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SINGULAR SETS AND REMAINDERS

BY

GEORGE L. CAIN, RICHARD E. CHANDLER

AND GARY D. FAULKNER

Abstract. This paper characterizes the singular sets of several traditional classes of

continuous mappings associated with compactifications. By relating remainders of

compactifications to singular sets of mappings with compact range, new results are

obtained about each.

All spaces to be considered here are locally compact and Hausdorff and all

functions are continuous. The compact subsets of a space Z will be denoted by

%z. For/? G Z, 9l(/?) (9tK(/?)) denotes the family of open neighborhoods (open

neighborhoods with compact closure) of /?. For a mapping /: X -* Y, Cain [2]

defined the singular set off to be

S(/) = {/? G r|V£/ G 9L(/»), 3F G %Y,p G F c U and f~l(F) <2 %x}.

In a later paper [3], he further explored the nature of S (/). Whyburn [14] gave an

alternate definition.

Various authors have seen methods of constructing a compactification of X

given a map /: X —> Y where Y is compact. Perhaps the earliest (in the context of

this paper) was Loeb [9]. Others who should be mentioned are Steiner and Steiner

[11], [12], Magill [10], Blakley, Gerlits and Magill [1], and Choo [7]. Chandler and

Tzung [6] defined the remainder induced by f to be

£(/)= n{clYf(X\F)\FG%x}

and proved that (whenever Y is compact) there is a compactification aX with

aX \ X homeomorphic to £(/).

We show here that §(/) and £(/) are the same set. We can then use what was

previously known about singular sets to obtain results about remainders and vice

versa. We will also explore this set for three types of mappings commonly

encountered in studying compactifications: (i) the composition of a mapping of X

into Y and the inclusion of Y into a compactification of Y; (ii) the composition of

a mapping of X into Y and a quotient mapping of Y; and (iii) the evaluation

mapping into a product generated by the inclusion of X into a compactification

and by a mapping of X into a compact space K.
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162 G. L. CAIN, R. E. CHANDLER AND G. D. FAULKNER

1. The basic result. We first define the set S'(/) to be

{/?G Y\VUB%({p)J-l(U)$%x}I

and the set S (f) to be

{/? G Y\VU G 9l(/?), f~\U) S %x).

An obviously equivalent definition of £(/) is the set

{/? G Y\\/U G 9l(/?), VF G %r, t/ n /(A" \ F) * 0}.

Theorem 1.1. S(/) = £(/) = §'(/) = §(/)•

Proof. If /? G £(/) there is a (/6 9l(/?) and anfe\ for which U n

/(A" \ F) = 0. Then /"'(iV) C F. For any K <E %Y with /? G # C U we have

f~\K) is a closed subset of F and is therefore compact. It follows that p g S (/).

ThusS(/)c£(/).

Next, suppose p G §'(/)• Then there exists U G 5lK(/?) for which f~\U) is

compact. /(* \f-\U)) = f(X) n (Y \ U). Now /? G t7 and (7 n [/(*) n

(Y \ U)] = 0 so that/? G £(/). We conclude that £(/) C §_'(/)■ _

Up G §'(/) and £/ G 9l(/?) choose F G 9lK(/>) with Kef. Then f-l(U)D

f~l(V) so that if/"'([/) were compact then f~\V) would be also. It follows that

p g SCO-
Finally, suppose /? G §(/) and LV G 9l(/?). Choose K G_9lK(/?) with V C U.

Then /"'(K) C f~\V) and/-'(F) is not compact. Thus/-'(F) is not compact. We

have determined an element of %y contained in U whose inverse image under / is

not compact. Thus, /? G S (/).    ■

Lemma 1.2. Iff(X) is dense in Y, then Y \f(X) C §(/).

Proof. For/? G Y \f(X) there is a net {xx} in A1 for which {/(*>,)} -»/?. Let

U G 9LK(/?). {/C*a)} is eventually in U. If/"'(£/) were compact, {xx} would have a

cluster point x in /"'(£/)• But then /(x) would be a cluster point of {/(xA)},

contradicting the fact that {f(xx)} -»/? £ /(A1). Thus, for an arbitrary £/ G 9LK(/?),

/-'(t7) G 9C*. We conclude that Y \f(X) C S(/).    ■

2. Composition with inclusion maps. We next consider the singular set of the

composition of two mappings when the second map is the inclusion of a space in

one of its compactifications. We use the following notation: If Y is a space and aY

is one of its compactifications, then a: Y —> a(Y) C aY is the inclusion. However,

we follow the standard abuse of this convention by using a Y \ Y to denote

aY\a(Y).

Theorem 2.1. Suppose f. X -^ Y is a mapping withf(X) dense in Y. Then

S(a °/) = S(a) U «(§(/)) = (aY\Y) U «(§(/)).

Proof. That S (a) = a Y \ Y follows immediately from 1.2 and the fact that for

each_point_.y G Y = a(Y) there is U G 9lK( v) such that U n (aY \ Y) = 0.

a~\U) = U is compact.
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SINGULAR SETS AND REMAINDERS 163

Now, suppose/? G S(a) = aY \ Y = §'(«)• Then for each U G 9lK(/?) we have

a-\U) G %Y. It follows that (a ° f)~\U) <£ %x since otherwise/((a °/)"'(c7)) =

a"'(c7) n f(X) would be compact. Since g~'( U) n /(A") is a closed subset of

a"'(^) n f(X), we would then have that a~l(U) n /(A") is compact. Now «"'({/)

n f(X) Qa-\U) n /(A') so that a~l(U) n /(A") = «"'(£/) would be compact, con-

tradicting the fact that/? G S(a) = S(a).

Next, suppose that /? = a(q) with <? G S (/). For any U G ^(/O we have

a~\U) G 9l(?) so there exists F G %y with/"'(F) G 9C* and q G F C a-1(I/)-

Now/? G a(F) C tV and a(F) G 9Cay. If (a o/)-'(a(F)) were compact then/_1(F)

would also since it is a closed subset. Thus, p G S (a ° /) and so a(S (7*)) C

S(a •/)•
Finally, suppose ^ E§(a°/). We can assume /? G a( Y) for otherwise we are

through. Let p = a(q) and suppose U G 9lK(?). Then a(U) G 9lK(/?) and so

(a o/)"'(a(«7)) =f~\U) is not compact. But this says that ? £ §(/). Thus we

have shown that S (a ° f) C S (a) U «(S (/)).    ■

We will use the notation /: X => Y to denote a continuous map from A" onto Y. If

§ CO ^ 0 for such a map, we say that / is singular. Otherwise, / is nonsingular

(= compact). We are now in a position to use the preceding theorem to obtain an

important corollary which first appeared in [1]. Then we use the corollary to obtain

several results concerning the existence or nonexistence of singular and nonsingular

maps between specific spaces. 61 (A") will denote the set of remainders of X, i.e. the

set of all aX \ X where aX is a compactification of X.

Corollary 2.2. If there exists a nonsingular map f. A"=s> Y then "31(7) C 6l(A").

Proof. For any compactification ay of Y we have \Z(a ° f) = %(a ° f) =

aY \ Y u «(§(/)) = aY\Y. But £(a ° /) is a remainder of X.    ■

Corollary 2.3. Every map f. R" =» R1 is singular if n > 1.

Proof. Since R1 has a 2-point compactification and R" does not if n > 1,

^(R1) £ &(R").    ■

Corollary 2.4. For n > I, no map f: R" => R1 is closed.

Proof. If such a map existed, S (/) would be scattered [2, 3.7] or empty. The

second case is not possible by the preceding corollary. In the first case, S(w ° f)

would be disconnected, giving R" a disconnected remainder. (coR1 denotes the

1-point compactification of R1.)    ■

Corollary 2.5. Let f. Rm => R". The only possible cardinalities for § (/) are 0 and

c if m > 1. If m = 1 the only possibilities are 0, I, or c.

Proof. There are no remainders of Rm with cardinalities greater than one and

less than c if m > 1. By composing / with the inclusion of R" into its 1-point

compactification we obtain a map of Rm into a compact space wR" whose singular

set has one more element in it than S (/) had. The first assertion follows easily. If
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164 G. L. CAIN, R. E. CHANDLER AND G. D. FAULKNER

m = 1, the remainders of Rm do not have cardinalities greater than two and less

than c. The second assertion now follows from the same type of reasoning as

above.    ■

It is clear that the existence of a continuous map /: X -» Y =f(X) is not

sufficient to obtain 6t( Y) C <Sl(X). (Consider the projection of R2 onto R1.) There

is, however, a class of remainders which is preserved, in this sense, under continu-

ous maps. We will say that K G 6l(A") is a singular remainder if there is a map/:

X —» K so that S (/) = K. We will denote the collection of singular remainders of

X by S 61 (A"). For example, S 61 (N) = {AT|A: is compact and separable}, § 61 (R)

= {A"| A" is a weak Peano space) (a weak Peano space is a compact space which

contains a dense continuous image of R). In view of the following theorem, it

seems that it would be desirable to characterize the singular remainders of spaces

of interest.

Theorem 2.6. ///: X^Y =j\X) and g: Y^K with S(g) = K, then §>(g°f)
= K.

Proof. Suppose (g ° f)~l(U) were compact for some nonempty open set U C K.

Then it follows that each of the following sets would be a compact subset of Y:

(i)/«g°/)-'(t7)) = g-\U) n /(A),
(ii) g-'(c7)n/(A-),

(iii)g-'(c/)n/(A-),
(iv)g-l(U).

However,   since   S(g) = S(g) = K,   this   last   set  cannot  be  compact.  Thus,

(g ° /)_1(tV) is not compact so that S (g ° /) = AT.   ■

Corollary 2.7. ///: X -» Y =j\X), then S 61(F) C S <&(X).

3. Composition with quotient maps. We next consider the singular set of the

composition of two maps when the second is a quotient mapping.

Lemma 3.1. Suppose f. X —* Y and <j>: Y^>Y/R where R is an equivalence

relation on Y for which Y/R is locally compact, Hausdorff and has the property that

for /? G S (/) we have (/?, q) El R if and only if p = q. Then S (<£ ° /) = <>(§ (/))•

Proof. The proof that <b(% (/)) c S (<J> ° f) is the same as the proof showing that

«(§(/)) C S(a °/) in 2.1. Suppose /? G §(</> ° f) and that p £ <K§(/))- Then

p = <t>(q) and q G §(/). There exists F G 9lK(<7) such that f~\V) G DC*. Also,

there exists W JE 9lK(?) with If n S(/) = 0. Let U = V nJV. Then/-'(£/) G

%x and <t>-\<KU)) = U. On the one hand we have (<f> °/)"'(<K^)) = f~\U) G 9C*-

However, <f>((/) is a member of 9lK(/?) and <£((/) = <K^); consequently,

(0 ° /)"'(</>(U)) & DC*. This contradiction insures that /? G S(<> °/) implies that

/?G<XS(tO).   ■
We use this lemma to strengthen a result of Cain [5].

Theorem 3.2. Suppose f: A"—>/(A")= Y and S(/) Aas k components, each

compact. If Y has an n-point compactification aY then X has an (n + k)-point

compactification.
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SINGULAR SETS AND REMAINDERS 165

Proof. Suppose S (/) = A", u • • • U Kk, each compact. Define an equivalence

relation Sonal": (/?, q) G R if and only if p = <? or/?, <y G A, for some i, 1 < / <

A:.

aY/Y is compact Hausdorff and we have /: A"-» F, a: F—»aF, (/>: aF-»

ar/i?. By 3.1

§(<*> o « o/) = ^(§(a „/)) = ,£(§(«) u «(§(/)))

= <H«F\y)u {/»i, ../>*}

which has n + k points.    ■

4. Evaluation maps. If aA" is a compactification of X and /: X -^ A", where A" is

compact, then the map e: X —> aX X K defined by e(x) = (x,f(x)) is an embed-

ding and eX = cl(e(A")) is a compactification of X. S (e) will be eX \ e(X), the

remainder of X in eX. Our immediate goal is to characterize S(e). To do this,

define

E = {/? G oA" \ A"|/(ir_1(/?)) is a singleton},

where/: BX —> AT is the standard extension of / to BX and it: BX —> aX is the usual

quotient map. Let

I> ={(/?, <?) G aA" X AT|/? G £ and {q} = />"'(/»))}.

-V- {(/>,?) e-aX X K\p <E(aX\X)\Emdq G^tT'O^))}-

Theorem 4.1. S(e) = Tf u Ay.

Proof. We show this by proving that eX \ e(X) = Tf \j Ay. This we do by

showing that e(X) u Tf u Ay is closed in aA" X A" and that every point of Yf u Ay-

is a limit point of e(X).

Let {(/?A, ̂ x)} be an ultra net in e(A) u Ty u Ay. Then, regardless of which of

the sets (px, qx) is in, we have qx G/(7r~'(/?A)). Choose zx G i?~l(px)- {zx} has a

cluster point z in j8A" so that {px} —>p = tt(z) and {qx} —> q = f(z). It follows that

q G 7(w_1(/?)) so that (/?, 9) G e(X) u Ty u Ay.

Next, suppose (/?, <?) G Ty u Ay and let U X V be a basic neighborhood of (/?, 9)

in aA" X A". Let 0 = ir~\U) n f~l(V}. Then C> is a nonempty subset of /?A", and if

we choose x G O then we have e(x) = (x,f(x)) = (x,/(x)) G n(O) X f(0) C £/

X V. Thus each point of Ty u Ay is a limit point of e(A").    ■

We next give an example which was particularly revealing when we were

developing Theorem 4.1. We let A" = R1, K = [-1, 1] and/: R1 -»•[-1, 1] is given by

f(x) = sin x. aR1 is the compactification having [-1, 1] as a remainder obtained

by embedding R1 in coR1 X [-1, 1] using the map g: R1 -* [-1, 1] to give the second

coordinate (the inclusion of R1 into wR1, the 1-point compactification, gives the

first coordinate) where

J sin x, x > 0,

gW " [ inf (0, sin x},     x<0.
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166 G. L. CAIN, R. E. CHANDLER AND G. D. FAULKNER

We may indicate the relevant ideas in the following sketch of aR1 X [-1, 1]:

rf    Af

Notice that in this case, aR1 \ R1 = [-1, 1] and that E = [-1, 0) u (0, 1].

/("■~'(/>)) is equal to {/?} and so Tf = {{p,p)\p G E}. For/? = 0 G (aR1 \ R1) \ E

we have/(W-'(/?)) = [0, 1] and so Ay = {(0, q)\q G [0, 1]} = {0} X [0, 1].

Using 4.1 we generalize a result of Steiner and Steiner [11] which gives a

sufficient condition for a compact space A" to be a remainder of A". We will call a

compact space A" totally singular with respect to a compactification aX if there is a

map/: X -» A so that/(U n A") is dense in K for all U which are neighborhoods of

points in aA" \ X. For example, [-1, 1] is totally singular with respect to tR1, the

2-point compactification of R1, using/(x) = sin x. Also, if/: A"—► A" and §(/) =

K, then K is totally singular with respect to wA, the 1-point compactification of A".

Theorem 4.2. // K is totally singular with respect to aX then (aX \ X) X K is a

remainder of X.

Proof. We will show that the hypothesis implies that Ty = 0 by showing the set

E is empty. To do this we prove that/(w"'(/?)) is dense in A" for each/? G aA" \ X.

It will follow that /(w_1(/?)) = A since it is compact. Let O be any compact

neighborhood in A". For each U G 9t(/?) select xv E. U for which f(xv) G O.

Considered as a net in aA", {xv} ->p. Considered as a net in fiX, {xv} has a cluster

point z. Clearly, w(z) = /? and since O is compact, /(z) G O. We have shown that

/("■'(/>)) n O t^ 0 whenever O is a compact neighborhood in A". We conclude

that f(tr'\p)) = A for all /? G aA" \ A. Thus £ = 0 (as long as K is not a

singleton) and so Ty = 0. We have

eA" \ e{X) = Ay = {(/>, ?)|/? G (oA" \ A) \ E and q G /(^'(z?))}

= {(/?, <?)!/? G oA" \ A and ? G A"} = (aA" \ A) X A".    ■

5. The n-complementation property. In this section we identify a class of spaces

each having precisely the same set of remainders. This will extend the same type of

theorem which appears in Blakley, Gerlits and Magill [1]. For this section we
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assume all spaces to be separable metric (as well as locally compact). In this

context then, a continuum is a compact connected space and a generalized con-

tinuum is a connected space. A conditionally compact subset of a space is a subset

whose closure is compact. A space A" has the n-complementation property [4] if for

each member F G DC* there is a member K G DC* with F c A" and A" \ A" has

exactly n nonconditionally compact components.

Lemma 5.1. Suppose Z is a locally connected continuum, U is an open connected

subset of Z, and C c U is compact and connected. Then there is a locally connected

continuum K such that C c A" c U.

Proof. The set U is locally arcwise connected (Whyburn [13, 5.3, p. 38]). There

is a mapping /from the Cantor discontinuum onto C; and by Theorem 5, p. 253 of

Kuratowski [8], / has a continuous extension mapping the closed interval into U.

The required set A" is the image of the interval under this extension.    ■

Lemma 5.2. Suppose Y is a locally connected continuum, andp G Y. There exists a

sequence P0, Px, . . . of locally connected continua such that

(i)/? G Y \ F„ i = 1, 2, 3, . . . ;

(ii)F\{/?}= uf,.;
(iii) given a neighborhood Uofp, there is an N so that P, c U for all i > N.

Proof. Let {Gj}JL0 be an open connected base at /? so that G0 = Y, and

Gm D Gm+X for all m = 0, 1, . . . . The set Gm \ Gm+l is open and so has a finite

number of components Cxm, C2, . . . , C™my Then each Cf is a compact connected

set, and is contained in some component of Gm_, \ Gm+2. By 5.1 there is a locally

connected continuum KJ" so that CJ" c A/" c Gm_x \ Gm+2.

Now define the sequence Px, P2, . . . by taking A",1, K2\ . . ■ , K,lw to be the first

/(l) terms, and then A",2, K2, . . . , A,22) to be the next 1(2) terms and so on.

To verify that {F,} satisfies the conclusions of the lemma, note first that if/? were

a member of say KJ", then/? G Gm_x \ Gm+2, a contradiction since/? G Gm+2. Thus

p G Y \ Pj. Next suppose x G Y, and x ¥=p. Let m be the smallest integer for

which x G Gm+2; then x G Gm_, \ Gm+2 and hence is in some CJ" c KJ".

Finally, if U is a neighborhood of /?, choose m so that Gm_x c U. It is clear that

all Pi beyond Ay + 2 are contained in Gm_,.    ■

Let Lk = {(x, y) G R X K\y = x/k, x > 0} and define

n

Tn =  U Lk.
k = i

Theorem 5.3. Suppose X is a locally connected generalized continuum with the

n-complementation property. Then there is a compact continuous map F: Tn —» F(Tn)

= XofTn onto X.

Proof. The space A has an n -point compactification aA" which is locally

connected and metric [4, 3.4 and 2.2]. Let aA" \ A" = (z,, z2, . . ., zn}. Each zk is a

noncutpoint of aA", so for each k there is an open set Vk so that

Rk = (z,, z2, . . . , zk_x, zk+x, . . . , zn} c Vk,
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zk G Vk, and aA" \ Vk is connected. Now apply Lemma 5.1 with Z = aA", U =

aA" \ Rk, and C = aA" \ Vk to conclude the existence of a locally connected

continuum Yk, with aX \ Vk C Yk C aX \ Rk.

For zk = /?, let {P,k} be the sequence of locally connected continua whose

existence is insured by Lemma 5.2.

Define subsets Lkm c T„ as follows:

Lk,m = {(x,y) G Lk\m < x < m + 1},

for k = 1, 2, . . . , n and m = 0, 1, 2, . . . .

Each Lkm is a homeomorph of the unit interval, so there are continuous

functions fkt2m+x mapping Lk2m+X onto Pk for each k = 1, 2, . . ., n, and m =

0, 1, 2, _

Suppose 17,, U2, . . . , Un are disjoint open connected neighborhoods of

zx, . . . , zk, respectively. Then each Wk = Uk\ {zk} is connected. Otherwise Wk

would have at least two nonconditionally compact (in A") components, say A, and

A2. There is a compact set A" c A" such that A" \ A" c U"^-, and A" \ A" has

exactly n nonconditionally compact components. But this is a contradiction, since

both Ax and A2 would contain components, necessarily nonconditionally compact,

of A" \ A".

Thus for each zk E aX \ X, there is an open connected base { Uk} such that

each Wk = Uk \ {zk} is open (in A), locally connected, and connected, and hence

arcwise connected.

It follows from Lemma 5.2 that for each k, there is a sequence {n(A:;/)}°l, such

that n(k;j + 1) > n(k;j), and Pk c Wk for i > n(k;j).

For each k = 1, 2, . . . , n, define a collection of maps/^ 2m+2 as follows:

(i) for 0 < m < n(k; 1), define/t2m+2 to be a homeomorphism of L2m+2 into A";

(X is arcwise connected.)

(ii) for n(k;j) < m < n(k;j + 1), we have Pk and Pk+X C Wk, which is arcwise

connected. Thus for each such m, there is a homeomorphism fk<2m+2 of L2m+2 into

IF/ such that

A,2m + 2(2m + 2, (2m + 2)/k) = fK2m + x(2m + 2, (2m + 2)/k)

and

fkOn.+iQ™ + 3, (2m + 3)/k) = A,2m + 3(2m + 3, (2m + 3)/k);

(iii) finally, let /? be an arbitrary point in X, and define fk0 to be a homeomor-

phism of Lk0 into A" with/^ 0(0, 0) = p and

/*,oO. i/*)=/*.,(i, 1A).

Now define F: F„ -» F(F„) = A by

_,   . fk,2m(z)y z  e Lk2m,
Hz) = , .

(,/*,2m+nZ-''       Z  fc ^k,2m+V

Note that F is well defined and maps Tn continuously onto A" since the mappings

fk.m agree on tne common parts of their domains.
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To show that F has no singular points, let {tt} be a sequence in Tn which has no

convergent subsequence. This means that there are at most a finite number of

terms of {r,} in any Lkm. It follows that (F(/,)} cannot have a convergent

subsequence in X. Or in other words, F is compact.    B

It follows from [6, Theorem 2] that if A" has the H-complementation property,

there is a compact map of X onto Tn. Thus from Corollary 2.2, we have

Theorem 5.4. The remainders of all locally connected generalized continua with the

n- complementation property are identical.

Corollary 5.5 (Blakley, Gerlits and Magill). The remainders of all ringed

spaces are identical.

Proof. A ringed space is precisely a locally connected generalized continuum

with the 1-complementation property.   ■

6. Compact mappings and manifolds. The results in this section are seemingly

unconnected with singular maps. However, the ideas here were originally obtained

using results on singular mappings. We then were able to devise the more

elementary proofs which we have here. Because of this original relationship with

singular mappings and because the results seem to be of some interest in their own

right, we include them here. We are indebted to our colleagues Harvey Charlton

and Steve Schecter for their assistance in obtaining these alternate proofs.

We will say that a map/: A" —> Y is 1-1 at x E X if f~l(f(x)) = {x}. A space A" is

strongly locally connected at x if x is not isolated and for each neighborhood U of x

there is an open neighborhood V of x with V C U and with V \{x} connected. S'

will denote the circle with its usual topology.

Theorem 6.1. If X is compact and strongly locally connected at x then no map f:

X => S' can be 1-1 at x.

Proof. If / were 1-1 at x, then letting Z = X \ {x} and R1 = Sl \ {/(x)} we

would, by restriction, have a map g: Z => R1. Now g is compact since/ is. Thus for

any p G R1 we have g~\p) is a compact subset of Z, and, hence, of A". If we let

U = A" \ g'l(p), there is an open neighborhood V of x with V C U and V \ {x}

connected. g(V \ {x}) is connected and hence must be contained in [/?, oo) or in

(-oo,/?]. We have

R1 = g(Z) = g(Z \ V) u g(V \ {x})

and, since Z \ V = X \ V, g(Z \ V) is compact. This is not possible, since we

would have R1 contained in the union of this compact set and one of the rays

[/?, oo)or(-oo,/?].    ■

By a compact n-manifold we mean a compact Hausdorff space M", each point

having a neighborhood homeomorphic to R". Since such a space is strongly locally

connected at each of its points if n > 1 we have

Corollary 6.2. Iff. M" => S1 and n > 1 then f is not 1-1 at any point of M".
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Corollary 6.3. If X is compact, connected, and strongly locally connected at each

of its points and f: X -» R1 then f is not 1-1 at any point of X except possibly at its

absolute maxima and minima.

Proof. Suppose /: X =>[m, M]. We can obtain a map of A" onto Sl by

identifying m and M.    ■

We cannot substitute any other sphere for Sl and get an analogous result. We

need the following lemma to establish this.

Lemma 6.4. There is a compact map f. R" =s> Rm if n > m > 1.

Proof. We show that the lemma is true for n = m + 1. The full generality is

then obtained by appropriately composing such maps. Let R™ = {(x„ . . . , xm) G

Rm|xm > 0} and define g: Rm+1 =>R™ by

g\(xx, . . . , xm, xm + x)) = yxx, . . . , xm_x, yxm + xm+x J,

and define h: R+ => Rm by

K(Px< ■ ■ -'Pm))

=  (/>!• • • • >Pm-2> 2/>m-l/>m/V/>m-l + Pm > (pI ~ Pm- x)/}/Pn\- X  + Pi  )■

Letting / = h ° g completes the construction. In effect (when m = 2), the map g

"circularly projects" R3 onto the half-plane in R2 of those points whose second

coordinate is nonnegative. h then "opens up" this half-plane onto all of R2. The

composition is clearly compact.   ■

Theorem 6.5. If n > m > 1 there is a map f: M" => Sm which is 1-1 at some point

(M" is any compact n-manifold).

Proof. Let/? EM" and define a map g:M"\{/?}=>R"as follows: Let B be a

compact neighborhood of /? in M" with a homeomorphism h: 5=*B"= {x G

R"| ||x|| < 1), for which h(p) = 0. Let k: B"\ {0} =>R" \ {0} be defined by k(5c) =

x(\ - p||)/||jc||2. Finally, define g by

(    = (o if, e a,
[ k o h(y)     ]iy E B.

By composing g with the map given in the preceding lemma we get a compact

mapping/: M" \ {/?} => Rm. By a theorem of Whyburn [15] there is an extension/:

M" => 5"" = Rm U (oo) which carries/? to oo./is 1-1 at/?.    ■
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