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ABSTRACT: 
 
A new nonlinear robust filter is proposed in this paper to deal with the outliers of an integrated GPS/SINS navigation system. The 
influence of different design parameters for H∞ cubature Kalman filter is analysed. It is found that when the design parameter is 
smaller, the robustness of the filter is stronger. However, the design parameter is easily out of step with the Riccati equation and the 
filter is easy to diverge. In this respect, the singular value decomposition algorithm is employed to replace Cholesky decomposition 
in the robust cubature Kalman filter. On the wider conditions for design parameter, the new filter is more robust. The testing results 
demonstrate that the proposed filter algorithm is more reliable and effective in dealing the data sets produced by the integrated 
GPS/SINS system. 
 

                                                                 
*  Corresponding author. 

1.  INTRODUCTION 

The integration of strap-down inertial navigation system (SINS) 
and the Global Positioning System (GPS) has been 
implemented for real-time navigation, mobile mapping, 
Location-based Services, transport and many other applications. 
The Kalman filtering (KF) is the most common technique for 
carrying out data fusing of GPS and SINS (Grejner-Brzezinska 
et al., 1998). However, the operation of the KF relies on the 
proper definition of dynamic and stochastic models and the 
standard KF can only be used to deal with linear model (Yi et 
al., 2006). Furthermore, due to the nonlinear characteristic of 
the low-cost SINS error model and the uncertainty of noise 
stochastic model, the KF estimation is not optimal and may 
produce an unreliable result, sometimes even leads to filtering 
divergence (Geng and Wang, 2008). 
Over the past few decades, nonlinear KF algorithms have been 
intensively investigated to deal with the nonlinear error model 
of low-cost SINS (Wendel et al., 2006, Gustafsson, 2010). 
Recently proposed cubature Kalman filtering (CKF), is a 
Gaussian approximation to Bayesian filtering, with more 
accurate filtering performance than traditional method and less 
computational cost (Arasaratnam and Haykin, 2009). CKF was 
introduced to deal with the data fusion of the integrated 
GPS/INS system (Sun and Tang, 2012). However, the standard 
CKF may still face difficulty in provision of stable results and 
cannot deal with the outlier data effectively. The robust 
cubature Kalman filtering (RCKF) based on a H∞ filter was 
proposed for integrated GPS/INS navigation applications (Liu 
et al., 2010).  
The algorithm makes use of the H∞ robust filter to overcome the 
interference of outliers. For the RCKF, the given parameter   
is used to show the bound lever and decide the robustness for 
the uncertain interference of the H∞ filter (Simon, 2010). The 
parameter   can be chosen appropriately according to the 

detailed performance index and there is a balance between 
system average accuracy and its robustness performance 
(Einicke and White, 1999). Certainly,   must be larger than a 
positive number to output a normal filtering result. The smaller 
the value of   the more strong the robustness of the filter is. 
However, a disproportionately small value can easily lead to a 
non-positive definite state covariance and cause filter 
divergence. Based on the error variance constraints or minimum 
variance principle, the modified robust filters were proposed 
(Hung and Yang, 2003, Shaked and Souza, 1995). The 
nonlinear robust Kalman filtering problem with norm-bound 
parameter uncertainties also was studied by Xiong et al (Xiong 
et al, 2012). Furthermore, the optimal robust H∞ estimator could 
be obtained by minimizing the H∞ norm from uncertain 
disturbances to estimation errors (Shi et al., 2012). However, 
how to improve the performance of a robust filter under a small 
given parameter   was rarely investigated.  
In this paper, the authors compare the performance of a robust 
cubature Kalman filter for the integrated GPS/SINS navigation 
applications under different given parameter  . In order to 
maintain a high level of numerical stability, a new filter 
algorithm is proposed. A singular value decomposition (SVD) 
algorithm is introduced to replace Cholesky decomposition in 
the RCKF. Land vehicle tests have been carried out to compare 
the performance of this algorithm with other cubature Kalman 
filter algorithms. The results show that the SVD based robust 
cubature Kalman filter (SVD-RCKF) algorithm can improve the 
filtering stability and has better robustness to the impact of 
outliers. 
The outline of this paper is as follows. Section 2 includes the 
nonlinear description of H∞ filter and a description of the 
calculation steps of RCKF based on SVD is presented in 
Section 3. Section 4 lists the formulas of the system and 
observation equations of the GPS/SINS system. Two test results 
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and data analysis are given in Section 5. The final part of the 
paper is the preliminary conclusions attained through this study. 
 

2. H∞ FILTER AND ITS NONLINEAR DESCRIPTION 

2.1 Principle of an H∞ filter 

An H∞ filter is a typical implementation of the robust filtering 
theory (Simon, 2010). It defines a cost function as follows:  
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where and are the unrelated system noise and 

measurement noise, and and
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kQ kR are their covariance matrices 
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The goal of an H∞ filter is to find an estimate kx  that 

minimizes , under the conditionJ x̂ arg min Jk 
 . Normally, it 

is difficult to get the analytical solution of an optimal H∞ filter 
problem. Therefore, we need find a suboptimal iterative 
algorithm. We can set a threshold value  , which meets 
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  . The threshold value is equivalent to the follow 

Riccati inequality (Chen, 2009): 
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For an H∞ filter, the estimation error in the most unfavourable 
conditions is controlled by the threshold value   that is called 
designed restrict parameter. When the designed restrict 
parameter   is smaller, the robustness of filter is stronger. 
When  approaches infinity, the H∞ filter is approaching to the 
standard Kalman filter. 
 
2.2 An H∞ cubature Kalman filter 

In order to apply nonlinear filter to the H∞ filter, the recursive 
Riccati equation for linear model is transformed to implement 

nonlinear filter. Due to ，T

/ 1 ,=k k k xz kP H P T
/ 1 ,k k k k zz k k  H P H P R  

(Yan et al., 2008), the formula for computing the state vector 
covariance matrix of the nonlinear H∞ filter can be modified as 
follows: 
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For nonlinear models, we can calculate the mean and 
covariance of the state vectors by cubature point transformation 
instead of Taylor expansion, and then we can obtain the the 
nonlinear H∞ robust filter based on cubature Kalman filter. 

 
3. ROBUST CUBATURE KALMAN FILTER BASED ON 

SVD  

Based on a cubature Kalman filter frame, we introduce a new 
filter algorithm by introducing an H∞ robust filter. We can call 
it as a robust cubature Kalman filter (RCKF). However, after 
many times of iteration in RCKF, and/ 1k kP kP are very easy to 

lose their positive definiteness and this will consequently lead 
to the instability of the numerical value. Meanwhile a much 
smaller restrict parameter   may lead to non-positive 

definiteness of / 1k kP and kP . Therefore singular value 

decomposition (SVD) (Gao et al., 2010) is applied in the 
calculation of the covariance matrix for RCKF instead of 
Cholesky decomposition in this paper.  
Considering the follow discrete nonlinear system  
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where and are the state and measurements of the dynamic 

system; 
kx kz

( )f  and ( )h  are known nonlinear functions; 

and are the independent process and measurement 

Gaussian noise sequences with zero means and covariance 
and
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kR , respectively. Then the procedure of the robust 

cubature Kalman filter based on singular value decomposition 
(SVD-RCKF) are expressed as follows:  
1) Calculate the basic cubature sampling points and weights 
based on the cubature rule. 
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2) Time update:  
Factorize 1kP  based on SVD, we can get 
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Evaluate the cubature points 
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Evaluate the propagated cubature points  
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Estimate the predicted state and error covariance 
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3）Measurement update 

SVD factorize 
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Calculate the cubature points 
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Calculate the propagated cubature points 
 
 

, , /(i k i k kh Z X                                    (13) 

 
 

Calculate the predicted measurement, innovation covariance 
matrices and cross-covariance matrix  
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Calculate the gain matrix, updated state and the corresponding 
covariance 
 
 

, ,/k xz k zz kK P P                               (15) 

ˆ (k k k k k )x x z z  K                            (16) 

/ 1 ,
T

k k k k zz k k P P K P K                         (17) 

 
 

Considering the state covariance update formula of the H∞ 
robust filter:  
 
 

1

, , ,
/ 1 , / 1 2

, / 1 / 1

+ T T
zz k k xz k xz k

k k k xz k k k T
xz k k k k k



 
 

  
           

P R I P P
P P P P

P P I P


     (18) 

 
 

Formulas (4)-(16) and (18) constitute the calculation procedure 
of the robust cubature Kalman filter based on SVD (SVD-
RCKF). 
 
4. THE DYNAMIC AND OBSERVATION EQUATIONS 

OF A GPS/SINS SYSTEM 

The loosely coupled GPS/SINS style is adopted. The state 
vectors are composed of the position and velocity error in 

frame, attitude error between computer frame and platform e

e

e
 frame, gyros and accelerometers drift error in body frame, 

which can be expressed as (Petovello, 2003): 
Te e e b bR V       X . 

The nonlinear error model for low-cost SINS is as follows: 
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Where eR and are the position and velocity error in the 
frame, 

eV
e φ is the attitude error between computer e frame and 

platform e  frame, 3 3I is the unit matrix, 3 3 e
eC is the 

rotation matrix between computer e frame and 

platform e  frame; e
b
C is the rotation matrix between body 

frame and platform e  frame;  is the skew symmetric 

matrix of earth rotation rate

e
ieΩ

e
ie ; b and are gyros and 

accelerometers drift error in body frame. 

b

The dynamical model of a loosely coupled GPS/INS system can 
be expressed as follows 
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Where ˆ e
INSR and ˆ e

INSV are computed position and velocity vectors 

by SINS in frame, e ˆ e
GPSR and are the ones output by GPS, 

and is the noise vector. 
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5. TEST CASES AND DATA ANALYSIS 

To demonstrate the performance of SVD-RCKF algorithm, data 
was collected under real world conditions with a probe vehicle. 
Two tests were performed. 
 
5.1 Case 1 

The first dataset was collected in China University of Mining 
and Technology (CUMT), China. The test had employed two 
GPS receivers and one low-cost IMU (SPAN-CPT). One of the 
GPS receivers was set on the rooftop as the reference station, 
and another one was placed on the top of the testing vehicle 
together with the IMU. The data was logged for post 
processing. The SPAN-CPT IMU consists of three-axis open-
loop fiber optic gyroscope and three-axis MEMS 
accelerometers. The technical data is shown in Table 1. The 
specified parameters were used in setting up the Q estimation in 
filtering process. Figure 1 shows the ground track of the test 
vehicle. The update rate of INS is 100Hz and the one of GPS is 
1Hz. The high accuracy double difference carrier-phase GPS 
position results are used as reference value. 

  
 SPAN-CPT SPAN-LCI 
Gyro Rate Bias 20 deg/hr <1.0 deg/hr 
Gyro Scale Factor 1500ppm 500ppm 
Angle RW 0.067 deg/rt-hr <0.15 deg/rt-hr  
Acc. Bias 50mg <1.0 mg 
Acc. Scale Factor 4000ppm <1000ppm 
Velocity RW 55ug/rt-Hz —— 

 
Table 1. IMU technical specifications  
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Figure 1. The vehicle trajectory of case 1 

 
The test results plotted in Figure2 are based on the cubature 
Kalman filter. It is worth noting here that the results contain 
some outlier values due to the vehicle driving over the speed 
bumps. These indicate that the robustness of CKF needed to be 
improved further.  
Figure 3 shows the positioning error when using the robust 
cubature Kalman filter and the parameter  is set as 2. 
Comparing Figures 3 and 2, it is apparent how effective the 
robust filter is. The error amplitude in Figure 3 is reduced by 
improving the robustness of the filter. The SVD based robust 

cubature Kalman filter (SVD-RCKF) shows the almost same 
result as the RCKF when the parameter  is set as 2. To keep 
the description concisely, the corresponding plot of SVD-RCKF 
is omitted. Table 2 shows the statistic information for the 
different filter algorithms.  
The performance of robust cubature Kalman filter with 
difference values of the parameter   was further analysed. 
Table 3 presents the statistic information. For the RCKF, the 
larger value the parameter   is, the less the robustness of the 
filter. Compared with the result of RCKF on the value of 2500, 
the result on the value of 1.5 just improved the performance by 
6.5%, 7.1% and 3.7% in three directions. This indicates that 
RCKF can get the jarless robustness performance if the 
different design parameters are within limits. 
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Figure 2. The position error of CKF in case 1 
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Figure 3. The position error of RCKF (  = 2) in case 1 

 
 RMS of Position Error (m) 
 X Y Z 
CKF 0.129 0.229 0.116 
RCKF 0.090 0.175 0.107 
SVD- RCKF 0.090 0.175 0.107 

 
Table 2. Position errors of different filters in case 1 

 
 

 
 

 
 
 
 

Restrict parameter   0.5 0.7 1.0 1.4 1.5 2.0 2.5 25 250 2500 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W1, 2014
EuroCOW 2014, the European Calibration and Orientation Workshop, 12-14 February 2014, Castelldefels, Spain

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-3-W1-149-2014

152



 

X 0.850 0.554 0.04 0.088 0.087 0.091 0.092 0.093 0.093 0.093 
Y 1.013 0.394 0.069 0.167 0.168 0.176 0.178 0.182 0.182 0.182 SVD- RCKF 

(Position Error in m) 
Z 0.851 0.379 0.053 0.105 0.105 0.108 0.109 0.109 0.109 0.109 

X --- --- --- --- 0.087 0.091 0.092 0.093 0.093 0.093 

Y --- --- --- --- 0.168 0.176 0.178 0.181 0.181 0.181 
RCKF 
(Position Error in m) 

Z --- --- --- --- 0.105 0.108 0.108 0.109 0.109 0.109 

 
Table 3. The position errors of different strict parameter in case 1 

 
 

From the fundamental of the H∞ robust filter, we know that the 
smaller the restrict parameter  the stronger the robustness of 
the filter. To get more robust performance, the case studies with 
smaller   values were compared. The result is shown in Table 
3. We can find that the RCKF cannot work well sometimes. The 
reason is that after many times of iteration in RCKF with a 
much smaller restrict parameter  , and/ 1k kP kP  lose their 

positive definiteness and this consequently leads to the 
instability of the numerical value. In order to further improve 
the numerical stability of RCKF, the SVD-RCKF is proposed. 
Figure 4 gives the position errors when using the new filter 
algorithm with   set as 1. As expected, the results are better 
than the other algorithms previously mentioned. However, it 
was found that the relationship between  and robustness of a 
filter does not exist anymore if  is much smaller. That is 
because there is no solution of Riccati inequality if the  is 
much smaller. 
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Figure 4. The position error of SVD-RCKF (  = 1) in case 1 

 

5.2 Case 2 

The second test was carried out in Nottingham, UK. The test 
setup was similar with the first one. A GNSS antenna, a GNSS 
receiver and a SPAN-LCI IMU were mounted in a van and data 
was logged from the receiver’s serial ports to a laptop for 
storage and processing. The vector between the IMU centre and 
GPS antenna was accurately surveyed using a total station and 
is considered known to within 1cm. A base station was set up 
on the roof of the NGB building to provide DGPS and RTK 
corrections. The update rate of INS is 200Hz and the one of 
GPS is 1Hz. The average baseline length was less than 3 km for 
the test. Figure 5 is the test trajectory and Figure 6 is a 
photograph taken for the van. The high accuracy real-time 
output results of SPAN system are used as the reference value 
and the double difference code GPS position and velocity 
results are used as the input measurements. 
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Figure 5. The vehicle trajectory of case 2 

 

 
Figure 6. The testing van 

 
The position error of CKF is shown in Figure 7 and Figure 8 
shows the position error when using the robust cubature kalman 
filter (RCKF) and the parameter  is set as 3. As we can see 
from Figure 7 and Figure 8, the error amplitude in Figure 8 is 

reduced by improving the robustness of the filter. As the same 
as case 1, the corresponding plot of SVD-RCKF is also omitted 
in case 2. Table 4 shows the statistic information of plots. 
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As in case 1, the performance of robust cubature Kalman filter 
with different values of the parameter   was also compared. 
The result is very similar with case 1. Table 5 shows the 
corresponding statistic result. From Table 5, we can know that 
the larger value the parameter   is, the filter can get the worse 
robustness. Compared with the result of RCKF on the value of 
5000, the result on the value of 3 just improved the performance 
by 7.0%, 0.0% and 6.2% in three directions. Similar with case 
1, this result demonstrates that RCKF can get the jarless 
robustness performance if the different design parameter is 
within limits. 
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Figure 7. The position error of CKF in case 2 
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Figure 8. The position error of RCKF (   = 3) in case 2 
 

 RMS of Position Error(m) 

 X Y Z 

CKF 1.430 0.264 1.185 

RCKF 0.066 0.016 0.061 

SVD- RCKF 0.066 0.016 0.061 
 

Table 4. Position errors of different filters in case 2 
 
To get more robust performance, the case studies with smaller 
  were compared. The result of case 2 is shown in Table 5. 

We can find that the RCKF cannot work when the parameter   
is smaller than 2. The reason is that after many times of 
iteration in RCKF with a much smaller restrict parameter  , 

/ 1k kP and kP lose their positive definiteness and this 

consequently leads to the instability of the numerical value. As 
the same as case 1, the SVD-RCKF is introduced to further 
improve the numerical stability of RCKF. Figure 9 gives the 
position errors when using the new filter algorithm with   set 
as 1.44. As expected, the results are better than the other 
algorithms previously mentioned. However, the same problem 
is that the robust filter will diverge when the parameter   is set 
too small. 
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Figure 9. The position error of SVD-RCKF(  =1.414) in case 2 
 

 

 
 

Restrict parameter    0.8 0.866 1 1.414 1.732 2 3 4 5 50 500 5000

X  1.576 0.375 0.112 0.046 0.055 0.059 0.066 0.068 0.069 0.071 0.071 0.071

Y  1.632 0.362 0.118 0.011 0.016 0.018 0.016 0.016 0.016 0.016 0.016 0.016
SVD- RCKF 
(Position Error /m) 

Z  2.630 0.333 0.277 0.045 0.052 0.056 0.061 0.063 0.063 0.065 0.065 0.065

X  --- --- --- --- --- --- 0.066 0.068 0.069 0.071 0.071 0.071

Y  --- --- --- --- --- --- 0.016 0.016 0.016 0.017 0.017 0.017
RCKF 
(Position Error /m) 

Z  --- --- --- --- --- --- 0.061 0.063 0.063 0.065 0.065 0.065

 
Table 5. The position errors of different strict parameter in case 2 
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6. CONCLUSIONS 

The robust cubature Kalman filter based on the H∞ filter is very 
effective for detecting outlier data in GPS/SINS integration 
system. It has been found that the smaller restrict parameter   
can improve the overall performance of RCKF. However, it is 
also apparent that RCKF is easy to diverge if the parameter is 
too smaller. The robust cubature Kalman filter based on SVD 
can maintain the system stability and robustness on the wider 
conditions for the design parameters. More work needs to 
carried out about how to set the optimal parameter. 
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