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Abstract. When applying methods of optimal control to motion planning or stabilization prob-
lems, we see that some theoretical or numerical difficulties may arise, due to the presence of specific
trajectories, namely, minimizing singular trajectories of the underlying optimal control problem. In
this article, we provide characterizations for singular trajectories of control-affine systems. We prove
that, under generic assumptions, such trajectories share nice properties, related to computational
aspects; more precisely, we show that, for a generic system—with respect to the Whitney topology—
all nontrivial singular trajectories are of minimal order and of corank one. These results, established
both for driftless and for control-affine systems, extend results of [Y. Chitour, F. Jean, and E. Trélat,
Comptes Rendus Math., 337 (2003), pp. 49–52 (in French); Y. Chitour, F. Jean, and E. Trélat, J.
Differential Geom., 73 (2006), pp. 45–73]. As a consequence, for generic control-affine systems (with
or without drift) defined by more than two vector fields, and for a fixed cost, there do not exist
minimizing singular trajectories. Besides, we prove that, given a control-affine system satisfying
the Lie algebra rank condition (LARC), singular trajectories are strictly abnormal, generically with
respect to the cost. We then show how these results can be used to derive regularity results for the
value function and in the theory of Hamilton–Jacobi equations, which in turn have applications for
stabilization and motion planning, from both theoretical and implementational points of view.
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1. Introduction. When addressing standard issues of control theory such as
motion planning and stabilization, one may adopt an approach based on optimal
control, e.g., Hamilton–Jacobi type methods and shooting algorithms. One is then
immediately facing intrinsic difficulties due to the possible presence of singular tra-
jectories. It is therefore important to characterize these trajectories by studying,
in particular, their existence, their optimality status, and the related computational
aspects. In this paper, we provide solutions to the aforementioned difficulties for
control-affine systems, under generic assumptions, and then investigate consequences
in optimal control and its applications.

Let M be a smooth (i.e., C∞) manifold of dimension n. Consider the control-
affine system

(Σ) ẋ = f0(x) +
m∑

i=1

uifi(x),

where x ∈ M , m is a positive integer, (f0, . . . , fm) is an (m + 1)-tuple of smooth
vector fields on M , and the control u = (u1, . . . , um) takes values in an open subset
Ω of Rm. For x0 ∈ M and T > 0, a control u ∈ L∞([0, T ],Ω) is said to be admissible
if the trajectory x(·, x0, u) of (Σ) associated to u and starting at x0 is well defined on
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[0, T ]. On the set Ux0,T of admissible controls, define the end-point mapping by

Ex0,T (u) := x(T, x0, u).

It is classical that Ux0,T is an open subset of L∞([0, T ],Ω) and that Ex0,T : Ux0,T → M
is a smooth map.

Definition 1.1. A control u ∈ Ux0,T is said to be singular if u is a critical point
of the end-point mapping Ex0,T ; i.e., its differential at u, DEx0,T (u), is not surjective.
A trajectory x(·, x0, u) is said to be singular if u is singular and of corank one if the
codimension in the tangent space of the range of Ex0,T (u) is equal to one.

In other words, a control u ∈ Ux0,T is singular if the linearized system along
the trajectory x(·, x0, u) is not controllable on [0, T ]. Singular trajectories appear as
singularities in the set of trajectories of (Σ) joining two given points, and hence, they
play a crucial role in variational problems associated to (Σ) and in optimal control,
as described next.

Let x0 and x1 be two points of M , and let T > 0. Consider the following optimal
control problem: From among all the trajectories of (Σ) steering x0 to x1, determine
a trajectory minimizing the cost

(1.1) CU,α,g(T, u) =

∫ T

0

(
1

2
u(t)TU(x(t))u(t) + α(x(t))Tu(t) + g(t, x(t))

)
dt,

where α = (α1, . . . ,αm) ∈ C∞(M,Rm), g ∈ C∞(R ×M), and U takes values in the
set of symmetric positive definite m×m matrices.

According to the Pontryagin maximum principle (see [21]), for every optimal
trajectory x(·) := x(·, x0, u), there exists a nonzero pair (λ(·),λ0), where λ0 is a
nonpositive real number and λ(·) is an absolutely continuous function on [0, T ] (called
adjoint vector) with λ(t) ∈ T ∗

x(t)M such that, almost everywhere on [0, T ],

ẋ(t) =
∂H

∂λ
(t, x(t),λ(t),λ0, u(t)),

λ̇(t) = −∂H

∂x
(t, x(t),λ(t),λ0, u(t)),

∂H

∂u
(t, x(t),λ(t),λ0, u(t)) = 0,

(1.2)

where

H(t, x,λ,λ0, u) :=
m∑

i=1

ui⟨λ, fi(x)⟩ + λ0

(
1

2
uTU(x)u + α(x)Tu + g(t, x)

)

is the Hamiltonian of the system. An extremal is a 4-tuple (x(·),λ(·),λ0, u(·)) solution
of the system of equations (1.2). The extremal is said to be normal if λ0 ̸= 0 and
abnormal if λ0 = 0.

The relevance of singular trajectories in optimal control lies in the fact that they
are exactly the projections of abnormal extremals. Note that a singular trajectory
may be the projection of several abnormal extremals, and also of a normal extremal.
A singular trajectory is said to be strictly abnormal if it is not the projection of a
normal extremal. Notice that a singular trajectory is of corank one if and only if
it admits a unique (up to scalar normalization) abnormal extremal lift; it is strictly
abnormal and of corank one if and only if it admits a unique extremal lift which is
abnormal.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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For a normal extremal, it is standard to adopt the normalization λ0 = −1 and to
derive the control u as the feedback function of (x,λ),

(1.3) u(t) =

⎛

⎜⎝
u1(t)

...
um(t)

⎞

⎟⎠ = U(x(t))−1

⎛

⎜⎝
h1(t) − α1(x(t))

...
hm(t) − αm(x(t))

⎞

⎟⎠ ,

for every t ∈ [0, T ], where hi(t) := ⟨λ(t), fi(x(t))⟩, for i = 1, . . . ,m. In particular,
normal extremals are smooth on [0, T ].

For abnormal extremals, the situation is much more involved, since system (1.2)
does not provide directly an expression for abnormal controls. Abnormal extremals
may be nonsmooth, and it is not always possible to determine an explicit expression
for singular controls. Indeed, it follows from (1.2) that

(1.4) hi(·) ≡ 0 on [0, T ], i = 1, . . . ,m,

along every abnormal extremal. At that point, in order to compute the singular
control, one usually differentiates iteratively (1.4) with respect to t until the control
appears explicitly (in an affine way). To recover the control, an invertibility property
is then required, which may not hold in general.

In this paper, we prove that, in a generic context, such an invertibility property
is obtained with a minimal number of differentiations (cf. Theorem 2.6). This is the
concept of minimal order, defined in Definition 2.5. Here, genericity means that the
(m + 1)-tuple (f0, . . . , fm) belongs to an open and dense subset of the set of vector
fields equipped with the Whitney topology. The corank one property is also proved
to hold generically. We obtain similar results in the driftless case for generic m-tuples
(f1, . . . , fm) (cf. Theorem 2.17).

Note that the latter result can be directly derived from [14] under the additional
assumption that the m-tuples (f1, . . . , fm) are everywhere linearly independent. Such
a geometric assumption is not adapted for control applications, e.g., whenever the
state space is a product of manifolds involving a sphere of even dimension. One of the
main novelties of this paper consists in dropping that assumption. As pointed out in
[12], this raises serious technical difficulties, which furthermore cannot be treated by
the methods of [14].

In a preliminary step for deriving the above theorems, we establish two results of
independent interest, asserting that any trajectory of a generic control-affine system
satisfies ẋ = 0 almost everywhere on the set where the vector fields are linearly
dependent (cf. Theorems 2.1 and 2.13).

When considering optimal control problems, we see that minimizing singular tra-
jectories may exist, and play a major role, since they are not dependent on the spe-
cific minimization problem. The issue of such minimizing trajectories was already
well known in the classical theory of calculus of variations (see, for instance, [9, 32])
and proved to be a major focus, during the 1940s, when the whole domain eventually
developed into optimal control theory (cf. [10]). The optimality status of singular
trajectories was chiefly investigated in [11, 30] in relation to control-affine systems
with m = 1, in [1, 18, 19, 30] regarding driftless systems with m = 2, and in [2, 27]
for general nonlinear control systems.

In this paper, we prove that, for generic systems with m ! 2 (and m ! 3 in the
driftless case) and for a fixed cost CU,α,g, there does not exist minimizing singular
trajectories (cf. Corollaries 2.9 and 2.20). We also prove that, given a fixed system

Theorems 2.1 and 2.13 hold true under additional assumptions (see further).
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(Σ), singular trajectories are strictly abnormal, generically with respect to the cost
(1.1) (cf. Propositions 2.12 and 2.22). We then show how the above mentioned results
can be used to derive regularity results for the value function and in the theory
of Hamilton–Jacobi equations, which in turn have applications for stabilization and
motion planning.

This paper is organized as follows. Section 2 is devoted to the statement of the
main results, first in the control-affine case, and second in the driftless case. The
consequences are detailed in section 3, and proofs are provided in section 4.

2. Statement of the main results. Let M be a smooth, n-dimensional man-
ifold. Throughout the paper, V F (M) denotes the set of smooth vector fields on M ,
endowed with the C∞ Whitney topology.

2.1. Trajectories of control-affine systems. Let T be a positive real number.
Consider the control-affine system

(2.1) ẋ(t) = f0(x(t)) +
m∑

i=1

ui(t)fi(x(t)),

where (f0, . . . , fm) is an (m + 1)-tuple of smooth vector fields on M , and the set of
admissible controls u = (u1, . . . , um) is an open subset of L∞([0, T ],Ω).

For every trajectory x(·) := x(·, x0, u) of (2.1), define Idep(x(·)) as the closed
subset of [0, T ],

(2.2) Idep(x(·)) := {t ∈ [0, T ] | rank{f0(x(t)), . . . , fm(x(t))} < m + 1}.

Note that, on the open subset of Rn, where rank{f0, . . . , fm} = m + 1, there
is a one-to-one correspondence between trajectories and controls. In contrast, on
Idep(x(·)), there is no uniqueness of the control associated to x(·); in particular, x(·)
may be associated to both singular and nonsingular controls. This fact emphasizes
the following result, which describes, in a generic context, trajectories on the subset
of Rn, where rank{f0, . . . , fm} < m + 1.

Theorem 2.1. Let m < n be a nonnegative integer. There exists an open and
dense subset Om+1 of V F (M)m+1 so that, if the (m+1)-tuple (f0, . . . , fm) belongs to
Om+1, then every trajectory x(·) of the associated control-affine system ẋ = f0(x) +∑m

i=1 uifi(x) verifies

(2.3) ẋ(t) = 0, for almost every t ∈ Idep(x(·)).

In addition, for every integer N , the set Om+1 can be chosen so that its complement
has codimension greater than N .

Remark 2.2. In light of the previous result, one can choose the admissible con-
trol u on Idep(x(·)) such that, for every t ∈ Idep(x(·)), u(t) consists of any m-tuple
(α1, . . . ,αm) so that

f0(x(t)) +
m∑

i=1

αifi(x(t)) = 0.

In particular, on any subinterval of Idep(x(·)), the trajectory x(·) is constant, and the
control can be chosen constant as well.

Remark 2.3. A trajectory x(·) is said to be trivial if it reduces to a point;
otherwise it is said to be nontrivial. It is clear that, if Idep(x(·)) ̸= [0, T ], then
ẋ(t) ̸= 0 for t /∈ Idep(x(·)) and x(·) is nontrivial.

NO, this theorem, as Theorem 2.13, is wrong in general (see the mistake in the proof).

However, the result holds true for m=1 (see [12, Lemma 1]), with a weaker conclusion (finite codimension of the complement of the set O_{m+1}).

Following the proof of [12, Lemma 1], we can establish that Theorem 2.1 holds true if n  >  h(m) 
where
h(m) = 2m-1 + 2(2m-1) / ((m+1)(m+2)-4m).

For instance:   m=2, n>4,     m=3, n>6,    m=4, n>8.

if n>h(m)
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Let x(·) be a trajectory of a control-affine system associated to an (m + 1)-tuple
of Om+1. As a consequence of Theorem 2.1, x(·) is trivial if and only if Idep(x(·)) =
[0, T ].

2.2. Singular trajectories. Recall that a singular trajectory x(·) is the pro-
jection of an abnormal extremal (x(·),λ(·)). For t ∈ [0, T ] and i, j ∈ {0, . . . ,m}, we
define

hi(t) := ⟨λ(t), fi(x(t))⟩, hij(t) := ⟨λ(t), [fi, fj ](x(t))⟩.

Along an abnormal extremal, we have for every t ∈ [0, T ],

(2.4) h0(t) = constant, hi(t) = 0, i = 1, . . . ,m.

Differentiating (2.4), one gets, almost everywhere on [0, T ],

(2.5) hi0(t) +
m∑

j=1

hij(t)uj(t) = 0, i ∈ {0, . . . ,m}.

Definition 2.4. Along an abnormal extremal (x(·),λ(·), u(·)) of the system (2.1),
the Goh matrix G(t) at time t ∈ [0, T ] is the m×m skew-symmetric matrix given by

(2.6) G(t) :=
(
hij(t)

)
1!i,j!m

.

Since G(t) is skew-symmetric, rank G(t) is even, and (2.5) is rewritten as, almost
everywhere on [0, T ],

(2.7) G(t)u(t) = b(t),

with b(t) := −(hi0(t))1!i!m.
Note that, if G(t) is invertible, then u(t) is uniquely determined by (2.7). This

only occurs for m even.
If m is odd, G(t) is never invertible. However, a similar construction is derived

as follows. Define

(2.8) G(t) :=
(
hij(t)

)
0!i,j!m

.

Since G(t) is skew-symmetric, the determinant of G(t) is the square of a polyno-
mial P (t) in the hij(t) with degree (m + 1)/2, called the Pfaffian of G(t) (see [6]).
From (2.5), G(t) is not invertible, and thus, along the extremal, P (t) = 0. After
differentiation, one gets, almost everywhere on [0, T ],

(2.9) {P , h0}(t) +
m∑

i=1

uj(t){P , hj}(t) = 0.

Define the (m+1)×m matrix G̃(t) as G(t) augmented with the row ({P , hj}(t))1!j!m,

and the (m + 1)-dimensional vector b̃(t) as b(t) augmented with the coefficient
−{P , h0}(t). Then, from (2.7) and (2.9), there holds, almost everywhere on [0, T ],

(2.10) G̃(t)u(t) = b̃(t).

If G̃(t) is of rank m, then u(t) is uniquely determined by (2.10).
These facts, combined with Remark 2.2, motivate the following definition.
Definition 2.5. If m is even (resp., odd), a singular trajectory x(·) is said to be

of minimal order if
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(i) ẋ(t) = 0 for almost every t ∈ Idep(x(·));
(ii) it admits an abnormal extremal lift such that, for almost every t ∈ [0, T ]\Idep,

rank G(t) = m if m is even, resp., rank G̃(t) = m if m is odd.
On the opposite side, for arbitrary m, a singular trajectory is said to be a Goh tra-

jectory if it admits an abnormal extremal lift along which the Goh matrix is identically
equal to 0.

Theorem 2.6. Let m < n be a positive integer. There exists an open and dense
subset Om+1 of V F (M)m+1 so that, if the (m+1)-tuple (f0, . . . , fm) belongs to Om+1,
then every nontrivial singular trajectory of the associated control-affine system ẋ(t) =
f0(x(t)) +

∑m
i=1 ui(t)fi(x(t)) is of minimal order and of corank one. In addition, for

every integer N , the set Om+1 can be chosen so that its complement has codimension
greater than N .

Corollary 2.7. With the notation of Theorem 2.6 and if m ! 2, there exists an
open and dense subset Om+1 of V F (M)m+1 so that every control-affine system defined
with an (m + 1)-tuple of Om+1 does not admit nontrivial Goh singular trajectories.

2.3. Minimizing singular trajectories. We keep here the notation of the
previous sections. Consider the control-affine system

(2.11) ẋ(t) = f0(x(t)) +
m∑

i=1

ui(t)fi(x(t)),

and the quadratic cost given by

(2.12) CU,g(T, u) =
1

2

∫ T

0

(
u(t)TU(x(t))u(t) + g(t, x(t))

)
dt,

where U ∈ S+
m(M) and g ∈ C∞(R × M). Here, S+

m(M) denotes the set of smooth
mappings x )→ U(x) on M , taking values in the set S+

m of m×m real positive definite
matrices.

For x0 ∈ M and T > 0, define the optimal control problem

(2.13) inf{CU,g(T, u) | Ex0,T (u) = x}.

We next state two sets of genericity results, which depend, resp., on whether the cost
or the control system is fixed.

2.3.1. Genericity with respect to the control system, with a fixed cost.
Proposition 2.8. Fix U ∈ S+

m(M) and g ∈ C∞(R ×M). There exists an open
and dense subset Om+1 of V F (M)m+1 such that every nontrivial singular trajectory
of a control-affine system defined by an (m + 1)-tuple of Om+1 is strictly abnormal
for the optimal control problem (2.13).

Corollary 2.7, together with Proposition 2.8, yields the next corollary.
Corollary 2.9. Fix U ∈ S+

m(M) and g ∈ C∞(R × M). Let m ! 2 be an
integer. There exists an open and dense subset Om+1 of V F (M)m+1 so that the
optimal control problem (2.13) defined with an (m+ 1)-tuple of Om+1 does not admit
nontrivial minimizing singular trajectories.

Remark 2.10. In both previous results, the set Om+1 can be chosen so that its
complement has an arbitrary codimension.

2.3.2. Genericity with respect to the cost, with a fixed control system.
We endow S+

m(M) with the Whitney topology. An (m + 1)-tuple (f0, . . . , fm) of

(only if n > h(m))

In order to keep the following results true, in Definition 2.5 (minimal order): remove (i) if   n \leq h(m).

if n>h(m)
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V F (M)m+1 is said to verify the Lie algebra rank condition (LARC) if the Lie algebra
generated by f0, . . . , fm is of dimension n at every point of M .

Proposition 2.11. Fix (f0, . . . , fm) ∈ V F (M)m+1 so that the LARC is satisfied
and the zero control u ≡ 0 is not singular. Let g ∈ C∞(R ×M). Then, there exists
an open and dense subset Am of S+

m(M) such that every nontrivial singular trajectory
of the control-affine system associated to the (m + 1)-tuple (f0, . . . , fm) is strictly
abnormal for the optimal control problem (2.13) defined with U ∈ Am and g.

Assuming that the zero control u ≡ 0 is not singular is a necessary hypothesis.
Indeed, the fact that a control u is singular is a property of the sole (m + 1)-tuple
(f0, . . . , fm) and is independent of the cost. On the other hand, every trajectory
x := x(·, x0, 0) associated to the zero control is always the projection of the normal
extremal (x(·), 0,−1, 0) of any optimal control problem (2.13). As a consequence, if
the zero control is singular, such a trajectory x(·, x0, 0) cannot be strictly abnormal.

In order to handle the case of a singular zero control, it is therefore necessary to
consider more general quadratic costs such as

(2.14) CU,α,g(T, u) =

∫ T

0

(
1

2
u(t)TU(x(t))u(t) + α(x(t))Tu(t) + g(t, x(t))

)
dt,

where U ∈ S+
m(M), α ∈ C∞(M,Rm) and g ∈ C∞(R ×M).

Proposition 2.12. Fix (f0, . . . , fm) ∈ V F (M)m+1 satisfying the LARC and g ∈
C∞(R×M). Then, there exists an open and dense subset Bm of S+

m(M)×C∞(M,Rm)
such that every nontrivial singular trajectory of the control-affine system associated
to the (m + 1)-tuple (f0, . . . , fm) is strictly abnormal for the optimal control problem
(2.11)–(2.14) defined with (U,α) ∈ Bm and g.

2.4. Driftless control-affine systems. Let T be a positive real number. Con-
sider the driftless control-affine system

(2.15) ẋ(t) =
m∑

i=1

ui(t)fi(x(t)),

where (f1, . . . , fm) is an m-tuple of smooth vector fields on M , and the set of admis-
sible controls u = (u1, . . . , um) is an open subset of L∞([0, T ],Ω).

For every trajectory x(·) := x(·, x0, u) of (2.1), define Idep(x(·)) as the closed
subset of [0, T ],

Idep(x(·)) := {t ∈ [0, T ] | rank{f1(x(t)), . . . , fm(x(t))} < m}.

Theorem 2.13. Let m " n be a positive integer. There exists an open and
dense subset Om of V F (M)m so that, if the m-tuple (f1, . . . , fm) belongs to Om, then
every trajectory x(·) of the associated driftless control-affine system ẋ =

∑m
i=1 uifi(x)

verifies

ẋ(t) = 0 for almost every t ∈ Idep(x(·)).

In addition, for every integer N , the set Om can be chosen so that its complement has
codimension greater than N .

Remark 2.14. As a consequence, one can simply choose the admissible control
u on Idep(x(·)) such that, for every t ∈ Idep(x(·)), u(t) = 0. This choice induces a
one-to-one correspondence between trajectories and controls.

Same comments as for Theorem 2.1.

For a counterexample to Theorem 2.13 in the case n=m=3, see the construction in Theorem 3 in the paper:
U. Boscain, G. Charlot, M. Gaye, P. Mason, "Local properties of almost-Riemannian structures in dimension 3", Discrete Cont. Dynam. Syst. (2015).

outside of the singular locus if n>h(m)

if n>h(m-1)
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2.4.1. Singular trajectories. Let x(·) be a singular trajectory; it is the projec-
tion of an abnormal extremal (x(·),λ(·)). Similarly to the previous section, we define,
for t ∈ [0, T ] and i, j ∈ {1, . . . ,m},

hi(t) := ⟨λ(t), fi(x(t)⟩, hij(t) := ⟨λ(t), [fi, fj ](x(t))⟩.

For every t ∈ [0, T ],

(2.16) hi(t) = 0, i = 1, . . . ,m.

Differentiating (2.16), one gets, almost everywhere on [0, T ],

(2.17)
m∑

j=1

hij(t)uj(t) = 0, i ∈ {1, . . . ,m}.

Definition 2.15. Along an abnormal extremal (x(·),λ(·), u(·)) of the system
(2.1), the Goh matrix G(t) at time t ∈ [0, T ] is the m × m skew-symmetric matrix
given by

(2.18) G(t) :=
(
hij(t)

)
1!i,j!m

.

Since G(t) is skew-symmetric, rank G(t) is even, and (2.17) is rewritten, almost
everywhere on [0, T ], as

(2.19) G(t)u(t) = 0.

Note that, if rank G(t) = m − 1, one can deduce from (2.19) an expression for
u(t), up to time reparameterization. This only occurs for m odd.

If m is even, rank G(t) is always smaller than m−1. However, a similar construc-
tion is derived as follows. The determinant of G(t) is the square of the Pfaffian P (t),
and, along the extremal, P (t) ≡ 0. After differentiation, one gets, almost everywhere
on [0, T ],

(2.20)
m∑

i=1

uj(t){P, hj}(t) = 0.

Define the (m+1)×m matrix G̃(t) as G(t) augmented with the row ({P, hj}(t))1!j!m.
Then, from (2.19) and (2.20), there holds, almost everywhere on [0, T ],

(2.21) G̃(t)u(t) = 0.

If G̃(t) is of rank m−1, one can deduce from (2.21) an expression for u(t), up to time
reparameterization.

Definition 2.16. If m is odd (resp., even), a singular trajectory x(·) is said to
be of minimal order if

(i) ẋ(t) = 0 for almost every t ∈ Idep(x(·));
(ii) it admits an abnormal extremal lift such that, for almost every t ∈ [0, T ]\Idep,

rank G(t) = m− 1 if m is odd, resp., rank G̃(t) = m− 1 if m is even.

(only if n>h(m-1))

In order to keep the following results true, in Definition 2.16 (minimal order), remove (i) if  n \leq h(m-1).
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On the opposite side, for arbitrary m, a singular trajectory is said to be a Goh tra-
jectory if it admits an abnormal extremal lift along which the Goh matrix is identically
equal to 0.

Theorem 2.17. Let m be an integer such that 2 " m " n. There exists an
open and dense subset Om of V F (M)m so that, if the m-tuple (f1, . . . , fm) belongs to
Om, then every nontrivial singular trajectory of the associated driftless control-affine
system ẋ(t) =

∑m
i=1 ui(t)fi(x(t)) is of minimal order and of corank one. In addition,

for every integer N , the set Om can be chosen so that its complement has codimension
greater than N .

Corollary 2.18. With the notation of Theorem 2.17 and if m ! 3, there exists
an open and dense subset Om of V F (M)m so that every driftless control-affine system
defined with an m-tuple of Om does not admit nontrivial Goh singular trajectories.

2.4.2. Minimizing singular trajectories. Consider the optimal control prob-
lem associated to the driftless control-affine system

(2.22) ẋ(t) =
m∑

i=1

ui(t)fi(x(t)),

with the quadratic cost given by

(2.23) CU,g(T, u) =
1

2

∫ T

0

(
u(t)TU(x(t))u(t) + g(t, x(t))

)
dt,

where U ∈ S+
m(M) and g ∈ C∞(R ×M).

For x0 ∈ M and T > 0, define the optimal control problem

(2.24) inf{CU,g(T, u) | Ex0,T (u) = x}.

We next state genericity results with respect to the control system, with a fixed cost.
Proposition 2.19. Fix U ∈ S+

m(M) and g ∈ C∞(R×M). There exists an open
and dense subset Om of V F (M)m such that every nontrivial singular trajectory of a
driftless control-affine system defined by an m-tuple of Om is strictly abnormal for the
optimal control problem (2.24).

Corollary 2.18, together with Proposition 2.19, yields the next corollary.
Corollary 2.20. Fix U ∈ S+

m(M) and g ∈ C∞(R×M). Let m ! 3 be an integer.
There exists an open and densee subset Om of V F (M)m so that the optimal control
problem (2.24) defined with an m-tuple of Om does not admit nontrivial minimizing
singular trajectories.

Remark 2.21. In both previous results, the set Om can be chosen so that its
complement has an arbitrary codimension.

We also have a genericity result with respect to the cost, with a fixed control
system.

Proposition 2.22. Fix (f1, . . . , fm) ∈ V F (M)m so that the LARC is satisfied.
Let g ∈ C∞(R×M). Then, there exists an open and dense subset Am of S+

m(M) such
that every nontrivial singular trajectory of the driftless control-affine system associated
to the m-tuple (f1, . . . , fm) is strictly abnormal for the optimal control problem (2.24)
defined with U ∈ Am and g.

Remark 2.23. In the driftless case, the control u ≡ 0 is always singular but
corresponds to a trivial trajectory. Therefore, in opposition to the control-affine case,
it is not necessary to add the linear term α(x)Tu in the cost.

outside of the singular locus if n>h(m-1)

outside of the singular locus if n>h(m-1)

if n>h(m-1)
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3. Consequences.

3.1. Regularity of the value function. Consider the optimal control problem
(2.13), associated to the control-affine system (2.11) and the cost (2.12). The value
function is defined by

(3.1) Sx0,T (x) := inf{CU,g(T, u) | Ex0,T (u) = x}

for every x ∈ Rn (with, as usual, inf ∅ := −∞). We assume in what follows that all
data are analytic.

The regularity of Sx0,T is closely related to the existence of nontrivial minimizing
singular trajectories starting from x0. It is proved in [29] that, in the absence of
minimizing singular trajectories, the value function is continuous and subanalytic
(see, e.g., [16] for a definition of a subanalytic function). For driftless control-affine
systems and g ≡ 0, the value function coincides with the square of a sub-Riemannian
distance (see [7] for an introduction to sub-Riemannian geometry). In particular, in
this case, the value function is always continuous, but the trivial trajectory x(·) ≡ x0

is always minimizing and singular. Moreover, if there is no nontrivial minimizing
singular trajectories, then the value function is subanalytic outside x0 (see [3, 4]).
This situation holds for generic distributions of rank greater than or equal to three
(see [5, 14]).

The results of section 2.3 have the following consequence on the regularity of
Sx0,T .

Corollary 3.1. With the notation of Corollary 2.9, and if in addition the
functions g, U and the vector fields of the (m + 1)-tuple in Om+1 are analytic, then
the associated value function Sx0,T is continuous and subanalytic on its domain of
definition.

Remark 3.2. If there exists a nontrivial minimizing singular trajectory, the value
function may fail to be subanalytic or even continuous. For example, consider the
control-affine system in R2 given by

ẋ(t) = 1 + y(t)2, ẏ(t) = u(t),

and the cost C(T, u) =
∫ T
0 u(t)2dt. The trajectory (x(t) = t, y(t) = 0), associated

to the control u = 0, is a nontrivial minimizing singular trajectory, and the value
function S(0,0),T has the asymptotic expansion, near the point (T, 0),

S(0,0),T (x, y) =
1

4

y4

x− T
+

y4

x− T
exp

(
− y2

x− T

)
+ o

(
y4

x− T
exp

(
− y2

x− T

))

(see [29] for details). Hence, it is neither continuous nor subanalytic at the point
(T, 0).

In the driftless control-affine case, by using the results of section 2.4.2, we derive
the following similar consequence.

Corollary 3.3. With the notation of Corollary 2.20, and if in addition the
functions g, U and the vector fields of the m-tuple in Om are analytic, then the
associated value function Sx0,T is subanalytic outside x0.

3.2. Regularity of viscosity solutions of Hamilton–Jacobi equations.
Assume that the assumptions of the previous subsection hold. It is standard (see
[15, 17]) that the value function v(t, x) = Sx0,t(x) is a viscosity solution of the
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Hamilton–Jacobi equation

(3.2)
∂v

∂t
+ H

(
x,

∂v

∂x

)
= g(t, x),

where H(x, p) = ⟨p, f0(x)⟩ + 1
2

∑m
i,j=1(U

−1(x))ij⟨p, fi(x)⟩⟨p, fj(x)⟩.
Conversely, the viscosity solution of (3.2) with analytic Dirichlet-type conditions

is subanalytic, as soon as the corresponding optimal control problem does not admit
minimizing singular trajectories (see [31]). Using the results of the previous sections,
this situation holds generically if m ! 2 (and, similarly for driftless control-affine
systems, if m ! 3).

As a consequence, the analytic singular set Sing(v) of the viscosity solution v,
i.e., the subset of Rn where v is not analytic, is a (subanalytic) stratified manifold of
codimension greater than or equal to one (see [28] for more details on the subject).
Since Sing(v) is also the locus where characteristic curves intersect, the above men-
tioned property turns out to be instrumental for the global convergence of numerical
schemes for (3.2) (see [15]). Indeed, the analytic singular set must be as “nice” as
possible in order to integrate energy functions on the set of characteristic curves.

3.3. Applications to stabilization and motion planning. For a driftless
control-affine system verifying the LARC, there exist general stabilizing strategies
stemming from dynamic programming. As usual, the stabilizing feedback is computed
using the gradient of the value function S for a suitable optimal control problem.
Of course this is only possible outside the singular set Sing(S), and one must devise
another construction for the feedback on Sing(S). Let us mention two such strategies,
the first one providing a hybrid feedback (see [22]) and the second one a smooth
repulsive stabilizing (SRS) feedback (see [23, 24]). Both strategies crucially rely on
the fact that Sing(S) is a stratified manifold of codimension greater than or equal to
one.

As seen before, the latter fact holds generically in the analytic category for m ! 3.
On the other hand, the absence of minimizing singular trajectories is the basic

requirement for the convergence of usual algorithms in optimal control (such as direct
or indirect methods; see, e.g., [8, 20]). We have proved that this situation holds
generically for control-affine systems if m ! 2 and for driftless control-affine systems
if m ! 3.

As a final application, consider a driftless control-affine system verifying the
LARC. According to Proposition 2.22, it is possible to choose a (generic) cost function
CU,g such that all singular trajectories are strictly abnormal. Combining that fact
with [25, Theorem 1.1], we deduce that there exists a dense subset N of Rn such that
every point of N is reached by a unique minimizing trajectory, which is, moreover,
nonsingular. As a consequence, a shooting method with a target in N will converge.
That fact may be used for solving (at least approximately) motion planning problems.

4. Proofs of the results.

4.1. Proofs of Theorems 2.1 and 2.13. Every trajectory of the control-affine
system ẋ = f0(x) +

∑m
i=1 uifi(x) is also a trajectory of the driftless control system

ẋ =
∑m

i=0 uifi(x), with u0 ≡ 1. Therefore, Theorem 2.1 follows from Theorem 2.13,
whose proof is provided next.

Let x(·) = x(·, x0, u) be a trajectory of the driftless control system ẋ =∑m
i=1 uifi(x), with 2 " m " n. Consider the set Idep(x(·)) defined by (2.2). We

argue by contraposition and assume that Idep(x(·)) contains a subset I of positive
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measure such that ẋ(t) ̸= 0 for t ∈ I. Since Lebesgue points of u are of full Lebesgue
measure, we assume that u is continuous on I.

Up to considering a subset of I, and relabeling the fi’s, we assume that, for every
t ∈ I, that

(i) there exists 1 " k < m such that

rank{f1(x(t)), . . . , fm(x(t))} = k;

(ii) f1(x(t)), . . . , fk(x(t)) are linearly independent, and thus, there exist real num-
bers αj

i (t), i = 1, . . . , k, j = k + 1, . . . ,m, such that

fj(x(t)) =
k∑

i=1

αj
i (t)fi(x(t)), j = k + 1, . . . ,m.

Therefore, ẋ(t) =
∑k

i=1 δi(t)fi(x(t)), where δi(t) := ui(t)+
∑m

j=k+1 α
j
i (t)uj(t);

(iii) δ1(t) ̸= 0.
Remark 4.1. Up to reducing I, we furthermore assume that I is contained in an

open interval I on which rank{f1(x(t)), . . . , fk(x(t))} = k.
Set ad0g(h) = h, where g, h ∈ VF(M), and adkg(h) = [g, adk−1g(h)] for k ! 1.

The length of the iterated Lie bracket [fi1 , [fi2 , [· · · , fik ] · · · ] of f1, . . . , fm is the integer
k.

Proposition 4.2. Let N be a positive integer. There exists a subset JN ⊂ I of
positive measure such that, for every t ∈ JN and every ℓ ∈ {1, . . . , N},

(4.1) δ1(t)
ℓ−1adℓ−1f1(fm)(x(t)) = hℓ

t(x(t)) + Rℓ
t(x(t)),

where
• hℓ

t(x(t)) ∈ Span{f1(x(t)), . . . , fk(x(t))};
• Rℓ

t is a linear combination of iterated Lie brackets of f1, . . . , fm, of length
smaller than ℓ−1, and of iterated Lie brackets of f1, . . . , fk, of length smaller
than or equal to ℓ.

Proof. For t ∈ I, let Ft ∈ V F (M) be the vector field defined by

Ft(x) :=
k∑

i=1

δi(t)fi(x).

Notice that ẋ(t) = Ft(x(t)) for t ∈ I. For the argument of Proposition 4.2, we need
the following lemma.

Lemma 4.3. Consider a set J ⊂ I of positive measure and h ∈ V F (M) so that
h(x(t)) ∈ Span{f1(x(t)), . . . , fk(x(t))} on J ; i.e., for every t ∈ J , there exist real
numbers βi(t), i = 1, . . . , k, such that

(4.2) h(x(t)) =
k∑

i=1

βi(t)fi(x(t)).

For t ∈ J , define gt ∈ V F (M) by

gt(x) := h(x) −
k∑

i=1

βi(t)fi(x).
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Then, there exists a set J ′ ⊂ J of positive measure such that

(4.3) [Ft, gt](x(t)) ∈ Span{f1(x(t)), . . . , fk(x(t))} on J ′.

Proof of Lemma 4.3. Using Remark 4.1, we see that there exist ej ∈ V F (M),
k + 1 " j " n, so that, for every t ∈ I, the vectors f1(x(t)), . . . , fk(x(t)), ek+1(x(t)),
. . . , en(x(t)) span Tx(t)M . Thus, there exist n smooth functions bi, 1 " i " n, defined
on M , such that

h(x) =
k∑

i=1

bi(x)fi(x) +
n∑

i=k+1

bi(x)ei(x),

for x in an open neighborhood of x(I). For i = 1, . . . , n, define βi(t) := bi(x(t)) for
t ∈ I (this notation is consistent with (4.2)). The β′

is are absolutely continuous on I
and differentiable everywhere on J . For i = k + 1, . . . , n, there holds βi ≡ 0 on J and
therefore, it follows that β̇i ≡ 0 on a subset J ′ ⊂ J of full measure (cf. [26, Lemma
p. 177]).

For t ∈ J , using that gt(x(t)) = 0 and Ft(x(t)) = ẋ(t), it holds that

[Ft, gt](x(t)) = dgt ◦ Ft(x(t))

=
k∑

i=1

(dbi(x(t)).ẋ(t))fi(x(t)) +
n∑

i=k+1

(dbi(x(t)).ẋ(t))ei(x(t))

=
k∑

i=1

β̇i(t)fi(x(t)) +
n∑

i=k+1

β̇i(t)ei(x(t)).

On J ′, the second sum of the right-hand side of the last equation vanishes, and the
lemma follows.

Applying Lemma 4.3 to h = fm and J = I, we get

[Ft, g
1
t ](x(t)) ∈ Span{f1(x(t)), . . . , fk(x(t))} on J1,

where J1 ⊂ I and g1
t := fm −

∑k
i=1 α

m
i (t)fi.

Set h1
t = [Ft, g1

t ]. We next iterate the above procedure for 1 " ℓ " N . Assume
that the vector fields hℓ

t, g
ℓ
t and the set Jℓ of positive measure are defined such that

hℓ
t(x(t)) ∈ Span{f1(x(t)), . . . , fk(x(t))} on Jℓ. For every t ∈ Jℓ, let βℓ

i (t), i = 1, . . . , k,
be the real numbers such that

hℓ
t(x(t)) =

k∑

i=1

βℓ
i (t)fi(x(t)),

and define gℓ+1
t ∈ V F (M) by gℓ+1

t := hℓ
t −

∑k
i=1 β

ℓ
i (t)fi. Set hℓ+1

t := [Ft, g
ℓ+1
t ].

Applying Lemma 4.3, there exists a subset Jℓ+1 ⊂ Jℓ of positive measure such that
hℓ+1
t (x(t)) ∈ Span{f1(x(t)), . . . , fk(x(t))} on Jℓ+1.

For t ∈ JN , and for ℓ = 1, . . . , N , we express hℓ
t(x(t)) using iterated Lie brackets

of f1, . . . , fm, and an easy induction yields (4.1).
Combining Proposition 4.2 with routine transversality arguments (see, for in-

stance, [12] and [14]), it follows that the (m+1)-tuple (f0, . . . , fm) belongs to a closed
subset of V F (M)m+1 of codimension greater than or equal to N . Theorem 2.13
follows.

Remark 4.4. The fact that f1(x(t)) ̸= 0 is essential in order to derive, from (4.1),
an infinite number of independent relations, and then to apply the above mentioned
transversality arguments.

The flaw is at the very end of the proof: we cannot exactly use the transversality arguments of [14] where all vector fields were assumed to be linearly independent. Actually, it suffices to follow the proof of Lemma 1 in [12] and to compute appropriate codimensions.
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4.2. Proof of Theorem 2.6. The minimal order and corank one properties are
proved separately in the following lemmas.

Lemma 4.5. There exists an open and dense subset O1
m+1 of V F (M)m+1 so that,

if the (m + 1)-tuple (f0, . . . , fm) belongs to O1
m+1, then every singular trajectory of

the associated control-affine system ẋ(t) = f0(x(t))+
∑m

i=1 ui(t)fi(x(t)) is of minimal
order. In addition, for every integer N , the set O1

m+1 can be chosen so that its
complement has codimension greater than N .

Lemma 4.6. There exists an open and dense subset Om+1 of O1
m+1 so that, if

the (m+ 1)-tuple (f0, . . . , fm) belongs to Om+1, then every nontrivial singular trajec-
tory of the associated control-affine system ẋ(t) = f0(x(t)) +

∑m
i=1 ui(t)fi(x(t)) is of

corank one. In addition, for every integer N , the set Om+1 can be chosen so that its
complement has codimension greater than N .

The conclusion of Theorem 2.6 follows.

4.2.1. Proof of Lemma 4.5. From Theorem 2.1, there exists an open and dense
subset O11

m+1 of V F (M)m+1 such that, if (f0, . . . , fm) ∈ O11
m+1, then every trajectory

x(·) of ẋ = f0(x) +
∑m

i=1 uifi(x) verifies item (i) of Definition 2.5.
It is therefore enough to show the existence of an open and dense subset O12

m+1

of V F (M)m+1 such that, if (f0, . . . , fm) ∈ O12
m+1, then every singular trajectory x(·)

of ẋ = f0(x) +
∑m

i=1 uifi(x) verifies item (ii) of Definition 2.5. Then, by choosing
O1

m+1 := O11
m+1 ∩O12

m+1, the conclusion of Lemma 4.5 follows.
Consider a singular trajectory x(·) := x(·, x0, u) of ẋ = f0(x) +

∑m
i=1 uifi(x),

admitting an abnormal extremal (x(·),λ(·)). Assume that there exists J ⊂ [0, T ] \
Idep(x(·)) of positive measure such that G(t) is not of rank m if m is even, resp., G̃(t)
is not of rank m if m is odd. We will show that the (m+1)-tuple (f0, . . . , fm) belongs
to a subset of arbitrary codimension in V F (M)m+1 whose complement contains an
open and dense subset.

Note that, on [0, T ] \ Idep(x(·)), the vector fields f0(x(t)), . . . , fm(x(t)) are lin-
early independent. The remaining part of the argument consists of reformulating
the problem in order to follow the chain of arguments in the proof of [14, Theorem
2.4] concerning the case of everywhere linearly independent vector fields. For that
purpose, we distinguish the cases m even and m odd.

Assume first that m is even. As in (2.8), define, for t ∈ J , G(t) :=
(
hij(t)

)
0!i,j!m

.

From (2.7), we have, for t ∈ J ,

G(t) =

(
0

(
G(t)u(t)

)T

−G(t)u(t) G(t)

)
.

Since the ranks of both G(t) and G(t) are even, they must be equal, for t ∈ J , and
hence, the rank of G(t) is smaller than m on J . This is exactly the starting point of the
proof of [14, Lemma 3.8]. The machinery of [14] then applies and we deduce that the
(m+1)-tuple (f0, . . . , fm) belongs to a subset of arbitrary codimension in V F (M)m+1

whose complement contains an open and dense subset O2
m+1 of V F (M)m+1.

Assume next that m is odd. Define the (m + 2) × (m + 1) matrix Ĝ(t) as G(t)
augmented in the last row with ({P , hj}(t))0!j!m.

Lemma 4.7. With the notation above, rank Ĝ(t) " rank G̃(t) + 1.
Proof. It amounts to showing that ξ ∈ ker G̃(t) implies (0, ξ) ∈ ker Ĝ(t). This

follows from the fact that if G̃(t)ξ = 0, then G(t)ξ = 0, and thus ξ is orthogonal to
the range of G(t) since G(t) is skew-symmetric.
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Using Lemma 4.7, we see that the rank of Ĝ(t) is less than m + 1 on J . This
is exactly the starting point of the proof of [14, Lemma 3.9]. The machinery of [14]
then applies and we deduce that the (m+1)-tuple (f0, . . . , fm) belongs to a subset of
arbitrary codimension in V F (M)m+1 whose complement contains an open and dense
subset O12

m+1 of V F (M)m+1.

4.2.2. Proof of Lemma 4.6. We argue by contraposition. Consider a nontrivial
singular trajectory x(·) := x(·, x0, u) of ẋ = f0(x)+

∑m
i=1 uifi(x), with (f0, . . . , fm) ∈

O1
m+1. Assume x(·) admits two abnormal extremal lifts (x(·),λ[1](·)) and (x(·),λ[2](·))

such that, for some t0 ∈ [0, T ], λ[1](t0) and λ[2](t0) are linearly independent. By
linearity, λ[1](·) and λ[2](·) are linearly independent everywhere on [0, T ]. Since x(·)
is nontrivial, it follows from Remark 2.3 that there exists a nonempty subinterval J
of [0, T ] \ Idep(x(·)). We are now in a position to exactly follow the arguments of [14]
corresponding to the corank one property, i.e., [14, Lemma 4.4].

4.3. Proof of Theorem 2.17. We start with the proof of the statement dealing
with the minimal order property.

From Theorem 2.13, there exists an open and dense subset O1
m of V F (M)m such

that, if (f1, . . . , fm) ∈ O1
m, then every trajectory x(·) of ẋ =

∑m
i=1 uifi(x) verifies

item (i) of Definition 2.16.
It is therefore enough to show the existence of an open and dense subset O2

m of
V F (M)m such that, if (f1, . . . , fm) ∈ O2

m, then every singular trajectory x(·) of ẋ =∑m
i=1 uifi(x) verifies item (ii) of Definition 2.16. Then, by choosing Om := O1

m ∩O2
m,

the statement dealing with the minimal order property in Theorem 2.17 follows.
Consider a singular trajectory x(·) := x(·, x0, u) of ẋ =

∑m
i=1 uifi(x) admitting

an abnormal extremal (x(·),λ(·)). Assume that there exists J ⊂ [0, T ] \ Idep(x(·)) of

positive measure such that G(t) is not of rank m− 1 if m is odd, resp., G̃(t) is not of
rank m− 1 if m is even. Following exactly the proofs of Lemmas 3.8 and 3.9 in [14],
the m-tuple (f1, . . . , fm) belongs to a subset of arbitrary codimension in V F (M)m

whose complement contains an open and dense subset.
We proceed similarly for an argument of the statement dealing with the corank

one property.

4.4. Proofs of Propositions 2.8 and 2.19. We only treat the control-affine
case, as the argument for the driftless control-affine case is identical. We argue by
contraposition. Consider a nontrivial singular trajectory x(·) := x(·, x0, u) of ẋ =
f0(x) +

∑m
i=1 uifi(x), with (f0, . . . , fm) ∈ V F (M)m+1. Assume that x(·) admits on

the one part a normal extremal lift (x(·),λ[n](·)) and on the other part an abnormal
extremal lift (x(·),λ[a](·)).

Let us introduce some notation. For k ∈ N, let L = l1 · · · lk be a multi-index of
{0, . . . ,m}. The length of L is |L| = k and fL is the vector field defined by

fL := [[. . . [fl1 , fl2 ], . . . ], flk ].

A multi-index L = jl · · · l with k consecutive occurrences of the index l is denoted as
L = jlk.

For every multi-index L of {0, . . . ,m} and t ∈ [0, T ], set

h[n]
L (t) = ⟨λ[n](t), fL(x(t))⟩ and h[a]

L (t) = ⟨λ[a](t), fL(x(t))⟩.
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After time differentiation, we have on [0, T ],

d

dt
h[n]
L (t) =

m∑

l=1

ul(t)h
[n]
Ll (t),(4.4)

d

dt
h[a]
L (t) =

m∑

l=1

ul(t)h
[a]
Ll (t).(4.5)

Recall that, according to the Pontryagin maximum principle, there holds

(4.6) u(t) =

⎛

⎜⎝
u1(t)

...
um(t)

⎞

⎟⎠ = U(x(t))−1

⎛

⎜⎜⎝

h[n]
1 (t)
...

h[n]
m (t)

⎞

⎟⎟⎠ ,

and, for every t ∈ [0, T ],

(4.7) h[a]
0 (t) = constant, h[a]

l (t) = 0,

for every l ∈ {1, . . . ,m}, and t ∈ [0, T ]. Since the trajectory x(·) is nontrivial, there
exists an open interval J ⊂ [0, T ] and i ∈ {0, . . . ,m} such that ui(·)fi(x(·)) is never
vanishing (with the convention u0 ≡ 1). Fix j ∈ {0, . . . ,m} \ {i}. Differentiating s

times (with s ! 1) the relation h[a]
j (t) = constant with respect to t ∈ J , one gets, by

using (4.4), (4.5), and (4.6), that

(4.8) 0 =
ds

dts
h[a]
j (t) = (ui(t))

sh[a]
jis(t) + Rs(t),

where Rs(t) is polynomial in h[n]
L (t) and h[a]

K (t), |L| " s, |K| " s+1, with K different
from jis and ijis−1. Fix t ∈ J . Since ui(t) ̸= 0 and fi(x(t)) ̸= 0, we are in a position to
apply routine transversality arguments. It follows that the (m+1)-tuple (f0, . . . , fm)
belongs to a closed subset of V F (M)m+1 of arbitrary codimension. Proposition 2.8
follows.

4.5. Proofs of Propositions 2.11, 2.12, and 2.22. We first prove Proposition
2.12 and argue by contraposition. Consider a nontrivial singular trajectory x(·) :=
x(·, x0, u) of ẋ = f0(x) +

∑m
i=1 uifi(x). Assume that x(·) admits on the one part a

normal extremal lift (x(·),λ[n](·)) and on the other part an abnormal extremal lift
(x(·),λ[a](·)).

From the Pontryagin maximum principle, there holds, for l = 1, . . . ,m,

ul(t) =
m∑

p=1

Qlp(x(t))βp(x(t)), βp(x(t)) := h[n]
p (t) − αp(x(t)),

where the Qlp(x) and the αp(x) are, resp., the coefficients of U−1(x) and of α(x).
Note that the ul’s are smooth functions of the time.

Since the trajectory x(·) is nontrivial, there exists an open interval J ⊂ [0, T ] such
that ẋ is never vanishing on J and one of the two following cases holds.

Case 1. u ≡ 0 on J .
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In that case, ẋ(t) = f0(x(t)) for t ∈ J , and f0(x(·)) is never vanishing on J .

Moreover, for p = 1, . . . ,m, βp ≡ 0 on J , i.e., αp(x(t)) = h[n]
p (t) for t ∈ J . By

differentiating the latter relation with respect to the time, we deduce that, for all
N ! 0, t ∈ J , and p = 1, . . . ,m,

LN
f0
αp(x(t)) = LN

f0
h[n]
p (x(t)),

where Lf0 denotes the Lie derivative with respect to the vector field f0. Apply-
ing routine transversality arguments, it follows that α belongs to a closed subset of
C∞(M,Rm) of arbitrary codimension.

Case 2. u is never vanishing on J .
Using (2.4) and the LARC, there exist a multi-index L, an index j0 ∈ {0, . . . ,m},

and a subinterval of J (still denoted J), such that

h[a]
L (t) = constant and h[a]

Lj0
(t) ̸= 0

for every t ∈ J . Differentiating h[a]
L on J , one gets

0 =
d

dt
h[a]
L (t) = h[a]

L0(t) +
m∑

l=1

ul(t)h
[a]
Ll (t)

= h[a]
L0(t) +

∑

1!l!p!m

clp(t)Q
lp(x(t)),

(4.9)

where cll(t) := βl(t)h
[a]
Ll (t), and clp(t) := βp(t)h

[a]
Ll (t) + βl(t)h

[a]
Lp(t) if l < p.

Lemma 4.8. Up to reducing the interval J , there exist indices j and l in {1, . . . ,m}
such that clj(t) or cjl(t) is never vanishing on J .

Proof. If j0 = 0, then h[a]
L0(t) ̸= 0, and it follows from (4.9) that there exist

l, j ∈ {1, . . . ,m} such that clj(t) ̸= 0. Otherwise, take j := j0. In that case, one
of the βp’s does not vanish on J since u is not zero. First, assume that βj(t) is not
identically equal to zero on J ; then, up to reducing J , cjj(t) is never vanishing on J .
Otherwise, there exists l ̸= j such that, up to reducing J , βl is never vanishing on J
and thus similarly for clj (or cjl).

For t ∈ J , let Ft ∈ V F (M) be the vector field defined by

Ft(x) := f0(x) +
m∑

i=1

ui(t)fi(x).

Notice that Ft(x(t)) = ẋ(t) ̸= 0. For all N ! 0 and t ∈ J , we get, by taking the

(N + 1)th time derivative of h[a]
L on J ,

0 =
dN+1

dtN+1
h[a]
L (t) = clj(t)L

N
Ft
Qjl(x(t)) + RN (t),

where RN (t) is a linear combination of Ls
Ft
Qpi(x(t)) with s " N , p " i in {1, . . . ,m},

and s < N if (p, i) = (j, l), and of Ls
fr
Qpi(x(t)) with s < N , p " i in {1, . . . ,m},

and r ∈ {0, . . . ,m}. Applying routine transversality arguments, it follows that (U,α)
belongs to a closed subset of S+

m(M)×C∞(M,Rm) of arbitrary codimension. Propo-
sition 2.12 is proved.

To show Propositions 2.11 and 2.22, we simply note that the argument of Case 2
with α = 0 applies with suitable modifications.
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Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), pp. 359–382.

[6] E. Artin, Geometric Algebra, John Wiley and Sons, New York, 1988.
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