+
LemMA 4.9. Suppose that the function f does not depend on the variable x
and that

J' p(w)dw = I'(N, w— L2(A)") lim Fo (0, A)
h—>co
A4 9>y

for every Ae £, uwe Lr(A). Then me, m§ and m, do not depend on = and

lim me(s) = my(s) = p(8)
h—>oc0

for every seR.

PrOOF. Let s R and let (u,) be a sequence converging to s weakly in
L*(¥) such that u,—se Wy'(¥); let pe C(¥) with _[zpdm =1; there ex-
ists a sequence (1) converging to 0 in R such that f [#a(y) + mp(y)]dy = s

¥

for every heN. Then by hypothesis (3.2) we have

m(5) < Tt + 1 1) <Fop(ta, T) + o 1) [a(2)do + oo, 1)),

Y
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where M =sup > [D*p|. Passing to the limit as k — -+ oo we obtain

lel<m

mo(8) <liminf Fe,(uy, Y) .

h—>oco

Since () is arbitrary, by Lemma 4.7 we get

(4.5)  mo(s)<I'(N, w— L?(A)~) lim [Fe,(v, 4) + T(v—s, A)] = p(s) .

h—>o0
v—>8

Consider now a subsequence (g, ) such that lihlgglf m*(s) = lim m(s).
For every ke N there exists w;, € W(s) such that F,, (ws, Y)<m(s) + 1/k.
By hypothesis (3.1) the sequence (w;) is bounded in L?(Y); thus for a suit-
able subsequence (w;), we have that (w,) converges weakly in L*(Y) to
a function # such that f u(y)dy = s. Therefore, using Jensen’s inequality,

Y

Remark 2.6, Lemma 4.8 and inequality (4.5), we get

mofs) <v(s) = v ( [u(w)dy) < [p(w)dy = I(N, w— LX) lim Fo(o, ¥)
Y Y

h—>oo
VP=>U

<liminf Fe,,k‘(wk‘, Y) < lim m®n (s) = liminf me(s)

i—>co k—>oo h—co

<limsup mer(s) <limsup mP(s) =my(s). M

h~>o0 h—>c0

LeMmA 4.10. Suppose that the function f does not depend on the variable x.
Then there exists a convexr function y:R — [0, + oo such that

(4.6) f p(u)de = T(R, w— L7(A)~) lim Fiv, 4)
b e

= I'(R, w— L*(A)~) lim [Fe(v, 4) + T(v— w,, A)]
8—>0+

for every Ae #, ue L?(4), w,e€ Wmr(A) N L*(A).
Moreover me, mg, mq do not depend on z and

P(8) = my(8) = lim mf(s) = Lim m®(s)

>0+ &0+

for every seR.

ProoF. Let () be a sequence in R converging to 0 such that ¢, >0
for every he N. By Lemmas 4.4, 4.5 and 4.7 there exist a subsequence (¢, )
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of (z,) and a Borel function y(z, 8), convex in s, such that

f y(@, u)do = I(N, w— L2(A4)") lim F, (v, 4)
A

k—>o0
= I'(N, w— L*(A)") lim [F, (v, A) + T(v— w,, A)]
k-—>o0

P—>u

for every Ae A, ue L?(4), w,e€ Wmr(4) N L?(A). Since f does not depend
on z, it is easy to see that f’tp(w, w(@ — y))dw =f1p(w, u(z)) dz for every
v+4 A

Ae A, ue L*(A) and for every y € R* such that y + 4 C Q. This implies
that y does not depend on x, that is y(wz, s) = y(s).
By Lemma 4.9 we have

P(8) = mo(3)

for every seR. So the function yp does not depend on the sequence ().
By Proposition 2.8 this implies (4.6).

By Lemma 4.9 we have my(s) = ;E}E m(s). Since the limit does not
depend on the sequence (g,), we obtain

my(8) = lim me(s) .

>0t
The equality my(s) = ;_% m(s) has already been proved in Lemma 4.8. B

ProoFr OF THEOREM 3.1. Let (&) be a sequence in J0, 4+ oo converging
to 0. By Lemmas 4.4, 4.5 and 4.7 there exist a subsequence (g, ) of (&)
and a Borel function ¢: QxR —[0, + oo, which satisfies condition (ii}
of the theorem, such that

f (@, w)do = I(N, w— L?(A)") im Fe, (v,.4)
k—>co
4 v—>U

= I'(N, w— L*(4)") lim [Fe, (v, 4) + T(v— w,, 4)]
k—>o00

for every Ae A, ue L?(A), woe Wnr(Ad)N L#(4).
In order to prove (i), by Proposition 2.8 we have only to show that

(4.7) p(x, 8) = my(®, 8) = Hm m#(w, 8) = my(x, )

e—>0t

for a.a. z € Q2 and for all s € R, where m, and me¢ are defined by (4.4).
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Let N>1 be an integer; for every jeZ» we set ¥i = (1/N)(¥ - §)
and &% = QN Y%, (here ¥ = 10,1["). Define fy: 2 XRXR* — [0, 4 cof by

fu(@r 8, 2) =Jff(y, 5, 9)dy for me 2,
ol

where f denotes the average over the set A. Define
4

F¥(u, A) = f fu(@, u, 6 DFu)da
A

and let (my)s(,s), (mx)§(=,s), (my)(®,s) be the functions related to fy
defined asin (4.4). Sinee fyis piecewise constant with respect to the variable z,
by Lemmas 4.5 and 4.10 there exists a Borel function yy(z, s), piecewise
congtant in # and convex in s, such that

f wa(@,u)do = I'(N, w— L2(4)~) lim F¥(v, 4)
4 g0t

>
for every Ae A, ue L?(4); moreover
(4.8) Ya(@, 8) = (My)o(®, 8) = liI(I)l+ (my)o(®, 8) = li% (my)*(z, 8)

for a.a. z€ 2 and for all seR.
Let Qy=1—1/N,1/N[» If ¥% C Q, using condition (3.2) we obtain for
every we€ Y, scN, zeR?

lis(@, 8, %) — f(@, 8, 2)| = l f (@ + 9, 3, 2)— (@, 8, )]y

Yi—-X

<on f @+ v, 8, 8)— (@, 3, 2)|dy <27 Jf (0(2,9) + o{ly|)[a(@) - (@, 5,2)]}dy
QN QN

< fola,0)ay + 20 () fa(@) + fia,, 2.

Qn

This implies that

(4.9) [1 — 2n¢g (%)] f(x,8,2)—2"¢ (yﬁ@) a(x)— 27 JC w(x,y)dy

Qnr

<ue,5,9< [1 -+ 200 (Y) | 10,8, + 220 (7 ato) + 2 f o, gy

Qn
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for every s€R, zeR? and for every wc 2 such that dist (z, R*— Q)
>1/n/N. Passing to the I'limit along the sequence (e5,) We obtain

(4.10) [1— 2ng (\/ ]f w)de— 27 ¢ ( _)f z)dr— 2ﬂfdwf (2, y)dy
<I¢N(w, u)dw < [1 + 2"0'(% ] fzp(w, w)do
A4 4
+ 2”0(3/1%)‘[0;(00)(190 + 2"fdwfw(x, y)dy
A A4 QN

for every A € A with d(4, R* — Q) > +/n/N and for every u € L?(4). By (3.2)
we have

(4.11) lim fdwf z,y)dy = 11m dyfw(w, yyder =0

N—oo

for every Ae A with 4 ccQ. Thus, passing to the limit in (4.10) as
N >+ oo we get

(4.12) f (@, w)de = lim f V@, u) deo
A N=eo 4

for every Ae A with 4 cc Q and for every uwe L?(A4).
Using the definitions of me and (my)?, from (4.9) we obtain that

[1 — 2°¢ (}—/NE)] mé(@, 8)— 2" a (l/ﬁ@) a(x)— 27 f wlz,y)dy

QN

<(maen, )< [1 4 200 (Y2 | mit@, ) + 200 () at) - 2 oo, 1y

N

for every z e Q with dist(z, R*— Q) >1/n/N and for every sc R. Letting
¢ — 0t and using (4.8) we get

(4.13) [1 — 27¢ (l/N_ﬁ)] liméup me(x, 8) — 2" (—\l/—;-i) a(x)—2* f w(z,y)dy
QN

80+t

< lim (mg)a(2, 8) = py(2, 8) < [1 + 27¢ ( _)] liminf me(z, s)

&0+ >0t

F 200 (‘/) (w>+2"fw(w,y>dy.

QN
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Equality (4.11) implies that there exists an increasing sequence of integers
() such that lim -}w (@, y)dy = 0 for a.a. x€ 2. Letting N — + oo in

(4.13) along the sequence (N}, we get that there exists

lim m#(x, 8) = m(z, 8)

>0t
for a.a. v e £ and for all se R, and that

m(®z, §) = lim py,(, s)

k—>o0

for a.a. x€ Q2 and for all sc R. In the same way we prove that

Mmo(@, 8) =7E)m PuulZy 8) .

Using (4.12) we obtain

k—>o00

fm @, s)dx _fmo z, 8)dx =1lim |yy(z, s)dz =f1p(w, s)dx
4

for every Ae A with Acc£ and for every seR.
Since m, m,, w are continuous in s (indeed they are convex), this im-
plies that

(4.14) m(x, 8) = my(x, 8) = p(@, §)

for a.a. ze 2 and for all seR.
In order to prove (4.7) it is enough to show that

(4.15) p(z, 8) = my(x, 8)

for a.a. ze 2 and for all scR.
Since Wy(s) € Wy(s) C W(s) we have

me(z, s) <m;(w7 §) <mg(w, s);
thus from (4.14) it follows that

(4.16) p(w, s) = lim myz,s).

>0t

By a change of variables, it is easy to verify that mff(m, 8) >myx, s) for
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every ¢>0. Therefore (4.16) yields
p(x, 8) = lim mi(w,s) = inf mi(x,s).
&0+t §>0t

This proves (4.15).

It remains to prove property (iii). The inequality v(z, s)<f*(z,s, 0)
follows from Lemma 4.1 and from the convexity of u(w,-).

Let x€ 2, se R, uc W), ¢ > 0; by Jensen’s inequality we have

(@, 5,0) = (o, [uw)dy, & [ Deuy)ay)
Y

Y
<[ (@, uly), #*Duiy)) dy < [f(a, uly), e*Dru(y) dy.
Y Y

Thus by the representation formula for ¢ we have

(@, s,0) <y, s). n

5. — Some examples.

In this section we give some examples and applications of Theorem 3.1.
In particular we show that the inequalities

(5.1) (@, s, 0)<p(=, 5) <f"(z, s,0)

cannot be improved; in fact, there are some examples where y(x,s)
= f-(x, 8, 0) (see Proposition 5.9 and Remark 5.10), and some other ex-
amples where p(x, s) = (%, s, 0) (see Proposition 5.2). In the case f («,s,0)
= f*(x, s, 0) the integrand w(wx,s) is determined by the inequalities (5.1);
this allows us to generalize some results of A. Bensoussan [2] and V. Ko-
mornik [13] (see Proposition 5.5 and Propogition 5.6).

For every p>2 we denote by G, the class of functions g: R — R such that

(5.2) lgts)| <o(1 + [sfe')

(5.3) lo®) — g(s) <e(lt —s(1 + si’2)

for every s, ¢t € R, where ¢ is a positive constant and g: [0, + oo — [0, -+ oof
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is an increasing continuous function with ¢(0) = 0. Examples of functions
of the class G, are the polynomials of degree less than or equal to p/2.

Let N> 0, beI?(Q), ge§,; after some simple calculations (see sec-
tion 6) one can verify that the functionals

F,(u, 4) = [[F]e* du + gu) 2 + Ju— b(@)slde
4
satisfy all hypotheses of Theorem 3.1, with m = r = 2,

f(a,8,2) = N b ls—b@)r  (here 2 = (2g)icerscs)

-é 2 -+ 9(8)

y(8,2) = 01[ 21 %y

MA'y A) = ¢;max {1, dist (4, R*— A4)~4},

e,

where ¢,, ¢, are suitable pogitive constants.
Let y(x, s) be the function, convex in s, such that

e—>0+
>4

f (@, w)dw = (R, w— L7(A)") lim F,(v, 4)
4
for every Ae £, ueL?(4).

PropoSITION 5.1. If g is an affine function, then
y(@, 8) = f(z, s, 0) = Nl|g(s)[|* + |[s — b(x)[*

fora.a.z e 2 and for all seR.

ProOF. Since in this case f(x, s, 2) = [ (=, 8, 2) = f* (2, 8, ), the propo-
gition follows from (5.1). m

In the following proposition we give a new proof of a result dme to
A. Haraux and F. Murat [11].

PROPOSITION 5.2. Let g be a decreasing function of the class S,, let b € L*(Q),
and let N>0. Then

yp(z, s) = f+(x) $, 0)

for a.a. x € Q and for all seR.
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ProoF. Let € 2, scR, >0, uc Wy(s) (see (4.4)). Then

(5.4) ([Nl du(y) + g(ul)) I + futy) — bio)P] dy

Y

= [[Wet|duty) 2 + Nlg(uly) | +2e* du(y)g(u(y)) + luly) —b@)P] dy .
Y

Let us prove that

(5.5) fg(u)Audy>0 .
4

There exists a sequence (g,) of decreasing functions of class €1, with bounded

derivatives, such that g(s) = lim g.(s) for every s € R, and [g,(s)| <o(14slo'2)
for every heN, seR.
By the dominated convergence theorem

fg(u) Audy = limfg,,(u)Audy .
Y My
Since u —se W2*(Y) we have
Jontw) dudy = — [giw) Dupray>o,
Y Y
80 (5.5) is proved. From (5.4), (5.5) and Jensen’s inequality it follows that

[ 162 Aduty) + glutw)) P + luie)—b(z) 2] ay
Y
> [[Nlg(u@) ! + [u(y)— (@) F1dy> [f+(a, u(y), 0)dy >1+(,3,0).
Y Y
Since ¢ >0 and u € W,(s) are arbitrary, the representation formula for y
implies y(x, s)>f"(x, s,0). The opposite inequality follows from (5.1). m

We construct now an example which shows that the equality y(w,s)
= f*(®, s, 0) does not hold for an arbitrary function geG,.

ProposITION 5.3, Let n =1, m =p =¢ =2, Q = 10,1] and let g be
defined by

s if <0
g(s)={

sf4 ifs>0.
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If N> 6n%—16 and be L), then
plz, 8) < f+(xy 8,0) = f(=, s, 0) = Nlg(s)[|> +- [s — b()]?

for a.a. x€ 2 and for all s > 0. If in addition b(x) > 0 for a.a. x € Q, then

e—>0+

lim inf {Fe(u, 2): e W>(Q)} < min { f (@, 4, 0)do: u eLz(Q)} .
o
Proor. Define on [—m, 27]

k
Esina: if we[—m, 0]

ksin‘;—” it ze[o, 27]

(k> 0 is a parameter) and extend « to R by periodicity (the period is 37).
Set u,() = u(z/e); as ¢ — 0" we have that (u,) converges to k/z and (|u,|2)
converges to §%2 weakly in L2(0,1). Since szu;’ + g(u,) = 0, for every A e A,
be L*(A) we have

>0t

f«p( k)dw<hm1nff[l\7]ezu” + g(ue)|? 4 |us— b(x)|?] do
A

= lim |[|#e[>— 2usb(x) 4 b(x) *] dw :f[g ——2—k-b x) + |b(z ]2]

e—>0t
Therefore, for a.a. €10, 1[ and for all s > 0, we have

w(x,s) <g 72 82 — 2s8b(w) + [b(@)[?.
On the other hand
f+(z,s,0) = f(x,,0) = N|g(s) >+ |[s—b(z)?

(¥ +1) s*—2sb(@) 4 Pp(a) it s<0

(T +1)s— 2500 + parp it >0

Therefore, if N > 6x2 — 16, then w(z, s) < f+(z, s, 0) for a.a. € 2 and for
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all s > 0. If in addition b(x) > 0, we obtain from Corollary 3.2

lim inf{Fs(u, Q): ue W3 Q2)} =lim inf {Fe(u, 2): ue W*(2)}

=0+ &>07+

= min { f@p(m, w)yde: ue LZ(Q)} < (1 — %) f|b(w) [2da
Q2 2

< (1 — ﬁ—:—_e—lé)-’.[b(w) |2dx = min{ J-f“(w, u, 0)dx: u eLz(Q)} . n
Q Q

We give now another example where ¢ is a polynomial and the equality
y(®, 8) = fH(z, s, 0) is not satisfied.

PrOPOSITION 5.4, Letn =1, m =¢ =2, p =6, 2 = 10,1, and let g be
defined by

g(s)=83—|—s——g.

Then there exist sy 10, 3[ and K €10, -+ ool with the following property: if
be L*(Q) and N>K[1+ |b]feq], then

(@, 80) < f+(w; 805 0) = f(@, 85, 0) = N|g(30)[* + |80 — b(x)[®

for a.a. ze .

ProoF. Let u be the solution of the Caunchy problem

u" 4+ u® -+ u——gzo
#(0) = u'(0)=0.

The function # is periodic with period 27 where

(-3
) 1 \
— —_ Qe Q2 o4
T f(4s s 28) ds
0

and ¢ is the unique positive solution of $s — s2 — 1s* = 0. Let s, be de-
fined by

2T

1
8°:2—T u(w)dw:% w(zx)dx .

(1} 0
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Since

we have

T ] 5 1
—}
fu(m)dx =fs(zs—s2—§s4) ds.

0 0

We prove that s, << %; this is equivalent to show that

L4

(5.6) f(s—%)(gs—s2~%s4)~%ds<0.

]
Let v(s) = (3s — s* — }s%)¥; the function v is increasing in [0, 1] and de-
creasing in [1, 6]. Let v, = V/11/32, let w,: [0, v,] —[0, 1] be the inverse of

the function |, ;; and let w,: [0, v,]—[}, 6] be the inverse of the function
],015 then (5.6) is equivalent to

Vo

(5.7) f 2 (w,(t) — %) [g— Qu,(8) — 2(w1(t))3]_1dt

0 Vo
< f 2 (wz(t) — %) [g— 2u0,(8) — 2(w2(t))8]_ dt.
(1]

Since the function (s — })(§ — 2s — 2s%)~! is increasing in [0, 4 oo and
0 << wy () << wy(t), we obtain (5.7). This proves that s,<< %, hence

(s34 80— $)*>0.

1
Let ug(®) = w(2Tx); note that u, is 1-periodic and s,= f up(x)dr; by the
representation formula for p we get for every be L8(Q) °

1
1 52
6.9 (o500 [ [ | ) + (wst) + wale) — § [+ poats) — b | a
(1} 1

- f lua(y) — b(a) oy -
0
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»

1
Using the facts that s, :fuT(y)dy and that 0<ug(y)<o <1, we obtain
0

f ) — o)y = feo— i)+ 3 () ()| f urlg)dy— 53|

0 <m—b@i+ 3 (@) 2 < o -4 5611+ o=@

Let K = 56(sy + s, —§)7%; if N>K[1 -+ [b],=] We obtain from (5.8)
P&, 8) < @)+ B (334 5= ) = 1700, 5, 0) = (5, 5, 0,

and the proposition is proved. u

REMARK 5.5. For every N >0 let by = s, - [(N/3)(s2 -+ s, — §)(3s24-1) .
There exists N, > 0 such that for every N>N, we have N>K[1 + byl
If in the previous proposition we take N>N, and b(x) = by for every
x € 2, then we obtain from Corollary 3.2

lim inf{F(u, 2): we W22(2)} =lim inf{Fe(u, 2): u e W3*2)}

&—>0+ >0+

= min{ fzp(w, w)da: u eL‘*(.Q)}<f1p(m, 8o) dx <ff(ac, 89y 0)duw
Q2

Q

]

= min{ J} z,u, 0)dw: ueLG(Q)}
Q
The following proposition generalizes some results proved by V. Komornik
in [13].

PROPOSITION 5.6. Let g be a non-negative convex function of the class S,
let b e L*(Q), and let N > 0. Then for a.a. z€ 2 and for all seR

1/’(90, 8) = f_(wy $,0) = f(d'/', 8,0) = ng(s)lz + Is — b(m)|" .

ProoF. Since f(z, s, 0) <y(x, s)<f(z, s, 0), it is enough to prove that
for a.a. ¢ € 2 and for all s, €R we have

(5.9) (%, 80, 0) = f(w, 8, 0) .
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In order to prove (5.9) we show that

(5.10) (@, 8, 2) > f(@, 80, 0) + f(w 85, 0)(s— +Z (93 80y 0)2,

fora.a. 2z € Qandfor alls € R, s, € R, 2 € R% Inequality (5.10) is equivalent to

ean)  N( 3 e + 28100 g 3

i=1
+ {ls—d(®) |7 + Nlg(s) [*— |so— b() [?— N |g(s,) |
— [P so— b(@)[*~*sign (s,— b(@)) + 2Ng(s,)g'(s5)](s— 80)} >0 .
Since the left hand side of (5.11) is a polynomial of the second order in

n
> 2., inequality (5.11) is equivalent to

i=1
(5.12)  [s—b(@)]? — p|s, — b(x) |7~ sign (s, — b()) (s — o) — |0 — b()|?

-+ 2Ng(s0) [g(s) — 9'(35 )(s — o) — g(50)1>0 .
Putting ¢(s) = |s — b(x)|? - 2Ng(s,)g(s), inequality (5.12) can be written

in the form @(s) — ¢'(sq)(s — $) — ¢(8,) >0 which is always satisfied be-
cause the function ¢ is convex. m

The following proposition generalizes some results proved by A. Ben-
soussan in [2].

PROPOSITION 5.7. Suppose that g is a function which is convex and non-
negative for $>0, concave and mon-positive for s<0, and which satisfies
lg(s)|<c|s|?’> for every s € R. Then there exists Ny > 0 (depending only on the
constants p and ¢) such that for every N €10, N,] and for every be L*(Q)
we have

y(x, 8) = [ (w,8,0) = f(@, 5, 0) = Ng(s)|* + [s — b(=)[]?

for a.a. x € 2 and for all seR.

Proor. As in Proposition 5.6 we have only to prove that

(5.13) |s—b|r— pls, — b|P1sign (so— b)(s — 8o) — [0 — b
+ 2Ng(s0)[g(8) — §'(8g )(8 — 80) — 9(3)]>0

for all s, 85, be R. Let ¢(s) = |8 — b|? 4 2Ng(s,)g(8); if s,>>0 the function ¢
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is convex on [0, 4 cof; if ,<0 the function ¢ is convex on ]— oo, 0]. The-
refore, if s5,>0

(5.14) P(8) — @'(s5)(s — 80) — @(8) >0,
hence (5.13) is proved in the case ss,>0. Suppose now s, > 0 and s << 0; let
(s, b) = |s — b|P — p[s, — b|P~1sign (s, — b)(s — $o) — [so — bJ?

+ 2Ng(s0)[g(8) — g (55 ) (58 — 86) — 9(80)];
we want to prove that (ou/0s)(st, b)<0. We have

Out

= (5%, b) = pls— bl sign (s— b)— p s, — b|~* sign (so— )

+ 2Ng(s0)[g' (1) — ¢'(s3)];
therefore

0
max 2% (s, b) = (4SS poasle gt 2N g(s0) g/ (1) — 9'(50)]
R 08 0s 2

< —p¥2(so+ [s])7* 4 2N K (¢, p) szl2|s| 1012
<(—p2* 7+ 2NK(e, p))(so + Js])>
where K(c,p) = ¢(p/2)(p/(p — 2)) "2 if p>2, K(¢,p)=¢ if p=2.
If 0 < N <(p2+-?/K(ec,p)) we have (dx/0s)(s+, b) <0 for every s < 0, beR.
This implies that a(s, b) > a(0, b) = @(0) + ¢'(sy )8 — @(so); therefore by (5.14)

we get afs, b)>0, hence (5.1) is proved for s,> 0, s << 0. The case 8, < 0,
s> 0 can be proved in the same way. N

The previous proposition applies for instance to the case g(s) = s|s| 122
and to the case considered in Proposition 5.3.

If b e L?(Q) and if g satisfies the conditions of Proposition 5.7, it is pos-
sible to prove that the set

{N €10, + oof: y(x,8) = Nlg(8)|* + |s — b(z)]? for a.a. z € 2 and for all s € R}

is an interval. In fact the following result holds.

PrOPOSITION B.8. Let f(x, 8,2) be a function satisfying (3.1), (3.2), (3.3)
and let be L*(Q2). For every A >0 let

i@, s, 2) =f(2, s, 2) + }“ls - b(w)l”,
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and let pa(x, s) be the integrand of the I-limit associated to fi by Theorem 3.1.
If there exists Ay > 0 such that v, (x,s) = f, (2, s,0) for a.a. xe 2 and for
all seR, then for all 2> 2, we have y,(x, s) = f,(x, s, 0) for a.a. xc Q2 and
for all seR.

ProoF. Let 1> 4,; by Proposition 2.3 and by (5.1)
fi(#, 8,0) = f, (%, 8,0) + (A — do)|s — b(@)]?
= (@, 8) + (A— Ao)[s — b(@) |7 <y,(@, 5) <[(w, 8, 0)

for a.a. e Q2 and for all seR. n

We show now a situation where y(x, s) = f(«, 5, 0).

PrOPOSITION 5.9. Let n =1 (hence d = m) and let f(z, s, 2) be a function
satisfying (3.1), (3.2), (3.3). Suppose that

f(z, 8, 2) = fi(®, 8) + fo(®, 2,,) for all ze 2, seR, zeR™.

Then, if y(z, s) is the integrand of the I'-limit associated to f by Theorem 3.1,
we have for a.a. x € Q2 and for all se R

w(x, 8) = (@, 8, 0) = fl(m7 8) + }2(x70) ’

where fi(x, s) denotes the greatest function convex in s which is less than or
equal to fi(x,s) and fo(2, 2) denotes the greatest function conver in z, which
s less than or equal to f.(x, 2,).

Proor. By (5.1) it is enough to prove that
(6.15) w(®@,5) <filw,8) + fo(@, 0)

for a.a. v € £ and for all se R. Fix ze€ 2, se R, n> 0; there exist 2> 0,
w<<0, and 0 << A1<1 such that iz + (1 — A)w =0 and

Ma(@, 2) + (1 — 2)falar, w) <7 + [ol®, 0) .
Forevery he N set

teo Tk k44
RO B e A

k=—o0
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it is easy to prove that there exists a unique 1-periodic funetion u, such that

(m)=
w ondy,.

1
fu,,(y)dy =8 and Uy { # onl,

By the representation formula for v we have

1
v, 9) < [[h(e, 1) + file, v @)y
0
1
— 1, us@) dy + Hal@,2) + (1 — Dl ).

0
Since (u;) converges to s uniformly and f,(x, s) is continuous in s we have
(@, 8)<fa(®, 8) + fol, 0) + 7.
]

Since n was arbitrary we obtain (5.15) and so the proposition is proved.

REMARK 5.10. The previous proposition applies for example to the case

F(u, 4) = [l — a(@)]* + [u—b(a)|]do
4

with a € L*(£2) and be I*(2). In this case we obtain

p(@, 8) = f(#, 5,0) = (a(@)A0)® + |s — b(@)[*

while f*(, 5,0) = la(@)]* + |s — (@)}

6. — Appendix.

In this section we prove that the function

S 2 + g(8) + a(@)| + Js— b(@)p

=1

f(wy 8, 2) =N

(2 = (%;)1<i+i<2) Satisfies condition (3.2) whenever N >0, p>2, g€§,,
a € L¥(Q), be Lr(82), where G, is the class of functions defined in section 5.
Condition (3.1) is trivial for f and condition (3.3) follows from well known

estimates for the Laplace operator.
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First of all we extend the functions ¢ and b to all of R*, by setting
a(z) = b(x) = 0 for € R" — Q; so the function f is extended to R» xR xR

We shall use the following elementary inequalities, which hold for every
x>0, >0, p>1:

1 1
aff <3¢ + Eﬂ
|oer— Bl <p(1V 272) (> e — B] + |« — BI?)
(o 4 ﬂ)p<2p—1“p + 2p—1ﬂp .
The last inequality implies that
I8l <27-1f(z, 5, 2) + 21 p(@)]P .

In what follows ¢ = p[/(p —1) and e¢,, ¢, ¢; are positive consgtants in-
dependent of x,y,s,%,2,w. Let 5: R* —[0, 4 co[ be an arbitrary func-
tion with 7(0) = 0 and #(y) > 0 for y+~ 0, and let n*: R* —[0, -}- co[ be
defined by %*(0) = 0 and #%*(y) = 7n(y)~* for y %~ 0. For every =,yecRn",
s,t€R, 2, weR? we have

(6.1) |f(w+y,s+t,z+w)—f(m,s z)'
<a{| 3 st 000+ a@)| [ 3 ol + 1)1 + bl + lotw+ p—ata)]

o | 3 1wl + oD@ + o)+ lato + 1)~ ato) |

+ [s— b(@) [+ [[t|+ o(@ + ) — b(@)[] + [t + @+ 3)— b@) ]}
<%PW&&V§JWJ+ﬂ%&@WUWUWﬁw%#W@P+1V
+JWJMNMW+W—“WH+(ih%W

+ o([t)*(f(=; 8,2) + [b(@) |7+ 1) + la(z + y) — a(@)[?

+ f(@, 5, 2)lt] + 1@, 8, 2)4[b(@ + y) — b(@) |+ [tlo+ b(@ + 5)— (n}
<a{(tt@, 5,2+ ) +1)| 5 ol + o(i) +( 3, poul)

ol + e+ | + 2wty 5,2

]aw—i-y-——a |2+|aw-|—y——a(x[2
+n 12, ,5) + 7@V + 9) = Uo + lo + 9) —b(a) )
<(f(w, s, 2) + [b() ]P—f—l) (9,1, w)
+ &1 + 7*®)) [la(@ + y) — a(@) [+ (@ + ) — b(2) 7]
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where
Ay, t, w)
=03 [lél lwss| + e( 1) + (é:l [wn'l)z + o([t)2 + ]+ 2 + n(y) + 77(?/)"’]"

Since a€ L(R*) and be L?(R»), we have

lim f [la(@ + ¥)— a(@)[2 + [b(@ + y)— b(a) ] do = 0.
v=0

Therefore there exists a continuous function #: R* — [0, 4- co[ such that
7(0) = 0, 7(y) > 0 for y # 0, and

lim (1.4 7*(9)) [ [la(@ + 9) — a(@)}* + o@ + ) — b(a) ] dw = 0.
e R

For every o, yeR* we get

o(@, ¥) = &(1 + 7)) [la(@ + y) — a(@)|* + |p(x + y) — b(@) 7] .

Since 4 is continuous and A(0, 0, 0) = 0, there exists an inereasing con-
tinuous function o: [0, 4 co[ — [0, + cof, with ¢(0) = 0, such that

l(yy L, w)<6(lyl + ltl + |wl)

for every yeR", teR, weR%
Therefore from (6.1) it follows that

lf(m'l_y’ s—i—t,z—l—w) _f(wy s,z)[
<o(lyl + Itl + w)(f(z, 5, 2) + P@)* +1) + w(z,9)

for every z,ycR", s,t€R, z,weR% This shows that condition (3.2) is
satisfied.
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