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Abstract. After the celebrated Black-Scholes formula for pricing call options under constant volatility, the need
for more general nonconstant volatility models in financial mathematics has been the motivation of numerous works
during the Eighties and Nineties. In particular, a lot of attention has been paid to stochastic volatility models where
the volatility is randomly fluctuating driven by an additional Brownian motion. We have shown in [2, 3] that, in
the presence of a separation of time scales, between the main observed process and the volatility driving process,
asymptotic methods are very efficient in capturing the effects of random volatility in simple robust corrections to
constant volatility formulas. From the point of view of partial differential equations this method corresponds to a
singular perturbation analysis. The aim of this paper is to deal with the nonsmoothness of the payoff function inherent
to option pricing. We present the case of call options for which the payoff function forms an angle at the strike price.
This case is important since these are the typical instruments used in the calibration of pricing models. We establish
the pointwise accuracy of the corrected Black-Scholes price by using an appropriate payoff regularization which is
removed simultaneously as the asymptotics is performed.

1. Introduction. Stochastic volatility models in financial mathematics can be thought of as
a Brownian-type particle (the stock price) moving in an environment where the diffusion coefficient
is randomly fluctuating in time according to some ergodic (mean-reverting) diffusion process. We
then have two Brownian motions, one driving the motion of the particle and the other driving the
fluctuations of the medium. In the context of Physics there is no natural correlation between these
two Brownian motions since they do not “live” in the same space. In the context of Finance they
jointly define the dynamics of the stock price under its physical probability measure or an equivalent
risk-neutral martingale measure. Correlation between them is perfectly natural. There are economic
arguments for a negative correlation or leverage effect between stock price and volatility shocks, and
from common experience and empirical studies, asset prices tend to go down when volatility goes up.
The diffusion equation appears as a contingent claim pricing equation, its terminal condition being
the payoff of the claim. We refer to [5] or [6] for surveys on stochastic volatility. When volatility
is fast mean-reverting, on a time-scale smaller than typical maturities, one can perform a singular
perturbation analysis of the pricing PDE. As we have shown in [2], this expansion reveals a first
correction made of two terms: one is directly associated with the market price of volatility risk and
the other is proportional to the correlation coefficient between the two Brownian motions involved.
We refer to [2] for a detailed account of evidence of a fast scale in volatility and the use of this
asymptotics to parametrize the evolution of the skew or the implied volatility surface. We also refer
to [4] for a different type of application, namely variance reduction in Monte Carlo methods.

The present paper deals with the accuracy of such an expansion in presence of another essential
characteristic feature in option pricing, namely the nonsmoothness of payoff functions. We present
the case of call options since these are the liquid instruments used in the calibration of pricing
models. By inverting the Black-Scholes formula the price of a call option is given in terms of its
implied volatility which depends on the strike and the maturity of the option. This set of implied
volatilities form the term structure of implied volatility. For fixed maturity and across strikes it is
known as the smile or the skew due to the observed asymmetry. These objects and their dynamics
are what volatility models are trying to reproduce in order to price and hedge other instruments.

In [2] we have performed an expansion of the price in powers of the characteristic mean-reversion
time of volatility, and we have shown that the leading order term corresponds to a Black-Scholes
price computed under a constant effective volatility. The first correction involves derivatives of this
constant volatility price. When the payoff is smooth we have shown that the corrected price, leading
order term plus first correction, has the expected accuracy, namely the remainder of the expansion
is of the next order. The nonsmoothness of a call payoff which forms an angle at the strike price
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creates a singularity at the maturity time near the strike price of the option.
This paper is devoted to the proof of the accuracy of the approximation in that case. It is

important because this is a natural situation in financial mathematics one has to deal with. The
proof given here relies on a payoff smoothing argument which can certainly be useful in other
contexts.

In Section 2 we introduce the class of stochastic volatility models which we consider. They
are written directly under the pricing equivalent martingale measure and with a small parameter
representing the short time-scale of volatility. We recall how option prices are given as expected
values of discounted payoffs or as solutions of pricing backward parabolic PDE’s with terminal
conditions at maturity times. In Section 3 we recall the formal asymptotic expansion presented
in [2]. In Section 4 we introduce the regularization of the payoff and decompose the main result,
accuracy of the price approximation, into three Lemmas. Section 5 is devoted to the proof of these
Lemmas. Detailed computations involving derivatives of Black-Scholes prices up to order seven are
given in the appendices where we also recall the properties of the solutions of Poisson equations
associated with the infinitesimal generator of the Ornstein-Uhlenbeck process driving the volatility.

2. Class of Models and Pricing Equations. The family of Ornstein-Uhlenbeck driven
stochastic volatility models (Sε

t , Y ε
t ) that we consider can be written, under a risk-neutral prob-

ability IP ?, in terms of the small parameter ε

dSε
t = rSε

t dt + f(Y ε
t )Sε

t dW ?
t ,

dY ε
t =

[
1
ε
(m− Y ε

t )− ν
√

2√
ε

Λ(Y ε
t )

]
dt +

ν
√

2√
ε

dẐ?
t ,

where the Brownian motions (W ?
t , Ẑ?

t ) have instantaneous correlation ρ ∈ (−1, 1):

d〈W ?, Ẑ?〉t = IE?{dW ?
t dẐ?

t } = ρ dt,

and

Λ(y) =
ρ(µ− r)

f(y)
+ γ(y)

√
1− ρ2,

is a combined market price of risk. It describes the relationship between the physical measure
under which the stock price is observed, and the risk-neutral measure under which the market prices
derivative securities. See [2] for example. The price of the underlying stock is Sε

t and the volatility
is a function f of the process Y ε

t . At the leading order 1/ε, that is omitting the Λ-term, Y ε
t is an

Ornstein-Uhlenbeck (OU) process which is fast mean-reverting with a normal invariant distribution
N (m, ν2). Notice that in this framework the volatility driving process (Y ε

t ) is autonomous in the
sense that the coefficients in its defining SDE do not depend on the stock price Sε

t .
In this fast mean-reverting stochastic volatility scenario, the volatility level fluctuates randomly

around its mean level, and the epochs of high/low volatility are relatively short. This is the regime
that we consider and under which we analyze the price of European derivatives. A derivative
is defined by its nonnegative payoff function H(S) which prescribes the value of the contract at
its maturity time T when the stock price is S. The payoff function must in general satisfy the
integrability condition

IE?{H(ST )2} < ∞,

with IE? denoting expectation with respect to IP ?. Moreover, we assume:
1. The volatility is positive and bounded: there are constants m1 and m2 such that

0 < m1 ≤ f(y) ≤ m2 < ∞ ∀y ∈ R.

2. The volatility risk-premium is bounded:

|γ(y)| < l < ∞ ∀y ∈ R.

for some constant l.
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It is convenient at this stage to make the change of variable

Xε
t = log Sε

t , t ≥ 0,

and write the problem in terms of the processes (Xε
t , Y ε

t ) which satisfy, by Itô’s formula the stochastic
differential equations

dXε
t =

(
r − 1

2
f(Y ε

t )2
)

dt + f(Y ε
t ) dW ?

t , (2.1)

dY ε
t =

[
1
ε
(m− Y ε

t )− ν
√

2√
ε

Λ(Y ε
t )

]
dt +

ν
√

2√
ε

dẐ?
t . (2.2)

We also define the payoff function h in terms of the log stock price via

H(ex) = h(x), x ∈ R.

The price at time t < T of this derivative is a function of the present value of the stock price,
or equivalently the log stock price, Xε

t = x and the present value Y ε
t = y of the process driving the

volatility. We denote this price by P ε(t, x, y). It is standard in finance to assume the price is given
by (2.3) which is the expected discounted payoff under the risk-neutral probability measure IP ?. See
[1] for example.

P ε(t, x, y) = IE?
{

e−r(T−t)h(Xε
T )|Xε

t = x, Y ε
t = y

}
. (2.3)

We shall also write these conditional expectations more compactly as

P ε(t, x, y) = IE?
t,x,y

{
e−r(T−t)h(Xε

T )
}

.

Under the assumptions on the models considered and the payoff, P ε(t, x, y) is the unique classical
solution to the associated backward Kolmogorov partial differential equation problem

LεP ε = 0, (2.4)
P ε(T, x, y) = h(x)

in t < T , x, y ∈ R, where we have defined the operators

Lε =
1
ε
L0 +

1√
ε
L1 + L2

L0 = ν2 ∂2

∂y2
+ (m− y)

∂

∂y
, (2.5)

L1 =
√

2ρνf(y)
∂2

∂x∂y
−
√

2νΛ(y)
∂

∂y
, (2.6)

L2 =
∂

∂t
+

1
2
f(y)2

∂2

∂x2
+

(
r − 1

2
f(y)2

)
∂

∂x
− r · . (2.7)

The operator L0 is the infinitesimal generator of the OU process (Yt) defined by

dYt = (m− Yt) dt + ν
√

2 dẐ?
t , (2.8)

L1 contains the mixed partial derivative due to the correlation and the derivative due to the market
price of risk, and L2, also denoted by LBS(f(y)), is the Black-Scholes operator in the log variable
and with volatility f(y).
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3. Price approximation. We present here the formal asymptotic expansion computed as in
[2, 3] which leads to a (first-order in

√
ε) approximation P ε(t, x, y) ≈ Qε(t, x). In the next section

we prove the convergence and accuracy as ε ↓ 0 of this approximation which consists of the first two
terms of the asymptotic price expansion:

Qε(t, x) = P0(t, x) +
√

εP1(t, x),

which do not depend on y and are derived as follows. We start by writing

P ε = Qε + εQ2 + ε3/2Q3 + · · · = P0 +
√

εP1 + εQ2 + ε3/2Q3 + · · · , (3.1)

Substituting (3.1) into (2.4) leads to

1
ε
L0P0 +

1√
ε

(L0P1 + L1P0) (3.2)

+ (L0Q2 + L1P1 + L2P0) +
√

ε (L0Q3 + L1Q2 + L2P1) + · · · = 0.

We shall next obtain expressions for P0 and P1 by successively equating the four leading order
terms in (3.2) to zero. We let 〈·〉 denote the averaging with respect to the invariant distribution
N (m, ν2) of the OU process Y introduced in (2.8):

〈g〉 =
1

ν
√

2π

∫

R
g(y)e−(m−y)2/2ν2

dy. (3.3)

Notice that this averaged quantity does not depend on ε.
Below, we will need to solve the Poisson equation associated with L0:

L0χ + g = 0, (3.4)

which requires the solvability condition

〈g〉 = 0, (3.5)

in order to admit solutions with reasonable growth at infinity. Properties of this equation and its
solutions are recalled in Appendix C.

Consider first the leading order term:

L0P0 = 0.

Since L0 takes derivatives with respect to y, any function independent of y satisfies this equation.
On the other hand y-dependent solutions exhibit the unreasonable growth exp(y2/2ν2) at infinity.
Therefore we seek solutions which are independent of y: P0 = P0(t, x) with the terminal condition
P0(T, x) = h(x).

Consider next:

L0P1 + L1P0 = 0,

which corresponds to the second term in (3.2). Since L1 contains only terms with derivatives in y it
reduces to L0P1 = 0 and, as for P0, we seek again a function P1 = P1(t, x), independent of y, with
a zero terminal condition P1(T, x) = 0. Hence, Qε = P0 +

√
εP1, the leading order approximation,

does not depend on the current value of the volatility level.
The next equation

L0Q2 + L1P1 + L2P0 = 0,

which corresponds to the third term in (3.2), reduces to the Poisson equation

L0Q2 + L2P0 = 0, (3.6)
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since L1P1 = 0. Its solvability condition

〈L2P0〉 = 〈L2〉P0 = 0,

is the Black-Scholes PDE (in the log variable) with constant square volatility 〈f2〉:

〈L2〉P0 = LBS(σ̄)P0 =
∂P0

∂t
+

1
2
σ̄2 ∂2P0

∂x2
+

(
r − 1

2
σ̄2

)
∂P0

∂x
− rP0 = 0, (3.7)

where we define the effective constant volatility σ̄ by

σ̄2 = 〈f2〉.
We choose P0(t, x) to be the classical Black-Scholes price, solution of (3.7) with the terminal condition
P0(T, x) = h(x).

Observe that Q2 = −L−1
0 (L2−〈L2〉)P0 as a solution of the Poisson equation (3.6). This notation

includes an additive constant in y which will disappear when hit by the operator L1 as follows. The
fourth term in (3.2) gives the equation :

L0Q3 + L1Q2 + L2P1 = 0. (3.8)

This is a Poisson equation in Q3, and its solvability condition gives

〈L2〉P1 = −〈L1Q2〉 = 〈L1L−1
0 (L2 − 〈L2〉)〉P0,

which, with its zero terminal condition, determines P1 as a solution of a Black-Scholes equation with
constant square volatility 〈f2〉 and a source term. Using the expressions for Li one can rewrite the
source as:

〈L1L−1
0 (L2 − 〈L2〉)P0 =

〈L1L−1
0

(
f(y)2 − 〈f2〉)〉 1

2

(
∂2

∂x2
− ∂

∂x

)
P0

=
(

v3
∂3

∂x3
+ (v2 − 3v3)

∂2

∂x2
+ (2v3 − v2)

∂

∂x

)
P0, (3.9)

where

v2 =
ν√
2
(2ρ〈fφ

′〉 − 〈Λφ
′〉)

v3 =
ρν√

2
〈fφ

′〉, (3.10)

and φ is a solution of the Poisson equation:

L0φ(y) = f(y)2 − 〈f2〉. (3.11)

We can therefore conclude:
1. The first term P0 is chosen to be the solution of the “homogenized” PDE problem (3.7).

In other words, P0 is simply the Black-Scholes price of the derivative computed with the
effective volatility σ̄.

2. The second term, or correction to the Black-Scholes price, is given explicitly, as a linear
combination of the first three derivatives of P0, by

√
εP1 = −(T − t)

(
V ε

3

∂3

∂x3
+ (V ε

2 − 3V ε
3 )

∂2

∂x2
+ (2V ε

3 − V ε
2 )

∂

∂x

)
P0, (3.12)

with

V ε
2,3 =

√
ε v2,3, (3.13)

since it is easily seen, by using 〈L2〉P0 = 0, that equation (3.9) is satisfied, and that, on the
other hand, the terminal condition P1(T, x) = 0 is satisfied when limt→T (T − t)∂iP0

∂xi = 0 for
i = 1, 2, 3.
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Essential instruments in financial markets are put and call options for which the payoff function
H(S) is piecewise linear. We shall focus on call options:

H(S) = (S −K)+ ⇒ h(x) = (ex −K)+,

for some given strike price K > 0. Notice that h is only C0 smooth with a discontinuous first
derivative at the kink x = log K, (at the money in financial terms). Nonetheless, at t < T , the
Black-Scholes pricing function P0(t, x) is smooth and P1(t, x) is well-defined, but second and higher
derivatives of P0 with respect to x blow up as t → T (at the money).

Our main result on the accuracy of the approximation Qε = P0 +
√

εP1 is as follows:
Theorem 3.1. Under the assumptions (1) and (2) above, at a fixed point t < T , x, y ∈ R, the

accuracy of the approximation of call prices is given by

lim
ε↓0

|P ε(t, x, y)−Qε(t, x)|
ε| log ε|1+p

= 0,

for any p > 0. Observe that this pointwise approximation is the sense of accuracy needed in finance
applications since option prices are computed at given values of (t, x, y).

Before giving in the next Section the proof of Theorem 3.1, we comment on the interpretation
of the approximation and on the validity of the result for more general payoffs.

Financial interpretation of the approximation.
In order to give a meaningful interpretation to the leading order term and the correction in our

price approximation it is convenient to return to the variable S, the underlying price. With a slight
abuse of notation we denote the call option price approximation by P0(t, S) +

√
εP1(t, S). Indeed

the leading order term P0(t, S) is the standard Black-Scholes price of the call option computed at
the effective constant volatility σ̄. From (3.12), one can easily deduce that

√
εP1(t, S) = −(T − t)

(
V ε

2 S2 ∂2P0

∂S2
+ V ε

3 S3 ∂3P0

∂S3

)
, (3.14)

which shows that the correction is a combination of the two greeks Gamma and Epsilon, as introduced
in [2]. This correction can alternatively be written in the form

√
εP1(t, S) = −(T − t)

(
(V ε

2 − 2V ε
3 )S2 ∂2P0

∂S2
+ V ε

3 S
∂

∂S

(
S2 ∂2P0

∂S2

))
. (3.15)

Using the classical relation between Gamma and Vega for Black-Scholes prices of European deriva-
tives

∂P0

∂σ
= (T − t)σS2 ∂2P0

∂S2
,

which is easily obtained by differentiating the Black-Scholes PDE with respect to σ, one can rewrite
the correction as:

√
εP1(t, S) = − 1

σ̄

(
(V ε

2 − 2V ε
3 )

∂P0

∂σ
+ V ε

3 S
∂

∂S

(
∂P0

∂σ

))
. (3.16)

Therefore the price correction is a combination of the Vega and the Delta-Vega of the Black-Scholes
price. The Vega term corresponds simply to a volatility level correction. The Delta-Vega term is
proportional to the correlation coefficient ρ and captures the main effect of skewness in implied
volatility as discussed in detail in [2].

Other payoff functions.
The main idea of the proof presented in the next Section is a regularization of the payoff which

does not rely on the particular choice of a call option. The only place where we use the explicit
6



Black-Scholes formula for a call option is in the computation (B.1) of the successive derivatives
∂n

x P δ
0 carried out in the Appendix B. Note that if we had started with a payoff function h which

is continuous and piecewise smooth (a call option being a particular case), then P δ
0 , the solution of

the parabolic PDE (3.7), is an integral of the payoff function with respect to a normal density as in
the case of a call option. The first derivative with respect to x can be taken on the payoff function
and the higher order derivatives can then be taken on the normal density as detailed in Appendix B
for a call option. Therefore Theorem 3.1 remains valid for general European claims with continuous
payoffs that have singular behavior in their derivatives.

Numerical illustration. To illustrate the asymptotic approximation, we compare the approxima-
tion

Qε = P0 +
√

εP1

with a numerical solution of the PDE (2.4) for a particular stochastic volatility model and a call
option with strike price K = 100 and three months from expiration. (In practice, the asymptotic
approximation is not used in this manner because of the difficulties of estimating the volatility
parameters precisely; instead the parameters of the approximation V ε

2 and V ε
3 are estimated directly

from observed options prices, as described in [2]).
We choose f(y) = ey, where this is understood to stand for a cutoff version of the exponential

function with the cutoffs (above and below) sufficiently large and small respectively so as not to
affect the calculations within the accuracy of our comparisons. We use the parameter values

ε = 1/200, m = log 0.1, ν = 1/
√

2, ρ = −0.2,

µ = 0.2, r = 0.04,

and choose the volatility risk premium γ ≡ 0. It follows from explicit calculations that the parameters
for the asymptotic approximation are

σ̄ = 0.165, V ε
2 = −3.30× 10−4, V ε

3 = 8.48× 10−5.

Figure 3.1 shows the numerical solution from an implicit finite-difference approximation at two
levels of the current volatility ey, one at the long-run mean-level σ̄, and one far above it (0.607).
These are compared to the asymptotic approximation which does not depend on the current volatility
level. In the range 0.95 ≤ K/S ≤ 1.04 shown in the picture on the right, the maximum deviation
of the asymptotic approximation from the price with the higher volatility is by 9% of the latter
price, and the maximum deviation of the asymptotic approximation from the price with the lower
volatility is by 2.1% of this price.

4. Derivation of the accuracy of the price approximation. In order to prove Theorem
3.1, we introduce in the next section the regularized price, P ε,δ, the price of a slightly smoothed call
option, with δ being the (small) smoothing parameter. We denote the associated price approximation
Qε,δ. The proof then involves showing that (i) P ε ≈ P ε,δ, (ii) Qε,δ ≈ Qε, (iii) P ε,δ ≈ Qε,δ, and
controlling the accuracy in these approximations by choosing δ appropriately.

4.1. Regularization. We begin by regularizing the payoff, which is a call option, by replacing
it with the Black-Scholes price of a call with volatility σ̄ and time to maturity δ. We define

hδ(x) := CBS(T − δ, x;K,T ; σ̄),

where CBS(t, x; K, T ; σ̄) denotes the Black-Scholes call option price as a function of current time t,
log stock price x, strike price K, expiration date T and volatility σ̄. It is given by

CBS(t, x; K, T ; σ̄) = P0(t, x; K, T ; σ̄) = exN(d1)−Ke−r τ2

σ̄2 N(d2) (4.1)

N(x) =
1√
2π

∫ x

−∞
e−y2/2 dy

d1 =
x− log K

τ
+ bτ

d2 = d1 − τ,

7
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Fig. 3.1. Call option prices 3 months from maturity as a function of the current stock price S. The strike price
is K = 100 and the picture on the right focuses on the region ”around the money”.

where we define

τ = σ̄
√

T − t b =
r

σ̄2
+

1
2
.

For δ > 0, this new payoff is C∞. The price P ε,δ(t, x, y) of the option with the regularized payoff
solves

LεP ε,δ = 0
P ε,δ(T, x, y) = hδ(x).

4.2. Main convergence result. Let Qε,δ(t, x) denote the first-order approximation to the
regularized option price:

P ε,δ ≈ Qε,δ ≡ P δ
0 +

√
εP δ

1 ,

where

P δ
0 (t, x) = CBS(t− δ, x; K,T ; σ̄) (4.2)
√

εP δ
1 = −(T − t)

(
V ε

3

∂3

∂x3
+ (V ε

2 − 3V ε
3 )

∂2

∂x2
+ (2V ε

3 − V ε
2 )

∂

∂x

)
P δ

0 . (4.3)

We establish the following pathway to proving Theorem 3.1 where constants may depend on (t, T, x, y)
but not on (ε, δ):

Lemma 4.1. Fix the point (t, x, y) where t < T . There exist constants δ̄1 > 0, ε̄1 > 0 and c1 > 0
such that

|P ε(t, x, y)− P ε,δ(t, x, y)| ≤ c1δ

for all 0 < δ < δ̄1 and 0 < ε < ε̄1. This establishes that the solutions to the regularized and
unregularized problems are close.

Lemma 4.2. Fix the point (t, x, y) where t < T . There exist constants δ̄2 > 0, ε̄2 > 0 and c2 > 0
such that

|Qε(t, x)−Qε,δ(t, x)| ≤ c2δ
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for all 0 < δ < δ̄2 and 0 < ε < ε̄2. This establishes that the first-order asymptotic approximations
to the regularized and unregularized problems are close.

Lemma 4.3. Fix the point (t, x, y) where t < T . There exist constants δ̄3 > 0, ε̄3 > 0 and c3 > 0
such that

|P ε,δ(t, x, y)−Qε,δ(t, x)| ≤ c3

(
ε| log δ|+ ε

√
ε

δ
+ ε

)
,

for all 0 < δ < δ̄3 and 0 < ε < ε̄3. This establishes that for fixed δ, the approximation to the
regularized problem converges to the regularized price as ε ↓ 0.

The convergence result follows from these Lemmas:
Proof of Theorem 3.1. Take δ̄ = min(δ̄1, δ̄2, δ̄3) and ε̄ = min(ε̄1, ε̄2, ε̄3). Then using Lemmas 4.1,

4.2 and 4.3, we obtain

|P ε −Qε| ≤ |P ε − P ε,δ|+ |P ε,δ −Qε,δ|+ |Qε,δ −Qε|

≤ 2max(c1, c2)δ + c3

(
ε| log δ|+ ε

√
ε

δ
+ ε

)
,

for 0 < δ < δ̄ and 0 < ε < ε̄, where the functions are evaluated at the fixed (t, x, y). Taking δ = ε,
we have

|P ε −Qε| ≤ c5(ε + ε| log ε|),

for some fixed c5 > 0, and Theorem 3.1 follows.
A general conclusion to our work is given in Section 6 after the proofs of Lemmas 4.1,4.2 and

4.3 given in the following section.

5. Proof of Lemmas.

5.1. Proof of Lemma 4.1. We use the probabilistic representation of the price given as the
expected discounted payoff with respect to the risk-neutral pricing equivalent martingale measure
IP ?.

P ε,δ(t, x, y) = IE?
t,x,y

{
e−r(T−t)hδ(Xε

T )
}

.

We define the new process (X̃ε
t ) by

dX̃ε
t =

(
r − 1

2
f̃(t, Y ε

t )2
)

dt + f̃(t, Y ε
t )

(√
1− ρ2 dŴ ?

t + ρ dẐ?
t

)
,

where (Ŵ ?
t ) is a Brownian motion independent of (Ẑ?

t ), (Y ε
t ) is still a solution of (2.2) and

f̃(t, y) =
{

f(y) for t ≤ T
σ̄ for t > T .

Then we can write

P ε,δ(t, x, y) = IE?
t,x,y

{
e−r(T−t+δ)h(X̃ε

T+δ)
}

,

and

P ε(t, x, y) = IE?
t,x,y

{
e−r(T−t)h(X̃ε

T )
}

.

Next we use the iterated expectations formula

P ε,δ(t, x, y)− P ε(t, x, y) =

IE?
t,x,y

{
IE?

{
e−r(T−t+δ)h(X̃ε

T+δ)− e−r(T−t)h(X̃ε
T ) | (Ẑ?

s )t≤s≤T

}}
,

9



to obtain a representation of this price difference in terms of the Black-Scholes function P0 which is
smooth away from the terminal date T . In the uncorrelated case it corresponds to the Hull-White
formula [7]. In the correlated case, as considered here, this formula is in [8], and can be found in
[2](2.8.3). It is simple to compute explicitly the conditional distribution D(X̃ε

T |(Ẑ?
s )t≤s≤T , X̃ε

t ) of
X̃ε

T given the path of the second Brownian motion (Ẑ?
s )t≤s≤T . One obtains

D(X̃ε
T |(Ẑ?

s )t≤s≤T , X̃ε
t = x) = N (mε

1, v
ε
1),

where the mean and variance are given by

mε
1 = x + ξt,T + (r − 1

2
σ̄2

ρ)(T − t)

vε
1 = σ̄2

ρ(T − t)

and we define

ξt,T = ρ

∫ T

t

f̃(s, Y ε
s ) dẐ?

s −
1
2
ρ2

∫ T

t

f̃(s, Y ε
s )2ds (5.1)

σ̄2
ρ =

1− ρ2

T − t

∫ T

t

f̃(s, Y ε
s )2ds.

It follows from the calculation that leads to the Black-Scholes formula that

IE?
t,x,y{e−r(T−t)h(X̃ε

T ) | (Ẑ?
s )t≤s≤T } = P0(t, X̃ε

t + ξt,T ; K, T ; σ̄ρ).

Similarly, we compute

D(X̃ε
T+δ | (Ẑ?

s )t≤s≤T , X̃ε
t = x) = N (mε

2, v
ε
2),

where the mean and variance are given by

mε
2 = x + ξt,T + rδ + (r − 1

2
σ̃2

ρ,δ)(T − t)

vε
2 = σ̃2

ρ,δ(T − t),

and we define

σ̃2
ρ,δ = σ̄2

ρ +
δσ̄2

T − t
.

Therefore

IE?
t,x,y{e−r(T−t+δ)h(X̃ε

T+δ) | (Ẑ?
s )t≤s≤T } = P0(t, X̃ε

t + ξt,T + rδ; K, T ; σ̃ρ,δ),

and we can write

P ε,δ(t, x, y)− P ε(t, x, y) =
IE?

t,x,y {P0(t, x + ξt,T + rδ; K, T ; σ̃ρ,δ)− P0(t, x + ξt,T ;K, T ; σ̄ρ)} .

Using the explicit representation (4.1) and that σ̄ρ is bounded above and below as f(y) is, we find

|P0(t, x + ξt,T + rδ; K, T ; σ̃ρ,δ)− P0(t, x + ξt,T ;K, T ; σ̄ρ)| ≤ δc1(eξt,T [|ξt,T |+ 1] + 1)

for some c1 and for δ small enough. Using the definition (5.1) of ξt,T and the existence of its
exponential moments, we thus find that

|P ε(t, x, y)− P ε,δ(t, x, y)| ≤ c2δ

for some c2 and for δ small enough.
10



5.2. Proof of Lemma 4.2. From the definition (3.12) of the correction
√

εP1 and the
corresponding definition (4.3) of the correction

√
εP δ

1 we deduce

Qε,δ −Qε

=
(

1− (T − t)
(

V ε
3

∂3

∂x3
+ (V ε

2 − 3V ε
3 )

∂2

∂x2
+ (2V ε

3 − V ε
2 )

∂

∂x

))
(P δ

0 − P0).

From the definition (3.10) of the vi’s, the definition (3.13) of the Vi’s and the bounds on the solution
of the Poisson equation (3.11) given in Appendix C, it follows that

max(|V ε
2 |, |V ε

3 |) ≤ c1

√
ε

for some constant c1 > 0. Notice that we can write

P δ
0 (t, x) = P0(t− δ, x).

Using the explicit formula (4.1), it is easily seen that P0 and its successive derivatives with respect
to x are differentiable in t at any t < T . Therefore we conclude that for (t, x, y) fixed with t < T :

|Qε(t, x)−Qε,δ(t, x)| ≤ c2δ

for some c2 > 0 and δ small enough.

5.3. Proof of Lemma 4.3. We first introduce some additional notation. Define the error
Zε,δ in the approximation for the regularized problem by

P ε,δ = P δ
0 +

√
εP δ

1 + εQδ
2 + ε3/2Qδ

3 − Zε,δ,

for Qδ
2 and Qδ

3 stated below in (5.3) and (5.4). Setting

Lε =
1
ε
L0 +

1√
ε
L1 + L2,

one can write

LεZε,δ = Lε
(
P δ

0 +
√

εP δ
1 + εQδ

2 + ε3/2Qδ
3 − P ε,δ

)
(5.2)

=
1
ε
L0P

δ
0 +

1√
ε
(L0P

δ
1 + L1P

δ
0 )

+(L0Q
δ
2 + L1P

δ
1 + L2P

δ
0 ) +

√
ε
(L0Q

δ
3 + L1Q

δ
2 + L2P

δ
1

)

+ε
(L1Q

δ
3 + L2Q

δ
2 +

√
εL2Q

δ
3

)

= ε
(L1Q

δ
3 + L2Q

δ
2

)
+ ε3/2L2Q

δ
3 ≡ Gε,δ

because P ε,δ solves the original equation LεP ε,δ = 0 and we choose P δ
0 , P δ

1 , Qδ
2 and Qδ

3 to cancel
the first four terms. In particular, we choose

Qδ
2(t, x, y) = −1

2
φ(y)

(
∂2P δ

0

∂x2
− ∂P δ

0

∂x

)
, (5.3)

so that

L0Q
δ
2 = −L2P

δ
0 ,

(with an “integration constant” arbitrarily set to zero) whereas Qδ
3 is a solution of the Poisson

equation

L0Q
δ
3 = −(L1Q

δ
2 + L2P

δ
1 ), (5.4)
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where the centering condition is ensured by our choice of P δ
1 .

At the terminal time T we have

Zε,δ(T, x, y) = ε
(
Qδ

2(T, x, y) +
√

εQδ
3(T, x, y)

) ≡ Hε,δ(x, y), (5.5)

where we have used the terminal conditions P ε,δ(T, x, y) = P δ
0 (T, x) = hδ(x) and P δ

1 (T, x) = 0. This
assumes smooth derivatives of P δ

0 in the domain t ≤ T which is the case because hδ is smooth. It
is shown in Appendix A that the source term Gε,δ(t, x, y) on the right-side of equation (5.2) can be
written in the form

Gε,δ = ε

(
4∑

i=1

g
(1)
i (y)

∂i

∂xi
P δ

0 + (T − t)
6∑

i=1

g
(2)
i (y)

∂i

∂xi
P δ

0

)

+ε3/2

(
5∑

i=1

g
(3)
i (y)

∂i

∂xi
P δ

0 + (T − t)
7∑

i=1

g
(4)
i (y)

∂i

∂xi
P δ

0

)
. (5.6)

In Appendix A we also show that the terminal condition Hε,δ(x, y) in (5.5) can be written

Hε,δ(x, y) = ε

(
2∑

i=1

h
(1)
i (y)

∂i

∂xi
P δ

0 (T, x)

)
+ ε3/2

(
3∑

i=1

h
(2)
i (y)

∂i

∂xi
P δ

0 (T, x)

)
. (5.7)

To bound the contributions from the source term and terminal conditions we need the following two
Lemmas that are derived in Appendix C and Appendix B respectively:

Lemma 5.1. Let χ = g
(j)
i or χ = h

(j)
i with the functions g

(j)
i and h

(j)
i being defined in (5.6) and

(5.7). Then there exists a constant c > 0 (which may depend on y) such that IE? {|χ(Y ε
s )|Y ε

t = y} ≤
c < ∞ for t ≤ s ≤ T .

Lemma 5.2. Assume T − t > ∆ > 0 and IE? {|χ(Y ε
s )|Y ε

t = y} ≤ c1 < ∞ for some constant c1

then there exist constants c2 > 0 and δ̄ > 0 such that for δ < δ̄ and t ≤ s ≤ T

|IE?
t,x,y

{
n∑

i=1

χ(Y ε
s )

∂i

∂xi
P δ

0 (s,Xε
s )

}
| ≤ c2[T + δ − s]min[0,1−n/2], (5.8)

and consequently

|IE?
t,x,y

{∫ T

t

(T − s)p
n∑

i=1

e−r(s−t)χ(Y ε
s )

∂i

∂xi
P δ

0 (s, Xε
s ) ds

}
| (5.9)

≤
{

c2 | log(δ)| for n = 4 + 2p
c2 δmin[0,p+(4−n)/2] else .

Proof of Lemma 4.3
We use the probabilistic representation of equation (5.2), LεZε,δ = Gε,δ with terminal condition

Hε,δ:

Zε,δ(t, x, y) = IE?
t,x,y

{
e−r(T−t)Hε,δ(Xε

T , Y ε
T )−

∫ T

t

e−r(s−t)Gε,δ(s,Xε
s , Y ε

s )ds

}
.

From Lemma 5.2 it follows that there exists a constant c > 0 such that

|IE?
t,x,y

{∫ T

t

e−r(s−t)Gε,δ(Xε
s , Y ε

s )ds

}
| ≤ c

{
ε + ε| log(δ)|+ ε

√
ε/δ

}
(5.10)

|IE?
t,x,y

{
Hε,δ(Xε

T , Y ε
T )

} | ≤ c
{

ε + ε
√

ε/δ
}

, (5.11)

and therefore also for (t, x, y) fixed with t < T :

|P ε,δ −Qε,δ| = |εQδ
2 + ε3/2Qδ

3 − Zε,δ|
≤ c

{
ε + ε| log(δ)|+ ε

√
ε/δ

}
. (5.12)

since Qδ
2 and Qδ

3 evaluated for t < T can also be bounded using (5.3) and (A.5).
12



6. Conclusion. We have shown that the singular perturbation analysis of fast mean-reverting
stochastic volatility pricing PDE’s can be rigorously carried out for call options. We found that
the leading order term and the first correction in the formal expansion are correct. The accuracy
is pointwise in time, stock price and volatility level. It is precisely given in Theorem 3.1. The first
correction involves higher order derivatives of the Black-Scholes price which blow up at maturity
time and at the strike price. To overcome this difficulty we have used a payoff smoothing method
and we have exploited the fact that the perturbation is around the Black-Scholes price for which
there is an explicit formula. The case of call options is particularly important since the calibration
of models is based on these instruments. The case of other types of singularities is open. With some
work one can certainly generalize the method presented here to other European derivatives such as
binary options. The case of path-dependent derivatives such as barrier options is more difficult due
to the lack of an explicit formula for the correction. The situation with American contracts such as
the simplest one, the American put, is much more involved due to the singularities at the exercise
boundary.

Appendices

Appendix A. Expressions for Source Term and Terminal Condition. From (5.2), the
source term in the equation for the error Zε,δ is

Gε,δ = ε
(L1Q

δ
3 + L2Q

δ
2

)
+ ε3/2L2Q

δ
3. (A.1)

To obtain an explicit form for this source term, we consider the three terms separately. We first
introduce the convenient notation:

D ≡ ∂

∂x

D2 ≡ ∂2

∂x2
− ∂

∂x
.

Consider the term L2Q
δ
2 in (A.1). Using that

L2 = LBS(f(y)) = LBS(σ̄) +
1
2

(
f(y)2 − σ̄2

)D2 (A.2)

LBS(σ̄)D2P
δ
0 = 0,

and (5.3), one deduces:

L2Q
δ
2 = −1

4
(
f(y)2 − σ̄2

)
φ(y)D2D2P

δ
0 .

Consider next the term L1Q
δ
3 in (A.1). Using (3.8) we have

Qδ
3 = −L−1

0

(L1Q
δ
2 + L2P

δ
1 − 〈L1Q

δ
2 + L2P

δ
1 〉

)
, (A.3)

= −L−1
0

(L1Q
δ
2 − 〈L1Q

δ
2〉+ (L2 − 〈L2〉)P δ

1

)
.

It follows from (5.3) that:

L1Q
δ
2 =

(√
2νρf(y)

∂2

∂x∂y
−
√

2νΛ(y)
∂

∂y

)(
−1

2
φ(y)D2P

δ
0

)

= − 1√
2
νρf(y)φ′(y)DD2P

δ
0 +

1√
2
νΛ(y)φ′(y)D2P

δ
0 .
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Now let ψ1 and ψ2 be solutions of

L0ψ1 = f(y)φ′(y)− 〈fφ′〉, (A.4)
L0ψ2 = Λ(y)φ′(y)− 〈Λφ′〉,

then we find using (3.11) and (A.2) that Qδ
3 can be written:

Qδ
3 =

(
νρ√

2
ψ1(y)DD2P

δ
0 −

ν√
2
ψ2(y)D2P

δ
0

)
− 1

2
(
φ(y)D2P

δ
1

)
. (A.5)

Substituting for L1 and expanding gives

L1Q
δ
3 = ν2ρ2f(y)ψ′1(y)DDD2P

δ
0 − ν2ρf(y)ψ′2(y)DD2P

δ
0

−ν2ρΛ(y)ψ′1(y)DD2P
δ
0 + ν2Λ(y)ψ′2(y)D2P

δ
0

− ν√
2

(
ρf(y)φ′(y)DD2P

δ
1 − Λ(y)φ′(y)D2P

δ
1

)
.

Consider finally the term L2Q
δ
3 in (A.1), we find using (A.2) and (A.5)

L2Q
δ
3 =

1
2
(f(y)2 − σ̄2)

[
ρν√

2
ψ1(y)D2DD2P

δ
0 −

ν√
2
ψ2(y)D2D2P

δ
0 −

1
2
φ(y)D2D2P

δ
1

]

−1
2
φ(y)D2

(
v3D3P

δ
0 + v2D2P

δ
0

)
,

with

D3 =
∂3

∂x3
− 3

∂2

∂x2
+ 2

∂

∂x

and v2,3 defined in (3.10).
To summarize, the source term is given by

Gε,δ = ε
{
ν2ρ2f(y)ψ′1(y)DDD2P

δ
0 − ν2ρf(y)ψ′2(y)DD2P

δ
0

−ν2ρΛ(y)ψ′1(y)DD2P
δ
0 + ν2Λ(y)ψ′2(y)D2P

δ
0

− ν√
2

(
ρf(y)φ′(y)DD2P

δ
1 − Λ(y)φ′(y)D2P

δ
1

)

−1
4

(
f(y)2 − σ̄2

)
φ(y)D2D2P

δ
0 }

+ε3/2

{
1
2
(f(y)2 − σ̄2)

[
ρν√

2
ψ1(y)D2DD2P

δ
0 −

ν√
2
ψ2(y)D2D2P

δ
0 −

1
2
φ(y)D2D2P

δ
1

]

−1
2
φ(y)D2(v3D3P

δ
0 + v2D2P

δ
0 )

}

By inspection, this can be written in the form (5.6).
From (5.3) and (A.5) we can also see that the terminal condition Hε,δ in (5.5) can be written

in the form (5.7).

Appendix B. Proof of Lemma 5.2. To prove Lemma 5.2 notice first that a calculation based
on the analytic expression for the Black-Scholes price in the standard constant volatility case gives

∂n
x P δ

0 (s, x) =

{
exN(u/τ + bτ) for n = 1

exN(u/τ + bτ) +
∑n−2

i=0
b
(n)
i

τ eu∂i
ue−(u/τ+bτ)2/2 for n ≥ 2

(B.1)

for some constants bi and with

τ ≡ σ̄
√

T + δ − s

u ≡ x− log(K)
b ≡ (r/σ̄2 + 1/2).
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Assume first that T −s ≥ (T −t)/2 > 0, so that τ ≥ σ̄
√

(T − t)/2. Since ∂i
xP δ

0 (s, x) is uniformly
bounded in δ, it follows that

|IE?
t,x,y

{
χ(Y ε

s )∂i
xP δ

0 (s,Xε
s )

} | ≤ cIE?
t,x,y {|χ(Y ε

s )|} (B.2)

for some constant c which may depend on x.
Consider next the case 0 < T − s < (T − t)/2, then

|IE?
t,x,y

{
χ(Y ε

s )∂i
xP δ

0 (s,Xε
s )

} | = |IE?
t,x,y

{
χ(Y ε

s )IE?
t,x,y

{
∂i

xP δ
0 (s,Xε

s ) | Ẑ?
v ; t ≤ v ≤ s

}}
|,

and

|IE?
t,x,y

{
1
τ

eu∂i
ue−(u/τ+bτ)2/2 | Ẑ?

v ; t ≤ v ≤ s

}
| (B.3)

=
1
τ
|
∫

eu∂i
ue−(u/τ+bτ)2/2p(u)du|

=
1
τ i
|
∫

eτu∂i
ue−(u+bτ)2/2p(τu)du| ≤ c

τ i

where p is the conditional distribution of u ≡ Xε
s − log(K), which is the Gaussian distribution with

variance at least (T − t)(1− ρ2)m2
1/2. The bound (5.8) follows readily from (B.1), (B.2) and (B.3).

The bound (5.9) is a direct consequence of (5.8) and Lemma 5.2 is established.

Appendix C. On the solution of the Poisson equation.
Let χ solve

L0χ + g = 0,

with L0 defined as in (2.5) and with g satisfying the centering condition

〈g〉 = 0,

where the averaging is done with respect to the invariant distribution associated with the infinitesimal
generator L0 (see (3.3) for an explicit formula). Using the explicit form of the differential operator
L0, one can easily deduce that

Φ(y)χ
′
(y) =

−1
ν2

∫ y

−∞
g(z)Φ(z) dz =

1
ν2

∫ ∞

y

g(z)Φ(z) dz

with Φ being the probability density of the invariant distribution N (m, ν2) associated with L0. From
this it follows that if g is bounded

|χ′(y)| ≤ c1

|χ(y)| ≤ c2(1 + log(1 + |y|)).

Notice that χ in Lemma 5.1 satisfies

|χ(y)| ≤ c max(|φ(y)|, |φ′(y)|, |ψ1,2(y)|, |ψ′1,2(y)|)

for some constant c and with φ and ψ1,2 defined in (3.11) and (A.4) respectively. These functions
are solutions of Poisson equations with g = f2−〈f2〉 or g = fφ′−〈fφ′〉 or g = Λφ′−〈Λφ′〉 which are
bounded. Therefore χ(y) is at most logarithmically growing at infinity. The bound in Lemma 5.1
now follows from classical a priori estimates on the moments of the process Y ε

t which are uniform
in ε. In the case Λ = 0 this can easily be seen by a simple time change t = εt′ in (2.2). The case
Λ 6= 0 follows by a Girsanov change of measure argument.
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