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Abstract. This paper refers mainly to the inversion of microwave radiometric data for the 
determination of temperature distributions in the human body. The analysis is restricted to a 
simple one-dimensional stratified model and special attention is devoted to a skin-fat-muscle 

structure (SFM) and to a muscle-bone-muscle structure (MBM). In both cases the technique of 

singular system analysis is applied to the corresponding integral equation in order to quantify 

the information content of the data. Numerical computations indicate that the information 
content is much greater in the M B M  than in the SFM case, as one can guess from qualitative 

physical considerations. The results of some numerical inversions are also presented in order 
to assess the effectiveness and the practicability of the mathematical technique. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. Introduction 

The relative uniformity of temperature in the bodies of healthy individuals is often altered 
in diseased organs or affected regions. Both temperature distributions and their variations 

with time may be characteristics of specific pathologies and may also yield information on 
the course of an illness [ 11. Consequently, biological heat transfer and thermoregulation 

are of considerable interest to clinicians and physiologists. 

In human thermoregulation the heat produced inside the body tissues is balanced by 

that lost to the environment. The heat exchange processes occur substantially across the 
skin which is the interface between the inner tissues and the environment. The measure of 
the skin temperature in itself has proven to give significant indication about the occurring 
physiological and pathological processes. Infrared thermography has been considered in 

the past years as an effective method for mapping skin surface temperatures based on the 
measurement of electromagnetic radiation from the skin at infrared wavelengths [ 21. 

However, non-invasive detection and monitoring of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsubcufaneous temperature 
distributions still remains as an important goal in biomedicine. Prospective applications 
range from the direct detection of deep thermal anomalies to the temperature control 
during the heating of neoplastic tissues in loco-regional hyperthermia treatment of tumours. 

While infrared thermographs measure the thermal emission from the body surface 
only, microwave radiometers are able to detect the radiation emitted by the inner tissues up 
to a depth of a few centimetres. In recognition of this potentiality, microwave radiometry 
has been proposed and experimented to obtain information on the subcutaneous 
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temperature distribution in the human body. Laboratory and clinical experimental 

validation of microwave radiometry has generally been conducted by using single- 

frequency systems. Suitable processing of this kind of data has produced significant results, 
particularly in the detection of left-right asymmetries in breast-cancer cases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 3,4].  
Indications on the temporal thermal variations produced by hyperthermic treatments have 
also been obtained zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] .  

Multispectral radiometry has been considered recently as a technique able to provide 
information about human temperature distributions [6, 71 and has already been applied to 

atmospheric sounding [8]. Indeed, during the past two decades measurements of the 
thermal emission from the earth’s atmosphere in several microwave bands have been used 

to reconstruct the height distribution (profiles) of variables relevant to meteorological 
forecasting and monitoring [ 9 ] .  In spite of the mathematical difficulties encountered in 

reconstructing the profiles, which are inherent in the kind of equation being solved, 
nevertheless operational retrievals are nowadays of use in meteorology [ 101. The principle 
on which the radiometric technique is based can be summarised as follows. The 

contribution to the emission from a given region of the medium under observation varies 
with frequency. A suitable processing of emission data taken at different frequencies allows 

the particular contribution from each region to be singled out. At least in principle, 

therefore, a map of the temperature distribution in the observed medium can be produced 

from an appropriate set of measurements. 
Modelling emission from biological structures is preliminary to the use of the 

radiometric technique for thermal mapping in the human body. A layered plane parallel 
model of tissues is adequate to represent the basic electromagnetic behaviour of actual 
biological structures, at least in cases when the boundaries between the tissues are smooth 

and the embedded inhomogeneities are negligible. A three-layer structure consisting of 

skin-fat-muscle (SFM) and muscle-bone-muscle (MBM) arrangements appears to be 

representative of the essential emitting properties of several regions of the human body. 

The solution of the thermal emission problem for such biological structures leads to the 

determination of the radiative transfer kernels, which give the microwave brightness 
temperature in terms of the thermodynamic temperature distribution within the tissues. 

In this paper we are concerned with the inverse problem, i.e. the retrieval of the 

thermodynamic temperature from measured values of the brightness temperature. To this 

purpose we first give, in # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2,  the solution of the direct problem by providing explicit 

expressions, derived in previous work, of the radiative transfer kernels (usually called, in 

radiometry, weighting functions). In such a way the inverse problem can be modelled as 
the solution of a first-kind Fredholm integral equation. This is a classical example of an ill- 
posed problem; the solution is not stable with respect to small variations of the data. This 
difficulty can be circumvented if one recognises that it is only possible to extract from the 
data a finite amount of information about the solution, in the sense that only a finite 

number of components of the solution with respect to a suitable basis can be accurately 
determined [12-141. The appropriate basis is provided by the singular system of the 

integral operator involved in the equation to be solved [ 151. 
In 5 3 we give a short description of the case where the brightness temperature is 

supposed to be known for all the values of the frequency in a suitable band. Then we 
introduce an approximation of this problem by assuming that the brightness temperature is 
known for a sufficiently large number of frequencies in the same band. The singular system 
is computed for the latter problem both in the case of the SFM and in the case of the MBM 

structure. In such a way the amount of information which can be extracted from the data is 
quantified in the two cases. Furthermore, we show that the amount of information can be 
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enhanced if one restricts, by means of appropriate masks (or ‘profile functions’), the region 

where one intends to recover the physical temperature. 

A difficulty inherent to the previous approach is that the singular functions of the 
problem are discontinuous across the interface between layers. As a consequence the 
retrieved thermodynamic temperature does not have the correct continuity properties. In 
8 4 we show that it is possible to avoid this difficulty by introducing a suitable space of 
continuous functions (Sobolev space) and we compute the new singular system of the 

problem. This formulation also allows the introduction, in a natural way, of the surface 

temperature as another datum which can be added to the multispectral radiometric data. 

Again the amount of information is computed in all these cases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 we discuss the retrieval algorithm which consists in a ‘windowing’ of the 

singular function expansion of the normal solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 161. The choice of the window can be 

determined by a trade-off between numerical stability and compatibility with the data. We 
present also several examples of restorations of delta functions for the various structures, 
both in the case of discontinuous and in the case of continuous singular functions. The 
interpretation of these reconstructions in terms of the impulse response of the system, 

consisting of the radiometer plus the retrieval algorithm, is also discussed and in such a 

way resolution limits of the method are determined. 

Finally in 

2. Integral equation for the emission from a layered structure 

In the following, for the sake of simplicity, we shall model the subcutaneous region of 

tissues as a half-space z < 0, where both the temperature and the physical properties vary 
only with the distance z from the body surface. By Fourier analysing the electromagnetic 

emission of radiation from the thermal body in the lossless half-space z > 0, the spectrum 

of the brightness temperature TBP(w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk) is obtained, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU =  2n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is the angular 
frequency of a monochromatic radiometric channel which measures the time-averaged 

electromagnetic flux (proportional to TBI?), having polarisation p and propagating at the 
observation angle defined by cos @=i . k (k=&w/c, where c is the speed of light in the 
half-space z > 0). 

According to the Rayleigh-Jeans approximation, the contribution to TBp of a layer of 

tissue at depth z and of thickness A z  is T(z)Wp(w,  k, z)Az ,  where T(z)  is the 

thermodynamic temperature and W p A z  is a proportionality factor. By adding partial 

contributions from all depths z ,  the following equation is obtained in the limit A z  + 0: 

where the lower limit of integration, -D, indicates the depth within the tissues beyond 
which the contribution to the brightness becomes negligible, and Rp(w, k)  is the deep-tissue 
contribution. 

Further, we assume that the region z < 0 can be described by arrangements of S 
homogeneous layers separated by planes across which the dielectric constant is 

discontinuous. The j t h  layer, of constant permittivity ~j and thickness dj, is limited by 

planes z = Cj -  and z = C j ,  if 



3 50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF Bardati et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 

It has been shown zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1 I]  that the weighting function Wp(w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ,  z )  assumes the following 

expression inside thejth layer: 

W, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=iBj{Re[kjyj]lexp[kj(z-4'j)] -rj exp[-kj(z-4'j)]12} 

+ Re[kjyj* I I ex~[k j ( z -  ij)I - rj ~ X P [  - kj(z - ij)I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2~ (2.3) 

where the coefficients Bj are recursively generated by 

Bj = Bj- 1 I 1 + yj - 1 1 ' 1 exp (kj 4) + yj  - rj exp ( - kjdj) 1 -2 j = 1, . * . , s, 
(2.4) 

Bo =  YO. 

By assuming the region z < - D at uniform temperature Tdt, the deep-tissue 

contribution R, is 

R, = 9 s  I1 + 7s l 2  Re[JJs+ 11Tdt .  (2.5) 

Other symbols in (2.3), (2.4) and (2.5) have the following meaning: 

rj = [yj + rj+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 exp( - 2kj+ I dj+ 111 [ 1 + y j r j +  1 exp( - 2kj+ 1dj+ I)]-' 

( j = O , .  . . , 5'- 1) (2.6) 

rs =ys  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyj = (yj -yj + 1 )(yj + ~ ' j  + 1 I-' ( j=O, * . * , S )  (2.7) 

= kj/i wpo 

= kj/i w ej 

for horizontal polarisation 

for vertical polarisation 

w 
kj=- (sin' ~ - E ~ / E o ) ~ ' ~  Im[kj] < 0 ( j=O, . . . , S + 1). (2.9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CO 

Examples of weighting functions computed for six microwave frequencies and for 

various arrangements of tissues are shown in figure 1 in the SFM case and in figure 2 in the 

MBM case, with the direction of observation perpendicular to the layers. Note that the W, 
are strongly dependent on frequency and are discontinuous at the interface between 

different adjacent media. 

3. Singular system analysis 

The inverse problem is the retrieval of the physical temperature T(z) from the measured 

values of the brightness temperature TBP(w, k). According to the model described in 9 2 
this is equivalent to solving equation (2.1) which is a first-kind Fredholm integral equation. 
In the following we will assume, for simplicity, that the deep-tissue contribution R ,  is zero. 
In a practical situation R,  can be computed and subtracted from the measured brightness 
temperature. We will also assume a fixed polarisation and a fixed observation angle (for 
example, 9= 0); then the brightness temperature is a function of the angular frequency 
only. We will denote the brightness temperature by TB(w>, instead of TBP(w, k), and the 

radiative transfer kernel (weighting function) by W(w, z),  instead of Wp(o, k,  z). Common 

values of the frequency are in the band between 1.5 and 6.5 GHz. The corresponding lower 
and upper value of the angular frequency will be denoted by w /  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwu, respectively, and 
we will define B, = wu - a/. 
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Figure 1. Weighting functions against depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz for the 

skin-fat-muscle (SFM) structure at the frequencies: 
(a) 1.5,2.5, 3.5 GHz, (b)4.5, 5.5, 6.5 GHz. 

M 8 M 

1 0 - 6  
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I 
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z I c m l  

Figure 2. Weighting functions against depth z for the 

muscle-bone-muscle (MBM) structure at the 
frequencies (a) 1.5, 2.5, 3.5 GHz, (b) 4.5, 5.5, 

6.5 GHz. 

The mathematical treatment is considerably simplified if we assume that T(z)  is from a 

space of square-integrable functions, L2(-D,  0), which will be denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. In fact T(z) is 

a bounded function on a bounded interval. We define the norm of T(z) as follows: 

1 /2 

(3.1) 

so that the norm of T(z) has the dimension of a temperature as does T(z). Analogously, the 

brightness temperature TB(w) can also be assumed to be from a space of square-integrable 

functions, L 2 ( y ,  ou), which we shall denote by Y, and the norm of TB(co) can also be 
defined in such a way that it has the dimension of a temperature: 

(3.2) 
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Then the integral equation (2.1) defines an integral operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 from X into Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.O 

( Y T ) ( o )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 W(w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz)T(z) dz  w, < w < U,, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-D 
(3.3) 

Since the function W(w, z )  is bounded and the variables z ,  w can range only over bounded 
intervals, the operator 9 is compact and therefore it admits a singular system 

{aj;  uj, vj}Z1 [ 151, which is the set of solutions of the coupled equations 

Y u j  = aj vj 9 *v j  = aj uj,  (3.4) 

where 6"* is the adjoint operator 

(3.5) 

Notice that, thanks to the choice of the constants in the norms (3.1) and (3.2), the singular 
values and singular functions are dimensionless quantities. 

The singular functions u,(z) form a basis in X while the singular functions v,(w) form a 
basis in Y, and therefore, in order to solve equation (2.1), one can expand T(z)  and TB(w) 
respectively as a series of the u,(z) and of the v,(w). It follows that, in the absence of noise, 

the component of TB(w) with respect to a given v,(w) is obtained by multiplying by a, the 

corresponding component of T(z) with respect to u,(z). However, since the a, tend to zero 

when j + c c  [15] and since the data contain an extra term due to noise, the noise 
contribution in the components of the data with high j is greater than the signal 
contribution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a consequence, for a given signal-to-noise ratio one can extract from the 
data only a finite number of components of T(z) .  Such a number is the number of degrees 
of freedom and it represents the number of independent pieces of information that can be 
extracted from the data [ 12-14]. 

In practice, only a discrete set of measurements is given, which can be generated by 
measuring the brightness temperature of the biological structure at various frequencies in 

the band [w!, w,]. If the number of data is sufficiently large, then the problem with discrete 

data is a fairly good approximation of the problem with continuous data and the number of 
degrees of freedom is the same in both cases. 

Let W,(z) be the weighting function corresponding to the nth experimental point, 

Wn(z)= W(w,, z) ,  and let gn be the measured value of the brightness temperature, g,= 
TB(w,); then the problem takes the form 

gn = (T, D Wn)x n= 1, .  . . , N (3.6) 

the scalar product being that associated with the norm (3.1). Therefore, the problem of 
estimating T(z),  given the data vector g, is a typical inverse problem with discrete data 

[ 161. Such a discretisation of a first-kind Fredholm integral equation is also known as the 
method of moment discretisation [ 171. 

Equation (3.6) defines a linear operator YN from X into an N-dimensional vector space 
YN : 

( = Z N T ) ~ = ( T ,  Dwn)x n= 1 , .  . . ,  N. (3.7) 

We introduce in YN a norm which is a discrete version of the norm (3.2) 
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where 6, is the distance between adjacent data points (assumed to be equidistant). 
Therefore B,/& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN - 1. 

The adjoint operator -;%I*, which transforms a vector of YN into a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, can 
easily be computed and it is given by (see also [ 16, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA171): 

(3.9) 

Again the singular system ( a N , j ;  uN, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  uN, j } j ”=  of the operator YN is the set of solutions 

of the coupled equations 

The singular functions u ~ , ~  form a basis in the subspace of X spanned by the functions 

DW,(z), while the singular vectors u ~ , ~  form a basis in the N-dimensional vector space Y. 
It is not difficult to prove (see, e.g., [ 161) that, when the number of data points in the band 

[U,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,] tends to infinity, then the singular values and singular functions of the problem 

with discrete data converge to the corresponding singular values and singular functions of 

the problem with everywhere-defined data. This result justifies the statement that. when N 
is sufficiently large, the number of degrees of freedom is the same in the two cases. 

As concerns the computation of the singular system of the operator YN, it is important 
to note that the singular values aN, are the square roots of the eigenvalues of the Gram 

matrix (see [ 161) 

(3.11) 

Table 1. Singular values for the SFM and MBM structures in the case of 20 equidistant data 

points in the band 1.5-6.5 GHz. We give also the numbers a ,  l / ~ N , j  which are related to 

the stability of the truncated singular function expansions (see 8 5). 

S F M  MBM 

j j 1 / U N s  j j I l a N ,  j 

1 

2 

3 

4 

5 
6 
7 
8 
9 

10 
11 
12 

13 
14 

15 
16 
17 
18 
19 
20 

1.13417 
1.71134 x 10-1 

1.12366 x 10-1 

4.70226 x lov2  

2.22345 x 

1.22464 x lo-’ 
9.43 119 x 

5.25618 x 
1.84545 x 

4.67091 x 
3.19144 x 

1.93267 x lo-’ 
6.91872 x 

2.12829 x 

8.98874 x lo-? 

3.03491 x lo-? 
2.08996 x lo-’ 
1.22399 x lo-’ 
1.97894 x lo-’ 

9.35535 x 10-3 

1 .o 
6.62740 
1.00936 x 10’ 

2.41 198 x 10’ 

1.21233 x 10’ 

5.10097 x lo2 
9.26131 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO2 
1.20258 x IO3 
2.15779 x lo3 

6.14579 x lo’ 

2.42817 x lo4  
3.55381 x lo4 
5.86843 x lo4  
1.63928 x 10’ 

5.32904 x lo’ 
1.26177 x lo6  
3.73709 x lo6 
5.42678 x lo6 
9.26618 x lo6  
5.73121 x I O 7  

1.04742 
2.0901 1 x lo-’ 

7.22674 x 
6.09915 x 

4.37417 x 
3.96285 x 

2.67694 x 
1.75301 x 

1.28796 x 

4.60981 x lo-’ 
4.32717 x 

7.12464 x 

1.04959 x 

3.18187 x 

2.04579 x lo-’ 
1.19182 x lo-’ 
4.24822 x 
7.15354 x 

4.72012 x lo-? 

8.42115 x 10-5 

1 .o 
5.01131 

1.44937 x lo1  

1.71732 x 10’ 

2.39456 x l C 1  
2.64310 x 10’ 

3.91275 x 10’ 
5.97499 x I O 1  
8.13239 x IO’  
2.27216 x lo2 
2.42056 x 10’ 
1.47014 x lo3 
9.97936 x lo3 
1.24380 x lo4 

3.29184 x lo4 
5.11989 x lo4 
8.78845 x lo4 
2.46555 x lo5 
1.46420 x lo6 
2.21906 x lo6 
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Table 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASingular values for the SFM and MBM structures after the introduction of the mask 

described in the text. Also in this case we have assumed 20 equidistant data points in the 

band 1.5-6.5 GHz. 

SFM MBM 

j ahr, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi I I f f ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ J aN, I IaN,  J 

1 
2 

3 
4 

5 
6 
7 

8 
9 

10 
11 

12 

13 
14 

15 

16 
17 
18 
19 

20 

2.83741 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lo-' 
7.49206 x 

1.02786 x lo-' 

1.96970 x 

3.18847 x 

5.32037 x 
8.85673 x 

1.48403 x 
2.29981 x lo-' 

3.62766 x 

5.81064 x 

4.66849 x 

4.27929 x 
3.89378 x 

3.77013 x 
1.83289 x 

1.72156 X 

1.25264 x 

8.17576 x lo-'' 

7.48546 x lo-'' 

1 .o 
3.78723 

2.76051 x 10' 

1.44053 x 10' 
8.89896 x lo2 

5.3331 1 x lo3 
3.20368 x lo4  
1.91 197 x lo5 

1.23376 x lo6 
7.82160 x lo6 

4.88313 x 10' 
6.07779 x 10' 

6.63057 x 10' 

7.28704 x 10' 

7.52603 x 10' 

1.54805 x 10' 
1.64816 x lo8 
2.26514 x 10' 
3 . 4 7 0 5 2 ~  10' 
3.79056 x 10' 

1.04729 
2.07897 x lo-' 

7.21290 x 

6.08836 x 

4.36698 x 

3.92421 x 

2.66198 x 

1.75083 x 
1.28410 x 

4.59167 x 

4.32505 x lo-' 
7.02706 x 

8.38914 x 

8.09612 x 

2.02035 x 

4.28740 x 

3.90229 x lo-' 
1.42487 x lo-' 
1.22437 x lo-' 
9.19176 x 

1 .o 
5.03755 
1.45197 x 10' 

1.72015 x 10' 

2.39820 x 10' 

2.66880 x 10' 
3.93425 x 10' 

5.98169 x 10' 
8.15582 x 10' 
2.28085 x lo2 
2.42145 x lo2 

1.49037 x lo3 

1.24839 x lo4 
1.29357 x lo4 

5.18370 x lo4 
2.44272 x lo5 

2.68379 x lo6 
7.35009 x lo6 
8.55372 x 10' 
1.13938 x 10' 

and that the singular vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv N , ~  are just the eigenvectors of [GI associated with the 

eigenvalues ai, j .  Furthermore, a nice property of the problem under consideration is that 

the integrals in equation (3.1 1) can be computed analytically. As a consequence, the 

singular values and singular vectors can be obtained easily by solving a standard 

eigenvalue problem. Then the singular functions can be computed using the second 

equation in (3.10) which, written explicitly, gives 

(3.12) 

Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(vN, j)n denotes the nth component of the vector UN,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj. Notice that, if U N , ]  is normalised 

to one with respect to the norm of Y N ,  then U N ,  j ( z ) ,  given by (3.12), is automatically 

normalised to one with respect to the norm of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX. 
An analysis of the singular values has been carried out both for the SFM structure and 

the MBM structure, the depths of the layers being those indicated in figures 1 and 2. 

respectively. Furthermore we have considered the cases N =  20 and N =  30 and we have 

found that 20 points provide a rather good approximation of the largest singular values 

since, using 30 points, we have found a variation on the third digit only. The number of 

degrees of freedom of the problem is rather small indeed. The results, in the case of 20 data 

points, are reported in table 1. 

The essential feature which can be derived from these results is that the number of 

degrees of freedom is greater in the MBM case than in the SFM case. For instance, in the 

MBM case we have 11 singular values such that aN, ,/ani < lo3, while in the SFM case we 

have only seven singular values satisfying the same condition. 
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-10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

This effect can easily be explained as follows. The weighting functions of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASFM 

structure decay as an exponential in the muscle. Therefore our problem is quite similar to 

the problem of Laplace transform inversion, in which case the number of degrees of 

, , I -1 0 , 

M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS F  M 

10 1 '  , 1 
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5 
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0 2 4 6 0 2 4 6 

10 

5 

0 

-5  

-1 0 I 

1 .  , I 

. .  
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Figure 3. Singular functions uj against depth z ,  withj= 1 , .  . . , 12, for the SFM structure and 
for a mask which is zero in skin and fat and one in muscle. 
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freedom is quite small [18]. On the other hand, in the case of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMBM structure, the 
weighting functions do not have an exponential decay in the outer muscle, since radiation 
is reflected by the bone. Therefore it is quite natural to expect that this effect of 'standing 

2 0 .  

J - 6  , 

J = 3  . 
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Figure 4. Singular functions uj against depth z ,  with j =  1, .  . . , 12, for the MBM structure and 
for a mask which is one in the outer muscle (O<z,< 2 cm) and zero elsewhere. 
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waves’ in the outer muscle produces an increase of the number of degrees of freedom. This 

conjecture is confirmed by the results reported in table 1 .  
Since the number of degrees of freedom is rather small and consequently resolution is 

rather poor, one can try to improve the situation in the following way. In the case of the 

SFM structure one is interested essentially in reconstructing the temperature profile in the 
muscle, while in the case of the MBM structure it is reasonable to infer that the temperature 
profile can be reconstructed with reasonable accuracy only in the outer muscle. Therefore 
in the SFM case we introduce a mask (or a ‘profile function’) which is zero in the skin and 
fat and one in the muscle, while in the MBM case we introduce a mask which is one in the 
outer muscle and zero elsewhere. Obviously the introduction of such a mask is equivalent 

to integrating, in equation (2.1), only on the muscle in the SFM case and only on the outer 

muscle in the MBM case. For a discussion of the improvement in resolution which can be 

obtained in similar inverse problems by restricting a priori the region where the solution is 

reconstructed see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 18-20]. 
The results of the computation of the singular values, after the introduction of the 

previously described masks, are reported in table 2. Notice that in the case of the MBM 

structure the singular values greater than essentially coincide with the singular values 

given in table 1. This means that the contribution of the bone and of the inner muscle to the 
significant singular values is negligible and that one can extract information only about the 

temperature profile in the outer muscle. In any case one can say that the number of degrees 

of freedom per unit length is increased with respect to the case without mask. 

In the case of the SFM structure we have now five singular values such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aN,l/aN,j> IO3 (there were seven in the case without mask). But now this amount of 

information refers only to the muscle. 
The singular functions uj(z) are plotted in figure 3 in the SFM case and in figure 4 in the 

MBM case. From figure 3 we expect a better resolution in the outer part of the muscle since 
the singular functions are rather flat in the inner region. On the other hand, from figure 4 

we expect that, in the MBM case, resolution is roughly uniform over the whole outer muscle. 

These conclusions will be confirmed in 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. 

4. Continuity of the solution 

A difficulty in the previous analysis is that the singular functions uj(z) are discontinuous as 
a consequence of the discontinuities of the weighting functions W,(z). It follows that the 

restored temperature profile which can be obtained by means of these singular functions 

does not satisfy some physical requirements. The physical temperature T(z) must be 

continuous indeed and such that K(z)T’(z) is also continuous, K(z) being the thermal 
conductivity. Notice that K(z) is discontinuous across the interface between layers. 

The previous remark leads one to consider a class of functions having the correct 

regularity properties and to introduce in such a class a suitable scalar product. If we denote 
by 2 the class of continuous functions we consider, then the scalar product in such a class 
will be defined by 

(T, @)x = T(O)@(O) + T(-D)@(-D) + (1/H) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.O 

B(z)T(z)@(z) dz  - -D 

+ (1/H) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ’O K(z)T’(z)@’(z) dz  
-D  

(4.1) 
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where the function B ( z )  and the constant H will be specified on the basis of physical 
considerations. In any case the dimensions of these quantities are determined by the 
requirement that the norm of T(z), defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAilTllm=(T, T ) y ,  has the dimension of 
temperature. In the jargon of functional analysis, a space of continuous functions, 
characterised by a scalar product as in (4. l), is called a Sobolev space. 

In this section we focus essentially on the problem with discrete data. Then, if we 

want to formulate the problem (3.6) in the new space, we must look for functions @,,(z) 
such that, for any T(z),  

By means of a partial integration in the second integral of equation (4.1), it is easy to see 
that, for a given W,,, the corresponding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACD, must be solutions of the following boundary 

value problem: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- [K(z)CD;(z)]’+ B(z)CD,(Z)=HW,,(Z) (4.3) 

K(O)@.,: (0) + H @ ,  (0) = 0 (4.4) 

-K(-D)@;(-D)+ HCDn(-D)=O. (4.5) 

It follows that the functions @, have a very nice physical interpretation. In fact, equation 
(4.3) describes a stationary linear heat flow in a one-dimensional solid layered along the z 
axis when heat is supplied at the rate HW,,(z) per unit volume. In this analogy, @,,(z) is the 

temperature distribution and B(z)CDH ( z )  represents a distributed linear heat transfer 

between the solid and a cooling fluid at zero temperature. Linear heat transfer on the 

boundary of the solid into a surrounding medium at zero temperature is taken into account 
by the boundary conditions (4.4) and (4.5). When the thermal behaviour of electro- 

magnetically irradiated living tissues is considered, the above differential equation is obtained 
through linearisation of an appropriate nonlinear problem [ 2 11. 

From equation (4.2) it follows that the inverse problem now takes the following form: 

g, = (T,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@n)2 n = l , .  . . , N .  (4.6) 

If in the data space Y ,  we take again the norm (3.8), we can define, by a relation similar to 
(3.7), a linear operator which transforms a continuous function of the Sobolev space x 
into a vector of YN.  Then the adjoint operator 2; is given by an expression similar to 
(3.9), with functions D W,(z) replaced by functions @,,(z). 

ziN,j, f j N ,  j}j”=l of the operator 2, is again the set of the 
solutions of the coupled equations analogous to equations (3.10) and the singular values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C I N , ~  with the corresponding singular vectors f j N ,  can be obtained by diagonalising the 
Gram matrix. The singular functions U N , j  can be computed successively by means of 

equation (3.12), with functions D W,,(z) replaced again by functions @,(z). Therefore the 

singular functions U N , ~  satisfy the physical requirements stated at the beginning of this 

section. If V , j  is normalised to one with respect to the norm (3.8), then U N , i  is 
automatically normalised to one with respect to the norm induced by the scalar product 
(4.1). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As in the case of 8 3, the crucial point is the computation of the Gram matrix of the 
basic functions, i.e. the @, in the present case. By means of a partial integration and by 
taking equations (4.3)-(4.5) into account, one can easily find the following expression for 

The singular system 
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the elements of the Gram matrix: 

For simplicity, we have made preliminary computations in the case K ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= constant 
and B(z)  = 0. In such a case the first derivative of @,(z) is continuous and the solution of 

the boundary value problem (4.3)-(4.5) is given by 

(4.8) %(z>=@’n(O)-hPn(O) + h[~n(0)-@.,(0)lz + hP,(Z) 

where h = H/K,  

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-2 

Pn(4 = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGdC) dC (4.10) 
-D 

*I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r,(z) = Wn(C) d4. (4.1 1) 

It is remarkable also that in such a case the matrix elements [GI,, can be computed 
analytically. 

In table 3 we give the singular values aN,j for the same structures and the same data 

points considered in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 3. A comparison with table 2 shows that the number of degrees of 

-D 

Table 3. Singular values for the SFM and MBM structures, in the case of 20 equidistant data 

points in the band 1.5-6.5 GHz, introducing continuity of the temperature distribution. 

1 

2 
3 
4 

5 
6 

7 

8 

9 

10 
1 1  

12 
13 
14 
15 
16 

17 
18 

19 
20 

3.16719 x lo-’ 
1.75218 x 

7.24028 x 

1.37360 x 

4.71909 x 

9.458 11  x lo-’ 

7.22917 x 

3.01437 x 

1.14012 x 

4.91230 x 

2.84491 x 

7.67955 x 
3.52857 x 
2.65054 x 

7.02268 x 

4.11756 x 

5.01324 x 

2.17403 x 

1.28859 x 
6.44805 x lo-’’ 

1 .o 
1.80756 x 10’ 
4.37440 x 10’ 
2.30575 x lo2  

6.71 143 x lo2  

3.34865 x lo3 
4.381 12 x lo3  

1.05070 x lo4 

2.77794 x IO4 
6.44146 x lo4  
1.11328 x lo’ 
4.12418 x 10’ 

8.97583 x 10’ 
1.19492 x lo6  
4.50994 x lo6 
7.69191 x lo6  

6.31764 x I O 7  
1.45682 x lo8 
2.45787 x IO* 
4.91 185 x lo8 

3.56850 x lo-’ 
2.43332 x 

3.46730 x 
1.94552 x 

1.34612 x 

7.77780 x 

5.28237 x IOv4 
2.64253 x 
2.08143 x 
9.01662 x lo-’ 

4.12319 x lo-’ 
2.01033 x 

6.78697 x loW6 
1.87767 x 

8.50589 x 

5.76990 x lo-’ 

3.62576 x 

1.32891 x 

1.87396 x lo-’ 
1.03619 x 

1 .o 
1.46652 x 10’ 
1.02919 x lo2  
1.83421 x lo2  

2.65094 x lo2 
4.58805 x lo2 

6.75548 x lo2 

1.35041 x lo3 

1.71445 x lo3 
3.95769 x lo3 

8.65471 x lo3 
1.77508 x IO4  
5.25786 x lo4 
1.90049 x 10’ 
4.19532 x lo5 
6.18468 x 10’ 

9.84208 x 10’ 
2.68528 x lo6 
1.90426 x lo7 
3.44387 x lo7 
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freedom is smaller in the present case. The reason is that, by introducing continuity 

properties, we have strongly restricted the class of the admissible solutions [ 121. In figure 5 

we plot the singular functions U N , j  in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASFM case while the singular functions in the MBM 

case are plotted in figure 6. 
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Figure 5. Continuous singular functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALiN, against depth z, withj= 1, .  . . , 12, for the SFM 

structure. 
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The use of a space of continuous function makes it possible to take into account the 

information coming from measurement of the physical temperature at the surface of the 
body, T(0). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs discussed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1, measurement of the skin temperature by means of infrared 
thermography has already been used for obtaining indications about the occurring internal 
processes. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Continuous singular functions iN, against depth z ,  with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj =  1, . . . , 12, for the MBM 

structure. 
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In order to introduce such information in our formalism, we must express the surface 
temperature T(0) as a functional in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx of the temperature distribution T(z),  i.e. we must 
look for a function CDo(z) in x such that, for any T(z), we have 

(T,  @ o h  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= T(0). (4.12) 

Considering again the case K(z )  = constant and B(z )  = 0, by means of a partial integration 
one derives from equation (4.12) that the second derivative of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADo is zero and that Do must 

satisfy suitable boundary conditions. The result is 

l + h D  h 

2 + h D  2 + h D  
CDo(z) = ___ + ___ Z .  (4.13) 

In order to take the value of the surface temperature into account, problem (4.6) must 
be extended by including also the case n = 0, go being the measured value of the surface 
temperature. 

In table 4 we give the singular values of such a problem with 21 data (20 values of the 

brightness temperature in the band 1.5-6.5 GHz plus the surface temperature). If we 

compare with table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 ,  we see that we have just an increase of a unit in the number of 

singular values satisfying the condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiiN, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,/aN, > lo3. 

In figures 7 and 8 we plot the singular functions U N , j  in the SFM and MBM structures, 
respectively. 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Singular values for the SFM and MBM structures, in the case of 20 equidistant data 

points in the band 1.5-6.5 GHz plus the surface temperature. 

1 

2 
3 
4 
5 

6 
7 

8 

9 

I O  
1 1  

12 
13 
14 
15 

16 
17 

18 

19 
20 
21 

3.65 142 x lo-‘ 

4.67340 x 

1.50615 x 

4.40429 x 

8.29738 x 

4.71801 x 
9.21337 x IO-’ 

5.97890 x 

2.89192 x lo-’ 
1.01397 x lo-’ 

4.5 1607 x 

2.74443 x 
7.09827 x lo-’ 

3.32353 x lo-’ 
2.60668 x IO-’ 

6.22980 x lo-’ 
4.10422 x IO-’ 

4.39715 x IO-’ 

2.17337 x 

1.26361 x 
7.33066 x IO-’’ 

1 .o 
7.81321 
2.42434 x 10’ 
8.29060 x 10’ 

4.40069 x l o 2  

7.73932 x I O 2  
3.96318 x l o3  

6.10718 x I O 3  

1.26263 x I O 4  

8.08540 x I O 4  
1.33049 x lo5 

5.14410 x lo’ 
1.09866 x I O 6  
1.40079 x lo6 

5.86122 x IO6 

8.89674 x IO6 

8.30406 x IO’ 
1.68008 x 10’ 

2.88968 x 10’ 

4.98103 x l o 8  

3.601 10 x io4 

4.00766 x lo-’ 
4.65592 x 

1.56204 x 

3.13523 x 

1.68579 x 
1.33854 x 
6.48639 x 

5.23332 x 
2.31534 x 

1.97646 x 
8.431 16 x 

3.42186 x IO-’ 
1.97101 x IOW5 
6.78138 x l o v 6  
1.73866 x 

8.39379 x IO-’ 

5.72604 x IO-’ 

3.24694 x IO-’ 

1.16084 x IO-’ 

1.86574 x IO-’ 

1.03749 x lo-* 

1 .o 
8.60767 
2.56566 x 10’ 
1.27827 x IO2 
2.37732 x IO2 

2.99405 x l o2  

6.17856 x I O 2  
7.65796 x I O 2  
1.73092 x I O 3  

2.02769 x lo3 

4.75339 x io3 

1.17119 x io4 

2.03331 x IO4 
5.90980 x IO4 
2.30503 x I O 5  

6.99901 x 10’ 

1.23429 x lo6 
3.45238 x I O 6  

2.14803 x IO’ 

3.86283 x IO’ 

4.77455 x 10’ 
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spanned by the functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, and orthogonality is intended in the sense of the scalar 
product (4.1). However, in both cases there exists a unique solution of minimal norm 

(normal solution), which is the unique solution in the subspace spanned by the functions 

Wn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 )  or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@n (2) -  

M B M 

-1 t I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 2 4 6 

0. 5 
0 2 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 

t t i 

-0.5 I I -0.5 I I I 

0 2 4 6 0 2 4 6 

M B M M B M  

0 2 4 6 0 2 4 6 
z ( c m l  

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. Continuous singular functions including surface temperature information iN, 
against depth z ,  withj= 1, . . . , 12, for the MBM structure. 
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The normal solution can be expressed in terms of the singular system as follows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 161 : 

N <  

(5.1) 

In the case of problem (4.6) the same expression holds with the superscribed quantities. 
The numerical stability of the solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.1) is controlled by the quantity a N ,  l /aN,N, or 

UN, ~ / U N , N  (see, e.g., [ 14, 161) which is called the condition number of the problem. Note 
that for the problem under consideration, with 20 data points, the condition number is 
quite large, ranging from IO6 to 10’ (see tables 1-4). Such an ill-conditioning is a 
consequence of the fact that problem (3.6) (and also problem (4.6)) is a discrete version of 
an ill-posed problem. Furthermore, by increasing the number of data points one gets 
enhanced ill-conditioning. 

The condition number, however, may be a rather pessimistic estimate of error 
propagation from the data to the solution since it gives the ‘worst’ magnification of relative 
errors [ 131. 

A more realistic estimate is given by the ‘average magnification’ of relative errors, Pt, 
whose expression is [ 131 

It is easily verified that this quantity is always smaller than U N ,  I / a N , N  but greater than 1/N 

(QN, I / a N , N ) .  Therefore in our case this quantity is certainly larger than values ranging from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IO5 to IO’ (condition number divided by 20). Also average error propagation is not 
acceptable. 

From the previous remarks it follows that the normal solution is useless and that it is 
necessary to introduce ‘regularised’ or ‘filtered’ solutions. In terms of singular function 
expansions, a rather general definition is the following: 

where the rj are suitable ‘window coefficients’ (or ‘filter coefficients‘). 
Tikhonov regularisation, for instance, gives a solution of this kind [22]. Another 

example is provided by truncated singular function expansions [ 14,231, which correspond 
to a squared window, or by the use of a triangular window [24]. 

In all these cases we have a free parameter: the regularisation parameter in the case of 
the ‘Tikhonov window’ or the number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM of terms in the case of the squared and triangular 
windows. Therefore we need some criterion for the choice of such a parameter. This can 
be derived through a compromise between numerical stability of the solution and 
compatibility of the solution with the data. 

In order to discuss this point, we assume a very simple probabilistic model for the data: 

n= 1 , .  . . , N (5.4) 

(we use the notation of 0 3 but all our considerations hold also in the case of the problem 
considered in 9 4) where the dg, are uncorrelated, signal-independent random variables, 
with zero expectation value and the same variance, E’: 

gn = ( Y N  T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA)n + dgn 

(dgn)=O (dgndgm) = ~ ~ d n m .  (5.5) 

Here the brackets denote expectation or ensemble average. 
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Furthermore we also assume that T(z) is from a random process such that the 

components of T(z) with respect to the singular functions uN, j ( z )  are uncorrelated random 
variables, with zero expectation value and the same variance, E’: 

( (T,  u N , j l x ) = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA((T, U N , m M T ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUN, j V )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E 2 J m j .  (5.6) 

If we denote by g(O) the noise-free data vector, i.e. g‘O’=YNT, and by T(O) the 

corresponding filtered solution, then by means of computations similar to those performed 
in [13], we obtain 

where 

N 11’ 

,f3=(1/NTr[G])”2 ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 $) 
j = 1  a N , j  

m = l  

( 5 . 8 )  

(5.9) 

Note that, in the case ti = 1 ( j =  1, . . . , N ) ,  ?(z) coincides with the normal solution T ‘ ( z )  
and the ‘average magnification’ p coincides with P’, equation (5 .2 ) .  This is in fact the 

maximum value of p since the ‘window coefficients’ tj are always less than one. It is easy 

to see that if we decrease the regularisation parameter a in the ‘Tikhonov window’ or if we 
increase the number M of terms in the squared and triangular windows, we get increasing 

values of the magnification parameter. In any case, for a given choice of the ‘window 
coefficients’, one can easily compute the ‘average magnification’ p and get a precise 
estimate of error propagation. 

The previous analysis gives a stability criterion for the choice of the filter. However, we 

must also satisfy another requirement, i.e. the compatibility of the solution with the data. 

To investigate this point one can introduce the so called discrepancyfunction which is the 

norm of the difference between the real data g and the data computed from the filtered 
solution F(z): 

Pk)=Il=%~-gll?N. (5.10) 

By means of elementary computations one can derive the following relationship: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(5.1 1) 

The average discrepancy is zero when all the tj are equal to one, i.e. the filtered solution 

coincides with the normal solution. By comparing equation (5.1 1) with equation (5.8) we 
see that if we change the ‘window’ in order to reduce the magnification factor p then we 
increase the average discrepancy and vice versa. Therefore the choice of the filter must be 
based on a compromise between error magnification and discrepancy. 

In order to assess the quality of a retrieval algorithm, it is important to consider 

restorations of delta functions. Such a restoration indeed has the meaning of an impulse 

response of the system consisting of the radiometer plus the computer where the retrieval 
algorithm has been implemented. As a consequence the width of the main peak, 
corresponding to the delta function, can be interpreted as the resolution achievable with the 
used algorithm. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. Retrieval of a delta function of temperature located at different depths in the outer 

( O < z < 2  cm) muscle of the MBM structure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a)  -, M = 9 ;  /3=SS; - '  - - ', M =  14, 

/?= 116; (b)-, M=8,/3=99; - ,  - - ', M =  1 I , / ?=SS.  
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We have performed several reconstructions of delta functions for the SFM and MBM 

structures both in the case of discontinuous and in the case of continuous singular 

functions, using both the squared window and the triangular window. The results are 
plotted in figures 9 and 10. It can be observed that the algorithm loses spatial resolution 

with increasing depth in the muscle for the SFM case, as argued from the analysis carried 

out in the preceding sections. On the contrary, only a slight loss of resolution with depth is 
observed for the MBM arrangement. Indeed, in this case the stationary wave pattern 

produced by the outer muscle-bone interface allows an overall spatial discrimination 
capability which is considerably better than in the SFM case and remains almost constant 
over the entire outer muscle. This trend is not altered appreciably either by the type 
(continuous or discontinuous) of singular functions or by the shape of the window used. 

The continuous singular functions which are needed for physically meaningful temperature 
retrievals in inhomogeneous discontinuous tissues lead to lower resolution with respect to 

the discontinuous functions, specially for the SFM case. On the other hand, the retrievals by 

continuous singular functions appear more stable than those by discontinuous ones. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6. Conclusions 

The problem of the retrieval of thermal distributions in the human body from microwave 
radiometric measurements has been considered. The corresponding integral equations have 
been analysed in terms of singular function expansions. In this framework we have also 
investigated the effect of the additional measurement of the surface body temperature as 

may be obtained by infrared thermography. The results show that significant information 

can be extracted from the experimental data, especially in the case of muscular layers 

backed by low-water-content tissues. 

Our analysis has been restricted to one-dimensional structures which, in many 
instances, are satisfactory models. Extensions to more realistic two- and three-dimensional 
models are in principle feasible, as appears from preliminary results that are being obtained 
in the analysis of scanning multispectral radiometry. 

Use of the singular functions of the radiative integral operator is advantageous, since 

they are able to restore those features of the thermal pattern which contribute to the 
measured brightness temperatures. Special care in the measurements is also required in 

order to minimise the unstabilising effect of ill-conditioning. A relatively low number of 

measurement frequencies is beneficial not only in this respect, but also for reducing the 
overall complexity of the system, including data acquisition and computation time. 

References zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 11 Clark R P and Edholm 0 G 1984 Man and His Thermal Environment (London: Arnold) 

[2] Gautherie M and Albert E (eds) 1983 Recent Advances in Medical Therrnology (New York: Lissj 

[3] Edrich J 1979 Centimeter and millimeter wave thermography. A survey on tumor detection J .  Micrort,ace 

[4] Myers P C, Sadowsky N L and Barrett A H 1979 Microwave thermography: principles, methods and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 5 ]  Chive M, Plancot M, Giaux G and Prevost B 1984 Microwave hyperthermia controlled by microwave 

[6] Miyakawa M 1981 Study on microwave thermography - application to the estimation of subcutaneous 

Power zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 95-104 

clinical applications J. Microwave Power 14 105-15 

radiometry: technical aspects and first clinical results J. Microwave Power 19 233-41 

temperature profiles Trans IECE Japan E 64 786-92 



3 70 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF Bardati zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet a1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[7] Bardati F and Solimini D 1983 Radiometric sensing of biological layered media Radio Sci. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18 1393-401 

[8] Westwater E R 1972 Ground-based determination of low-altitude temperature profiles by microwaves 
Mon. Wea. Rev. 100 15-28 

[9] Hogg D C, Decker M T, Guiraud F 0, Earnshaw K B, Merritt D A, Moran K P, Sweezy W B, Strauch 
R G, Westwater E R and Little C G 1983 An automatic profiler of the temperature, wind and 
humidity in the troposphere J .  Climate Appl. Meteor. 22 807-3 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[ 101 Smith W L 1983 The retrieval of atmospheric profiles from VAS geostationary radiance measurements 
J. Atmos. Sci. 40 2025-35 

[ I l l  Bardati F and Solimini D 1984 On the emissivity of layered materials IEEE Trans. Geosci. Remote 
Sensing GE22 374-6 

[12] Bertero M and De Mol C 1981 Ill-posedness, regularization and number of degrees of freedom At f i  
Fondazioiie G. Ronchi 36 619-32 

[ 131 Twomey S 1974 Information content in remote sensing Appl. Opt. 13 942-5 
[14] Pike E R, McWhirter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ G, Bertero M and De Mol C 1984 Generalised information theory for inverse 

problems in signal processing IEE Proc. 13 1 660-7 
[ 151 Miller G F 1974 Fredholm equations of the first kind Numerical Solution of the Integral Equations ed. 

L M Delves and J Walsh (Oxford: Clarendon) p 175 
[I61 Bertero M, De Mol C and Pike E R 1985 Linear inverse problems with discrete data. I :  General 

formulation and singular system analysis Inverse Problems 1 301-30 

[ 171 Nashed M Z 1976 On moment discretization and least-squares solutions of linear integral equations of 
the first kind J .  Math. Anal. Appl. 53 359-66 

[ 181 Bertero M, Boccacci P and Pike E R 1982 On the recovery and resolution of exponential relaxation rates 

from experimental data: a singular-value analysis of the Laplace transform inversion in the presence 
of noise Proc. R. Soc. A 383 15-29 

[ 191 Bertero M, De Mol C, Pike E R and Walker J G 1984 Resolution in diffraction-limited imaging, a 
singular value analysis. IV: The case of uncertain localization or non-uniform illumination of the 
object Opt. Acta 31 923-46 

[20] Bertero M, Brianzi P and Pike E R 1985 On the recovery and resolution of exponential relaxation rates 
from experimental data: Laplace transform inversions in weighted spaces Inverse Problems 1 1-1 5 

[21] Bardati F and Gerosa G 1983 An improved model describing the thermal behavior of electromagnetically 

irradiated living tissues Proc. Int. URSJ Symp. on Electromagnetic Wave Theory, Santiago de 
Compostela (Universidad de Santiago de Compostela) pp 677-80 

[22] Groetsch C W 1984 The Theory of Tikhonov Regularizatiorifor Fredholm Equations of the First Kind 
Research Notes in Math. No 105 (Boston: Pitman) 

[23] Twomey S 1965 The application of numerical filtering to the solution of integral equations encountered in 

indirect sensing measurements J .  Franklin Inst. 279 95-109 
1241 Bertero M, Brianzi P, De Mol C ,  and Pike E R 1986 Positive regularized solutions in electromagnetic 

inverse scattering Proc. Int. URSI  Symp. on Electromagnetic Theory, Budapest (Budapest: 
Akademiai Kiado) pp 150-2 


