Giuseppe Buttazzo
 Gianni Dal Maso
 Singular perturbation problems in the calculus of variations

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4 e série, tome 11, n 3 (1984), p. 395-430
http://www.numdam.org/item?id=ASNSP_1984_4_11_3_395_0

L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Singular Perturbation Problems
 in the Calculus of Variations (*).

GIUSEPPE BUTTAZZO (**) - GIANNI DAL MASO (**)

1. - Introduction.

In this paper we study the following singular perturbation problem in the Calculus of Variations; given an integral functional of the form

$$
F(u)=\int_{\Omega} f\left(x, u, D u, D^{2} u, \ldots, D^{m} u\right) d x
$$

determine the asymptotic behaviour (as $\varepsilon \rightarrow 0^{+}$) of theinfima of the functionals

$$
F_{\varepsilon}(u)=\int_{\Omega} f\left(x, u, \varepsilon D u, \varepsilon^{2} D^{2} u, \ldots, \varepsilon^{m} D^{m} u\right) d x
$$

(here $D^{k} u$ denotes the vector $\left(D^{k} u\right)_{|\alpha|=k}$ of all k-th order partial derivatives of u).

By means of the Γ-convergence theory we prove that, under suitable assumptions on the integrand f, there exists a convex integrand $\psi: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ such that for every $\varphi \in L^{q}(\Omega)$

$$
\begin{aligned}
\liminf _{\varepsilon \rightarrow 0^{+}}\left\{F_{\varepsilon}(u)+\int_{\Omega} \varphi u d x: u \in\right. & \left.W^{m, r}(\Omega) \cap L^{p}(\Omega)\right\} \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{F_{\varepsilon}(u)+\int_{\Omega} \varphi u d x: u \in W_{0}^{m, r}(\Omega) \cap L^{p}(\Omega)\right\} \\
& =\min \left\{\int_{\Omega}[\psi(x, u)+\varphi u] d x: u \in L^{p}(\Omega)\right\}
\end{aligned}
$$

(*) Partially supported by a research project of the Italian Ministry of Education.
(**) The authors are members of the Gruppo Nazionale per l'Analisi Funzionale e le sue Applicazioni of the Consiglio Nazionale delle Ricerche.

Pervenuto alla Redazione il 2 Novembre 1983.
where the exponents r and p are related to the behaviour of the integrand f and $1 / p+1 / q=1$. Moreover a formula for the function ψ is given.

There is an intimate relationship between this kind of problems and some singular perturbation problems in Optimal Control Theory. Consider for example a control problem with a cost functional of the form

$$
J(u, v)=\int_{\Omega}\left[N|v(x)|^{2}+|u(x)-b(x)|^{p}[d x\right.
$$

and with a singularity perturbed state equation of the form

$$
\left(E_{\varepsilon}\right)\left\{\begin{array}{l}
\varepsilon^{2} \Delta u+g(u)=v \\
u \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

($N>0, b \in L^{p}(\Omega)$, and $g: \mathbb{R} \rightarrow \mathbb{R}$ are given; u and v are respectively the state variable and the control variable). Problems of this kind have been studied by J. L. Lions in his courses at the Collège de France in 1981-82 and 1982-83, and by A. Bensoussan [2], A. Haraux and F. Murat [11], [12], and V. Komornik [13]. By substituting $v=\varepsilon^{2} \Delta u+g(u)$ in the cost functional, the study of the asymptotic behaviour (as $\varepsilon \rightarrow 0^{+}$) of

$$
\inf \left\{J(u, v):(u, v) \text { is a solution of }\left(E_{\varepsilon}\right)\right\}
$$

is reduced to the study of

$$
\inf \left\{\int_{\Omega}\left[N\left|\varepsilon^{2} \Delta u+g(u)\right|^{2}+|u-b(x)|^{p}\right] d x: u \in H_{\mathrm{loc}}^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right\},
$$

which is the problem considered in Section 5.
Some of the results proved in this paper were announced without proof in [4].

We wish to thank Prof. E. De Giorgi for many helpful discussions on this subject.

2. $-\Gamma$-convergence.

In this section we collect some known results of Γ-convergence theory that are used in the sequel. For a general exposition of this subject we refer to [6] and [7].

Let Λ, X be two topological spaces (we consider Λ as a space of parameters, in general $\Lambda=\overline{\mathbb{N}}=\mathbb{N} \cup\{+\infty\}$ or $\Lambda=\mathbb{R}$); let $\Lambda_{0} \subseteq \Lambda$ and $X_{0} \subseteq X$
with X_{0} dense in X; for every $\lambda \in \Lambda_{0}$ let F_{λ} be a function from X_{0} into $\overline{\mathrm{R}}=\mathrm{R} \cup\{-\infty,+\infty\}$; let $\lambda_{0} \in \Lambda, x \in X$ with $\lambda_{0} \in \bar{\Lambda}_{0}$; following [8] we define

$$
\begin{align*}
& \Gamma\left(\Lambda^{-}, X^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
y \rightarrow \infty}} F_{\lambda}(y)=\sup _{U \in J(x)} \liminf _{\substack{\lambda \rightarrow \lambda_{0} \\
\lambda \in \Lambda_{0}}} \inf _{y \in U \cap X_{0}} F_{\lambda}(y), \tag{2.1}\\
& \Gamma\left(\Lambda^{+}, X^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
y \rightarrow x}} F_{\lambda}(y)=\sup _{V \in \mathcal{J}(x)} \limsup _{\substack{\lambda \rightarrow \lambda_{0} \\
\lambda \in \Lambda_{0}}} \inf _{y \in U \cap X_{0}} F_{\lambda}(y), \tag{2.2}
\end{align*}
$$

where $J(x)$ denotes the family of all neighbourhoods of x in the space X. When the Γ-limits (2.1) and (2.2) coincide, their common value is indicated by

$$
\Gamma\left(\Lambda, X^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\ y \rightarrow \infty}} F_{\lambda}(y) .
$$

The main properties of Γ-limits are given by the following propositions, proved in [3] and [9].

Proposition 2.1. For every $x \in X$ define

$$
\begin{gathered}
\boldsymbol{F}^{-}(x)=\Gamma\left(\Lambda^{-}, X^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
y \rightarrow x}} F_{\lambda}(y) \\
\boldsymbol{F}^{++}(x)=\Gamma\left(\Lambda^{+}, X^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
y \rightarrow x}} F_{\lambda}(y) .
\end{gathered}
$$

The functions $F^{-}: X \rightarrow \overline{\mathbb{R}}$ and $F^{+}: X \rightarrow \overline{\mathbb{R}}$ are lower semicontinuous on X.
Proposition 2.2. Suppose that X has a countable base for the open sets. For every sequence (F_{n}) of functions from X_{0} into $\overline{\mathrm{R}}$, there exists a subsequence $\left(F_{n_{k}}\right)$ and a function $F: X \rightarrow \overline{\mathbb{R}}$ such that

$$
\boldsymbol{F}(x)=\Gamma\left(\overline{\mathbb{N}}, X^{-}\right) \lim _{\substack{k \rightarrow \infty \\ y \rightarrow x}} \boldsymbol{F}_{h_{k}}(y)
$$

for every $x \in X$.
Proposition 2.3. If $G: X \rightarrow \mathbb{R}$ is lower semicontinuous at the point $x \in X$, then

$$
\begin{aligned}
& \Gamma\left(\Lambda^{-}, X^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
y \rightarrow x}}\left[G+F_{\lambda}\right](y) \geqslant G(x)+\Gamma^{-}\left(\Lambda^{-}, X^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
y \rightarrow \infty}} F_{\lambda}(y) \\
& \Gamma\left(\Lambda^{+}, X^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
y \rightarrow x}}\left[G+F_{\lambda}\right](y) \geqslant G(x)+\Gamma\left(\Lambda^{+}, X^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
y \rightarrow \infty}} F_{\lambda}(y) ;
\end{aligned}
$$

if in addition G is continuous at the point x, then the above inequalities are equalities.

Proposition 2.4. Suppose that there exists $F: X \rightarrow \overline{\mathbb{R}}$ such that

$$
F(x)=\Gamma\left(\Lambda, X_{\substack{-}}^{\substack{\lambda \rightarrow \lambda_{0} \\ y \rightarrow \lambda_{\lambda}}} F_{\lambda}(y)\right.
$$

for every $x \in X$. Assume further that the functions F_{λ} are equicoercive on X, i.e. for every $s \in \mathbb{R}$ there exists a compact subset K_{s} of X (independent of λ) such that $\left\{x \in X_{0}: F_{\lambda}(x) \leqslant s\right\} \subseteq K_{s}$ for every $\lambda \in \Lambda_{0}$.

Then we have

$$
\min _{X} F=\lim _{\lambda \rightarrow \lambda_{0}}\left[\inf _{X_{0}} F_{\lambda}\right] .
$$

Moreover, if $\left(x_{\lambda}\right)_{\lambda \in A_{0}}$ is a family of elements of X_{0} such that $\lim _{\lambda \rightarrow \lambda_{0}} \lambda_{\lambda}=x$ and $\lim _{\lambda \rightarrow \lambda_{0}}\left[F_{\lambda}\left(x_{\lambda}\right)-\inf _{X_{0}} F_{\lambda}\right]=0$, then x is a minimum point of F in X.

Let $S_{0}\left(\lambda_{0}\right)$ be the set of all sequences in Λ_{0} converging to λ_{0} in Λ, and let $S(x)$ be the set of all sequences in X_{0} converging to x; we define (the subscript seq stands for sequential)

$$
\begin{align*}
& \Gamma_{\text {sea }}\left(\Lambda^{-}, X^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
\nu \rightarrow x}} F_{\lambda}(y)=\inf _{\left(\lambda_{h}\right) \in S_{0}\left(\lambda_{0}\right)} \inf _{\left(x_{n}\right) \in S(x)} \liminf _{h \rightarrow \infty} F_{\lambda_{\lambda}}\left(x_{h}\right) \tag{2.3}\\
& \Gamma_{\text {sea }}\left(\Lambda^{+}, X^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
y \rightarrow x}} F_{\lambda}(y)=\sup _{\left(\lambda_{h}\right) \in S_{0}\left(\lambda_{0}\right)} \inf _{\left(x_{h}\right) \in S(x)} \limsup _{h \rightarrow \infty} F_{\lambda_{h}}\left(x_{h}\right) . \tag{2.4}
\end{align*}
$$

Remark 2.5. If the spaces Λ and X satisfy the first axiom of countability it is possible to prove (see [3]) that the $\Gamma_{\text {seq }}$-limits (2.3) and (2.4) coincide respectively with the Γ-limits (2.1) and (2.2).

Remark 2.6. It is not difficult to see that in the case $\Lambda=\overline{\mathbf{N}}, \Lambda_{0}=\mathbf{N}$, $\lambda_{0}=\infty$, the $\Gamma_{\text {seq }}$-limits (2.3) and (2.4) of a sequence $\left(F_{h}\right)_{h \in \mathbb{N}}$ of functions reduce respectively to

$$
\inf _{\left(x_{h}\right) \in S(x)} \liminf \boldsymbol{F}_{h \rightarrow \infty}\left(x_{h}\right) \quad \text { and } \quad \inf _{\left(x_{n}\right) \in S(x)} \limsup _{\lambda \rightarrow \infty} F_{h}\left(x_{h}\right) .
$$

Suppose that X is a reflexive separable Banach space with dual X^{\prime}. Let $\left(x_{h}^{\prime}\right)$ be a sequence dense in the unit ball of X^{\prime}; we introduce the metric δ
on X defined by

$$
\delta(x, y)=\sum_{h=1}^{\infty} 2^{-n}\left|\left\langle x_{n}^{\prime}, x-y\right\rangle\right| .
$$

It is known that the metric space (X, δ) is separable.
Let us denote by w the weak topology of X.
We shall use the following proposition proved in [1].
Proposition 2.7. Assume that X is a reflexive Banach space, that λ_{0} has a countable neighbourhood base in Λ, and that there exist two constants $c_{1}, c_{2} \in \mathbf{R}$, with $c_{2}>0$, such that

$$
F_{\lambda}(x) \geqslant c_{1}+c_{2}\|x\|
$$

for every $\lambda \in \Lambda_{0}, x \in X_{0}$.
Then for every $x \in X$

$$
\begin{gathered}
\Gamma_{\text {sea }}\left(\Lambda^{-}, w^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
y \rightarrow x_{\lambda}}} F_{\lambda}(y)=\Gamma\left(\Lambda^{-}, w^{-}\right) \lim _{\substack{\lambda, \lambda_{0} \\
y \rightarrow x_{\lambda}}} F_{\lambda}(y)=\Gamma^{-}\left(\Lambda^{-}, \delta^{-}\right) \lim _{\substack{\lambda \lambda_{0} \\
y \rightarrow x}} F_{\lambda}(y) \\
\left.\Gamma_{\text {sea }}\left(\Lambda^{+}, w^{-}\right) \lim _{\substack{x \rightarrow \lambda_{0} \\
y \rightarrow x_{0}}} F_{\lambda}(y)=\Gamma\left(\Lambda^{+}, w^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
y \rightarrow x_{\lambda}}} F_{\lambda}(y)=\Gamma^{+}, \delta^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\
y \rightarrow x_{\lambda}}} F_{\lambda}(y) .
\end{gathered}
$$

Using Proposition 2.3 and some general properties of Γ-limits (see [3], [8]) it is easy to obtain the following proposition.

Proposixion 2.8. Under the hypotheses of Proposition 2.7, for every $x \in X, s \in \mathbb{R}$ the following conditions are equivalent:
i) $\Gamma\left(\Lambda, w^{-}\right) \lim _{\substack{\lambda \rightarrow \lambda_{0} \\ y \rightarrow x}} F_{\lambda}(y)=s$
ii) for every sequence (λ_{k}) in Λ_{0} converging to λ_{0} in Λ there exists a subsequence $\left(\lambda_{h_{k}}\right)$ such that

$$
\Gamma\left(\overline{\mathbf{N}}, w^{-}\right) \lim _{\substack{k \rightarrow \infty \\ y \rightarrow x}} F_{h_{k}}(y)=s
$$

3. - Statement of the result.

Let Ω be a bounded open subset of \mathbb{R}^{n}, let $m \geqslant 1$ be an integer, and let p, r be two real numbers with $p>1,1 \leqslant r \leqslant p$.

We indicate by $d=d(n, m)$ the number of multi-indices $\alpha \in \mathbb{N}^{n}$ such that $1 \leqslant|\alpha| \leqslant m$, by $\mathcal{A}\left(\mathbb{R}^{n}\right)$ the family of all bounded open subsets of \mathbb{R}^{n}, and by $\mathcal{A}=\mathcal{A}(\Omega)$ the family of all open subsets of Ω.

For every $k=1,2, \ldots, m$ and every $u \in W_{\text {loc }}^{m, r}(A)$, with $A \in \mathcal{A}\left(\mathbb{R}^{n}\right)$, we denote by $D^{k} u$ the vector $\left(D^{\alpha} u\right)_{|\alpha|=k}$ of all k-th order partial derivatives of u.

The integrands we shall consider are Borel functions $f: \Omega \times \mathbb{R} \times \mathbb{R}^{\boldsymbol{d}}$ $\rightarrow[0,+\infty[$ which satisfy the following properties:
(3.1) there exist $c \geqslant 1$ and $a \in L^{1}(\Omega)$ such that

$$
-a(x)+|s|^{p} \leqslant f(x, s, z) \leqslant a(x)+c\left[|s|^{p}+|z|^{r}\right]
$$

for every $x \in \Omega, s \in \mathbb{R}, z \in \mathbb{R}^{d}$;
(3.2) there exist $a \in L^{1}(\Omega)$, an increasing continuous function $\sigma:[0,+\infty[$ $\rightarrow\left[0,+\infty\left[\right.\right.$ with $\sigma(0)=0$, and a Borel function $\omega: \Omega \times \mathbb{R}^{n} \rightarrow[0,+\infty[$. with

$$
\lim _{y \rightarrow 0} \int_{\Omega} \omega(x, y) d x=\int_{\Omega} \omega(x, 0) d x=0
$$

such that

$$
\begin{aligned}
& |f(y, t, w)-f(x, s, z)| \leqslant \omega(x, y-x) \\
& \quad+\sigma(|y-x|+|t-s|+|w-z|)(a(x)+f(x, s, z))
\end{aligned}
$$

for every $x \in \Omega, s \in \mathbb{R}, z \in \mathbb{R}^{a}$;
(3.3) there exists $a \in L^{1}(\Omega)$, a Borel function $\gamma: \mathbb{R} \times \mathbf{R}^{d} \rightarrow[0,+\infty[$, and a function $\lambda: \mathcal{A}\left(\mathbb{R}^{n}\right) \times \mathcal{A}\left(\mathbb{R}^{n}\right) \rightarrow[0,+\infty[$ such that
(i) for every $x \in \Omega, s \in \mathbb{R}, z \in \mathbb{R}^{d}$

$$
\gamma(s, z) \leqslant f(x, s, z)+|s|^{p}+a(x)
$$

(ii) for every pair $A, A^{\prime} \in \mathcal{A}\left(\mathbb{R}^{n}\right)$ with $A \subset \subset A^{\prime}$ and for every $u \in W^{m, r}\left(A^{\prime}\right)$

$$
\int_{A} \sum_{|\alpha| \leqslant m}\left|D^{\alpha} u\right|^{r} d x \leqslant \lambda\left(A, A^{\prime}\right) \int_{A^{\prime}} \gamma\left(u, D u, D^{2} u, \ldots, D^{m} u\right) d x
$$

(iii) for every pair $A, A^{\prime} \in \mathcal{A}\left(\mathbb{R}^{n}\right)$ with $A \subset \subset A^{\prime}$

$$
\limsup _{t \rightarrow+\infty} \lambda\left(t A, t A^{\prime}\right)<+\infty
$$

For every $\varepsilon>0$ we consider the functional $F_{\varepsilon}(u, A)$ defined for every $A \in \mathcal{A}$ and for every $u \in W_{\text {loc }}^{m, r}(A)$ by

$$
\begin{equation*}
F_{\varepsilon}(u, A)=\int_{A} f\left(x, u, \varepsilon D u, \varepsilon^{2} D^{2} u, \ldots, \varepsilon^{m} D^{m} u\right) d x \tag{3.4}
\end{equation*}
$$

It is possible to verify (see section 6) that hypotheses (3.1), (3.2), (3.3) are fulfilled, for example, by the functionals

$$
\begin{aligned}
& F_{\varepsilon}(u, A)=\int_{A}\left[\left(\varepsilon|D u|+P_{k}(u)+a(x)\right)^{2}+|u-b(x)|^{2 k}\right] d x \\
& F_{\varepsilon}(u, A)=\int_{A}\left[\left|\varepsilon^{2} \Delta u+P_{k}(u)+a(x)\right|^{2}+|u-b(x)|^{2 k}\right] d x \\
& F_{\varepsilon}(u, A)=\int_{A}\left[\varphi\left(x, u, \varepsilon D u, \varepsilon^{2} D^{2} u\right)\left|\varepsilon^{2} \Delta u+P_{k}(u)+a(x)\right|^{2}+|u-b(x)|^{2 k}\right] d x,
\end{aligned}
$$

where $k \geqslant 1$ is an integer, P_{k} is a polynomial of degree less than or equal to k, $a \in L^{2}(\Omega), b \in L^{2 k}(\Omega)$, and $\varphi: \Omega \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is uniformly continuous and satisfies $0<\inf \varphi \leqslant \sup \varphi<+\infty$.

Other examples of functionals verifying hypotheses (3.1), (3.2), (3.3) can be found in Section 5.

Define now for every $A \in \mathcal{A}, u \in L^{p}(A)$

$$
T(u, A)= \begin{cases}0 & \text { if } u \in W_{0}^{m, r}(A) \tag{3.5}\\ +\infty & \text { otherwise }\end{cases}
$$

Let us denote by $w-L^{p}(A)$ the weak topology of $L^{p}(A)$. The main result we prove in this paper is the following.

Theorem 3.1. Let $f: \Omega \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow[0,+\infty[$ be a Borel function satisfying hypotheses (3.1), (3.2), (3.3), and let F_{ε} be the functionals defined by (3.4). Then there exists a Borel function $\psi: \Omega \times \mathbb{R} \rightarrow[0,+\infty[$ such that
(i) for every $A \in \mathcal{A}, u \in L^{p}(A), w_{0} \in W^{m, r}(A) \cap L^{p}(A)$

$$
\begin{aligned}
\int_{A} \psi(x, u) d x & =\Gamma\left(\mathbb{R}, w-L^{p}(A)^{-}\right) \lim _{\substack{\varepsilon \rightarrow 0^{+} \\
v \rightarrow u}} F_{\varepsilon}(v, A) \\
& =\Gamma\left(\mathbb{R}, w-L^{v}(A)^{-}\right) \lim _{\substack{\varepsilon \rightarrow 0^{+} \\
v \rightarrow u}}\left[F_{\varepsilon}(v, A)+T\left(v-w_{0}, A\right)\right]
\end{aligned}
$$

(ii) for every $x \in \Omega$ the function $s \rightarrow \psi(x, s)$ is convex on \mathbb{R};
(iii) for every $(x, s) \in \Omega \times \mathbb{R}$

$$
f^{-}(x, s, 0) \leqslant \psi(x, s) \leqslant f^{+}(x, s, 0)
$$

where $f^{+}(x, s, z)$ is the greatest function convex in s which is less than or equal to $f(x, s, z)$ and $f^{-}(x, s, z)$ is the greatest function convex in (s, z) which is less than or equal to $f(x, s, z)$.

Moreover the following representation formulae for ψ hold for a.a. $x \in \Omega$ and all $s \in \mathbb{R}$:

$$
\begin{aligned}
\psi(x, s) & =\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{F_{\varepsilon}(x, u): u \in W^{m, r}(Y) \cap L^{p}(Y), \int_{Y} u d y=s\right\} \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{F_{\varepsilon}(x, u): u-s \in W_{0}^{m, r}(Y) \cap L^{p}(Y), \int_{Y} u d y=s\right\} \\
& =\inf \left\{F_{\varepsilon}(x, u): \varepsilon>0, u-s \in W_{0}^{m, r}(Y) \cap L^{p}(Y), \int_{Y} u d y=s\right\} \\
& =\inf \left\{F_{\varepsilon}(x, u): \varepsilon>0, u \in W_{\neq}^{m, r}(Y) \cap L^{p}(Y), \int_{Y} u d y=s\right\}
\end{aligned}
$$

where Y denotes the unit cube $] 0,1\left[{ }^{n}, W_{\#}^{m, r}(Y)\right.$ denotes the space of all Y-periodic functions of $W_{l o c}^{m, \tau}\left(\mathbb{R}^{n}\right)$, and

$$
F_{\varepsilon}(x, u)=\int_{\boldsymbol{Y}} f\left(x, u(y), \varepsilon D u(y), \varepsilon^{2} D^{2} u(y), \ldots, \varepsilon^{m} D^{m} u(y)\right) d y
$$

Corollary 3.2. Let $w_{0} \in W^{m, r}(\Omega) \cap L^{p}(\Omega)$, let $W\left(w_{0}\right)=\left\{u \in L^{p}(\Omega)\right.$: $\left.u-w_{0} \in W_{0}^{m, r}(\Omega)\right\}$, and let V be a set such that $W\left(w_{0}\right) \subseteq V \subseteq W_{\operatorname{loc}}^{m, r}(\Omega) \cap L^{p}(\Omega)$. Then we have

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{F_{\varepsilon}(u, \Omega) d x+\int_{\Omega} g u d x: u \in V\right\} \tag{3.6}\\
&=\min \left\{\int_{\Omega} \psi(x, u) d x+\int_{\Omega} g u d x: u \in L^{p}(\Omega)\right\}
\end{align*}
$$

for every $g \in L^{q}(\Omega)(1 / p+1 / q=1)$.
Proof. It follows from Theorem 3.1, Proposition 2.3 and Proposition 2.4 that

$$
\begin{aligned}
\min \left\{\int_{\Omega} \psi(x,\right. & \left., u) d x+\int_{\Omega} g u d x: u \in L^{p}(\Omega)\right\} \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{F_{\varepsilon}(u, \Omega)+\int_{\Omega} g u d x: u \in W_{\operatorname{loc}}^{m, r}(\Omega) \cap L^{v}(\Omega)\right\} \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{F_{\varepsilon}(u, \Omega)+\int_{\Omega} g u d x+T\left(u-w_{0}, \Omega\right): u \in W_{l o c}^{m, r}(\Omega) \cap L^{p}(\Omega)\right\} \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{F_{\varepsilon}(u, \Omega)+\int_{\Omega} g u d x: u \in W\left(w_{0}\right)\right\}
\end{aligned}
$$

Since $W\left(w_{0}\right) \subseteq V \subseteq W_{\mathrm{loc}}^{m, \tau}(\Omega) \cap L^{p}(\Omega)$ we obtain (3.6).

4. - Proof of the result.

In this section we prove Theorem 3.1.
The function f and the functionals F_{ε} are supposed to satisfy the hypotheses of the theorem. In what follows we shall write briefly $f\left(x, u, \varepsilon^{k} D^{k} u\right)$ instead of $f\left(x, u, \varepsilon D u, \varepsilon^{2} D^{2} u, \ldots, \varepsilon^{m} D^{m} u\right)$. Let $\left(\varepsilon_{h}\right)$ be a sequence in $] 0,+\infty[$ converging to 0 . For every $A \in \mathcal{A}, u \in L^{p}(A)$ set

$$
F^{+}(u, A)=\Gamma\left(\overline{\mathbf{N}^{+}}, w-L^{p}(A)^{-}\right) \lim _{\substack{h \rightarrow \infty \\ v \rightarrow u}} F_{\varepsilon_{k}}(u, A)
$$

Lemma 4.1. For every $A \in \mathcal{A}, u \in L^{p}(A)$ we have

$$
F^{+}(u, A) \leqslant \int_{A} f(x, u, 0) d x
$$

Proof. Let $A \in \mathcal{A}, u \in L^{p}(A)$. Let ϱ be a non-negative function in $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\int \varrho d x=1$, let $\theta=1 /(n+m+1)$, let $\varrho_{h}(x)=\varepsilon_{h}^{-n \theta} \varrho\left(\varepsilon_{h}^{-\theta} x\right)$, and let $u_{h}=\varrho_{h} * u$. We have

$$
F_{s_{h}}\left(u_{h}, A\right)=\int_{A} f\left(x, \varrho_{h} * u, \varepsilon_{h}^{k} D^{k} \varrho_{h} * u\right) d x
$$

It is easy to see that $\left(\varrho_{h} * u\right)_{h}$ converges to u in $L^{p}(A)$ and that $\left(\varepsilon_{h}^{k} D^{k} \varrho_{h} * u\right)_{h}$ converges to 0 in $L^{p}(A)$ (hence in $L^{r}(A)$) for $k=1,2, \ldots, m$. Since $f(x, s, z)$ is continuous in (s, z), inequalities (3.1) ensure that

$$
\int_{A} f(x, u, 0) d x=\lim _{h \rightarrow \infty} \int_{A} f\left(x, \varrho_{h} * u, \varepsilon_{h}^{k} D^{k} \varrho_{h} * u\right) d x
$$

By Remark 2.6 and Proposition 2.7 we have

$$
F^{+}(u, A) \leqslant \limsup _{h \rightarrow \infty} F_{\varepsilon_{h}}\left(u_{h}, A\right)=\int_{A} f(x, u, 0) d x
$$

and the lemma is proved.
Lemma 4.2. Let $A, B, C \in \mathcal{A}$ with $C \subset \subset A \cup B$. For every $u \in L^{p}(A \cup B)$ we have

$$
F^{+}(u, C) \leqslant F^{+}(u, A)+F^{+}(u, B) .
$$

Proof. Let $K=\bar{C}-B$ and let A_{0}, B_{0} be two open sets, with meas $\left(\partial A_{0}\right)=$ meas $\left(\partial B_{0}\right)=0$, such that $K \subseteq A_{0} \subset \subset B_{0} \subset \subset A$. Fix an integer ν and a family $\left(A_{i}\right)_{1 \leqslant i \leqslant r}$ of open sets, with meas $\left(\partial A_{i}\right)=0$, such that $A_{0} \subset \subset A_{1}$ $\subset \subset \ldots \subset \subset A_{\nu} \subset \subset B_{0}$. Define $S_{i}=C \cap\left(A_{i}-\bar{A}_{i-1}\right)$ and $S=C \cap\left(B_{0}-A_{0}\right)$. For every $i=1,2, \ldots, \nu$ there exists $\varphi_{i} \in C_{0}^{\infty}\left(A_{i}\right)$ such that $0 \leqslant \varphi_{i} \leqslant 1$ and $\varphi_{i}=1$ on A_{i-1}.

In what follows the letter c will denote various positive constants (independent of $h, i, \nu)$, whose value can change from one line to the next.

Fix $u \in L^{p}(A \cup B)$ and $\eta>0$; there exists a sequence $\left(u_{h}\right)$ in $W_{\text {loc }}^{m, r}(A)$ $\cap L^{p}(A)$, converging to u weakly in $L^{p}(A)$ and a sequence $\left(v_{h}\right)$ in $W_{l o c}^{m, r}(B) \cap L^{p}(B)$ converging to u weakly in $L^{p}(B)$ such that

$$
F^{+}(u, A)+\eta \geqslant \limsup _{h \rightarrow \infty} F_{\varepsilon_{h}}\left(u_{h}, A\right) \quad \text { and } \quad F^{+}(u, B)+\eta \geqslant \limsup _{h \rightarrow \infty} F_{\varepsilon_{h}}\left(v_{h}, B\right)
$$

For every $i=1,2, \ldots, \nu$ and for every $h \in \mathbb{N}$ set

$$
w_{i, h}=\varphi_{i} u_{h}+\left(1-\varphi_{i}\right) v_{h}
$$

Using (3.1) we obtain

$$
\begin{aligned}
& F_{\varepsilon_{h}}\left(w_{i, h}, C\right) \leqslant F_{\varepsilon_{h}}\left(u_{h}, C \cap A_{i-1}\right)+F_{\varepsilon_{h}}\left(v_{h}, C-\bar{A}_{i}\right) \\
& +c \int_{S_{i}}\left[\left[a(x)+\left|w_{i, h}\right|^{p}+\sum_{k=1}^{m}\left|\varepsilon_{h}^{k} D^{k} w_{i, h}\right|^{r}\right] d x\right. \\
& \leqslant F_{\varepsilon_{h}}\left(u_{h}, A\right)+F_{\varepsilon_{h}}\left(v_{h}, B\right)+c \int_{S_{i}}\left\{a(x)+\left|u_{h}\right|^{p}+\left|v_{h}\right|^{p}+\sum_{k=1}^{m}\left[\left|\varepsilon_{h}^{k} D^{k} u_{h}\right|^{r}+\left|\varepsilon_{h}^{k} D^{k} v_{h}\right|^{r}\right]\right. \\
& \left.+c_{\nu} \sum_{k=1}^{m} \varepsilon_{h}^{k r} \sum_{j=0}^{k-1}\left[\left|D^{j} u_{h}\right|^{r}+\left|D^{j} v_{h}\right|^{r}\right]\right\} d x,
\end{aligned}
$$

where c_{ν} depends on $\sup \left|D^{\alpha} \varphi_{i}\right|$ for $i=1,2, \ldots, \nu$ and $|\alpha| \leqslant m$. Since the strips S_{i} are pairwise disjoint, for every $h \in \mathbb{N}$ there exists an index $i_{n} \in\{1,2, \ldots, v\}$ such that

$$
\int_{S_{i_{h}}}\{\ldots\} d x \leqslant \frac{1}{\nu} \int_{S}\{\ldots\} d x .
$$

Define $w_{h}=w_{i n, h}$. Then

$$
\begin{aligned}
F_{\varepsilon_{h}}\left(w_{h}, C\right) \leqslant & F_{\varepsilon_{h}}\left(u_{h}, A\right)+F_{\varepsilon_{h}}\left(v_{h}, B\right)+\frac{c}{v} \int_{S}\left\{a(x)+\left|u_{h}\right|^{p}+\left|v_{h}\right|^{p}\right. \\
& \left.+\sum_{k=1}^{m}\left[\left|\varepsilon_{h}^{k} D^{k} u_{h}\right|^{r}+\left|\varepsilon_{h}^{k} D^{k} v_{h}\right|^{r}\right]+c_{v} \sum_{k=1}^{m} \varepsilon_{h}^{k r} \sum_{j=0}^{k=1}\left[\left|D^{j} u_{h}\right|^{r}+\left|D^{j} v_{h}\right|^{r}\right]\right\} d x
\end{aligned}
$$

Let $E=A \cap B$. Since $S \subset \subset E$, there exists $S^{\prime} \in \mathcal{A}$ such that $S \subset \subset S^{\prime} \subset \subset E$. Since $\left(u_{h}\right)$ and (v_{h}) are bounded in $L^{p}\left(S^{\prime}\right)$, using inequalities as

$$
\int_{S}\left|D^{k} w\right|^{r} d x \leqslant \sigma \int_{S^{\prime}}\left|D^{m} w\right|^{r} d x+c_{\sigma} \int_{\mathcal{S}^{\prime}}|w|^{r} d x
$$

(which hold for $1 \leqslant k \leqslant m$ and for every $\sigma>0$) we get

$$
\begin{align*}
F_{\varepsilon_{h}}\left(w_{h}, C\right) \leqslant F_{\varepsilon_{h}}\left(u_{h}, A\right)+ & F_{\varepsilon_{h}}\left(v_{h}, B\right)+\frac{c}{\nu}\left(1+\varepsilon_{h} c_{v, \sigma}\right) \tag{4.1}\\
& +\frac{c}{v}\left(1+\sigma c_{\nu}\right) \int_{S^{\prime}} \sum_{k=1}^{m}\left[\left|\varepsilon_{h}^{k} D^{k} u_{h}\right|^{r}+\left|\varepsilon_{h}^{k} D^{k} v_{h}\right|^{r}\right] d x .
\end{align*}
$$

Define now $U_{h}(x)=u_{h}\left(\varepsilon_{h} x\right)$ and $V_{h}(x)=v_{h}\left(\varepsilon_{h} x\right)$; then, using (3.3), we get

$$
\begin{equation*}
\int_{S^{\prime}} \sum_{k=1}^{m}\left[\left|\varepsilon_{h}^{k} D^{k} u_{h}\right|^{r}+\left|\varepsilon_{h}^{k} D^{k} v_{h}\right|^{k}\right] d x \tag{4.2}
\end{equation*}
$$

$=\varepsilon_{h}^{n} \int_{8_{h}^{-1} \mathcal{B}^{\prime \prime}}^{m} \sum_{k=1}^{m}\left[\left|D^{k} U_{h}\right|^{r}+\left|D^{k} V_{h}\right| r\right] d x \leqslant \lambda\left(\varepsilon_{h}^{-1} S^{\prime}, \varepsilon_{h}^{-1} E\right) \varepsilon_{\varepsilon_{h}^{n}}^{\int_{\varepsilon^{-1}}}\left[\gamma\left(U_{h}, D^{k} U_{h}\right)+\gamma\left(V_{h}, D^{k} V_{h}\right)\right] d x$
$=\lambda\left(\varepsilon_{h}^{-1} S^{\prime}, \varepsilon_{h}^{-1} E\right) \int_{E}\left[\gamma\left(u_{h}, \varepsilon_{h}^{k} D^{k} u_{h}\right)+\gamma\left(v_{h}, \varepsilon_{h}^{k} D^{k} v_{h}\right)\right] d x$
$\leqslant \lambda\left(\varepsilon_{h}^{-1} S^{\prime}, \varepsilon_{h}^{-1} E\right)\left[c+F_{\varepsilon_{h}}\left(u_{h}, A\right)+F_{\varepsilon_{h}}\left(v_{h}, B\right)\right]$.

Since the sequences ($w_{i, k}$) converge to u weakly in $L^{p}(C)$, it is easy to see that the sequence $\left(w_{h}\right)$ converges to u weakly in $L^{p}(C)$. Therefore, passing to the limit in (4.1) as $h \rightarrow \infty$, and using (4.2) and (3.3) (iii) we get

$$
\begin{aligned}
F^{+}(u, C) \leqslant F^{+}(u, A)+F^{+}(u, B) & +2 \eta+\frac{c}{v} \\
& +\frac{c}{v}\left(1+\sigma c_{v}\right) M\left[c+F^{+}(u, A)+F^{+}(u, B)+2 \eta\right]
\end{aligned}
$$

where $M=\limsup _{t \rightarrow+\infty} \lambda\left(t S^{\prime}, t E\right)$. Passing to the limit first as $\sigma \rightarrow 0$, then as $v \rightarrow+\infty$, and finally as $\eta \rightarrow 0$, we obtain

$$
F^{+}(u, C) \leqslant F^{+}(u, A)+F^{+}(u, B) .
$$

Remark 4.3. In the same way we can prove that for every $A, B \in \mathcal{A}$,
with $B \subset \subset$, and for every compact subset K of B

$$
F^{+}(u, A) \leqslant F^{+}(u, B)+F^{+}(u, A-K)
$$

for every $u \in L^{p}(A)$. This fact, combined with Lemma 4.1 and inequalities (3.1), implies that

$$
F^{+}(u, A)=\sup \left\{F^{+}(u, B): B \in \mathcal{A}, B \subset \subset\right\} .
$$

Lemma 4.4. There exist a subsequence $\left(\varepsilon_{h_{k}}\right)$ of $\left(\varepsilon_{h}\right)$ and a functional F such that

$$
\begin{equation*}
F(u, A)=\Gamma\left(\overline{\mathbb{N}}, w-L^{v}(A)^{-}\right) \lim _{\substack{k \rightarrow \infty \\ v \rightarrow u}} F_{\varepsilon_{k_{k}}}(v, A) \tag{4.3}
\end{equation*}
$$

for every $A \in \mathcal{A}$ and for every $u \in L^{p}(A)$. Moreover for every $u \in L^{p}(\Omega)$ the set function $A \rightarrow F(u, A)$ is the trace on \mathcal{A} of a regular Borel measure defined on Ω.

Proof. Let \mathfrak{U} be a countable base for the open subsets of Ω, closed under finite unions; note that for every $A, B \in \mathcal{A}$ with $A \subset \subset B$, there exists $U \in \mathcal{U}$ such that $A \subset C U \subset \subset B$. By the compactness of Γ-convergence (see Propositions 2.2 and 2.7) there exists a subsequence of $\left(\varepsilon_{n}\right)$ (which we still denote by $\left(\varepsilon_{h}\right)$) such that for every $B \in \mathcal{U}, u \in L^{p}(B)$ there exists the Γ-limit

$$
G(u, B)=\Gamma\left(\overline{\mathbb{N}}, w-L^{p}(B)^{-}\right) \lim _{\substack{h \rightarrow \infty \\ v \rightarrow u}} F_{\delta_{h}}(v, B) .
$$

For every $A \in \mathcal{A}, u \in L^{p}(A)$ we set

$$
F(u, A)=\sup \{G(u, B): B \in \mathcal{U}, B \subset \subset A\} .
$$

It is easy to see that for every $u \in L^{p}(\Omega)$ the set function $A \rightarrow G(u, A)$ is superadditive on \mathcal{U}, so $A \rightarrow \boldsymbol{F}(u, A)$ is superadditive on \mathcal{A}. It follows from Lemma 4.2 that $A \rightarrow F(u, A)$ is subadditive. So $A \rightarrow F(u, A)$ is increasing, superadditive, subadditive, and inner regular. By a result of measure theory (see [10] Proposition 5.5 and Theorem 5.6) this implies that $A \rightarrow \boldsymbol{F}(u, A)$ is the trace on \mathcal{A} of a regular Borel measure defined on Ω. It remains to prove (4.3). Let

$$
F^{-}(u, A)=\Gamma\left(\overline{\mathbb{N}}^{-}, w-L^{\nu}(A)^{-}\right) \lim _{\substack{h \rightarrow \infty \\ v \rightarrow u}} \boldsymbol{F}_{\varepsilon_{n}}(v, A)
$$

and

$$
\boldsymbol{F}^{+}(u, A)=\Gamma\left(\overline{\mathbf{N}}^{+}, w-L^{p}(A)^{-}\right) \lim _{\substack{h \rightarrow \infty \\ v \rightarrow u}} \boldsymbol{F}_{\varepsilon_{n}}(v, \Delta) .
$$

By Remark 4.3 we have

$$
\begin{aligned}
\boldsymbol{F}^{+}(u, A)= & \sup \\
& \left\{F^{+}(u, B): B \in \mathcal{A}, B \subset \subset A\right\} \\
& =\sup \left\{G(u, B): B \in \mathcal{A}, B \subset \subset A=F(u, A) \leqslant F^{-}(u, A) \leqslant F^{+}(u, A),\right.
\end{aligned}
$$

which proves (4.3).
Lemma 4.5. Let \boldsymbol{F} be the functional introduced in Lemma 4.4. There exists a Borel function $\psi: \Omega \times \mathbb{R} \rightarrow[0,+\infty[$ such that
(i) for every $A \in \mathcal{A}, u \in L^{p}(A)$

$$
\mathcal{F}^{\prime}(u, A)=\int_{A} \psi(x, u) d x,
$$

(ii) for every $x \in \Omega$ the function $s \rightarrow \psi(x, s)$ is convex on \mathbf{R},
(iii) for every $x \in \Omega, s \in \mathbb{R}$

$$
-a(x)+|s|^{p} \leqslant \psi(x, s) \leqslant f^{+}(x, s, 0) .
$$

Proof. Let us denote by $\mathcal{B}=\mathfrak{B}(\Omega)$ the class of all Borel subsets of Ω. For every $u \in L^{p}(\Omega)$ we denote by $\Phi(u, \cdot)$ the measure on \mathscr{B} which extends $F(u, \cdot)$; it is easy to see that for every $B \in \mathscr{B}$

$$
\Phi(u, B)=\inf \{F(u, A): A \in \mathcal{A}, A \supseteq B\} .
$$

First of all we prove that the functional Φ is local on \mathscr{B}, that is: if $u=v$ a.e. on a Borel set B, then $\Phi(u, B)=\Phi(v, B)$. Let $u, v \in L^{p}(\Omega)$ and let $B \in \mathscr{B}$ with $u=v$ a.e. on B; withont loss of generality we may suppose that $u=v$ everywhere on B and $u \leqslant v$ everywhere on Ω. By Lusin's theorem, for every $\varepsilon>0$ there exists $A_{\varepsilon} \in \mathcal{A}$, with meas $\left(A_{\varepsilon}\right)<\varepsilon$, such that the restrictions $\left.u\right|_{\Omega-A_{\varepsilon}}$ and $\left.v\right|_{\Omega-A_{s}}$ are continuous. Then the set $B_{\varepsilon}=A_{\varepsilon}$ $\cup\{x \in \Omega: v(x)<u(x)+\varepsilon\}$ is open; moreover $B_{\varepsilon} \supseteq B$. Define now

$$
u_{\varepsilon}(x)= \begin{cases}v(x) & \text { if } x \in B_{\varepsilon} \\ u(x)+\varepsilon & \text { if } x \in \Omega-B_{\varepsilon}\end{cases}
$$

it is easy to see that $\left(u_{\varepsilon}\right)$ converges to u strongly in $L^{p}(\Omega)$ as $\varepsilon \searrow 0$. For every $\eta>0$ there exist an open set A and a compact set K such that $K \subseteq B \subseteq A \subseteq \Omega, F(u, A)<\Phi(v, B)+\eta$ and $\int_{A-K}\left[a(x)+c|u|^{p}\right] d x<\eta$.

Since $F(\cdot, A)$ is lower semicontinuous with respect to the weak topology of $L^{p}(A)$ (see Proposition 2.1) and F is local on A, using Lemma 4.1 and inequalities (3.1) we obtain

$$
\begin{aligned}
\Phi(u, B) \leqslant F(u, A) \leqslant \liminf _{\varepsilon \rightarrow 0^{+}} F^{\prime}\left(u_{\varepsilon}, A\right) & \leqslant \liminf _{\varepsilon \rightarrow 0^{+}}\left[F\left(v, A \cap B_{\varepsilon}\right)+F\left(u_{\varepsilon}, A-K\right)\right] \\
& \leqslant F^{\prime}(v, A)+\liminf _{\varepsilon \rightarrow 0^{+}} \int_{A-K}\left[a(x)+c\left|u_{\varepsilon}\right|^{p}\right] d x \leqslant \Phi(v, B)+2 \eta
\end{aligned}
$$

Since $\eta<0$ was arbitrary, we get

$$
\Phi(u, B) \leqslant \Phi(v, B)
$$

The opposite inequality can be proved in a similar way.
So the functional $\Phi: L^{p}(\Omega) \times \mathcal{B} \rightarrow[0,+\infty[$ is local on B, for every $u \in L^{p}(\Omega)$ the set function $\Phi(u, \cdot)$ is a measure, and the function $\Phi(\cdot, \Omega)$ is lower semicontinuous in the weak topology of $L^{p}(\Omega)$. This implies (see [5]) that there exists a non-negative Borel function $\psi(x, s)$, convex in s, such that

$$
\Phi(u, B)=\int_{\boldsymbol{B}} \psi(x, u) d x
$$

for every $u \in L^{p}(\Omega), B \in \mathfrak{B}$. Since $\Phi(u, A)=F(u, A)$ for every $A \in \mathcal{A}$, we obtain (i) and (ii). Finally, (iii) follows from inequalities (3.1) and from Lemma 4.1.

Lemma 4.6. For every $A \in \mathcal{A}$ and for every $u \in W^{m, r}(A) \cap L^{p}(A)$ we have

$$
F^{+}(u, A) \geqslant \Gamma\left(\overline{\mathbb{N}}^{+}, w-L^{p}(A)^{-}\right) \lim _{\substack{h \rightarrow \infty \\ v \rightarrow u}}\left[F_{\varepsilon_{n}}(v, A)+T(v-u, A)\right]
$$

where T is the functional defined by (3.5).

Proof. Let $A \in \mathcal{A}, u \in W^{m, r}(A) \cap L^{p}(A)$, and $\eta>0$. There exists a sequence $\left(u_{h}\right)$ in $W_{\text {loc }}^{m, \tau}(A) \cap L^{p}(A)$ converging to u weakly in $L^{p}(A)$ such that

$$
F^{+}(u, A)+\eta \geqslant \limsup _{h \rightarrow \infty} F_{\varepsilon_{h}}\left(u_{h}, A\right)
$$

Let A_{0}, B_{0} be two open sets with $A_{0} \subset \subset B_{0} \subset \subset A$ and meas $\left(\partial A_{0}\right)=\operatorname{meas}\left(\partial B_{0}\right)=0$. Fix an integer v and, for $i=1,2, \ldots, v$, define A_{i} and φ_{i} as in Lemma 4.2. Set

$$
w_{i, h}=\varphi_{i} u_{h}+\left(1-\varphi_{i}\right) u ;
$$

we have $T\left(w_{i, h}-u, A\right)=0$. With the same argument used in the proof of Lemma 4.2 we get

$$
\begin{aligned}
F_{\varepsilon_{n}}\left(w_{i_{n} h}, A\right) \leqslant & F_{\varepsilon_{h}}\left(u_{h}, A\right)+F_{\varepsilon_{h}}\left(u, A-\bar{A}_{0}\right)+\frac{c}{v}\left(1+\varepsilon_{h} c_{v, \sigma}\right) \\
& +\frac{c}{\nu}\left(1+\sigma c_{v}\right) \lambda\left(\varepsilon_{h}^{-1} S^{\prime}, \varepsilon_{h}^{-1} A\right)\left[c+F_{\varepsilon_{n}}\left(u_{h}, A\right)+F_{\varepsilon_{h}}\left(u, A-\bar{A}_{0}\right)\right],
\end{aligned}
$$

where $B_{0}-\bar{A}_{0} \subset \subset S^{\prime} \subset \subset A$. Since ($w_{i_{n}, h}$) converges to u weakly in $L^{p}(A)$ we have

$$
\begin{aligned}
\inf \left\{\operatorname { l i m s u p } _ { h \rightarrow \infty } \left[F_{\varepsilon_{n}}\left(v_{h}, A\right)\right.\right. & \left.\left.+T\left(v_{h}-u, A\right)\right]: v_{h} \rightarrow u \text { in } w-L^{p}(A)\right\} \\
\leqslant & F^{+}(u, A)+\eta+\int_{A-\bar{A}_{0}}\left[a(x)+e|u|^{p}\right] d x+\frac{c}{\nu} \\
& +\frac{c}{v}\left(1+\sigma \epsilon_{\nu}\right) M\left\{c+F^{+}(u, A)+\eta+\int_{A-\bar{A}_{0}}[a(x)+c|u| p] d x\right\},
\end{aligned}
$$

where $M=\limsup \lambda\left(t S^{\prime}, t A\right)$. Passing to the limit first as $\sigma \rightarrow 0$, next as $\mapsto+\infty$ $\nu \rightarrow+\infty$, then as $\eta \rightarrow 0$, and finally as $A_{0} \uparrow A$, we get the thesis.

Lemma 4.7. Assume that

$$
\int_{A} \psi(x, u) d x=\Gamma\left(\overline{\mathbf{N}}, w-L^{p}(A)^{-}\right) \lim _{\substack{h \rightarrow \infty \\ v \rightarrow u}} F_{\varepsilon_{h}}(v, A)
$$

for every $A \in \mathcal{A}$ and for every $u \in L^{p}(A)$. Then

$$
\int_{A} \psi(x, u) d x=\Gamma\left(\overline{\mathbf{N}}, w-L^{p}(A)^{-}\right) \lim _{\substack{k \rightarrow \infty \\ v \rightarrow u}}\left[\boldsymbol{F}_{\varepsilon_{n}}(v, A)+T\left(v-w_{0}, A\right)\right]
$$

for every $A \in \mathcal{A}, u \in L^{p}(A), w_{0} \in W^{m, r}(A) \cap L^{p}(A)$.
Proof. Let $A \in \mathcal{A}, u \in L^{p}(A), w_{0} \in W^{m, r}(A) \cap L^{p}(A)$. There exists a sequence $\left(u_{k}\right)$ in $W^{m, r}(A) \cap L^{p}(A)$ converging to u strongly in $L^{p}(A)$ such that
$u_{k}-w_{0} \in W_{0}^{m, r}(A)$. Using Lemma 4.6 we obtain for every $k \in \mathbb{N}$

$$
\begin{aligned}
& \int_{\boldsymbol{A}} \psi\left(x, u_{k}\right) d x \geqslant \Gamma\left(\overline{\mathbf{N}}^{+}, w-L^{p}(A)^{-}\right) \lim _{\substack{h \rightarrow \infty \\
v \rightarrow u_{k}}}\left[F_{\varepsilon_{h}}(v, A)+T\left(v-u_{k}, A\right)\right] \\
&=\Gamma\left(\overline{\mathbf{N}^{+}}, w-L^{p}(A)\right) \lim _{\substack{h \rightarrow \infty \\
v \rightarrow u_{k}}}\left[F_{\varepsilon_{h}}(v, A)+T\left(v-w_{0}, A\right)\right]
\end{aligned}
$$

Since Γ-limits are lower semicontinuous (see Proposition 2.1) and $\int_{A} \psi(x, v) d x$ is continuous in $L^{p}(A)$ (see Lemma 4.5), passing to the limit as $k \rightarrow+\infty$ we obtain

$$
\begin{aligned}
& \int_{A} \psi(x, u) d x \geqslant \Gamma\left(\overline{\mathbf{N}}^{+}, w-L^{p}(A)^{-}\right) \lim _{\substack{h \rightarrow \infty \\
v \rightarrow u}}\left[F_{\varepsilon_{h}}(v, A)+T\left(v-w_{0}, A\right)\right] \\
& \quad \geqslant \Gamma\left(\overline{\mathbf{N}^{-}}, w-L^{p}(A)^{-}\right) \lim _{\substack{h \rightarrow \infty \\
v \rightarrow u}}\left[F_{\varepsilon_{n}}(v, A)+T\left(v-w_{0}, A\right)\right] \geqslant \int_{A} \psi(x, u) d x .
\end{aligned}
$$

Let $Y=] 0,1\left[n\right.$ and let $W_{\#}^{m, r}(Y)$ be the space of all Y-periodic functions of $W_{\text {loc }}^{m, r}\left(\mathbb{R}^{n}\right)$; for every $\varepsilon>0, x \in \Omega, s \in \mathbb{R}$ we set

$$
\left\{\begin{array}{l}
W(s)=\left\{u \in W^{m, r}(Y) \cap L^{p}(Y): \int_{\boldsymbol{Y}} u(y) d y=s\right\} \\
W_{0}(s)=\left\{u \in W^{m, r}(Y) \cap L^{p}(Y): \int_{\boldsymbol{Y}} u(y) d y=s, u-s \in W_{0}^{m, r}(\mathbf{Y})\right\} \\
W_{\sharp}(s)=\left\{u \in W_{\#}^{m, r}(Y) \cap L^{p}(Y): \int_{\boldsymbol{Y}} u(y) d y=s\right\} \tag{4.4}\\
m^{\varepsilon}(x, s)=\inf \left\{\int_{\boldsymbol{Y}} f\left(x, u(y), \varepsilon^{k} D^{k} u(y)\right) d y: u \in W(s)\right\} \\
m_{0}^{s}(x, s)=\inf \left\{\int_{\boldsymbol{Y}} f\left(x, u(y), \varepsilon^{k} D^{k} u(y)\right) d y: u \in W_{0}(s)\right\} \\
m_{\#}^{\varepsilon}(x, s)=\inf \left\{\int_{\boldsymbol{Y}} f\left(x, u(y), \varepsilon^{k} D^{k} u(y)\right) d y: u \in W_{\#}(s)\right\} \\
m_{0}(x, s)=\inf \left\{m_{0}^{\varepsilon}(x, s): \varepsilon>0\right\} \\
m_{\#}(x, s)=\inf \left\{m_{\#}^{\varepsilon}(x, s): \varepsilon>0\right\}
\end{array}\right.
$$

Lemma 4.8. For every $x \in \Omega, s \in \mathbb{R}$

$$
m_{0}(x, s)=\lim _{\varepsilon \rightarrow 0^{+}} m_{0}^{\varepsilon}(x, s)
$$

Proof. Let $x \in \Omega, s \in \mathbb{R}, u \in W_{0}(s), \varepsilon, \eta \in \mathbb{R}$ with $0<\eta \leqslant \varepsilon$. Let v be the Y-periodic extension of u, that is the function which satisfies $v(x+y)=v(x)$ for every $x \in \mathbb{R}^{n}, y \in \mathbb{Z}^{n}$ and $v(x)=u(x)$ for every $x \in Y$. There exist $N \in \mathbb{N}$ and $\delta \in[0,1[$ such that $\varepsilon=(N+\delta) \eta$. Define for every $y \in Y$

$$
w(y)= \begin{cases}v\left(\frac{\varepsilon}{\eta} y\right) & \text { if } y \in N \frac{\eta}{\varepsilon} Y \\ s & \text { otherwise }\end{cases}
$$

Then $w \in W_{0}(s)$ and

$$
\begin{aligned}
& \int_{\mathbf{Y}} f\left(x, w(y), \eta^{k} D^{k} w(y)\right) d y \leqslant\left(N \frac{\eta}{\varepsilon}\right)^{n} \int_{\bar{Y}} f\left(x, u(y), \varepsilon^{k} D^{k} u(y)\right) d y+n \frac{\delta \eta}{\varepsilon} f(x, s, 0) \\
& \leqslant \int_{\mathbf{Y}} f\left(x, u(y), \varepsilon^{k} D^{k} u(y)\right) d y+n \frac{\eta}{\varepsilon} f(x, s, 0)
\end{aligned}
$$

This implies that for every $\varepsilon, \eta \in \mathbf{R}$, with $0<\eta \leqslant \varepsilon$

$$
m_{0}^{\eta}(x, s) \leqslant m_{0}^{s}(x, s)+n \frac{\eta}{\varepsilon} f(x, s, 0)
$$

and from this inequality it follows that

$$
\inf _{s>0} m_{0}^{\varepsilon}(x, s)=\lim _{\varepsilon \rightarrow 0^{+}} m_{0}^{\varepsilon}(x, s)
$$

Lemma 4.9. Suppose that the function f does not depend on the variable x and that

$$
\int_{\boldsymbol{A}} \psi(u) d x=\Gamma\left(\overline{\mathbf{N}}, w-L^{v}(A)^{-}\right) \lim _{\substack{h \rightarrow \infty \\ v \rightarrow u}} \boldsymbol{F}_{\varepsilon_{\boldsymbol{x}}}(v, \boldsymbol{A})
$$

for every $A \in \mathcal{A}, u \in L^{p}(A)$. Then $m^{\varepsilon}, m_{0}^{e}$ and m_{0} do not depend on x and

$$
\lim _{h \rightarrow \infty} m^{\varepsilon_{h}}(s)=m_{0}(s)=\psi(s)
$$

for every $s \in \mathbf{R}$.
Proof. Let $s \in \mathbb{R}$ and let $\left(u_{n}\right)$ be a sequence converging to s weakly in $L^{p}(\bar{Y})$ such that $u_{n}-s \in W_{0}^{m, r}(Y)$; let $\varphi \in C_{0}^{\infty}(Y)$ with $\int \varphi d x=1$; there exists a sequence $\left(\eta_{h}\right)$ converging to 0 in \mathbb{R} such that $\int_{\bar{Y}}\left[u_{h}(y)+\eta_{h} \varphi(y)\right] d y=s$ for every $h \in \mathbf{N}$. Then by hypothesis (3.2) we have

$$
m_{0}^{\mathbf{\varepsilon}_{h}}(s) \leqslant \boldsymbol{F}_{\varepsilon_{h}}\left(u_{h}+\eta_{h} \varphi, \mathbf{Y}\right) \leqslant \boldsymbol{F}_{\varepsilon_{h}}\left(u_{h}, \mathbf{Y}\right)+\sigma\left(\eta_{h} M\right)\left[\int_{\boldsymbol{Y}} a(x) d x+\boldsymbol{F}_{s_{h}}\left(u_{h}, \boldsymbol{Y}\right)\right]
$$

where $M=\sup \sum_{|\alpha| \leqslant m}\left|D^{\alpha} \varphi\right|$. Passing to the limit as $h \rightarrow+\infty$ we obtain

$$
m_{0}(s) \leqslant \liminf _{h \rightarrow \infty} \boldsymbol{F}_{\varepsilon_{h}}\left(u_{h}, \boldsymbol{Y}\right)
$$

Since $\left(u_{h}\right)$ is arbitrary, by Lemma 4.7 we get

$$
\begin{equation*}
m_{0}(s) \leqslant \Gamma\left(\overline{\mathbf{N}}, w-L^{p}(A)^{-}\right) \lim _{\substack{h \rightarrow \infty \\ v \rightarrow s}}\left[F_{\varepsilon_{n}}(v, A)+T^{\prime}(v-s, \mathcal{A})\right]=\psi(s) \tag{4.5}
\end{equation*}
$$

Consider now a subsequence $\left(\varepsilon_{h_{k}}\right)$ such that $\liminf _{h \rightarrow \infty} m^{\varepsilon_{h}}(s)=\lim _{h \rightarrow \infty} m^{e_{h_{k}}}(s)$. For every $k \in \mathbb{N}$ there exists $w_{k} \in W(s)$ such that $F_{e_{h_{k}}}\left(w_{k}, \boldsymbol{Y}\right) \leqslant m^{\varepsilon_{k}}(s)+1 / k$. By hypothesis (3.1) the sequence (w_{k}) is bounded in $L^{p}(\overline{)}$; thus for a suitable subsequence ($w_{k_{i}}$), we have that ($w_{k_{i}}$) converges weakly in $L^{p}(Y)$ to a function u such that $\int_{Y} u(y) d y=s$. Therefore, using Jensen's inequality, Remark 2.6, Lemma 4.8 and inequality (4.5), we get

$$
\begin{aligned}
m_{0}(s) \leqslant \psi(s)=\psi\left(\int_{\boldsymbol{Y}} u(y) d y\right) \leqslant & \int_{\boldsymbol{Y}} \psi(u) d y=\Gamma\left(\overline{\mathbb{N}}, w-L^{p}(\bar{Y})^{-}\right) \lim _{\substack{h \rightarrow \infty \\
v \rightarrow u}} F_{\varepsilon_{h}}(v, Y) \\
& \leqslant \liminf _{i \rightarrow \infty} F_{\varepsilon_{k_{k_{i}}}}\left(w_{k_{i}}, Y\right) \leqslant \lim _{k \rightarrow \infty} m^{\varepsilon_{n_{k}}}(s)=\underset{h \rightarrow \infty}{\liminf } m^{\varepsilon_{n}}(s) \\
& \leqslant \limsup _{h \rightarrow \infty} m^{\varepsilon_{n}}(s) \leqslant \limsup _{h \rightarrow \infty} m_{0}^{\varepsilon_{h}}(s)=m_{0}(s) .
\end{aligned}
$$

Lemma 4.10. Suppose that the function f does not depend on the variable x. Then there exists a convex function $\psi: \mathbb{R} \rightarrow[0,+\infty[$ such that

$$
\begin{align*}
\int_{A} \psi(u) d x=\Gamma(\mathbb{R}, w & \left.-L^{p}(A)^{-}\right) \lim _{\substack{\varepsilon \rightarrow 0^{+} \\
v \rightarrow u}} F_{\varepsilon}(v, A) \tag{4.6}\\
& =\Gamma\left(\mathbb{R}, w-L^{p}(A)^{-}\right) \lim _{\substack{s \rightarrow 0^{+} \\
v \rightarrow u}}\left[F_{\varepsilon}(v, A)+T\left(v-w_{0}, A\right)\right]
\end{align*}
$$

for every $A \in \mathcal{A}, u \in L^{p}(A), w_{0} \in W^{m, r}(A) \cap L^{p}(A)$.
Moreover $m^{\varepsilon}, m_{0}^{\varepsilon}, m_{0}$ do not depend on x and

$$
\psi(s)=m_{0}(s)=\lim _{s \rightarrow 0^{+}} m_{0}^{\varepsilon}(s)=\lim _{s \rightarrow 0^{+}} m^{\varepsilon}(s)
$$

for every $s \in \mathbb{R}$.
Proof. Let $\left(\varepsilon_{h}\right)$ be a sequence in \mathbb{R} converging to 0 such that $\varepsilon_{h}>0$ for every $h \in \mathbb{N}$. By Lemmas $4.4,4.5$ and 4.7 there exist a subsequence ($\varepsilon_{h_{k}}$)
of $\left(\varepsilon_{h}\right)$ and a Borel function $\psi(x, s)$, convex in s, such that

$$
\begin{aligned}
& \int_{A} \psi(x, u) d x=\Gamma\left(\overline{\mathbb{N}}, w-L^{p}(A)^{-}\right) \lim _{\substack{k \rightarrow \infty \\
v \rightarrow u}} F_{\varepsilon_{k_{k}}}(v, A) \\
&=\Gamma\left(\overline{\mathbf{N}}, w-L^{p}(A)^{-}\right) \lim _{\substack{k \rightarrow \infty \\
v \rightarrow u}}\left[F_{\varepsilon_{k_{k}}}(v, A)+T\left(v-w_{0}, A\right)\right]
\end{aligned}
$$

for every $A \in \mathcal{A}, u \in L^{p}(A), w_{0} \in W^{m, r}(A) \cap L^{p}(A)$. Since f does not depend on x, it is easy to see that $\int_{y+A} \psi(x, u(x-y)) d x=\int_{A} \psi(x, u(x)) d x$ for every $A \in \mathcal{A}, u \in L^{p}(A)$ and for every $y \in \mathbb{R}^{n}$ such that $y+A \subseteq \Omega$. This implies that ψ does not depend on x, that is $\psi(x, s)=\psi(s)$.

By Lemma 4.9 we have

$$
\psi(s)=m_{0}(s)
$$

for every $s \in \mathbb{R}$. So the function ψ does not depend on the sequence (ε_{h}). By Proposition 2.8 this implies (4.6).

By Lemma 4.9 we have $m_{0}(s)=\lim _{k \rightarrow \infty} m^{\varepsilon_{h_{k}}(s)}$. Since the limit does not depend on the sequence $\left(\varepsilon_{n}\right)$, we obtain

$$
m_{0}(s)=\lim _{s \rightarrow 0^{+}} m^{\varepsilon}(s)
$$

The equality $m_{0}(s)=\lim _{s \rightarrow 0^{+}} m_{0}^{s}(s)$ has already been proved in Lemma 4.8.
Proof of Theorem 3.1. Let $\left(\varepsilon_{h}\right)$ be a sequence in $] 0,+\infty$ [converging to 0 . By Lemmas 4.4, 4.5 and 4.7 there exist a subsequence $\left(\varepsilon_{h_{k}}\right)$ of $\left(\varepsilon_{h}\right)$ and a Borel function $\psi: \Omega \times \mathbb{R} \rightarrow[0,+\infty[$, which satisfies condition (ii) of the theorem, such that

$$
\begin{aligned}
& \int_{A} \psi(x, u) d x=\Gamma\left(\overline{\mathbf{N}}, w-L^{v}(A)^{-}\right) \lim _{\substack{k \rightarrow \infty \\
v \rightarrow u}} \boldsymbol{F}_{\varepsilon_{h_{k}}}(v, A) \\
&=\Gamma\left(\overline{\mathbf{N}}, w-L^{v}(A)^{-}\right) \lim _{\substack{k \rightarrow \infty \\
v \rightarrow u}}\left[\boldsymbol{F}_{\boldsymbol{\varepsilon}_{h_{k}}}(v, A)+T\left(v-w_{0}, A\right)\right]
\end{aligned}
$$

for every $A \in \mathcal{A}, u \in L^{p}(A), w_{0} \in W^{m, r}(A) \cap L^{p}(A)$.
In order to prove (i), by Proposition 2.8 we have only to show that

$$
\begin{equation*}
\psi(x, s)=m_{0}(x, s)=\lim _{\varepsilon \rightarrow 0^{+}} m^{\varepsilon}(x, s)=m_{\boldsymbol{f}}(x, s) \tag{4.7}
\end{equation*}
$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$, where m_{0} and m^{ε} are defined by (4.4).

Let $N \geqslant 1$ be an integer; for every $j \in \mathbb{Z}^{n}$ we set $Y_{N}^{j}=(1 / N)(Y+j)$ and $\Omega_{N}^{j}=\Omega \cap Y_{N}^{j}$ (here $\left.\boldsymbol{Y}=\right] 0,1\left[{ }^{n}\right)$. Define $f_{N}: \Omega \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow[0,+\infty[$ by

$$
f_{N}(x, s, z)=\int_{\Omega_{N}^{j}} f(y, s, z) d y \quad \text { for } x \in \Omega_{N}^{j}
$$

where f_{A} denotes the average over the set A. Define

$$
F_{\varepsilon}^{N}(u, A)=\int_{A} f_{N}\left(x, u, \varepsilon^{k} D^{k} u\right) d x
$$

and let $\left(m_{N}\right)^{s}(x, s),\left(m_{N}\right)_{0}^{s}(x, s),\left(m_{N}\right)_{0}(x, s)$ be the functions related to f_{N} defined as in (4.4). Since f_{N} is piecewise constant with respect to the variable x, by Lemmas 4.5 and 4.10 there exists a Borel function $\psi_{N}(x, s)$, piecewise constant in x and convex in s, such that

$$
\int_{A} \psi_{N}(x, u) d x=\Gamma\left(\overline{\mathbf{N}}, w-L^{p}(A)^{-}\right) \lim _{\substack{s \rightarrow 0^{+} \\ v \rightarrow u}} ._{s}^{N /}(v, A)
$$

for every $A \in \mathcal{A}, u \in L^{p}(A)$; moreover

$$
\begin{equation*}
\psi_{N}(x, s)=\left(m_{N}\right)_{0}(x, s)=\lim _{\varepsilon \rightarrow 0^{+}}\left(m_{N}\right)_{0}^{\varepsilon}(x, s)=\lim _{s \rightarrow 0^{+}}\left(m_{N}\right)^{\varepsilon}(x, s) \tag{4.8}
\end{equation*}
$$

for a.a. $x \in \Omega$ and for all $s \in \mathbf{R}$.
Let $\left.Q_{N}=\right]-1 / N, 1 / N\left[{ }^{n}\right.$. If $Y_{N}^{j} \subseteq \Omega$, using condition (3.2) we obtain for every $x \in \bar{Y}_{N}^{j}, s \in \mathbf{N}, z \in \mathbb{R}^{d}$

$$
\begin{aligned}
& \left|f_{N}(x, s, z)-f(x, s, z)\right|=\left|\underset{V_{N}^{j}-x}{f}[f(x+y, s, z)-f(x, s, z)] d y\right| \\
& \leqslant 2^{n} \int_{Q_{N}}|f(x+y, s, z)-f(x, s, z)| d y \leqslant 2^{n} \int_{Q_{N}}\{\omega(x, y)+\sigma(|y|)[a(x)+f(x, s, z)]\} d y \\
& \leqslant 2^{n} f_{Q_{N}} \omega(x, y) d y+2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right)[a(x)+f(x, s, z)] .
\end{aligned}
$$

This implies that

$$
\begin{align*}
& {\left[1-2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right)\right] f(x, s, z)-2^{n} \sigma\left(\frac{\sqrt{n}}{\bar{N}}\right) a(x)-2^{n} \int_{Q_{N}} \omega(x, y) d y } \tag{4.9}\\
\leqslant & f_{N}(x, s, z) \leqslant\left[1+2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right)\right] f(x, s, z)+2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right) a(x)+2^{n} f_{Q_{N}} \omega(x, y) d y
\end{align*}
$$

for every $s \in \mathbb{R}, z \in \mathbf{R}^{d}$ and for every $x \in \Omega$ such that $\operatorname{dist}\left(x, \mathbf{R}^{n}-\Omega\right)$ $>\sqrt{n} / N$. Passing to the Γ-limit along the sequence $\left(\varepsilon_{h_{k}}\right)$ we obtain

$$
\begin{align*}
& {\left[1-2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right)\right] \int_{A} \psi(x, u) d x-2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right) \iint_{A} a(x) d x-2^{n} \int_{A} d x \int_{Q_{N}} \omega(x, y) d y } \tag{4.10}\\
& \leqslant \int_{A} \psi_{N}(x, u) d x \leqslant\left[1+2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right)\right] \int_{A} \psi(x, u) d x \\
&+ 2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right) \int_{A} a(x) d x+2^{n} \int_{A} d x \int_{Q_{N}} \omega(x, y) d y
\end{align*}
$$

for every $A \in \mathcal{A}$ with $d\left(A, \mathbb{R}^{n}-\Omega\right)>\sqrt{n} / N$ and for every $u \in L^{p}(A)$. By (3.2) we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{A} d x f_{Q_{N}} \omega(x, y) d y=\lim _{N \rightarrow \infty} f_{Q_{N}} d y \int_{A} \omega(x, y) d x=0 \tag{4.11}
\end{equation*}
$$

for every $A \in \mathcal{A}$ with $A \subset \subset \Omega$. Thus, passing to the limit in (4.10) as $N \rightarrow+\infty$ we get

$$
\begin{equation*}
\int_{A} \psi(x, u) d x=\lim _{N \rightarrow \infty} \int_{A} \psi_{N}(x, u) d x \tag{4.12}
\end{equation*}
$$

for every $A \in \mathcal{A}$ with $A \subset \subset \Omega$ and for every $u \in L^{p}(A)$.
Using the definitions of m^{ε} and $\left(m_{N}\right)^{\varepsilon}$, from (4.9) we obtain that

$$
\begin{aligned}
& {\left[1-2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right)\right] m^{\varepsilon}(x, s)-2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right) a(x)-2^{n} \int_{Q_{N}} \omega(x, y) d y} \\
& \quad \leqslant\left(m_{N}\right)^{\varepsilon}(x, s) \leqslant\left[1+2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right)\right] m^{s}(x, s)+2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right) a(x)+2^{n} f_{Q_{N}} \omega(x, y) d y
\end{aligned}
$$

for every $x \in \Omega$ with $\operatorname{dist}\left(x, \mathbb{R}^{n}-\Omega\right)>\sqrt{n} / N$ and for every $s \in \mathbb{R}$. Letting $\varepsilon \rightarrow 0^{+}$and using (4.8) we get

$$
\begin{align*}
& {\left[1-2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right)\right] \limsup _{\varepsilon \rightarrow 0^{+}} m^{\varepsilon}(x, s)-2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right) a(x)-2^{n} \int_{Q_{N}} \omega(x, y) d y} \tag{4.13}\\
& \left.\quad \leqslant \lim _{\varepsilon \rightarrow 0^{+}}\left(m_{N}\right)^{\varepsilon}(x, s)=\psi_{N}(x, s) \leqslant\left[1+2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right)\right]\right]_{\varepsilon \rightarrow 0^{+}}^{\liminf ^{\varepsilon}(x, s)} \\
& \quad+2^{n} \sigma\left(\frac{\sqrt{n}}{N}\right) a(x)+2^{n} \int_{Q N} \omega(x, y) d y .
\end{align*}
$$

Equality (4.11) implies that there exists an increasing sequence of integers $\left(N_{k}\right)$ such that $\lim _{k \rightarrow \infty} f_{Q_{N_{k}}} \omega(x, y) d y=0$ for a.a. $x \in \Omega$. Letting $N \rightarrow+\infty$ in (4.13) along the sequence $\left(N_{k}\right)$, we get that there exists

$$
\lim _{\varepsilon \rightarrow 0^{+}} m^{\varepsilon}(x, s)=m(x, s)
$$

for a.a. $x \in \Omega$ and for all $s \in R$, and that

$$
m(x, s)=\lim _{k \rightarrow \infty} \psi_{N_{k}}(x, s)
$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$. In the same way we prove that

$$
m_{0}(x, s)=\lim _{k \rightarrow \infty} \psi_{N k}(x, s)
$$

Using (4.12) we obtain

$$
\int_{A} m(x, s) d x=\int_{A} m_{0}(x, s) d x=\lim _{k \rightarrow \infty} \int_{A} \psi_{N_{k}}(x, s) d x=\int_{A} \psi(x, s) d x
$$

for every $A \in \mathcal{A}$ with $A \subset C \Omega$ and for every $s \in \mathbb{R}$.
Since m, m_{0}, ψ are continuous in s (indeed they are convex), this implies that

$$
\begin{equation*}
m(x, s)=m_{0}(x, s)=\psi(x, s) \tag{4.14}
\end{equation*}
$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.
In order to prove (4.7) it is enough to show that

$$
\begin{equation*}
\psi(x, s)=m_{\#}(x, s) \tag{4.15}
\end{equation*}
$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.
Since $W_{0}(s) \subseteq W_{\#}(s) \subseteq W(s)$ we have

$$
m^{\varepsilon}(x, s) \leqslant m_{\#}^{\varepsilon}(x, s) \leqslant m_{0}^{\varepsilon}(x, s)
$$

thus from (4.14) it follows that

$$
\begin{equation*}
\psi(x, s)=\lim _{\varepsilon \rightarrow 0^{+}} m_{\#}^{\varepsilon}(x, s) \tag{4.16}
\end{equation*}
$$

By a change of variables, it is easy to verify that $m_{\#}^{2 e}(x, s) \geqslant m_{\#}^{\varepsilon}(x, s)$ for
every $\varepsilon>0$. Therefore (4.16) yields

$$
\psi(x, s)=\lim _{s \rightarrow 0^{+}} m_{\#}^{\varepsilon}(x, s)=\inf _{\varepsilon>0^{+}} m_{\sharp}^{\varepsilon}(x, s)
$$

This proves (4.15).
It remains to prove property (iii). The inequality $\psi(x, s) \leqslant f^{+}(x, s, 0)$ follows from Lemma 4.1 and from the convexity of $\psi(x, \cdot)$.

Let $x \in \Omega, s \in \mathbb{R}, u \in W_{0}(s), \varepsilon>0$; by Jensen's inequality we have

$$
\begin{aligned}
f^{-}(x, s, 0)=f^{-}\left(x, \int_{\boldsymbol{Y}} u(y) d y,\right. & \left.\varepsilon^{k} \int_{\mathbf{Y}} D^{k} u(y) d y\right) \\
& \leqslant \int_{\boldsymbol{Y}} f^{-}\left(x, u(y), \varepsilon^{k} D^{k} u(y)\right) d y \leqslant \int_{\boldsymbol{Y}} f\left(x, u(y), \varepsilon^{k} D^{k} u(y)\right) d y .
\end{aligned}
$$

Thus by the representation formula for ψ we have

$$
f^{-}(x, s, 0) \leqslant \psi(x, s)
$$

5. - Some examples.

In this section we give some examples and applications of Theorem 3.1. In particular we show that the inequalities

$$
\begin{equation*}
f^{-}(x, s, 0) \leqslant \psi(x, s) \leqslant f^{+}(x, s, 0) \tag{5.1}
\end{equation*}
$$

cannot be improved; in fact, there are some examples where $\psi(x, s)$ $=f^{-}(x, s, 0)$ (see Proposition 5.9 and Remark 5.10), and some other examples where $\psi(x, s)=f^{+}(x, s, 0)$ (see Proposition 5.2). In the case $f^{-}(x, s, 0)$ $=f^{+}(x, s, 0)$ the integrand $\psi(x, s)$ is determined by the inequalities (5.1); this allows us to generalize some results of A. Bensoussan [2] and V. Komornik [13] (see Proposition 5.5 and Proposition 5.6).

For every $\boldsymbol{p} \geqslant 2$ we denote by $\mathcal{G}_{\boldsymbol{p}}$ the class of functions $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
|g(s)| \leqslant c\left(1+|s|^{p / 2}\right) \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
|g(t)-g(s)| \leqslant \varrho(|t-s|)\left(1+\left.\underline{⿺}^{s}\right|^{p / 2}\right) \tag{5.3}
\end{equation*}
$$

for every $s, t \in \mathbb{R}$, where c is a positive constant and $\varrho:[0,+\infty[\rightarrow[0,+\infty[$
is an increasing continuous function with $\varrho(0)=0$. Examples of functions of the class $\mathscr{G}_{\boldsymbol{p}}$ are the polynomials of degree less than or equal to $p / 2$.

Let $N>0, b \in L^{p}(\Omega), g \in \mathcal{G}_{p} ;$ after some simple calculations (see section 6) one can verify that the functionals

$$
F_{\varepsilon}(u, A)=\int_{A}\left[N\left|\varepsilon^{2} \Delta u+g(u)\right|^{2}+|u-b(x)|^{x}\right] d x
$$

satisfy all hypotheses of Theorem 3.1, with $m=r=2$,

$$
\begin{gathered}
f(x, s, z)=N\left|\sum_{i=1}^{n} z_{i i}+g(s)\right|^{2}+|s-b(x)|^{p} \quad\left(\text { here } z=\left(z_{i j}\right)_{1 \leqslant i+j \leqslant 2}\right) \\
\gamma(s, z)=o_{1}\left[\left|\sum_{i=1}^{n} z_{i i}\right|^{2}+s^{2}\right] \\
\lambda\left(A^{\prime}, A\right)=c_{2} \max \left\{1, \operatorname{dist}\left(A^{\prime}, \mathbf{R}^{n}-A\right)^{-4}\right\}
\end{gathered}
$$

where c_{1}, c_{2} are suitable positive constants.
Let $\psi(x, s)$ be the function, convex in s, such that

$$
\int_{A} \psi(x, u) d x=\Gamma\left(\mathbb{R}, w-L^{p}(A)^{-}\right) \lim _{\substack{\varepsilon \rightarrow 0^{+} \\ v \rightarrow u}} F_{\varepsilon}(v, A)
$$

for every $A \in \mathcal{A}, u \in L^{p}(A)$.
Proposition 5.1. If g is an affine function, then

$$
\psi(x, s)=f(x, s, 0)=N|g(s)|^{2}+|s-b(x)|^{p}
$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.
Proof. Since in this case $f(x, s, z)=f^{-}(x, s, z)=f^{+}(x, s, z)$, the proposition follows from (5.1).

In the following proposition we give a new proof of a result due to A. Haraux and F. Murat [11].

Proposition 5.2. Let g be a decreasing function of the class $\mathcal{G}_{\boldsymbol{p}}$, let $b \in L^{p}(\Omega)$, and let $N>0$. Then

$$
\psi(x, s)=f^{+}(x, s, 0)
$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.

Proof. Let $x \in \Omega, s \in \mathbb{R}, \varepsilon>0, u \in W_{0}(s)$ (see (4.4)). Then

$$
\begin{align*}
& \int_{\boldsymbol{Y}}\left[N\left|\varepsilon^{2} \Delta u(y)+g(u(y))\right|^{2}+|u(y)-b(x)|^{p}\right] d y \tag{5.4}\\
= & \int_{\boldsymbol{Y}}\left[N \varepsilon^{4}|\Delta u(y)|^{2}+N|g(u(y))|^{2}+2 N \varepsilon^{2} \Delta u(y) g(u(y))+|u(y)-b(x)|^{p}\right] d y
\end{align*}
$$

Let us prove that

$$
\begin{equation*}
\int_{\dot{Y}} g(u) \Delta u d y \geqslant 0 \tag{5.5}
\end{equation*}
$$

There exists a sequence $\left(g_{h}\right)$ of decreasing functions of class C^{1}, with bounded derivatives, such that $g(s)=\lim _{h} g_{h}(s)$ for every $s \in \mathbb{R}$, and $\left|g_{h}(s)\right| \leqslant c\left(1+|s|^{p / 2}\right)$ for every $h \in \mathbb{N}, s \in \mathbb{R}$.

By the dominated convergence theorem

$$
\int_{\mathbf{Y}} g(u) \Delta u d y=\lim _{h} \int_{\bar{Y}} g_{h}(u) \Delta u d y
$$

Since $u-s \in W_{0}^{2,2}(Y)$ we have

$$
\int_{\mathbf{Y}} g_{h}(u) \Delta u d y=-\int_{Y} g_{h}^{\prime}(u)|D u|^{2} d y \geqslant 0
$$

so (5.5) is proved. From (5.4), (5.5) and Jensen's inequality it follows that

$$
\begin{aligned}
\int_{\mathbf{Y}}\left[N \mid \varepsilon^{2} \Delta u(y)\right. & \left.+\left.g(u(y))\right|^{2}+|u(y)-b(x)|^{p}\right] d y \\
& \geqslant \int_{\boldsymbol{Y}}\left[N|g(u(y))|^{2}+|u(y)-b(x)|^{p}\right] d y \geqslant \int_{\mathbf{Y}} f^{+}(x, u(y), 0) d y \geqslant f^{+}(x, s, 0) .
\end{aligned}
$$

Since $\varepsilon>0$ and $u \in W_{0}(s)$ are arbitrary, the representation formula for ψ implies $\psi(x, s) \geqslant f^{+}(x, s, 0)$. The opposite inequality follows from (5.1).

We construct now an example which shows that the equality $\psi(x, s)$ $=f^{+}(x, s, 0)$ does not hold for an arbitrary function $g \in \mathcal{G}_{\boldsymbol{p}}$.

Proposition 5.3. Let $n=1, m=p=r=2, \Omega=] 0,1[$ and let g be defined by

$$
g(s)= \begin{cases}s & \text { if } s<0 \\ s / 4 & \text { if } s \geqslant 0\end{cases}
$$

If $N>6 \pi^{2}-16$ and $b \in L^{2}(\Omega)$, then

$$
\psi(x, s)<f^{+}(x, s, 0)=f(x, s, 0)=N|g(s)|^{2}+|s-b(x)|^{2}
$$

for a.a. $x \in \Omega$ and for all $s>0$. If in addition $b(x)>0$ for a.a. $x \in \Omega$, then

$$
\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{F_{\varepsilon}(u, \Omega): u \in W^{2,2}(\Omega)\right\}<\min \left\{\int_{\Omega} f^{+}(x, u, 0) d x: u \in L^{2}(\Omega)\right\}
$$

Proof. Define on $[-\pi, 2 \pi]$

$$
u(x)= \begin{cases}\frac{k}{2} \sin x & \text { if } x \in[-\pi, 0] \\ k \sin \frac{x}{2} & \text { if } x \in[0,2 \pi]\end{cases}
$$

($k>0$ is a parameter) and extend u to \mathbb{R} by periodicity (the period is 3π). Set $u_{s}(x)=u(x / \varepsilon)$; as $\varepsilon \rightarrow 0^{+}$we have that $\left(u_{\varepsilon}\right)$ converges to k / π and $\left(\left|u_{\varepsilon}\right|^{2}\right)$ converges to $\frac{3}{8} k^{2}$ weakly in $L^{2}(0,1)$. Since $\varepsilon^{2} u_{\varepsilon}^{\prime \prime}+g\left(u_{\varepsilon}\right)=0$, for every $A \in \mathcal{A}$, $b \in L^{2}(A)$ we have

$$
\begin{aligned}
& \int_{A} \psi\left(x, \frac{k}{\pi}\right) d x \leqslant \liminf _{\varepsilon \rightarrow 0^{+}} \int_{A}\left[N\left|\varepsilon^{2} u^{\prime \prime}+g\left(u_{\varepsilon}\right)\right|^{2}+\left|u_{\varepsilon}-b(x)\right|^{2}\right] d x \\
& \quad=\lim _{\varepsilon \rightarrow 0^{+}} \int_{A}\left[\left|u_{\varepsilon}\right|^{2}-2 u_{\varepsilon} b(x)+\left.b(x)\right|^{2}\right] d x=\int_{A}\left[\frac{3}{8} k^{2}-\frac{2 k}{\pi} b(x)+|b(x)|^{2}\right] d x
\end{aligned}
$$

Therefore, for a.a. $x \in] 0,1[$ and for all $s>0$, we have

$$
\psi(x, s) \leqslant \frac{3}{8} \pi^{2} s^{2}-2 s b(x)+|b(x)|^{2}
$$

On the other hand

$$
\begin{aligned}
f^{+}(x, s, 0)=f(x, s, 0)=N|g(s)|^{2} & +|s-b(x)|^{2} \\
& = \begin{cases}(N+1) s^{2}-2 s b(x)+|b(x)|^{2} & \text { if } s<0 \\
\left(\frac{N}{16}+1\right) s^{2}-2 s b(x)+|b(x)|^{2} & \text { if } s \geqslant 0\end{cases}
\end{aligned}
$$

Therefore, if $N>6 \pi^{2}-16$, then $\psi(x, s)<f^{\dagger}(x, s, 0)$ for a.a. $x \in \Omega$ and for
all $s>0$. If in addition $b(x)>0$, we obtain from Corollary 3.2
$\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{F_{\varepsilon}(u, \Omega): u \in W^{2,2}(\Omega)\right\}=\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{F_{\varepsilon}(u, \Omega): u \in W_{0}^{2,2}(\Omega)\right\}$

$$
\begin{aligned}
& =\min \left\{\int_{\Omega} \psi(x, u) d x: u \in L^{2}(\Omega)\right\} \leqslant\left(1-\frac{8}{3 \pi^{2}}\right) \int_{\Omega}|b(x)|^{2} d x \\
& <\left(1-\frac{16}{N+16}\right) \int_{\Omega}|b(x)|^{2} d x=\min \left\{\int_{\Omega} f^{+}(x, u, 0) d x: u \in L^{2}(\Omega)\right\}
\end{aligned}
$$

We give now another example where g is a polynomial and the equality $\psi(x, s)=f^{+}(x, s, 0)$ is not satisfied.

Proposition 5.4. Let $n=1, m=r=2, p=6, \Omega=] 0,1[$, and let g be defined by

$$
g(s)=s^{3}+s-\frac{5}{8}
$$

Then there exist $\left.s_{0} \in\right] 0, \frac{1}{2}[$ and $K \in] 0,+\infty[$ with the following property: if $b \in L^{\infty}(\Omega)$ and $N \geqslant K\left[1+\|b\|_{L^{\infty}(\Omega)}^{4}\right]$, then

$$
\psi\left(x, s_{0}\right)<f^{+}\left(x, s_{0}, 0\right)=f\left(x, s_{0}, 0\right)=N\left|g\left(s_{0}\right)\right|^{2}+\left|s_{0}-b(x)\right|^{6}
$$

for a.a. $x \in \Omega$.
Proof. Let u be the solation of the Cauchy problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+u^{3}+u-\frac{5}{8}=0 \\
u(0)=u^{\prime}(0)=0
\end{array}\right.
$$

The function u is periodic with period $2 T$ where

$$
T=\int_{0}^{\sigma}\left(\frac{5}{4} s-s^{2}-\frac{1}{2} s^{4}\right)^{-\frac{1}{2}} d s
$$

and σ is the unique positive solution of $\frac{5}{4} s-s^{2}-\frac{1}{2} s^{4}=0$. Let s_{0} be defined by

$$
s_{0}=\frac{1}{2 T} \int_{0}^{2 T} u(x) d x=\frac{1}{T} \int_{0}^{T} u(x) d x
$$

Since

$$
u^{\prime}=\left(\frac{5}{4} u-u^{2}-\frac{1}{2} u^{4}\right)^{\frac{2}{2}} \quad \text { in }[0, T]
$$

we have

$$
\int_{0}^{T} u(x) d x=\int_{0}^{\sigma} s\left(\frac{5}{4} s-s^{2}-\frac{1}{2} s^{4}\right)^{-\frac{1}{2}} d s
$$

We prove that $s_{0}<\frac{1}{2}$; this is equivalent to show that

$$
\begin{equation*}
\int_{0}^{\sigma}\left(s-\frac{1}{2}\right)\left(\frac{5}{4} s-s^{2}-\frac{1}{2} s^{4}\right)^{-\frac{2}{2}} d s<0 \tag{5.6}
\end{equation*}
$$

Let $v(s)=\left(\frac{5}{4} s-s^{2}-\frac{1}{2} s^{4}\right)^{\frac{1}{2}}$; the function v is increasing in $\left[0, \frac{1}{2}\right]$ and decreasing in $\left[\frac{1}{2}, \sigma\right]$. Let $v_{0}=\sqrt{11 / 32}$, let $w_{1}:\left[0, v_{0}\right] \rightarrow\left[0, \frac{1}{2}\right]$ be the inverse of the function $\left.v\right|_{\left[0, \frac{1}{2}\right]}$ and let $w_{2}:\left[0, v_{0}\right] \rightarrow\left[\frac{1}{2}, \sigma\right]$ be the inverse of the function $\left.v\right|_{[1,0]}$; then (5.6) is equivalent to

$$
\begin{align*}
\int_{0}^{v_{0}} 2\left(w_{1}(t)-\frac{1}{2}\right)\left[\frac{5}{4}-2 w_{1}(t)\right. & \left.-2\left(w_{1}(t)\right)^{3}\right]^{-1} d t \tag{5.7}\\
& <\int_{0}^{v_{0}} 2\left(w_{2}(t)-\frac{1}{2}\right)\left[\frac{5}{4}-2 w_{2}(t)-2\left(w_{2}(t)\right)^{3}\right]^{-1} d t
\end{align*}
$$

Since the function $\left(s-\frac{1}{2}\right)\left(\frac{5}{4}-2 s-2 s^{3}\right)^{-1}$ is increasing in $[0,+\infty[$ and $0<w_{1}(t)<w_{2}(t)$, we obtain (5.7). This proves that $s_{0}<\frac{1}{2}$, hence

$$
\left(s_{0}^{3}+s_{0}-\frac{5}{8}\right)^{2}>0
$$

Let $u_{T}(x)=u(2 T x)$; note that u_{T} is 1-periodic and $s_{0}=\int_{0}^{1} u_{T}(x) d x$; by the representation formula for ψ we get for every $b \in L^{6}(\Omega)$
(5.8)

$$
\begin{aligned}
\psi\left(x, s_{0}\right) \leqslant \int_{0}^{1}\left[N\left|\frac{1}{(2 T)^{2}} u_{T}^{\prime \prime}(y)+\left(u_{T}(y)\right)^{3}+u_{T}(y)-\frac{5}{8}\right|^{2}\right. & \left.+\left|u_{T}(y)-b(x)\right|^{6}\right] d y \\
& =\int_{0}^{1}\left|u_{T}(y)-b(x)\right|^{6} d y
\end{aligned}
$$

Using the facts that $s_{0}=\int_{0}^{1} u_{T}(y) d y$ and that $0 \leqslant u_{T}(y) \leqslant \sigma<1$, we obtain

$$
\begin{array}{r}
\int_{0}^{1}\left|u_{T}(y)-b(x)\right|^{6} d y=\left|s_{0}-b(x)\right|^{6}+\sum_{i=0}^{6}\binom{6}{i}(-b(x))^{i}\left[\int_{0}^{1} u_{T}(y)^{6-i} d y-s_{0}^{6-i}\right] \\
\leqslant\left|s_{0}-b(x)\right|^{6}+\sum_{i=0}^{4}\binom{6}{i}|b(x)|^{i}<\left|s_{0}-b(x)\right|^{6}+56\left[1+\|b\|_{L^{\infty}(\Omega)}^{4}\right]
\end{array}
$$

Let $K=56\left(s_{0}^{3}+s_{0}-\frac{5}{8}\right)^{-2} ;$ if $N \geqslant K\left[1+\|b\|_{L^{\infty}(\Omega)}\right]$ we obtain from (5.8)

$$
\psi\left(x, s_{0}\right)<\left|s_{0}-b(x)\right|^{6}+N\left(s_{0}^{3}+s_{0}-\frac{5}{8}\right)^{2}=f^{+}\left(x, s_{0}, 0\right)=f\left(x, s_{0}, 0\right)
$$

and the proposition is proved.

Remark 5.5. For every $N>0$ let $b_{N}=s_{0}+\left[(N / 3)\left(s_{0}^{3}+s_{0}-\frac{5}{8}\right)\left(3 s_{0}^{2}+1\right)\right]^{\frac{1}{2}}$. There exists $N_{0}>0$ such that for every $N \geqslant N_{0}$ we have $N \geqslant K\left[1+b_{N}^{4}\right]$. If in the previous proposition we take $N \geqslant N_{0}$ and $b(x)=b_{N}$ for every $x \in \Omega$, then we obtain from Corollary 3.2
$\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{\boldsymbol{F}_{\varepsilon}(u, \Omega): u \in W^{2,2}(\Omega)\right\}=\lim _{\varepsilon \rightarrow 0^{+}} \inf \left\{\boldsymbol{F}_{\varepsilon}(u, \Omega): u \in W_{0}^{2,2}(\Omega)\right\}$

$$
\begin{aligned}
& =\min \left\{\int_{\Omega} \psi(x, u) d x: u \in L^{6}(\Omega)\right\} \leqslant \int_{\Omega} \psi\left(x, s_{\mathbf{0}}\right) d x<\int_{\Omega} f\left(x, s_{0}, 0\right) d x \\
& =\min \left\{\int_{\Omega} f(x, u, 0) d x: u \in L^{6}(\Omega)\right\}
\end{aligned}
$$

The following proposition generalizes some results proved by V. Komornik in [13].

Proposition 5.6. Let g be a non-negative convex function of the class \mathcal{G}_{p}, let $b \in L^{p}(\Omega)$, and let $N>0$. Then for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$

$$
\psi(x, s)=f^{-}(x, s, 0)=f(x, s, 0)=N|g(s)|^{2}+|s-b(x)|^{p}
$$

Proof. Since $f^{-}(x, s, 0) \leqslant \psi(x, s) \leqslant f(x, s, 0)$, it is enough to prove that for a.a. $x \in \Omega$ and for all $s_{0} \in \mathbb{R}$ we have

$$
\begin{equation*}
f^{-}\left(x, s_{0}, 0\right)=f\left(x, s_{0}, 0\right) \tag{5.9}
\end{equation*}
$$

In order to prove (5.9) we show that

$$
\begin{equation*}
f(x, s, z) \geqslant f\left(x, s_{0}, 0\right)+\frac{\partial f}{\partial s}\left(x, s_{0}^{+}, 0\right)\left(s-s_{0}\right)+\sum_{i=1}^{n} \frac{\partial f}{\partial z_{i i}}\left(x, s_{0}, 0\right) z_{i i} \tag{5.10}
\end{equation*}
$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}, s_{0} \in \mathbb{R}, z \in \mathbb{R}^{d}$. Inequality (5.10) is equivalent to

$$
\begin{align*}
& N\left(\sum_{i=1}^{n} z_{i i}\right)^{2}+2 N\left[g(s)-g\left(s_{0}\right)\right] \sum_{i=1}^{n} z_{i i} \tag{5.11}\\
& \quad+\left\{|s-b(x)|^{p}+N|g(s)|^{2}-\left|s_{0}-b(x)\right|^{p}-N\left|g\left(s_{0}\right)\right|^{2}\right. \\
& \left.\quad-\left[p\left|s_{0}-b(x)\right|^{p-1} \operatorname{sign}\left(s_{0}-b(x)\right)+2 N g\left(s_{0}\right) g^{\prime}\left(s_{0}^{+}\right)\right]\left(s-s_{0}\right)\right\} \geqslant 0
\end{align*}
$$

Since the left hand side of (5.11) is a polynomial of the second order in $\sum_{i=1}^{n} z_{i i}$, inequality (5.11) is equivalent to

$$
\begin{align*}
|s-b(x)|^{p}-p\left|s_{0}-b(x)\right|^{p-1} & \operatorname{sign}\left(s_{0}-b(x)\right)\left(s-s_{0}\right)-\left|s_{0}-b(x)\right|^{p} \tag{5.12}\\
+ & 2 N g\left(s_{0}\right)\left[g(s)-g^{\prime}\left(s_{0}^{+}\right)\left(s-s_{0}\right)-g\left(s_{0}\right)\right] \geqslant 0
\end{align*}
$$

Putting $\varphi(\mathrm{s})=|s-b(x)|^{p}+2 N g\left(s_{0}\right) g(s)$, inequality (5.12) can be written in the form $\varphi(s)-\varphi^{\prime}\left(s_{0}^{+}\right)\left(s-s_{0}\right)-\varphi\left(s_{0}\right) \geqslant 0$ which is always satisfied because the function φ is convex.

The following proposition generalizes some results proved by A. Bensoussan in [2].

Proposition 5.7. Suppose that g is a function which is convex and nonnegative for $s \geqslant 0$, concave and non-positive for $s \leqslant 0$, and which satisfies $|g(s)| \leqslant c|s|^{p / 2}$ for every $s \in \mathbb{R}$. Then there exists $N_{0}>0$ (depending only on the constants p and e) such that for every $\left.N \in] 0, N_{0}\right]$ and for every $b \in L^{p}(\Omega)$ we have

$$
\psi(x, s)=f^{-}(x, s, 0)=f(x, s, 0)=N|g(s)|^{2}+|s-b(x)|^{p}
$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.
Proof. As in Proposition 5.6 we have only to prove that

$$
\begin{align*}
&|s-b|^{p}-p\left|s_{0}-b\right|^{p-1} \operatorname{sign}\left(s_{0}-b\right)\left(s-s_{0}\right)-\left|s_{0}-b\right|^{p} \tag{5.13}\\
&+2 N g\left(s_{0}\right)\left[g(s)-g^{\prime}\left(s_{0}^{+}\right)\left(s-s_{0}\right)-g\left(s_{0}\right)\right] \geqslant 0
\end{align*}
$$

for all $s, s_{0}, b \in \mathbb{R}$. Let $\varphi(s)=|s-b|^{p}+2 N g\left(s_{0}\right) g(s)$; if $s_{0} \geqslant 0$ the function φ
is convex on $\left[0,+\infty\left[\right.\right.$; if $s_{0} \leqslant 0$ the function φ is convex on $\left.]-\infty, 0\right]$. Therefore, if $s s_{0} \geqslant 0$

$$
\begin{equation*}
\varphi(s)-\varphi^{\prime}\left(s_{0}^{+}\right)\left(s-s_{0}\right)-\varphi\left(s_{0}\right) \geqslant 0 \tag{5.14}
\end{equation*}
$$

hence (5.13) is proved in the case $s s_{0} \geqslant 0$. Suppose now $s_{0}>0$ and $s<0$; let

$$
\begin{aligned}
& \alpha(s, b)=|s-b|^{p}-p\left|s_{0}-b\right|^{p-1} \operatorname{sign}\left(s_{0}-b\right)\left(s-s_{0}\right)-\left|s_{0}-b\right|^{p} \\
&+2 N g\left(s_{0}\right)\left[g(s)-g^{\prime}\left(s_{0}^{+}\right)\left(s-s_{0}\right)-g\left(s_{0}\right)\right]
\end{aligned}
$$

we want to prove that $(\partial \alpha / \partial s)\left(s^{+}, b\right) \leqslant 0$. We have

$$
\begin{aligned}
\frac{\partial \alpha}{\partial s}\left(s^{+}, b\right)=p|s-b|^{p-1} \operatorname{sign}(s-b)-p\left|s_{0}-b\right|^{p-1} \operatorname{sign} & \left(s_{0}-b\right) \\
& +2 N g\left(s_{0}\right)\left[g^{\prime}\left(s^{+}\right)-g^{\prime}\left(s_{0}^{+}\right)\right]
\end{aligned}
$$

therefore

$$
\begin{aligned}
\max _{b \in \mathbf{R}} \frac{\partial \alpha}{\partial s}\left(s^{+}, b\right)=\frac{\partial \alpha}{\partial s}\left(s^{+}, \frac{s+s_{0}}{2}\right)= & -p 2^{2-p}\left|s-s_{0}\right|^{p-1}+2 N g\left(s_{0}\right)\left[g^{\prime}\left(s^{+}\right)-g^{\prime}\left(s_{0}^{+}\right)\right] \\
& \leqslant-p^{2-p}\left(s_{0}+|s|\right)^{p-1}+2 N K(c, p) s_{0}^{p / 2}|s|^{-1+p / 2} \\
& \leqslant\left(-p 2^{2-p}+2 N K(c, p)\right)\left(s_{0}+|s|\right)^{p-1}
\end{aligned}
$$

where $K(c, p)=c(p / 2)(p /(p-2))^{-1+p / 2}$ if $p>2, K(c, p)=c$ if $p=2$.
If $0<N \leqslant\left(p 2^{1-p} / K(c, p)\right)$ we have $(\partial \alpha / \partial s)\left(s^{+}, b\right) \leqslant 0$ for every $s<0, b \in \mathbb{R}$. This implies that $\alpha(s, b) \geqslant \alpha(0, b)=\varphi(0)+\varphi^{\prime}\left(s_{0}^{+}\right) s_{0}-\varphi\left(s_{0}\right)$; therefore by (5.14) we get $\alpha(s, b) \geqslant 0$, hence (5.1) is proved for $s_{0}>0, s<0$. The case $s_{0}<0$, $s>0$ can be proved in the same way.

The previous proposition applies for instance to the case $g(s)=s|s|^{-1+p / 2}$ and to the case considered in Proposition 5.3.

If $b \in L^{p}(\Omega)$ and if g satisfies the conditions of Proposition 5.7, it is possible to prove that the set
$\{N \in] 0,+\infty\left[: \psi(x, s)=N|g(s)|^{2}+|s-b(x)|^{p}\right.$ for a.a. $x \in \Omega$ and for all $\left.s \in \mathbf{R}\right\}$
is an interval. In fact the following result holds.
Proposition 5.8. Let $f(x, s, z)$ be a function satisfying (3.1), (3.2), (3.3) and let $b \in L^{p}(\Omega)$. For every $\lambda>0$ let

$$
f_{\lambda}(x, s, z)=f(x, s, z)+\lambda|s-b(x)|^{p}
$$

and let $\psi_{\lambda}(x, s)$ be the integrand of the Γ-limit associated to f_{λ} by Theorem 3.1. If there exists $\lambda_{0}>0$ such that $\psi_{\lambda_{0}}(x, s)=f_{\lambda_{0}}(x, s, 0)$ for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$, then for all $\lambda \geqslant \lambda_{0}$ we have $\psi_{\lambda}(x, s)=f_{\lambda}(x, s, 0)$ for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.

Proof. Let $\lambda>\lambda_{0} ;$ by Proposition 2.3 and by (5.1)

$$
\begin{aligned}
f_{\lambda}(x, s, 0)=f_{\lambda_{0}}(x, s, 0)+(\lambda & \left.-\lambda_{0}\right)|s-b(x)|^{p} \\
& =\psi_{\lambda_{0}}(x, s)+\left(\lambda-\lambda_{0}\right)|s-b(x)|^{p} \leqslant \psi_{\lambda}(x, s) \leqslant f_{\lambda}(x, s, 0)
\end{aligned}
$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$.
We show now a situation where $\psi(x, s)=f^{-}(x, s, 0)$.
Proposition 5.9. Let $n=1$ (hence $d=m$) and let $f(x, s, z)$ be a function satisfying (3.1), (3.2), (3.3). Suppose that

$$
f(x, s, z)=f_{1}(x, s)+f_{2}\left(x, z_{m}\right) \quad \text { for all } x \in \Omega, s \in \mathbb{R}, z \in \mathbb{R}^{m}
$$

Then, if $\psi(x, s)$ is the integrand of the Γ-limit associated to f by Theorem 3.1, we have for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$

$$
\psi(x, s)=f^{-}(x, s, 0)=\bar{f}_{1}(x, s)+\bar{f}_{2}(x, 0)
$$

where $\vec{f}_{1}(x, s)$ denotes the greatest function convex in s which is less than or equal to $f_{1}(x, s)$ and $\bar{f}_{2}\left(x, z_{m}\right)$ denotes the greatest function convex in z_{m} which is less than or equal to $f_{2}\left(x, z_{m}\right)$.

Proof. By (5.1) it is enough to prove that

$$
\begin{equation*}
\psi(x, s) \leqslant f_{1}(x, s)+\bar{f}_{2}(x, 0) \tag{5.15}
\end{equation*}
$$

for a.a. $x \in \Omega$ and for all $s \in \mathbb{R}$. Fix $x \in \Omega, s \in \mathbb{R}, \eta>0$; there exist $z>0$, $w<0$, and $0<\lambda<1$ such that $\lambda z+(1-\lambda) w=0$ and

$$
\lambda f_{2}(x, z)+(1-\lambda) f_{2}(x, w)<\eta+\bar{f}_{2}(x, 0) .
$$

For every $h \in \mathbb{N}$ set

$$
\left.I_{h}=\bigcup_{k=-\infty}^{+\infty}\right] \frac{k}{h}, \frac{k+\lambda}{h}\left[\quad \text { and } \quad J_{h}=\bigcup_{k=-\infty}^{+\infty}\right] \frac{k+\lambda}{h}, \frac{k+1}{h}[
$$

it is easy to prove that there exists a unique 1-periodic function u_{h} such that

$$
\int_{0}^{1} u_{h}(y) d y=s \quad \text { and } \quad u_{h}^{(m)}= \begin{cases}z & \text { on } I_{h} \\ w & \text { on } J_{h}\end{cases}
$$

By the representation formula for ψ we have

$$
\begin{aligned}
& \psi(x, s) \leqslant \int_{0}^{1}\left[f_{1}\left(x, u_{n}(y)\right)+f_{2}\left(x, u_{h}^{(m)}(y)\right)\right] d y \\
&=\int_{0}^{1} f_{1}\left(x, u_{h}(y)\right) d y+\lambda f_{2}(x, z)+(1-\lambda) f_{2}(x, w) .
\end{aligned}
$$

Since $\left(u_{h}\right)$ converges to s uniformly and $f_{1}(x, s)$ is continuous in s we have

$$
\psi(x, s) \leqslant f_{1}(x, s)+\bar{f}_{2}(x, 0)+\eta .
$$

Since η was arbitrary we obtain (5.15) and so the proposition is proved.
Remark 5.10. The previous proposition applies for example to the case

$$
F_{\varepsilon}(u, A)=\int_{A}\left[\left|\left(\varepsilon^{2} u^{\prime \prime}\right)^{2}-a(x)\right|^{2}+|u-b(x)|^{4}\right] d x
$$

with $a \in L^{2}(\Omega)$ and $b \in L^{4}(\Omega)$. In this case we obtain

$$
\psi(x, s)=f^{-}(x, s, 0)=(a(x) \wedge 0)^{2}+|s-b(x)|^{4}
$$

while $f^{+}(x, s, 0)=|a(x)|^{2}+|s-b(x)|^{4}$.

6. - Appendix.

In this section we prove that the function

$$
f(x, s, z)=N\left|\sum_{i=1}^{n} z_{i i}+g(s)+a(x)\right|^{2}+|s-b(x)|^{p}
$$

$\left(z=\left(z_{i j}\right)_{1 \leqslant i+j \leqslant 2}\right)$ satisfies condition (3.2) whenever $N>0, p \geqslant 2, g \in \mathcal{G}_{p}$, $a \in L^{2}(\Omega), b \in L^{p}(\Omega)$, where $\mathscr{\Im}_{p}$ is the class of functions defined in section 5 . Condition (3.1) is trivial for f and condition (3.3) follows from well known estimates for the Laplace operator.

First of all we extend the functions a and b to all of \mathbf{R}^{n}, by setting $a(x)=b(x)=0$ for $x \in \mathbf{R}^{n}-\Omega$; so the function f is extended to $\mathbf{R}^{n} \times \mathbf{R} \times \mathbf{R}^{d}$.

We shall use the following elementary inequalities, which hold for every $\alpha>0, \beta>0, p>1$:

$$
\begin{gathered}
\alpha \beta \leqslant \frac{1}{p} \alpha^{p}+\frac{1}{q} \beta^{a} \\
\left|\alpha^{p}-\beta^{p}\right| \leqslant p\left(1 \vee 2^{p-2}\right)\left(\alpha^{p-1}|\alpha-\beta|+|\alpha-\beta|^{p}\right)
\end{gathered}
$$

$$
(\alpha+\beta)^{p} \leqslant 2^{p-1} \alpha^{p}+2^{p-1} \beta^{p} .
$$

The last inequality implies that

$$
|s|^{p} \leqslant 2^{p-1} f(x, s, z)+2^{p-1}|b(x)|^{p} .
$$

In what follows $q=p /(p-1)$ and c_{1}, c_{2}, c_{3} are positive constants independent of x, y, s, t, z, w. Let $\eta: \mathbb{R}^{n} \rightarrow[0,+\infty[$ be an arbitrary function with $\eta(0)=0$ and $\eta(y)>0$ for $y \neq 0$, and let $\eta^{*}: \mathbb{R}^{n} \rightarrow[0,+\infty[$ be defined by $\eta^{*}(0)=0$ and $\eta^{*}(y)=\eta(y)^{-1}$ for $y \neq 0$. For every $x, y \in \mathbf{R}^{n}$, $s, t \in \mathbb{R}, z, w \in \mathbb{R}^{d}$ we have
(6.1

$$
\begin{align*}
& \leqslant c_{1}\left\{\left|\sum_{i=1}^{n} z_{i i}+g(s)+a(x)\right|\left[\sum_{i=1}^{n}\left|w_{i i}\right|+\varrho(|t|)(1+|s|)^{p / 2}+|a(x+y)-a(x)|\right]\right. \tag{6.1}\\
& +\left[\sum_{i=1}^{n}\left|w_{i i}\right|+\varrho(|t|)\left(1+\left.|s|\right|^{p / 2}+|a(x+y)-a(x)|\right]^{2}\right. \\
& \left.+|s-b(x)|^{p-1}[|t|+|b(x+y)-b(x)|]+\left[|t|+|b(x+y)-b(x)|^{p}\right]\right\} \\
& \leqslant c_{2}\left\{f(x, s, z)^{\ddagger} \sum_{i=1}^{n}\left|w_{i i}\right|+f(x, s, z)^{\ddagger} \varrho(|t|)\left(f(x, s, z)+|b(x)|^{p}+1\right)^{\ddagger}\right. \\
& +f(x, s, z)^{\ddagger}|a(x+y)-a(x)|+\left(\sum_{i=1}^{n}\left|w_{i i}\right|\right)^{2} \\
& +\varrho(|t|)^{2}\left(f(x, s, z)+|b(x)|^{p}+1\right)+|a(x+y)-a(x)|^{2} \\
& \left.+f(x, s, z)^{1 / q}|t|+f(x, s, z)^{1 / q}|b(x+y)-b(x)|+|t|^{p}+|b(x+y)-b(x)|^{p}\right\} \\
& \leqslant c_{3}\left\{(f (x , s , z) + | b (x) | ^ { p } + 1) \left[\sum_{i=1}^{n}\left|w_{i i}\right|+\varrho(|t|)+\left(\sum_{i=1}^{n}\left|w_{i i}\right|\right)^{2}\right.\right. \\
& \left.+\varrho(|t|)^{2}+|t|+|t|^{p}\right]+\eta(y) f(x, s, z) \\
& +\eta^{*}(y)|a(x+y)-a(x)|^{2}+|a(x+y)-a(x)|^{2} \\
& \left.+\eta(y)^{a / p} f(x, s, z)+\eta^{*}(y)|b(x+y)-b(x)|^{p}+|b(x+y)-b(x)|^{p}\right\} \\
& \leqslant\left(f(x, s, z)+|b(x)|^{p}+1\right) \lambda(y, t, w) \\
& +e_{3}\left(1+\eta^{*}(y)\right)\left[|a(x+y)-a(x)|^{2}+|b(x+y)-b(x)|^{p}\right]
\end{align*}
$$

where

$$
\begin{aligned}
& \lambda(y, t, w) \\
& \quad=c_{3}\left[\sum_{i=1}^{n}\left|w_{i i}\right|+\varrho(|t|)+\left(\sum_{i=1}^{n}\left|w_{i i}\right|\right)^{2}+\varrho(|t|)^{2}+|t|+|t|^{p}+\eta(y)+\eta(y)^{\text {a/p }}\right]
\end{aligned}
$$

Since $a \in L^{2}\left(\mathbb{R}^{n}\right)$ and $b \in L^{p}\left(\mathbb{R}^{n}\right)$, we have

$$
\lim _{y \rightarrow 0} \int_{\mathbf{R}^{n}}\left[|a(x+y)-a(x)|^{2}+|b(x+y)-b(x)|^{p}\right] d x=0
$$

Therefore there exists a continuous function $\eta: \mathbb{R}^{n} \rightarrow[0,+\infty[$ such that $\eta(0)=0, \eta(y)>0$ for $y \neq 0$, and

$$
\lim _{y \rightarrow 0}\left(1+\eta^{*}(y)\right) \int_{\mathbf{R}^{n}}\left[|a(x+y)-a(x)|^{2}+|b(x+y)-b(x)|^{p}\right] d x=0
$$

For every $x, y \in \mathbb{R}^{n}$ we set

$$
\omega(x, y)=c_{3}\left(1+\eta^{*}(y)\right)\left[|a(x+y)-a(x)|^{2}+|b(x+y)-b(x)|^{p}\right]
$$

Since λ is continuous and $\lambda(0,0,0)=0$, there exists an increasing continuous function $\sigma:[0,+\infty[\rightarrow[0,+\infty[$, with $\sigma(0)=0$, such that

$$
\lambda(y, t, w) \leqslant \sigma(|y|+|t|+|w|)
$$

for every $y \in \mathbb{R}^{n}, t \in \mathbb{R}, w \in \mathbb{R}^{\boldsymbol{d}}$.
Therefore from (6.1) it follows that

$$
\begin{aligned}
\mid f(x+y, s+t, z+w)- & f(x, s, z) \mid \\
& \leqslant \sigma(|y|+|t|+|w|)\left(f(x, s, z)+|b(x)|^{p}+1\right)+\omega(x, y)
\end{aligned}
$$

for every $x, y \in \mathbb{R}^{n}, s, t \in \mathbb{R}, z, w \in \mathbb{R}^{d}$. This shows that condition (3.2) is satisfied.

REFERENCES

[1] A. Ambrosetti - C. Sbordone, I-convergenza e G-convergenza per problemi non lineari di tipo ellittico, Boll. Un. Mat. Ital., (5) 13-A (1976), pp. 352-362.
[2] A. Bensoussan, Un résultat de perturbations singulières pour systémes distribués instables, C. R. Acad. Sci. Paris, Sér. I, 296 (1983), pp. 469-472.
[3] G. Buttazzo, Su una definizione generale dei Γ-limiti, Boll. Un. Mat. Ital., (5), 14-B (1977), pp. 722-744.
[4] G. Buttazzo - G. Dal Maso, r-convergence et problèmes de perturbation singulière, C. R. Acad. Sci., Sér. I, 296 (1983), pp. 649-651.
[5] G. Buttazzo - G. Dal Maso, On Nemyekii operators and integral representation of local functionals, Rend. Mat., 3 (1983), pp. 491-509.
[6] E. De Giorgi, Convergence problems for functionals and operators, Procced. Int. Meeting on "Recent Methods in Nonlinear Analysis», Rome, May 1978, ed. by E. De Giorgi, E. Magenes and U. Mosco, Pitagora, Bologna, 1979, pp. 131-188.
[7] E. De Grorgi, G-operators and Γ-convergence, Proceedings of the International Congress of Mathematicians, Warsaw, August 1983 (to appear).
[8] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale, Atti Acc. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), 58 (1975), pp. 842-850.
[9] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia, 3 (1979), pp. 63-101.
[10] E. De Giorgi - G. Letta, Une notion générale de convergence faible pour des fonctions croissantes d'ensemble, Ann. Sc. Norm. Sup. Pisa Cl. Sci., (4), 4 (1977), pp. 61-99.
[11] A. Haraux - F. Murat, Perturbations singulières et problèmes de contrôle optimal. Première partie: deux cas bien posés, C. R. Acad. Sci. Paris, Sér. I, 297 (1983), pp. 21-24.
[12] A. Haraux - F. Murat, Perturbations singulières et problèmes de contràle optimal. Deuxième partie: un cas mal posé, C. R. Acad. Sci. Paris, Sér. I, 297 (1983), pp. 93-96.
[13] V. Komornik, Perturbations singulières de systèmes distribués instables, C. R. Acad. Sci, Paris, Sér, I, 294 (1983), pp. 797-799.

Scuola Normale Superiore Piazza dei Cavalieri 7 I-56100 Pisa
Istituto di Matematica
Via Mantica 3
I-33100 Udine

