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Singular Perturbation Problems
in the Calculus of Variations (*).

GIUSEPPE BUTTAZZO (**) - GIANNI DAL MASO (**)

1. - Introduction.

In this paper we study the following singular perturbation problem in
the Calculus of Variations; given an integral functional of the form

determine the asymptotic behaviour (as 8 --~ 0+) of the infima of the functionals

(here Dk u denotes the vector of all k-th order partial derivatives
of u).

By means of the r-convergence theory we prove that, under suitable
assumptions on the integrand f, there exists a convex integrand 1p: Q 
such that for every (p E Lq(S2)

(*) Partially supported by a research project of the Italian Ministry of Education.
(**) The authors are members of the Gruppo Nazionale per 1’Analisi Funzionale

e le sue Applicazioni of the Consiglio Nazionale delle Ricerche.
Pervenuto alla Redazione il 2 Novembre 1983.
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where the exponents r and p are related to the behaviour of the integrand f
and 1 /p = 1. Moreover a formula for the function ’ip is given.

There is an intimate relationship between this kind of problems and some
singular perturbation problems in Optimal Control Theory. Consider for

example a control problem with a cost functional of the form

and with a singularity perturbed state equation of the form

(N &#x3E; 0, b c- and g: R ---&#x3E;- R are given; u and v are respectively the
state variable and the control variable). Problems of this kind have been

studied by J. L. Lions in his courses at the College de France in 1981-82
and 1982-83, and by A. Bensoussan [2], A. Haraux and F. Murat [11], [12],
and V. Komornik [13]. By substituting V = g2 4u + g(u) in the cost func-
tional, the study of the asymptotic behaviour (as 8 - 0+) of

is reduced to the study of

which is the problem considered in Section 5.
Some of the results proved in this paper were announced without

proof in [4].
We wish to thank Prof. E. De Giorgi for many helpful discussions on

this subject.

2. - F-convergence.

In this section we collect some known results of P-convergence theory
that are used in the sequel. For a general exposition of this subject we
refer to [6] and [7].

Let ll, X be two topological spaces (we consider !1 as a space of param-
eters, in general _ N = N U {+ or ,~1 = R); let C A and Xo c X
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with ~Yo dense in X ; for every let be a function from into

R = R W {- oo, + oo~; let XEX with ÂoEAo; following [8] we define

where denotes the family of all neighbourhoods of x in the space X.
When the F-limits (2.1) and (2.2) coincide, their common value is indicated by

The main properties of hlimits are given by the following propositions,
proved in [3] and [9].

PROPOSITION 2.1. I’or every x E X define

The functions F-: F+: X loiver semicontinuous on X.

PROPOSITION 2.2. Suppose that X has a countable base for the open sets.
For every sequence (.Fh) of functions from Xo into R, there exists a subsequence
(Fhk) and a f unction F: X --&#x3E;- llg such that

for every x E X .

PROPOSITION 2.3. If G: .X --~ IL~ is lower semicontinuous at the point
x E X, then
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if in addition G is continuous at the point x, then the above inequalities are
equalities.

PROPOSITION 2.4. Suppose that there exists F: X - R such that

for every x E X. Assume further that the functions are equiooeroive on X,
i.e. for every s E llg there exists a compact subset K, of X (independent of Â)
such that fx E Xo: FA (x)  s} C K, for every A E Ao.

Then we have

Moreover,, it (0153).)).EA is a family of elements of Xo such that lim = x and7 o 
o

m [.F’(x) - inf = 0, then x is a minimum point of F in X.
o L - 0 Aj

Let be the set of all sequences in Ilo converging to Â.o in A, and
let be the set of all sequences in Xo converging to x; we define (the
subscript seq stands for sequential)

REMARK 2.5. If the spaces ll and X satisfy the first axiom of countability
it is possible to prove (see [3]) that the FSeQ-limits (2.3) and (2.4) coincide
respectively with the -P-limits (2.1) and (2.2).

REMARK 2.6. It is not difficult to see that in the case l1. _ N, llo = N,
lo = oo, the -P.,,,a-limits (2.3) and (2.4) of a sequence of functions

reduce respectively to

and

Suppose that X is a reflexive separable Banach space with dual X’.
Let (xh) be a sequence dense in the unit ball of X’ ; we introduce the metric 6
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on X defined by

It is known that the metric space (X, ð) is separable.
Let us denote by w the weak topology of X.
We shall use the following proposition proved in [1].

PROPOSITION 2.7. Assume that X is a reflexive Banach space, that Âo has
a countable neighbourhood base in A, and that there exist two constants Cl, c2 E R,
with C2 &#x3E; 0, such that

for every A E Ao, x E Xo.
Then for every x E X

Using Proposition 2.3 and some general properties of r-limits (see [3], [8])
it is easy to obtain the following proposition.

PROPOSITION 2.8. Tlnder the hypotheses of Proposition 2.7, for every
x E X, s E l!~ the following conditions are equivalent :

ii) for every sequence (~,h) in Ao converging to ~,o in A there exists a sub-

sequence (Åhk) such that

3. - Statement of the result.

Let S~ be a bounded open subset of let m &#x3E; 1 be an integer, and let p, r
be two real numbers with p &#x3E; 1, 

We indicate by d = d(n, m) the number of multi-indices a E Nn such
that I  [ce[ m, by the family of all bounded open subsets of Rz,
and by A = the family of all open subsets of .5~.
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For every k = 1, 2, ..., m and every with we

denote by the vector of all k-th order partial derivatives of u.
The integrands we shall consider are Borel functions 

~ [0, + oo[ which satisfy the following properties:

(3.1) there exist and such that

(3.2) there exist a E Ll(Q), an increasing continuous [0, -~- oo[
-+ [0, -~- oo[ with = 0, and a Borel function Q X l~n --~ [0, -~- oo[
with 

- -

such that

(3.3) there exists a E a Borel f unction y : R X l8d -¿. [0, -~- 00[, and
a f unction ~, : X ~( lE~n) ---~ [0, -~- such that

For every 8 &#x3E; 0 we consider the functional A) defined for every g e t
and for every u E by
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It is possible to verify (see section 6) that hypotheses (3.1), (3.2), (3.3) are
fulfilled, for example, by the functionals

where k &#x3E; 1 is an integer, Pk is a polynomial of degree less than or equal to k,
a E L2(Q), b E and S~ X R R is uniformly continuous and
satisfies 0  inf 99  sup cp  + oo.

Other examples of functionals verifying hypotheses (3.1), (3.2), (3.3)
can be found in Section 5.

Define now for every A E 

Let us denote b~T Lp(A) the weak topology of LP(A). The main result
we prove in this paper is the following. 

-0e

THEOREM 3.1. Let be a Borel function satis-

fying hypotheses (3.1 ), (3.2), (3.3), and let F, be the f unctionals de f ined by (3.4).
Then there exists a Borel function 1p:.Q X R -&#x3E; [0, ~- oo [ such that

where s, z) is the greatest function convex in s zuhich is less than or equal
to f (x, s, z) and f -(x, 8, z) is the greatest function convex in (s, z) which is less
than or equal to f (x, s, z).
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Moreover the following representation formulae for 1jJ hold for a.a. x E Q
and all s E R:

where Y denotes the unit cube ]0, 1~[~, denotes the space of all Y-periodic
functions o f W’,(Rn), and

COROLLARY 3.2.

and let V be a set such that

PROOF. It follows from Theorem 3.1, Proposition 2.3 and Proposition 2.4
that

Since
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4. - Proof of the result.

In this section we prove Theorem 3.1.

The function f and the functionals .F~ are supposed to satisfy the hypo-
theses of the theorem. In what follows we shall write briefly 
instead of f (x, u, sDu, ..., em Dmu). Let (s~) be a sequence in ]0, + oo[
converging to 0. For every U E Lp(A) set

LEMMA 4.1. For every A E A, u E Lp(A) ?,ue have

PROOF. Let A e L?(A) . Let e be a non-negative function in 

It is easy to see that (eh * converges to u in Lp(A) and that 

converges to 0 in (hence in L(() ) for k == 1, 2, ..., m. Since f (x, s, z)
is continuous in (s, z), inequalities (3.1) ensure that

By Remark 2.6 and Proposition 2.7 we have

and the lemma is proved. 0
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PROOF. Let K = C - B and let Ao, Bo be two open sets, with meas
such that Fix an integer v and

a family of open sets, with such that Ao cc Al
cc ... cc Av cc Bo . Define and S = C n (Bo - Ao) . For

every i =1, 2, ..., v there exists CPi e such that and CPr" = 1
on 

In what follows the letter c will denote various positive constants (in-
dependent of h, i, v), whose value can change from one line to the next.

Fix u e Lp(A U B) and q &#x3E; 0 ; there exists a sequence (uh) in 
n Lp(A), converging to u weakly in and a sequence (vh) in

n Lp(B) converging to U weakly in such that

and

For every i = 1, 2, ..., v and for every set

Using (3.1) we obtain

where c, depends on I for ~=1~...~ and Since the

strips Si are pairwise disjoint, for every h e N there exists an index

~e{ly2y...~} such that

Define Wh, = Then
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Let Since S cc .E, there exists such that 

Since (uh) and (vh) are bounded in using inequalities as

(which hold for 1 and for every ar &#x3E; 0) we get

Define now U,,(x) = and = then, using (3.3), we get

Since the sequences (Wi,k) converge to u weakly in it is easy to see

that the sequence converges to u weakly in LP(C). Therefore, passing
to the limit in (4.1) as h - oo, and using (4.2) and (3.3) (iii) we get

where Passing to the limit first then as
t

v - -p 00, and finally -+ 0, we obtain

REMARK 4.3. In the same way we can prove that for every A., 
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with and for every compact subset K of B

for every u E This fact, combined with Lemma 4.1 and inequalities
(3.1), implies that

LEMMA 4.4. There exist a subsequence (Skr) of (êk) and a functional F
such that

for every A e A and for every u E Moreover for every u E the

set function .A -+ F(u, A) is the trace on A of a regular Borel measure defined
on Q.

PROOF. Let ’l1 be a countable base for the open subsets of Q, closed under
finite unions; note that for every A, B e A with A cc B, there exists U E ’B1

such that A cc U cc B. By the compactness of T-,eonvergence (see Propo-
sitions 2.2 and 2.7) there exists a subsequence of (which we still denote
by (Eh)) such that for every B E E there exists the T-limit

It is easy to see that for every u E LP(Q) the set function .~. -~ G(u, A) is
superadditive on so A) is superadditive on A. It follows

from Lemma 4.2 that A - F(u, A) is subadditive. So ~4. --~ F(u, A) is in-

creasing, superadditive, subadditive, and inner regular. By a result of measure
theory (see [10] Proposition 5.5 and Theorem 5.6) this implies that

A ~ .F’(u, A) is the trace on A of a regular Borel measure defined on Q.
.It remains to prove (4.3). Let
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and

By Remark 4.3 we have

which proves (4.3 ) .

LEMMA 4.5. Let F be the f unctional introduced in Lemma 4.4. There exists

a Borel Q X R -* [0, + 00 [ such that

PROOF. Let us denote by $ = %(D) the class of all Borel subsets of Q.
For every u E LP(Q) we denote by 0(u, -) the measure on 93 which extends
.F’(~c, ~ ); it is easy to see that for every B E {8

First of all we prove that the functional P is local on %, that is: if

u = v a.e. on a Borel set B, then 0(u7 B) = B). Let u, v E L1J(Q) and
with u = v a.e. on B; without loss of generality we may suppose

that u = v everywhere on B and everywhere on Q. By Lusin’s the-
orem, for every s &#x3E; 0 there exists As E A, with meas (As)  s, such that

the restrictions uln-Ás and are continuous. Then the set BE = As
U  + s} is open; moreover Define now
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it is easy to see that (us) converges to u strongly in as 8’ O. For every

q &#x3E; 0 there exist an open set .A and a compact set ~ such that

F(u, A)  0(v, B) -~- r~ and f [a(x) dx  77.
A-x

Since -F(-, A) is lower semicontinuous with respect to the weak topology
of Lp(A) (see Proposition 2.1) and 1~’ is local on A, using Lemma 4.1 and
inequalities (3.1) we obtain

Since  0 was arbitrary, y we get

The opposite inequality can be proved in a similar way.
So the functional X 9’., -+ [0, + oo[ is local on B, for every

the set function 0(u, -) is a measure, and the function 

is lower semicontinuous in the weak topology of .Lp(SZ). This implies (see [5])
that there exists a non-negative Borel function 1p(x, s), convex in s, such that

for every u E B E 93. Since 0(,u, A) = F(u, A) for every .9. E A, we
obtain (i) and (ii). Finally, (iii) follows from inequalities (3.1) and from
Lemma 4.1. ·

LEMMA 4.6. For every A e A and for every u E Wm,r(A) n LP(A) we 

where T is the functional defined by (3.5).

PROOF. Let A c- A, U E r1 Lp(A), and q &#x3E; 0. There exists a

sequence (Uh) in r) Lp(A) conve1ging to u weakly in LP(A) such that
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Let .Ao, Bo be two open sets with .A.o cc Bo cc A and meas(aAo) = meas(aBo) = o.
Fix an integer v and, for i = 1, 2, ..., v, define A2 and ggi as in Lemma 4.2.
Set

we have A) = 0. With the same argument used in the proof
of Lemma 4.2 we get

Since converges to u weakly in

where M = limsup tA). Passing to the limit first as J - 0, next as
t-+ + 00

v - + 00, then as r -- 0, and finally as we get the thesis. 1

LEMMA 4.7. Assume that

for every A and for every u E Lp(A). Then

There exists a

sequence (Uk) in Wm,r(A) n converging to u strongly in LP(A) such that
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Using Lemma 4.6 we obtain for every k e N

Since T-limits are lower semicontinuous (see Proposition 2.1) and v)dx
A

is continuous in LP(A) (see Lemma 4.5), passing to the limit as k --~ + o0
we obtain

be the space of all Y-periodic functions
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PROOF. Let x E E R, u E E R with 0 c E. Let v be

the Y-periodic extension of u, that is the function which satisfies

v(x + y) = v(x) for every x c- R", y E Z" and v(x) = u(x) for every x EIr.

There exist N and 5 E [o,1[ such that e = (N + 6)17. Define for every

YEY 
,I

Then we Wo(s) and

This implies that for every s, i? E R, with

and from this inequality it follows that

LEMMA 4.9. Suppose that the f unetion f does not depend on the variable x
and that

for every A E A, u E LP(A). Then me, m’ and mo do not depend on x and

!G-’y 

for every s E R.

PROOF. Let s E R and let be a sequence converging to s weakly in
such that ’UA - s E Wo,"(Y); let 99 E 00’(Y) with == 1; there ex-

ists a sequence converging to 0 in R such that = s

Y

for every Then by hypothesis (3.2) we have
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where .M = sup Passing to the limit as h -+ + oo we obtain

Since (uh) is arbitrary, y by Lemma 4.7 we get

Consider now a subsequence such that liminf m’h(s) = mBhk(s).k h- 00 h- -

For every k c N there exists wk c -W(s) such that If) 
By hypothesis (3.1) the sequence (wk) is bounded in thus for a suit-
able subsequence (wk;), we have that (w~~) converges weakly in to

a function u such that fu(y) dy = s. Therefore, using Jensen’s inequality,
y

Remark 2.6, Lemma 4.8 and inequality (4.5), we get

LEMMA 4.10. Suppose that the function f does not depend on the variable x.
Then there exists a convex function 1p: R -~ [0, -E- oo[ such that

me, me mo do not dopond on x and

for every s E R.

PROOF. Let (Ôk) be a sequence in R converging to 0 such that E~ &#x3E; 0

for every By Lemmas 4.4, 4.5 and 4.7 there exist a subsequence 
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of (8h) and a Borel function convex in s, such that

for every Since f does not depend
on x, it is easy to see that u(x - y)) dx = J 1p(x, u(x)) dx for every

v+A A

A E A, u E and for every y E l~% such that y + A ç ,5~. This implies
that 1p does not depend on x, that is s) = 

By Lemma 4.9 we have

for every So the function does not depend on the sequence 
By Proposition 2.8 this implies (4.6).

By Lemma 4.9 we have mo(s) = lim mBhk(s). Since the limit does notk- -

depend on the sequence (eh), we obtain

The equality mo(s) = mo(s) has already been proved in Lemma 4.8.0

PROOF oF THEOREM 3.1. Let (8h) be a sequence in ]0, + oo[ converging
to 0. By Lemmas 4.4, 4.5 and 4.7 there exist a subsequence of (eh)
and a Bore] function 1p: .~ [0, + 00[, which satisfies condition (ii)
of the theorem, such that

for every AEA, uELp(A), 
In order to prove (i), by Proposition 2.8 we have only to show that

for a.a. x and for all s E R, where mo and mE are defined by (4.4).
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Let be an integer; for every

where f denotes the average over the set 1. Define
A

and let (m,,)is(x, s), 8), s) be the functions related to fN
defined as in (4.4). Since fN is piecewise constant with respect to the variable x,
by Lemmas 4.5 and 4.10 there exists a Borel function s), piecewise
constant in x and convex in s, such that

for every .Aejty u EF E2,(A); moreover

for a.a. and for all 8 E R.

Let QN = If Q, using condition (3.2) we obtain for

This implies that
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for E Rd and for every x E 92 such that dist (x, Rn - Q)
&#x3E; Passing to the F-limit along the sequence we obtain

for every .~ e A with d(A, ltn - ~) &#x3E; ýrï/N and for every u E Lp(A). By (3.2)
we have

for every with A cc o. Thus, passing to the limit in (4.10) as

we get

for every with and for every u E Lp(A).
Using the definitions of wa8 and (mN)-, from (4.9) we obtain that

for every x E 92 with dist (x, R" - 92) and for every s E R. Letting
E -~ 0+ and using (4.8) we get
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Equality (4.11) implies that there exists an increasing sequence of integers
(Nk) such that ]hn y)dy = 0 for a.a. x E D. Letting N - + oo in

(4.13) along the sequence (Nk), we get that there exists

for a.a. and for all 8 E R, and that

for a.a. x E S~ and for all s E R. In the same way we prove that

Using (4.12) we obtain

for every A E ~ with A cc D and for every s E R.

Since m, mo, y are continuous in s (indeed they are convex), this im-
plies that

for a.a. and for all 

In order to prove (4.7) it is enough to show that

for a.a. and for all 

Since s W(s) we have

thus from (4.14) it follows that

By a change of variables, it is easy to verify that
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every s &#x3E; 0. Therefore (4.16) yields

This proves (4.15).
It remains to prove property (iii). The inequality 1jJ(x, s) f+(x, s, 0)

follows from Lemma 4.1 and from the convexity of V(x,-).
Let x E Q, s E R, u E Wo(s), E &#x3E; 0; by Jensen’s inequality we have

Thus by the representation formula for ip we have

5. - Some examples.

In this section we give some examples and applications of Theorem 3.1.
In particular we show that the inequalities

cannot be improved; in fact, there are some examples where s)
= f-(x, s, 0) (see Proposition 5.9 and Remark 5.10), and some other ex-
amples where s) = f+(~, s, 0) (see Proposition 5.2). In the case f-(x,s,0)
= f+(x, s, 0) the integrand is determined by the inequalities (5.1) ;
this allows us to generalize some results of A. Bensoussan [2] and V. Ko-
mornik [13] (see Proposition 5.5 and Proposition 5.6).

For every p ~ 2 we denote by the class of functions g : R - R such that

for every s, t E R, where c is a positive constant and
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is an increasing continuous function with = 0. Examples of functions
of the class are the polynomials of degree less than or equal to p/2.

Let N &#x3E; 0, after some simple calculations (see sec-

tion 6) one can verify that the functionals

satisfy all hypotheses of Theorem 3.1, with m = r = 2,

where are suitable positive constants.
Let s) be the function, convex in s, such that

for every A E A, u E Lp(A).

PROPOSITION 5.1. If g is an affine function, then

for a.a. x and for all s E R.

PROOF. Since in this case f (x, s, z) = f -(x, s, z) = f+(x, s, z), the propo-
sition follows from (5.1)..

In the following proposition we give a new proof of a result due to
A. Haraux and F. Murat [11].

PROPOSITION 5.2. Let g be a decreasing function of the class let b E Lv(S2),
and let N &#x3E; 0. Then
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Then

Let us prove that

There exists a sequence (g1l,) of decreasing functions of class C1, with bounded
derivatives, such that g(s) = lim for every s E R, and 
for every 

By the dominated convergence theorem

Since u - S E TV2,2(y) we have

so (5.5) is proved. From (5.4), (5.5) and Jensen’s inequality it follows that

Since 8&#x3E; 0 and u E yVo(s) are arbitrary, the representation formula four y
implies s) s, 0). The opposite inequality follows from (5.1)..

We construct now an example which shows that the equality s)
= t+(x, S7 0) does not hold for an arbitrary function g E g..

PROPOSITION = 1, m = p = r = 2, D = ]0, 1[ and lot g b6
de f ined by 

-
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If N &#x3E; 6n2 - 16 and b E L2(Q), then

for a.a. x E Q and for all s &#x3E; 0. If in addition b(x) &#x3E; 0 for a,a, x E Q, then

PROOF. Define on [- n, 2a]

~k &#x3E; 0 is a parameter) and extend u to R by periodicity (the period is 
Set ~c~(x) = as s -* 0+ we have that converges to kjn and (lueI2)
converges to ik2 weakly in L2(o,1). Since e2u: + = 0, for every A e A,
bE .L2(A) we have

Therefore, for a.a. x E ]0, 1[ and for all s &#x3E; 0, we have

On the other hand

Therefore, if N &#x3E; 6~2 -16, then ’ljJ(x, s)  f +(x, s, 0) for a.a. x and for
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all s &#x3E; 0. If in addition b(x) &#x3E; 0, we obtain from Corollary 3.2

We give now another example where g is a polynomial and the equality
s) = f+(~, s, 0) is not satisfied.

PROPOSITION 5.4. Let n = 1, m = r = 2, p = 6, Q = ]0, 1[, and let g be
defined by 

-

Then there exist ~o~]0? 2 [ and Xe]0y -E- oo[ with the following 
and then

PROOF. Let u be the solution of the Cauchy problem

The function u is periodic with period 2T where

and is the unique positive solution of
fined by

Let so be de-
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Since

we have

We prove that so C 2 ; this is equivalent to show that

Let _ ( 4 s - s 2 - i84)i; the function v is increasing in [o, 2 ] and de-
creasing in [ 1, 0"]. Let vo = 1/11 /32, let wl : [0, wo] -+ [0, §] be the inverse of
the function vlro,i1 and let ~v2 : [0, vo] --~ [ 2 , a] be the inverse of the function
vlrl,a1; then (5.6) is equivalent to

Since the function (s - 2 ) (4 - 2s - 2s3)w is increasing in and

0   w2(t), we obtain (5.7). This proves that so  2 , hence

Let note that up is 1-periodic and by the
representation formula for y we get for every
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Using the facts that we obtain

Let we obtain from (5.8)

and the proposition is proved.

REMARK 5.5. For every N &#x3E; 0 let
There exists No &#x3E; 0 such that for every N ~ No we have + 
If in the previous proposition we take N~ No and b(x) = bl~ for every
x E Q, then we obtain from Corollary 3.2

The following proposition generalizes some results proved by V. Komornik
in [13].

PROPOSITION non-negative convex function of the class 
let b E LP(92), and let N &#x3E; 0. Then for a.a. x E Q and for all s e R

PROOF. Since / (~~0)~(~)/(~~0), it is enough to prove that
for a.a. x E S~ and for all so e R we have



424

In order to prove (5.9) we show that

for a.a. x and for all s E E R, z E R~. Inequality (5.10) is equivalent to

Since the left hand side of (5.11) is a polynomial of the second order in

inequality (5.11) is equivalent to

Putting 99(s) - Is - b(x) Ip -~- 2Ng(so)g(s), inequality (5.12) can be written
in the form (p(s) - g~’(so ){s - so) - which is always satisfied be-
cause the function g~ is convex..

The following proposition generalizes some results proved by A. Ben-
soussan in [2].

PROPOSITION 5.7. Suppose that g is a f unction which is convex and non-
negative for s ~ 0, concave and non-positive for s ~ 0, and which satisfies

f or every s E R. Then there exists No &#x3E; 0 (depending only on the
constants p and c) such that for every N E ]0, No] and f or every b E LP(D)
we have

for a.a. x E Q and f or all s E R.

PROOF. As in Proposition 5.6 we have only to prove that

if 0 the function 99
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is convex on [0, + oo[; if the function 99 is convex on ]- cxJ, 0]. The-

refore, if 

hence (5.13) is proved in the case Suppose now 0 and 8  0; let

we want to prove that (8ce/88)(s+, b) c 0. We have

therefore

This implies that a(s, b) = q(0) + - therefore by (5.14)
we get a(s, b) &#x3E; 0, hence (5.1) is proved for so &#x3E; 0, s  0. The case so  0,
s &#x3E; 0 can be proved in the same 

The previous proposition applies for instance to the case g(s) = slsl-1+P/2
and to the case considered in Proposition 5.3.

If b E and if g satisfies the conditions of Proposition 5.7, it is pos-
sible to prove that the set

+ 00[: = Nlg(s)12 + for a.a. x E S~ and for all s E lt~

is an interval. In fact the following result holds.

PROPOSITION 5.8. Let I(x, s, z) be a function satisfying (3.1 ), (3.2), (3.3 )
and let b E For every A &#x3E; 0 let
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and let be the integrand of the r-limit associated to by Theorem 3.1.
If there exists Âo &#x3E; 0 such that s) = s, 0) for a.a. x and for
all s E R, then for all we have s) = s, 0) for a.a. x E Q and
for all s E R.

PROOF. Let ,1 &#x3E; ,10; by Proposition 2.3 and by (5.1)

for a.a~. x E ,S~ and for all s E R..

We show now a situation where s) = f-(x, s, 0).

PROPOSITION 5.9. Let n = 1 (hence d = m) and let f (x, s, z) be a function
satisfying (3.1 ), (3.2), (3.3). Suppose that

Then, if s) is the integrand of the F-limit associated to f by Theorem 3.1,
we have for a.a. x E Q and for all s E R

where f 1(x, s) denotes the greatest function convex in s which is less than or

equal to 1,,(x, s) and f 2(x, zm) denotes the greatest function convex in zm which
is less than or equal to f 2(x, zm).

PROOF. By (5.1) it is enough to prove that

for a.a. x and for all s E R. Fix x E E R, r~ &#x3E; 0 ; there exist z &#x3E; 0,
and 0 C ~, C 1 such that Az+ and

For every h e N set

and
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it is easy to prove that there exists a unique 1-periodic function uh such that

and

By the representation formula for y we have

Since (Uk) converges to s uniformly and s) is continuous in s we have

Since q was arbitrary we obtain (5.15) and so the proposition is proved..

REMARK 5.10. The previous proposition applies for example to the case

with and b E L4(,Q). In this case we obtain

6. - Appendix.

In this section we prove that the function

(z = (z2’~lCi+~~2) satisfies condition (3.2) whenever N &#x3E; 0, p ~2, g E 9vy
a E L2(Q), b E where 9, is the class of functions defined in section 5.
Condition (3.1) is trivial for f and condition (3.3) follows from well known
estimates for the Laplace operator.
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First of all we extend the functions and b to all of Rn, by setting
a(x) = b(x) = 0 for x E Rn - S~; so the function f is extended to l~n xR X Rd.

We shall use the following elementary inequalities, which hold for every

The last inequality implies that

In what follows q = p/(p -1 ) and c2, c3 are positive constants in-

dependent of x, y, s, t, z, w. Let ?7: [0, + oo[ be an arbitrary func-
tion with q(0) = 0 and q(y) &#x3E; 0 0, and let ?7*: R" - [0, + oo[ be
defined by q*(0) = 0 and q*(y) = 0. For every x, y E Rn,
s, t E R, z, wERå we have
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where

Since a E and b E LP(Rn), we have

Therefore there exists a continuous function r~ : R~ -~ [o, + oo[ such that

q(0) = 0, &#x3E; 0 for y ~ 0, and

For every x, y E Rn we set

Since I is continuous and A(0, 0, 0) = 0, there exists an increasing con-
tinuous function a: [0, + oo[ -&#x3E; [0, + 00[, with o’(0) = 0, such that

for every 
Therefore from (6.1) it follows that

for every x, y e R"y s, t E R, Z7 w E This shows that condition (3.2) is

satisfied.
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