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Abstract

The singular value decomposition (SVD) and proper orthogonal decomposition are widely used to decompose velocity field 

data into spatiotemporal modes. For noisy experimental data, the lower SVD modes remain relatively clean, which suggests 

the possibility for data filtering by retaining only the lower modes. Herein, we provide a method to (1) estimate the noise 

level in a given noisy dataset, (2) estimate the root mean square error (rmse) of the SVD modes, and (3) filter the noise using 

only the SVD modes that have low enough rmse. We show through both analytic and PIV examples that this method yields 

nearly the most accurate possible SVD-based reconstruction of the clean data. Moreover, we provide an analytic estimate 

of the accuracy of this reconstruction.
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1 Introduction

In fluid mechanics, singular value decomposition (SVD) and 

proper orthogonal decomposition (POD)1 are used for particle 

image velocimetry (PIV) data regression (Sherry et al. 2013; 

Raiola et al. 2015; Mendez et al. 2017; Brindise and Vlachos 

2017); identification of coherent structures (Kriegseis et al. 

2009; Druault et al. 2012; Kourentis and Konstantinidis 2012; 

Marié et al. 2013; Xu et al. 2013; Gandhi et al. 2015); low-

order modeling, possibly for flow control (Ma et al. 2003; Feng 

et al. 2011; Feng and Wang 2014); optimal sensor placement 

(Cohen et al. 2004); dynamic mode decomposition (Schmid 

2010; Dawson et al. 2016); and more. In (Epps and Krivitzky 

2019), we considered mode corruption due to noise present 

in the data, building on the works of Kato (1976), Breuer and 

Sirovich (1991), Venturi (2006) and Epps and Techet (2010). 

Herein, we consider use of the SVD/POD for data de-noising.

The SVD and POD are very attractive for de-noising 

experimental velocity field data, because no other rank r 

approximation captures more of the kinetic energy2 in the 

data as the sum of the first r SVD modes (Schmidt 1907). 

However, when the data are corrupted by noise, it is a priori 

unclear how badly the SVD modes are corrupted by the 

noise and which modes to use when noise filtering.

Motivating questions for this article include the follow-

ing: How effective is the SVD for filtering out noise and 

reconstructing the clean data? What method yields the most 

accurate reconstruction, and what are the limits to its accu-

racy? Can the magnitude of the noise be inferred from the 

noisy data themselves?

To define our goals mathematically, consider the follow-

ing definitions: Let � ∈ ℝ
T×D be a matrix of clean data, with 

T time steps and D data sites ( T < D ). The reduced singular 

value decomposition of � is

where matrices � ∈ ℝ
T×T and � ∈ ℝ

D×T are each orthogo-

nal and � ∈ ℝ
T×T is diagonal. The kth SVD mode consists 

of a left singular vector (temporal mode shape) �
k
≡ U1∶T ,k , 

a singular value s
k
≡ S

kk
 , and a right singular vector (spa-

tial mode shape) �
k
≡ V1∶D,k . Let Ã ∈ ℝ

T×D be a matrix of 

noisy data:

(1)� = ���
⊺
=

∑T

k=1
u

k
s

k
v
⊺

k
,

(2)Ã = � + � ,

where � ∈ ℝ
T×D contains random noise with zero mean 

and standard deviation �.3 Let Ã = Ũ S̃ Ṽ
⊺

=

∑T

k=1
ũ

k
s̃

k
ṽ
⊺

k
 

and � = Ú Ś V́
⊺

=

∑T

k=1
ú

k
ś

k
v́
⊺

k
.

A reconstruction of the clean data can be formed by sum-

ming the first r SVD modes:

where these barred variables could be the noisy (tilde) vari-

ables or any estimate of the clean ones. To evaluate such a 

reconstruction, we use the reconstruction loss

where ‖ ⋅ ‖
F
 is the Frobenius norm, so (4) is a measure of 

the difference between the clean data and the reconstruction.

Herein, we consider being given noisy data Ã but not 

knowing � and � . Our goals are (1) to make an accurate 

estimate 𝜖 of the measurement error; and (2) to form a min-

imum-loss estimate Ā
r
 of the clean data.

1.1  Existing noise filtering methods

A number of methods exist to choose which SVD modes to 

use for noise filtering. Epps and Techet (2010) reconstruct 

an estimate of the clean data using all noisy SVD modes 

for which

where s̃
k
 is the singular value of noisy mode k, � is the root 

mean square error in the data, T and D are the number of 

timesteps and data sites, respectively.

Raiola et al. (2015) use all noisy SVD modes for which

Note that (6) can not be used in practice, since one does not 

know the clean singular values (if only given a noisy data-

set). However, (6) can be put into usable form by noting that 

Raiola et al. (2015) derived (6) assuming s̃2

k
≈ s

2

k
+ 𝜖

2
D , so 

the spirit of (6) is equivalent to

(3)Ā
r
≡

r
∑

k=1

ū
k
s̄

k
v̄
⊺

k
,

(4)𝛥
r
≡ ‖� − Ā

r
‖2

F
=

T�

t=1

D�

d=1

(A
td
− (Ā

r
)
td
)2 ,

(5)s̃
k
> 𝜖

√

TD ,

(6)F
k
≡

s
2

k
+ 𝜖

2
D

s
2

k−1
+ 𝜖

2D
< 0.999 .

(7)F̃
k
≡

s̃
2

k

s̃
2

k−1

< 0.999 .

2 Since the Frobenius norm of the kth SVD mode is s
k
 , then for 

velocity field data, the kinetic energy (per unit mass) of the mode is 
1

2
s

2

k
.

3 Ideally, � contains i.i.d. noise drawn from a Gaussian distribution, 

but herein we also consider � containing spatially-correlated noise, as 

occurs in PIV data.

1 In (Epps and Krivitzky 2019), we showed that for discrete data, the 

SVD and POD yield identical results. Thus, our results apply to both 

the SVD and POD.
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Brindise and Vlachos (2017) do not sum noisy modes 

k = 1,… , r but instead choose the r “smoothest” modes, as 

identified by the Shannon entropy. Their so called entropy 

line fit (ELF) method is a six step procedure:

1. Compute the discrete cosine transform (DCT-II) of each 

right singular vector, 

 for d = 1,… , D and k = 1,… , T .

2. Square and normalize the DCT coefficients: 

3. Compute the Shannon entropy of the normalized DCT 

signal4

4. Sort the minimum entropy into ascending order, Ȳ
k
.

5. Use a “two-line fit” procedure to find the the optimal 

reconstruction rank, r
B
 , where the sorted entropy Ȳ

k
 

nearly reaches a plateau.

6. Use sorted modes 1,… , r
B
 for data reconstruction.

Note that while the Schmidt theorem guarantees that this 

reconstruction Ā
r
 will yield more loss to the noisy data 

‖Ã − Ā
r
‖2

F
 than that using unsorted modes 1,… , r , this 

reconstruction might (or might not) yield less loss to the 

clean data ‖� − Ā
r
‖2

F
.

Shabalin and Nobel (2013) reconstruct the clean data 

using all the modes, but they discount the singular values in 

such a way as to suppress the more noisy modes.

Note that the above references (as well as this manuscript) 

assume a complete dataset with no large outliers. Other 

papers have considered POD for reconstruction of gappy 

data or data with extreme outliers (Venturi and Karniadakis 

2004; Wang et al. 2015; Higham et al. 2016).

2  Proposed ‘E15’ noise filtering method

The present work builds upon (Epps and Krivitzky 2019), 

wherein we derived and validated a theoretical prediction 

(13) of the root mean square error of the SVD modes, which 

is defined as

(8)V̂
dk

=

√

2∕N

1+𝛿d1

D
∑

i=1

V
ik

cos

[

𝜋

D

(

i −
1

2

)

(d − 1)
]

,

(9)X
dk

= V̂
2

dk
∕
∑D

d=1
V̂

2

dk
.

(10)Y
k
= −

D
∑

d=1

X
dk

log2 X
dk

.

Further, we showed that for modes constituting random 

noise, the rmse(ṽ
k
) reaches a maximum value of 

√

2∕D . 

The key idea of our proposed noise filtering method is to 

use only the modes for which the rmse(ṽ
k
) is sufficiently 

below this noise ceiling.

Herein, we propose the following method for minimum-

loss noise filtering.

1. Given a noisy data matrix Ã , perform the SVD (MATLAB 

svd command) to obtain ũ
k
 , s̃

k
 , and ṽ

k
.

2. Estimate the measurement error 𝜖 and the ‘spatial cor-

relation parameter’ f by fitting a Marchenko–Pastur 

distribution to the tail of the noisy singular values. See 

“Appendix  1” for details.

3. (Optional) Infer the ‘effective smoothing window width’, 

w, from the curve fit in Fig. 14b, which reads 

 See “Appendix  1” for discussion of w. For PIV data, 

however, we recommend that (12) not be used and 

instead to set w = 1 (see PIV examples in Sects. 4–6).

4. Estimate the root mean square error of the modes: 

 where �̃�
k
≡ s̃

2

k
 . This formula was derived and validated 

in (Epps and Krivitzky 2019).

5. Estimate the rank for minimum-loss reconstruction as 

follows: 

  The parameter t
k
 in (14) quantifies the cleanliness of 

a mode, where t
1
= 1 for the first (cleanest) mode, and 

t
k
= 0 for modes at the noise ceiling (rmse(ṽ

k
) =

√

2∕D) . 

Modes that are sufficiently below this noise ceiling (i.e. 

that have a large enough t
k
 ) are deemed clean enough to 

be useful for data reconstruction. The threshold in (15) 

(11)rmse(ṽ
k
) ≡

[

1

D

D
∑

i=1

(

Ṽ
ik
− V

ik

)2

]

1

2

.

(12)w = 1 +

(

2f −
3

2

)

(

1 − e
−20(f−1)

)

.

(13)

rmse(ṽ
k
) ≈ min

�

√

2∕D ,

𝜖

s̃
k

�

D − w

D
+

w

D

T
�

m=1

m≠k

�̃�
m
(3�̃�

k
− �̃�

m
)

(�̃�
m
− �̃�

k
)2

�

1

2
�

,

(14)t
k
≡

log(rmse(ṽ
k
)) − log(

√

2∕D)

log(rmse(ṽ1)) − log(
√

2∕D)
,

(15)r̄
min

≡ maximum k such that t
k
> 5% .

4 If the data � are 2D-2C velocity fields, then compute the 2D DCT-

II and entropy of each velocity component separately, and then take 

Y
k
 as the minimum entropy.
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was set at 5% , because we empirically found that level 

to yield accurate and robust results.

6. Reconstruct an estimate of the clean singular values: 

where 𝜖′ŝ
k
 is a Marchenko–Pastur distribution 

(see “Appendix 1”), and

  k
c
 is the minimum index k such that s̃

k
< 𝜖

′
ŝ

k
 (Epps 

2015). This cutoff index ensures that (16) yields 

a real number, and it sets s̄
k
 to zero for modes in the 

tail of the distribution, which are obliterated by noise. 

Equation  (16) follows from the observation that 

s̃
2

k
≈ s

2

k
+ (𝜖�ŝ

k
)2.

7. Reconstruct an estimate of the clean data via 

with r = r̄
min

 from (15) and s̄
k
 from (16). We will refer 

to (15)/(16)/(17) as the ‘E15’ reconstruction.

2.1  Illustrative example

To illustrate this procedure by way of example, consider 

a laminar, unsteady, 2D flow past a cylinder at Reynolds 

number Re = V∞d∕� = 100 . A clean (noise-free) dataset � 

is extracted from CFD simulations, with D = 33,284 data 

sites (x and y velocities at 16,642 grid points) and T = 455 

timesteps. The time-mean were not removed from these 

data. A noisy dataset Ã is created by adding independent, 

identically-distributed (i.i.d.) Gaussian noise with stand-

ard deviation � = 10
−4 . Since the noise is i.i.d., w = f = 1.

Figure 1 provides a snapshot in time of the velocity 

magnitude, showing the clean data, noisy data, and a data 

set formed by the ‘E15’ reconstruction procedure (15)/

(16)/(17). This reconstruction filters out much of the noise 

and faithfully represents the clean data.

Figure 2a illustrates the singular values of the clean 

and noisy datasets, as well as the ‘E15’ reconstruction 

(16) and a best-fit Marchenko–Pastur distribution. Equa-

tion (31) uses this best-fit Marchenko–Pastur distribution 

to predict 𝜖 = 𝜖
�
= 1.0019 × 10

−4 , just 0.19 percent greater 

than the true �.

Figure 2b shows the root mean square error of the spa-

tial mode shapes. The theoretical prediction (13) agrees 

well with the numerically-computed rmse. The rmse is 

very low for the first mode and reaches 
√

2∕D for modes 

that are saturated with noise. The optimum reconstruction 

rank r̄
min

= 9 (15) is illustrated as the index for which the 

(16)s̄
k
=

{√

s̃
2

k
− (𝜖�ŝ

k
)2 (k < k

c
)

0 (k
c
≤ k)

,

(17)Ā
r
=

r
∑

k=1

ũ
k
s̄

k
ṽ
⊺

k
,

rmse approaches 5% of this noise ceiling, since modes 

with higher rmse constitute noise.

Figure 2c presents the loss �
r
 (4) versus rank r for sev-

eral reconstruction methods. For example, using the noisy 

singular values and vectors, Ā
r
=

∑

r

𝓁=1
ũ𝓁 s̃𝓁 ṽ

⊺

𝓁
, is labeled 

‘ ̃u𝓁 s̃𝓁 ṽ
⊺

𝓁
 ’. As expected, the loss for the ‘ ̃u𝓁 s̃𝓁 ṽ

⊺

𝓁
 ’ recon-

struction (red curve) has a pronounced minimum, because 

the lower modes contain most of the signal, and the higher 

modes contain mostly noise.

The proposed reconstruction method (15)–(17) is labeled 

‘ ̃u𝓁 s̄𝓁 ṽ
⊺

𝓁
 E15’ in Fig. 2c. Figure 2c shows the loss for the 

‘E15’ reconstructions at all ranks (green dashed curve), 

but note that the ‘E15’ method selects rank r̄
min

= 9 (per 

15). There are two key points to emphasize: First, the ‘E15’ 

loss at r̄
min

 is slightly lower than the minimum loss achiev-

able using the standard ‘ ̃u𝓁 s̃𝓁 ṽ
⊺

𝓁
 ’ reconstruction (red curve). 

Fig. 1  (Sect. 2.1 example) Snapshot of velocity magnitude, showing 

the clean data (top), noisy data (middle), and the ‘E15’ reconstruction 

(bottom). Flow is left to right
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Moreover, the ‘E15’ loss at r̄
min

 is only 1.7% higher than the 

minimum ‘E15’ loss (which actually occurs at r
min

= 11).

Second, the main advantage of the ‘ ̃u𝓁 s̄𝓁 ṽ
⊺

𝓁
 E15’ recon-

struction, which uses reconstructed singular values s̄
�
 per 

(16), is that its loss is much less sensitive to the choice of 

rank r̄
min

 (for ranks greater than the actual r
min

 ), because 

the singular values for the higher (noisier) modes are sup-

pressed. In contrast, the loss of the standard ‘ ̃u𝓁 s̃𝓁 ṽ
⊺

𝓁
 ’ 

approach increases (dramatically in some cases) for ranks 

r > r
min

 . Thus, we will see in Sect. 3 that the ‘E15’ method 

achieves lower loss and less variability than the standard 

‘ ̃u𝓁 s̃𝓁 ṽ
⊺

𝓁
 ’ method.

Figure 2c also shows the Ā
r
=

∑

r

𝓁=1
ũ𝓁s𝓁c𝓁 ṽ

⊺

𝓁
 recon-

struction loss, which we show in “Appendix 2” to be the 

minimum possible loss if reconstructing with the noisy sin-

gular vectors. Note that the ‘E15’ loss nearly overlays on this 

theoretical minimum.

Reconstruction methods from the prior literature result in 

higher losses than that achieved herein. Raiola et al. (2015) 

suggest the ũ𝓁 s̃𝓁 ṽ
⊺

𝓁
 reconstruction at rank r

F
= 12 (per 6) or 

r
F̃
= 19 (per 7). Epps and Techet (2010) suggest rank r = 3 . 

The ELF method can not be used in this example, because 

the CFD grid was unstructured, and the 2D DCT-II step in 

the ELF method requires data on a plaid grid.

2.2  Outline

The following sections provide examples that illustrate 

additional details of the proposed methods. In Sect. 3, we 

consider analytic examples in order to provide a “controlled 

environment” within which to present and validate some 

finer details of the present theory. In Sects. 4 and 5, we con-

sider application to synthetic PIV data, which raises “real 

world” issues yet still affords us the ability to validate our 

results using clean data. Finally, in Sect. 6, we demonstrate 

the methods on real PIV data.

3  Analytic examples and discussion

3.1  Analytic minimal working example

Consider data constructed via � = ���⊺ , with

with T = 40 and D = 100.

(18)

U
tk
= cos

�

2�

T
(t − 1)(k − 1) −

�

4

�

√

2∕T

S
kk
= 10−4(k−1)∕(T−1)

V
dk

= sin

�

�

D+1
d k

�

√

2∕(D + 1) ,

0 4 8 12 16 20 24

10
-3

10
-2

10
-1

10
0

(a) singular values

0 4 8 12 16 20 24
10

-5

10
-4

10
-3

10
-2

(b) root mean square error

0 4 8 12 16 20 24 28 32

10
-3

10
-2

10
-1

10
0

0 50 100 150 200 250 300 350 400 450

10
-3

10
-2

10
-1

10
0

(c) reconstruction loss

Fig. 2  (Sect.  2.1 example) a Singular values. b Root mean square 

error, comparing theory (13) versus numerical results, and illustrating 

the optimum rank prediction r̄
min

 (15). c Loss (4) for reconstructions 

using the summands shown in the legend
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In this example, a Monte Carlo simulation of N = 10,000 

trials was used to evaluate the performance of various noise 

filtering schemes. In each trial, we generated a noisy data-

set Ã = � + � (with � containing i.i.d. Gaussian noise with 

� = 10
−3 ), made estimates 𝜖 , s̄

k
 , and Ā

r
 , and evaluated the 

reconstruction loss. Figure 3 shows the mean and standard 

deviation of the results for the N trials.

3.1.1  Estimates of the clean singular values

First, consider estimates of the clean singular values. Fig-

ure 3a shows good agreement between the clean singular 

values (black curve) and the ‘E15’ reconstruction s̄
k
 (16) 

(green dashed curve). The reason for this good agreement 

is that the noisy singular values (red curve) are well 

approximated by s̃
k
≈

√

s
2

k
+ (𝜖�ŝ

k
)2 (green dashed curve, 

labeled ‘ ⟨s̃
k
⟩ E15’), which is the theoretical basis of the 

‘E15’ reconstruction. This approximation works well here, 

because the clean singular values decay rapidly as com-

pared to the noisy ones.

A more theoretically-sophistocated estimate of the 

clean singular values will be referred to as the ‘EK18’ 

reconstruction

0 4 8 12 16 20 24 28 32 36 40

10
-3

10
-2

10
-1

(a) Singular values

0 4 8 12 16 20 24 28 32 36 40
10

-3

10
-2

10
-1

(b) Root mean square error

0 4 8 12 16 20 24 28 32 36 40
2

3

4

5

6

7

8
10

-3

0 4 8 12 16 20 24 28 32 36 40
10

-3

10
-2

10
-1

10
0

(c) Mean loss 〈∆r〉

0 4 8 12 16 20 24 28 32 36 40

4

6

8

10

12

14
10

-5

(d) Standard deviation of the loss σ∆r

Fig. 3  (Sect.  3.1 example) Monte Carlo results: a singular val-

ues showing approximation of the noisy singular values ⟨s̃
k
⟩ (filled 

symbols) and reconstruction of the clean singular values ⟨s̄
k
⟩ (open 

symbols). b Root mean square error of the spatial modes. c, d Mean 

and standard deviation of the reconstruction loss. Loss estimate (22) 

is marked “ 𝛥
r
 approx.”. The symbols marked r

B
 , r

F
 , and r

F̃
 indicate 

the Brindise ELF method and the Raiola criteria (6) and (7), respec-

tively. Here, T = 40 , D = 100 , � = 10
−3 , �� = 1.30� , ��� = 0.97� , and 

𝜖 = 1.18𝜖



Experiments in Fluids (2019) 60:126 

1 3

Page 7 of 23 126

where cutoff index k
c
 is the minimum k such that 

s̃k < max{𝜖
√

2D, 𝜖(
√

D +
√

fT)} (Krivitzky and Epps 

2017). This cutoff ensures both that (19) yields a real 

number and that perturbation theory is accurate. Equa-

tion (19) follows from perturbation theory, which predicts 

s̃
k
≈ s

k
+

1

2
𝜖

2
D∕s

k
 (Epps and Krivitzky 2019). For the 

Sect. 3.2 example (Fig. 4a), neither reconstruction is perfect, 

but again the simple ‘E15’ method (16) works well.

(19)s̄
k
=

{

1

2

(

s̃
k
+

√

s̃
2

k
− 2𝜖2D

)

(k < k
c
)

0 (k
c
≤ k)

,

3.1.2  Root mean square error (rmse)

In order to help orient the reader as to the levels of noise 

in the modes, we find it useful to define the following 

mode indices:

Since rmse(ṽ
k
) ≈ 𝜖∕s̃

k
 , these three indices correspond 

to modes with rmse(ṽk) ≈ 1∕
√

TD, 1∕(
√

D +
√

fT) , and 

(20)

kF = min k such that s̃k < 𝜖

√

TD

k
2
= min k such that s̃k < 𝜖(

√

D +
√

fT)

k
𝜖
= min k such that s̃k < 𝜖

√

D

.

30 40 50 60 70 80 90 100
10
-5

10
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10
-3

10
-2

(a) Singular values

0 10 20 30 40 50 60 70 80 90 100
10
-5
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-4

10
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10
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10
-1

(b) Root mean square error
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2.5

3
10
-5

(c) Mean loss 〈∆r〉

30 40 50 60 70 80 90 100

10
-7

10
-6

(d) Standard deviation of the loss σ∆r

Fig. 4  (Sect.  3.2 example) Monte Carlo results: a singular values 

showing approximation of the noisy singular values ⟨s̃
k
⟩ (filled sym-

bols) and reconstruction of the clean singular values ⟨s̄
k
⟩ (open sym-

bols). b Root mean square error. (c & d) Mean and standard deviation 

of the loss. Loss estimate (22) is marked “ 𝛥
r
 approx.”. The symbols 

marked r
B
 , r

F
 , and r

F̃
 indicate the Brindise ELF method and the 

Raiola criteria (6) and (7), respectively. Here, T = 100 , D = 2000 , 

� = 10−5 , �� = 1.23� , ��� = 0.96� , and 𝜖 = 1.23𝜖
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1∕
√

D , respectively. Moreover, index k
F
 marks the first 

mode that fails the (Epps and Techet 2010) criterion (5), 

k
2
 provides a rough approximation for the minimum-loss 

reconstruction rank, and k
�
 is the minimum index for which 

the noisy singular values overlay on the Marchekno–Pastur 

noise distribution.

Figure 3b shows the root mean square error of the spa-

tial modes, comparing the theoretical prediction (13) to 

numerical results. Here, the theory slightly over-predicts 

the rmse, because the rmse is proportional to the noise 

level 𝜖 , and the estimated 𝜖 = 1.18𝜖 is too large. Never-

theless, the form of the rmse is correct, and the optimum 

index r̄
min

 (15) is predicted within ± 2 indices of what it 

would be if 𝜖 was more accurate.

3.1.3  Reconstruction loss

Figure 3c shows the reconstruction loss for the ‘E15’ method 

(16)/(17) and the ‘EK18’ method (19)/(17) with and without 

c̄
�
 (41). For reference, we also show the Ā

r
=

∑

r

𝓁=1
ũ𝓁s𝓁c𝓁 ṽ

⊺

𝓁
 

and Ā
r
=

∑

r

𝓁=1
ũ𝓁 s̃𝓁 ṽ

⊺

𝓁
 methods, which are the best- and 

worse-case scenario reconstructions. The variable c
�
 is 

derived in “Appendix 2”, where we show that among all 

reconstructions that use the noisy singular vectors, the 

reconstruction that minimizes the loss �
r
 is the one with 

s̄
�
= s

�
c
�
 , where

This c
�
 accounts for the projections of the noisy singular 

vectors in each of the clean singular vector directions.

The inset of Fig. 3c shows that (for all five methods) 

the loss is very sensitive to choice of rank for r < k
2
 but is 

relatively insensitive to rank for r > k
2
 . The reason for this 

behavior is that modes k < k
2
 contain most of the signal 

content, whereas modes k > k
2
 contain mostly noise.

Note that for the ‘ ̃u𝓁 s̄𝓁 ṽ
⊺

𝓁
 E15’ method, the rank 

r̄
min

= 19 (from 15) yields 𝛥
r̄

min
= 2.60 × 10

−3 , which is 

just 2.5% larger than the minimum of the ‘E15’ loss curve 

�
rmin

= 2.53 × 10−3 , where r
min

= 21 . Also, note that at r̄
min

 

the ‘E15’ loss is nearly equal to the loss of the ‘ ̃u𝓁s𝓁c𝓁 ṽ
⊺

𝓁
 ’ 

method, which is the theoretical minimum.

As shown in Fig. 3d, the ‘E15’ method also has the 

least variation in loss, almost as low as the hypothetical 

‘ ̃u𝓁s𝓁c𝓁 ṽ
⊺

𝓁
 ’ method.

3.1.4  Estimate of reconstruction loss

One motivating question of this article is What is the limit 

to the accuracy of SVD-based data reconstruction? We 

can answer this question mathematically with the follow-

ing estimate of the loss:

(21)c
𝓁
≡

T
∑

k=1

(ũ
𝓁
⋅ u

k
) (ṽ

𝓁
⋅ v

k
) s

k
∕s

𝓁
.

where the s̄
k
 are the reconstructed singular values (16). 

Equation (22) is an approximation of the hypothetical loss 

prediction (61) derived in “Appendix 3”. This approxima-

tion (22) has the correct asymptotic behavior at k ≈ 1 and 

correctly equals 𝜖2
TD at k = T  (since �2

TD is the loss of the 

original noisy data). Figure 3c shows this “ 𝛥
r
 approx.” is rea-

sonable; at rank r̄
min

 , Eq. (22) predicts 𝛥
r̄

min
= 2.89 × 10

−3 , 

which is just 11% higher than the actual ‘E15’ loss 𝛥
r̄

min
.

Clearly, the loss predicted by Eq. (22) has a minimum, 

since 
∑T

k=r+1
s̄

2

k
 monotonically decreases with r whereas the 

𝜖
2
Dr monotonically increases with r. Thus, the minimum 𝛥

r
 

forms a rough limit to the accuracy of the data reconstruc-

tion. More usefully, 𝛥
r̄

min
 forms an estimate of the actual loss 

of the ‘E15’ data reconstruction.5

3.1.5  Figure of merit for reconstruction accuracy

A figure of merit for the reconstruction can be formed by 

comparing the estimated reduction in loss to the loss of the 

original noisy data:

This non-dimensional ratio can be used to gauge the 

improvement in accuracy.6

The parameter M can also be loosely interpreted as the 

fraction of noise that has been removed. For the cylinder 

example of Sect. 2.1, M = 98% (also 𝛥
r̄

min
= 0.0034 and 

𝛥
r̄

min
= 0.0031 ). For the present analytic example (Sect. 3.1), 

M = 48%.

3.1.6  Comparison to literature methods

Other reconstruction methods were examined as well. The 

(Brindise and Vlachos 2017) ELF method on average yields 

low loss, ⟨�
r
⟩ = 2.77E − 3 , although it has a much larger 

variability in loss ( �
�

r

= 1.09E − 4 ) than the ‘E15’ method 

(see Fig. 4c, d). The reason for this larger variability is that 

the ELF method has a larger variability in rank ( �
r

B

= 0.905 ) 

than the ‘E15’ method ( 𝜎
r̄

min
= 0.494 ), so the ELF method 

(22)𝛥
r
= 𝜖

2
Dr +

T
∑

k=r+1

s̄
2

k
,

(23)M ≡

𝜖
2
TD − 𝛥

r̄
min

𝜖2TD
.

5 Evidently, one could choose r̄
min

 as the index for which 𝛥
r
 (22) is a 

minimum. In the present examples, this scheme yields a r̄
min

 within 

±2 indices of the r̄
min

 from (15).
6 Values of M less than zero indicate that the reconstruction is less 

accurate than the original noisy data.
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more often chooses the rank too low, resulting in large 

losses.

The (Raiola et al. 2015) F and F̃ methods yield sig-

nificantly higher ranks and losses than the present ‘E15’ 

method. For this example, the F̃
k
 method always predicted 

r̃
F
= 40 , because the F̃

k
 parameter was always less than 

0.999. The reason that F̃
k
< 0.999 here is because F̃

k
 asymp-

totes to 1 only when the data matrix has a very high aspect 

ratio ( D ≫ T  ) such that the tail of the noisy singular values 

is nearly constant.

Not shown in the figures are the results of the (Shabalin 

and Nobel 2013) method, since they nearly overlay on the 

present ‘ ̃u𝓁 s̄𝓁 c̄𝓁 ṽ
⊺

𝓁
 EK18’ method, although their theoretical 

development and final equations differ from those presented 

herein.

3.2  Effect of the distribution of singular values

In order to illustrate the effect of the distribution of sin-

gular values, consider constructing the analytic data using 

the singular vectors from (18) but now using the following 

singular values:

The noise data were constructed by first drawing from a 

normal distribution with standard deviation 
√

w� and then 

performing uniform spatial smoothing over a window of 

width w. This two-step process yields spatially-correlated 

noise with standard deviation � . Results of a Monte Carlo 

simulation with � = 10−5 , w = 5 , T = 200 , D = 2000 , and 

N = 1000 are shown in Fig. 4.

The results in Fig. 4 generally agree with those of in 

Fig. 3. One key difference in the results of these examples is 

that here the ‘ ̃u𝓁 s̄𝓁 c̄𝓁 ṽ
⊺

𝓁
 EK18’ reconstruction has unaccept-

ably poor performance in both loss (Fig. 4c) and variabil-

ity (Fig. 4d). The reason is that the estimated c̄
�
 attenuates 

(24)log10(sk
) = −5

k − 1

T − 1
− 0.1 sin

(

12�
k − 1

T − 1

)

,

modes 56 and higher much more than the exact c
�
 , because 

the root mean square errors of these modes are large (see 

Fig. 4b). Since using c̄
�
 might lead to a more lossy recon-

struction than the original noisy data, we recommend not 

using c̄
�
 in data reconstruction.

Although the two ‘EK18’ methods have a more theoreti-

cally-sophisticated foundation than the ‘E15’ method, they 

again are found to be less accurate and more variable than 

the ‘E15’ method; therefore, the ‘EK18’ methods are not 

recommended.

Figures 3 and 4 show that the ‘E15’ method (15)/(16)/

(17) yields the least mean loss ⟨�
r
⟩ and the least varia-

tion �
�

r

 of all the practical methods shown. Moreover, the 

loss from the ‘E15’ method is very close to that from the 

theoretical minimum-loss method ‘ ̃u𝓁s𝓁c𝓁 ṽ
⊺

𝓁
 ’. Here, the 

optimum reconstruction rank is predicted to be r̄
min

= 66 , 

while the actual minimum of the ‘E15’ loss curve occurs 

at r
min

= 69 . However, the ‘E15’ loss curve is very flat, 

and the loss 𝛥
r̄min

= 1.50 × 10−5 is just 0.9% higher than 

�
rmin

= 1.48 × 10−5.

Again, Eq. (22) provides an acceptable estimate of the 

loss. Here, (22) predicts 𝛥
r̄min

= 2.08 × 10−5 , about 40% 

larger than the actual 𝛥
r̄

min
 . Here, the reconstruction merit 

(23) is M = 32%.

4  Synthetic PIV: cylinder flow

4.1  Generation of datasets

In this section, we consider a synthetic PIV data set gener-

ated using Sect. 2.1 CFD data. As illustrated in Fig. 5, a 

clean image pair was created for each time step, with parti-

cles placed randomly in the initial image, and then advected 

with the local flowfield (as interpolated from the clean CFD 

data) for the second image. The noisy image color intensity 

was obtained by reducing that of the corresponding clean 

Fig. 5  (Sect. 4 cylinder PIV example) Generation of synthetic PIV datasets from clean CFD data
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image and adding uniformly-distributed noise to each pixel. 

PIV processing was performed in DaVis 8.3.1, using several 

multi-pass approaches as summarized in Table 1. For the 

figures, PIV processing was performed with an initial inter-

rogation window size of 64 × 64 px with 50% overlap, then 

three passes on a final window size of 32 × 32 px with 75% 

overlap. Since the noisy data at the edge of the PIV domain 

have non-Gaussian error, these data were cropped prior to 

SVD analysis. The resulting vector field contained 126 × 84 

vectors ( D = 21, 168 ) and T = 455 timesteps. Further details 

regarding generation and processing of the synthetic PIV 

images are given in (Epps and Krivitzky 2019).

Here, we introduce the following notation: � = clean 

CFD data, �∗ = clean PIV data, Ã∗ = noisy PIV data, and 

Ā
∗ = reconstructed PIV data (which should agree with 

�
∗ ). We also redefine the reconstruction loss from (4) as 

�
r
≡ ‖�∗ − Ā

∗

r
‖2

F
.

4.2  Results overview

As in previous examples, the proposed methods prove 

successful:

• The error estimation procedure of “Appendix  1” pro-

duces an accurate estimate 𝜖 = 1.85 × 10−5 of the actual 

rms error � = 1.90 × 10−5 , which is the rms difference 

between the clean and noisy PIV data.

• Equation (16) yields an accurate reconstruction of the 

clean singular values for k < r̄
min

 , which are the impor-

tant modes (see Fig. 6a).

• The ‘E15’ noise filtering method (16)/(17) yields losses 

nearly as low as the theoretical minimum-loss ‘ ̃�𝓁s𝓁c𝓁 �̃
⊺

𝓁
 ’ 

curve (see Fig. 6c).

• The Brindise method yields rank and loss similar to those 

of the present approach, whereas the Raiola methods 

yield much higher rank and loss.

• The estimated loss 𝛥
r̄

min
= 3.0 × 10

−4 from (22) is within 

a factor of 2 of the actual 𝛥
r̄

min
= 1.6 × 10

−4.

• Here, the reconstruction merit (23) is M = 91%.

Figure 7 shows a snapshot of the vorticity field of the clean 

PIV data, noisy PIV data, ‘E15’ reconstruction at r̄
min

= 16 , 

and the standard ‘ ̃�𝓁 s̃𝓁 �̃
⊺

𝓁
 ’ reconstruction at r = k

F
− 1 = 7 . 

Note that while the original noisy-data vorticity field con-

tains significant noise, the character of the vorticity field is 

restored by the ‘E15’ reconstruction. For example, the ‘E15’ 

reconstruction recovers the thin blue ‘stripe’ in the middle of 

the frame and the green ‘spike’ near the right side. Choosing 

a lower rank, such as r = 7 , results in additional smoothing 

but loss of some of these fine details of the flowfield.

4.3  On the use of w = 1 to predict r̄
min

The important new feature of this example is that it uses 

PIV data, which contain spatially-correlated noise. Con-

sequently, the noisy singular values in Fig. 6a are best 

fit by at Marchenko–Pastur distribution that has spatial-

correlation parameter f > 1 (here, f = 7.1 ). Inserting this 

f = 7.1 into (12) yields an effective smoothing window 

width of w = 13.7 , which is reasonable considering that 

the data were smoothed three times using the 9 nearest 

Table 1  (Sect. 4 cylinder PIV example) Results for selected PIV processing schemes

� actual rms error between noisy and clean PIV data, 𝜖 error estimate (“Appendix  1”), r
min

 and �
r

min

 actual rank and value of minimum ‘E15’ 

loss, r̄
min

 and 𝛥
r̄

min

 estimated optimum rank (15) [with w = 1 in (13)] and resulting loss, r
B
 and �

r
B

 Brindise ELF rank and loss, r
F
 and �

r
F

 Raiola 

F rank and loss, r
F̃
 and 𝛥

r
F̃

 Raiola F̃ rank and loss

PIV processing approach �×105
𝜖×105

r
min

r̄
min

r
B

r
F

r
F̃

k
2 �

r
min
×10

3
𝛥

r̄
min
×10

3
�

r
B

×10
3

�
r

F

×10
3

𝛥
r

F̃

×10
3

◦ 32 px 75% → 8 px 0% 6.13 6.08 13 13 13 14 32 21 1.16 1.16 1.30 1.41 3.22

◦ 32 px 75% → 16 px 50% 3.22 3.19 15 15 13 25 27 42 0.75 0.75 0.77 1.12 1.19

◦ 32 px 75% → 32 px 75% 1.72 1.72 19 19 15 50 59 49 0.47 0.47 0.48 0.80 0.88

◦ 64 px 50% → 8 px 0% 6.06 6.08 13 13 13 14 21 14 1.10 1.10 1.23 1.33 2.03

◦ 64 px 50% → 16 px 50% 3.06 3.01 15 15 13 24 56 35 0.35 0.35 0.37 0.67 1.55

◦ 64 px 50% → 32 px 75% 1.43 1.41 17 21 13 56 58 54 0.27 0.28 0.28 0.57 0.58

◦ �� px ��% → � × (�� px ��%) 1.90 1.85 15 16 15 30 52 29 0.16 0.16 0.17 0.39 0.68

◻ 32 px 75% → 8 px 0% 6.58 6.48 13 13 13 16 19 14 2.87 2.87 3.04 3.38 3.72

◻ 32 px 75% → 16 px 50% 3.77 3.74 15 13 13 27 34 36 1.04 1.04 1.07 1.60 1.88

◻ 32 px 75% → 32 px 75% 2.09 2.30 378 17 13 49 90 41 1.07 1.24 1.27 1.59 2.01

◻ 64 px 50% → 8 px 0% 6.51 6.40 13 12 13 18 24 14 2.78 2.80 2.94 3.50 4.16

◻ 64 px 50% → 16 px 50% 3.61 3.56 15 13 13 24 27 25 0.52 0.52 0.54 0.93 1.05

◻ 64 px 50% → 32 px 75% 1.71 1.71 16 17 13 50 52 60 0.45 0.45 0.46 0.76 0.78

◻ 64 px 50% → 3 × (32 px 75%) 2.14 2.10 15 15 15 27 32 29 0.20 0.20 0.22 0.43 0.51
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neighbors. Also, the data contain spatial correlation due 

to being acquired in overlapping interrogation windows.

A question arises as to whether the value w = 13.7 

should be used to estimate the root mean square error 

(rmse) of the SVD modes (and subsequently the optimal 

reconstruction rank). Figure 6b compares the rmse pre-

dictions (13) using both w = 13.7 and w = 1 , as well as 

the numerically-computed rmse (which is that between 

the noisy and clean PIV modes). The optimal reconstruc-

tion rank (15) predicted using the w = 1 rmse is marked 

r̄
min

= 16 , and an alternative rank (predicted using the 

w = 13.7 rmse) is marked r̄
alt

= 13 . In this case, both ranks 

are nearly the same as the actual rank r
min

= 15 that yields 

minimum ‘E15’ loss. Moreover, the difference in loss 

between these three ranks is negligible, so use of w = 13.7 

or 1 is somewhat of a moot point in this example.

However, in other examples (Sects. 5, 6), we have found 

that using the rmse predicted with w = 1 yields a more 

accurate estimate of the optimal reconstruction rank. 

Using w = 1 drives the rmse down, which drives the w = 1 

rank r̄
min

 lower than the w > 1 rank r̄
alt

 . Considering the 

shape of the loss curve (see Fig. 6c), it is much better to 

estimate the rank too high than too low. Therefore, it is 

recommended that w = 1 should be used to predict rmse 

and subsequently r̄
min

.

4.4  Effect of PIV processing scheme

Another question arises as to the efficacy of the proposed 

noise filtering method with respect to different PIV pro-

cessing schemes. Table 1 compares results for several 

PIV processing approaches. Interestingly, the minimum 

loss �
r

min
 decreases as the final interrogation window size 

increases. This result is explained by the fact that �
r

min
 is 

some fraction of �2
TD , and � also decreases with increas-

ing interrogation window size.

For all cases in Table 1, the tail fit method of “Appendix  

1” produces an accurate estimate 𝜖 of the actual error � , 

and the rank r̄
min

 (predicted using w = 1 ) is very close to 

the actual optimum rank r
min

 . Moreover, the resulting loss 

𝛥
r̄

min
 is nearly as low as the minimum loss �

r
min

 for most 

cases. Again, the Brindise ELF method yields slightly 

higher losses, and the Raiola F and F̃ methods yield sig-

nificantly higher losses.
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Fig. 6  (Sect.  4 cylinder PIV example) Singular values, root mean 

square error, and reconstruction loss. In a, threshold levels are shown 

with � = 1.90 × 10−5 , and the M–P fit is made with �� = 1.87 × 10−5 

and f = 7.1 . In b, r̄
min

= 16 is the index for which the rmse is within 

5% of the ceiling 
√

2∕D . In c, r
min

= 15 is the index for minimum 

‘ ̃�𝓁 s̄𝓁 �̃
⊺

𝓁
 E15’ loss

▸
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5  Synthetic PIV: channel flow

In this example, we consider synthetic PIV of a much more 

complex flowfield, fully-developed turbulent channel flow. 

This example provides further validation of the proposed 

methods, and it allows us to illustrate the effects of sam-

pling timestep and number of snapshots on the proposed 

methods.

5.1  Generation of data sets

Synthetic PIV images were generated as in Sect. 4, with 

particles placed randomly in the initial image and advected 

with the local flowfield for the second image. Here, the 

flowfield was interpolated from direct numerical simu-

lation (DNS) data of turbulent channel flow (Kim et al. 

1987; Lee et al. 2013) obtained from the Johns Hopkins 

turbulence database (Li et al. 2008; Graham et al. 2016). 

The image size was 1024 × 1024 px, with 20,480 parti-

cles ( ≈ 20 particles per 32 × 32 px interrogation window). 

Image pairs were generated corresponding to DNS domain 

0 ≤ x ≤ 1 , −1 ≤ y ≤ 0 and the first 2000 timesteps of the 

DNS database.

PIV processing was performed in DaVis 8.3.1, using an 

initial interrogation window size of 64 × 64 px with 50% 

overlap, then three passes on a final window size of 32 × 32 

px with 75% overlap. After cropping the edges, the resulting 

vector field contained 126 × 126 vectors ( D = 31, 752 ) and 

2000 timesteps.

5.2  Baseline case ( ıt, T = 500)

In this subsection, we consider only the first T = 500 

timesteps of PIV data (spaced �t apart, where �t is the DNS 

database timestep). Here, the rms error between the noisy 

and clean PIV data is � = 0.0105 , and the Marchenko–Pastur 

tail fit predicts 𝜖 = 0.0109 and f = 7.9 ( w = 15.3).

The key difference between this turbulent flow example 

and the previous ones is that here, the clean singular values 

decay much more slowly. As a result, there is less separa-

tion between the clean and noisy PIV singular values (see 

Fig. 8a). For example, here s̃∗
T
∕s

∗
T
= 7.7 , whereas in the PIV 

cylinder example s̃∗
T
∕s

∗
T
= 15.3 , and in the analytic examples 

of Sects. 3.2 and 3.1, s̃
T
∕s

T
= 32 and 49, respectively.

This reduced separation between the clean and noisy 

singular values makes it challenging to correctly estimate 

the error level 𝜖 and effective smoothing window width 

w.7 As a result, the rmse predictions end up too large when 

using w > 1 (c.f. compare the w = 15.3 theory curve and the 

numeric rmse curve in Fig. 8b). Instead, the rmse should be 

estimated using w = 1 , which provides a conservative esti-

mate of the rmse that is useful for predicting the optimum 

reconstruction rank r̄
min

.

Figure 8c shows the reconstruction loss for this chan-

nel flow case: The estimated reconstruction rank r̄
min

= 105 

yields a loss of 𝛥
r̄

min
= 497 , which is nearly as low as the 

minimum ‘E15’ loss �
rmin

= 495 (at r
min

= 114 ). As in previ-

ous examples, the Brindise ELF method has slightly higher 

loss ( �
r

B

= 569 with r
B
= 110 ), and the Raiola methods have 

higher losses ( 𝛥
r

F̃

= 857 at r
F̃
= 180 ). Equation (22) again 

provides a very good loss estimate: 𝛥
r̄

min
= 494 (just 0.8% 

lower than 𝛥
r̄

min
 ). The reconstruction merit (23) is M = 74%.

5.3  Effect of timestep and number of snapshots

Two important questions to address at this point are: (1) how 

do the various noise filtering methods perform as the separa-

tion between the noisy and clean singular values varies?, and 

(2) how do the timestep and number of frames in the dataset 

affect the singular values? To address these questions, we 

performed the SVD on six datasets subsampled with various 

Fig. 7  (Sect. 4 cylinder PIV example) Vorticity field for a single timestep, illustrating the ‘clean PIV’ and ‘noisy PIV’ data, as well as two recon-

structions: the �̃𝓁 s̃𝓁 �̃
⊺

𝓁
 reconstruction at rank r = k

F
− 1 = 7 , and the �̃𝓁 s̄𝓁 �̃

⊺

𝓁
 E15 reconstruction at rank r̄

min
= 16

7 Consider the limit of � → 0 , where the noisy singular values would 

overlay on the clean ones. If the clean singular values were to decay 

slowly, as in Fig. 8a, then a Marchenko–Pastur distribution would be 

able to be fit, and some 𝜖 > 0 and w > 1 would erroneously be pre-

dicted.
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timesteps ( �t , 2�t , and 4�t , where �t is the DNS database 

timestep) and number of snapshots ( T = 500, 1000, 2000).

Figure 9a shows the clean singular values for these six 

cases. When plotted versus normalized mode index k / T, 

the cases with the same timestep (but different T) overlay, 

indicating that the number of snapshots T has little effect 

on the clean singular values. Rather, the shape (slope and 

magnitude) of the tail of the clean singular values is dictated 

by the timestep.

By contrast, the noisy singular values are relatively insen-

sitive to the timestep (Fig. 9b), so a larger timestep causes 

there to be less separation between clean and noisy singular 

values.

Figure 9c shows the loss for the three T = 500 cases 

(with the �t case carried over from Sect. 5.2). As expected, 

a larger timestep results in more loss, and less of a “bucket” 

below the noisy dataset loss �2
TD within which to advanta-

geously filter noise. Consequently, the reconstruction merit 

(23) decreases with increasing timestep; for the �t , 2�t , and 

4�t cases, we find M = 74% , 54%, and 9%, respectively. In 

all three cases, the present methods yield reasonable pre-

dictions of the optimal reconstruction rank r̄
min

 . The ELF 

method performs well at �t and 2�t but not 4�t . In contrast, 

the Raiola method performs best at 4�t.

For reference, the rmse for the { 2�t , T = 500 } case are 

shown in Fig. 9d. Here, the effect of using w > 1 versus 

w = 1 is very pronounced, with the w = 1 rmse predictions 

yielding a much better optimal rank estimate r̄
min

= 164 . The 

w > 1 rmse predictions yield r̄
alt

= 111 , which results in sig-

nificantly more loss than using r̄
min

.

5.4  Comment regarding optimal rank criterion

Some readers might find it controversial to use the root mean 

square error of the spatial modes (rmse(ṽ
k
 )) in order to pre-

dict the optimal reconstruction rank. The reasoning is that 

modes with very similar energy might switch order, so their 

computed rmse might be very large, even if the modes them-

selves did not change.

Regarding modes with similar energy (i.e. small gap 

between neighboring singular values), there are two impor-

tant cases to consider: First, consider “paired modes”, which 

are modes with similar energy that are well below the noise 

ceiling. Equation (13) shows that the rmse of each of these 

modes will indeed be higher than the rmse of “isolated 

modes” (i.e. those with well-separated singular values). The 

reason is that paired modes can and do mix upon perturba-

tion. However, Wedin’s theorem ensures that the subspace 

spanned by these modes, as a group, is only slightly per-

turbed. Thus, paired modes below the noise ceiling should 

be and are used in our data reconstruction method.

The second case to consider is “noise modes”, which are 

modes with rmse at the noise ceiling (rmse(ṽ
k
) ≈

√

2∕D ). 
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Fig. 8  (Sect.  5 Channel flow PIV example) Singular values, rms 

error, and reconstruction loss



 Experiments in Fluids (2019) 60:126

1 3

126 Page 14 of 23

These modes have similar energy, since their singular values 

fall in the tail of the distribution. In (Epps and Krivitzky 

2019), we show that modes with rmse(ṽ
k
) ≈

√

2∕D consti-

tute random noise. Thus, these modes should be discarded 

for noise filtering.

A subtle point is that Eq. (15) keeps all the paired modes 

and only discards the noise modes, because r̄
min

 is set as the 

“maximum k such that t
k
> 5% ”. In other words, there might 

be some paired modes with t
k
> 5% , but as long as there are 

some isolated modes with t
k
< 5% for larger k, then those 

paired modes are kept. For example, note in Fig. 9d that 

modes k = 134–135 and 142–143 have rmse above the 5% 

cutoff, but these paired modes are kept, because there are 

other isolated modes between those and r̄
min

= 164 , which 

is the last mode with rmse below the 5% cutoff.

6  Laminar jet PIV example

In this final example, we apply the present noise filtering 

methods to a real PIV dataset. Here, we consider a publicly-

available PIV dataset that captures the Kelvin–Helmholz 

instabilities of a laminar jet in a quiescent fluid (Neal et al. 

2015). This set of PIV images is unique in that it is accom-

panied by ‘clean’ vector fields that have been obtained using 

high-dynamic-range PIV (PIV-HDR), which has higher 

accuracy than standard PIV because it uses multiple cameras 

with very high image resolution (Neal et al. 2015).

6.1  Generation of datasets

A sample PIV image is shown in Fig. 10; the red solid rec-

tangle highlights the cropped region used for PIV process-

ing, and the green dash-dot rectangle represents the region 

where the PIV-HDR data are available. Since the PIV and 
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Fig. 9  (Sect. 5.3 Channel flow PIV example) Effect of timestep and number of snapshots
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PIV-HDR data are not available on the same grid, the SVDs 

of these two datasets cannot be compared directly, and the 

reconstruction loss must be computed only over the PIV-

HDR region. For the reconstruction loss, the PIV-HDR data 

are down-sampled to the standard PIV grid locations. PIV 

processing was performed using DaVis 8.3.1, with a final 

window size of 16 × 16 px with 75% overlap, leading to a 

43 × 84 vector grid. Figure 10 displays a sample vector field 

and corresponding vorticity contours; flow is left to right.

6.2  Results and discussion

Similar to the previous example, singular values of the noisy 

data (Fig. 11a) are very-well fit by a Marchenko–Pastur dis-

tribution with f > 1 (here f = 8.1 , w = 15.7 ). In this exam-

ple, a long ‘transition region’ k
F
< k < k

𝜖
 exists, wherein the 

modes transition from fairly clean ( k < k
F
= 3 ) to complete 

noise ( k > k
𝜖
= 125 ). With the ‘E15’ reconstruction (16), 

the singular values in this transition region are reduced. 

Although ‘clean’ data exists, their singular values are not 

directly comparable to those of the PIV dataset due to the 

different region sizes, so ‘clean’ singular values are not 

shown.

Reconstruction loss (Fig. 11c) was determined by sam-

pling both the ‘clean’ PIV-HDR data and the PIV recon-

struction datasets at points within the HDR region. The 

results generally follow the previous examples: The standard 

‘ ̃u𝓁 s̃𝓁 ṽ
⊺

𝓁
 ’ reconstruction has a minimum (here, �

r
= 377 at 

r = 18 ) and then rises for higher ranks. The ELF method 

selects r
B
= 15 modes for reconstruction, resulting in a loss 

of �
r

B

= 395 . The Raiola F̃ method selects rank r
F̃
= 43 , 

yielding loss 𝛥
r

F̃

= 430 . The ‘E15’ reconstruction selects 

rank r̄
min

= 30 and has loss 𝛥
r̄

min
= 360 , which happens to 

Fig. 10  (Sect. 6 Laminar Jet PIV example). (Left) Sample PIV image 

(Neal et al. 2015), with cropped region used for PIV processing (red 

box), and region where the PIV-HDR data are available (green dash-

dot box). (Right) Resulting PIV velocity vectors (every fourth vector 

shown) and vorticity contours
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Fig. 11  (Sect. 6 Laminar Jet PIV example) Singular values, rmse, and 

reconstruction loss
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be the minimum E15 loss. Of the three methods, again the 

E15 reconstruction has the minimum loss. The Raiola F 

method was not applicable, because the clean singular values 

were unknown for this real PIV dataset. The loss estimate 

(22) and reconstruction merit (23) also are not applicable 

here, because the loss is not computed over the entire PIV 

domain.8

Snapshots of vorticity for the noisy data compared to the 

‘E15’ reconstruction (at r̄
min

= 30 ) are shown on the left of 

Fig. 12 at two different times for the entire PIV region. The 

time-mean velocity field has been removed, revealing sig-

nificant noise in the measurements of unsteady components. 

The E15 reconstruction filters out much of the noise, leaving 

a much clearer view of the important flow structures. The 

three large panels of Fig. 12 show the noisy data, E15 recon-

struction, and ‘clean’ PIV-HDR data on the HDR region. 

The E15 reconstruction matches the prominent features of 

the ‘clean’ data quite well.

7  Conclusions

This paper addresses several questions regarding noise filter-

ing via the singular value decomposition:

How effective is the SVD for filtering out the noise and 

reconstruction the clean data?

The effectiveness of the SVD for noise filtering is depend-

ent on the decay rate of the clean singular values and the 

noise level of the data. Recall, the reconstruction loss was 

reasonably estimated by Eq. (22), which predicted

Considering (25), it is clear that the lowest losses can be 

achieved in problems where the optimum reconstruction 

rank r̄
min

 is small and the clean singular values in the tail 

k > r̄
min

 are negligible. The examples from Sects. 2.1, 4, 

and 5.2 have such character, so their reconstruction loss 𝛥
r̄

min
 

was much less than the loss of the original noisy data �2
TD.

The non-dimensional ratio

can be used to gauge the improvement in loss. Values greater 

than zero suggest that the reconstruction is more accurate 

than the original noisy data, with values approaching unity 

suggesting a highly accurate reconstruction.

The character of having negligible clean singular val-

ues and a low reconstruction rank is akin to having a large 

separation between the tails of the clean and noisy singular 

values. With large separation, the filtering capacity of the 

SVD is quite good. However, in cases with little separation, 

an SVD-based reconstruction might filter some noise but 

not necessarily improve the accuracy (loss) over that of the 

(25)𝛥
r̄

min
= 𝜖

2
Dr̄

min
+

T
∑

k=r̄
min

+1

s̄
2

k
.

(23)M ≡

𝜖
2
TD − 𝛥

r̄
min

𝜖2TD
.

Fig. 12  (Sect.  6 Laminar Jet PIV example) Snapshots of vorticity 

(with time-mean flow removed). The small panels show the noisy 

data and ‘ ̃u𝓁 s̄𝓁 ṽ
⊺

𝓁
 E15’ reconstruction ( ̄r

min
= 30 ) at two times ( t = 81 

and 161). The large panels blow up the PIV-HDR region at time 

t = 161 , showing the noisy PIV flowfield, E15 reconstruction, and 

‘clean’ PIV-HDR data

8 For the inquiring mind, 𝛥
r̄

min
⋅ (D

HDR
∕D) = 198 , just 45% lower 

than 𝛥
r̄

min
 , and M = 73%.
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original noisy data (c.f. the 4�t curve in Fig. 9c). In Sect. 5.3, 

we showed that the separation between clean and noisy sin-

gular values can be increased by using a decreased timestep.

What method yields the most accurate data reconstruc-

tion, and what are the limits to its accuracy? While a num-

ber of practical reconstruction approaches were investi-

gated, the ‘E15’ method (15)/(16)/(17) proved to be most 

robust, with the lowest mean loss ⟨�
r
⟩ and the least vari-

ation �
�

r

 . Moreover, choosing the rank r̄
min

 yields nearly 

the minimum loss possible when reconstructing with the 

noisy singular vectors.

In “Appendix 3”, we show that even more accurate 

reconstructions could be formed if the clean singular vec-

tors were known (or correctly estimated somehow). Thus, 

one focus of future work is to develop a practical method 

for estimating the clean singular vectors from the noisy 

ones.

Can the magnitude of the noise be inferred from the 

noisy data themselves? A method to estimate the RMS 

noise was presented in “Appendix  1”. The approach is to 

fit a Marchenko–Pasteur distribution to the tail of the sin-

gular value distribution, with the noise level and the choice 

of index defining the tail determined so as to minimize the 

least square error of this fit. This method is sufficiently 

robust so as to enable noise estimation (and subsequently 

noise filtering) in an automated data processing code.

Collectively, this body of work provides a thorough 

analysis of the effects of noise on the SVD of noisy data, 

the potential for noise estimation using the SVD, and the 

capabilities of the SVD for noise filtering.
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Appendix 1: Estimation of the ‘measurement 
error’ �̄ , ‘spatial correlation factor’ f, 
and ‘effective smoothing window width’ w

Here we describe a procedure that can be used to estimate 

the measurement error 𝜖 , ‘spatial correlation factor’ f, and 

‘effective smoothing window width’ w for a given noisy 

dataset. The procedure involves fitting the tail of the noisy 

singular values with a Marchenko–Pastur distribution, 

𝜖
′
ŝ
�
 . The inputs to the procedure are the noisy singular 

values s̃
�
 and the size, T and D, of the dataset. The outputs 

are 𝜖 , f, and w, as well as the noise level of the fit �′ , and 

the index k̄
𝜖
 marking the start of the fit.

In (Epps and Krivitzky 2019), we provide the formula 

for the Marchenko–Pastur distribution 𝜖′ŝ
�
 . We use the 

notation 𝜖′ŝ
�
 to emphasize that these singular values are 

linearly proportional to the noise level �′ (such that ŝ
�
 cor-

responds to a unit-noise distribution). These ŝ
�
 are a func-

tion of T, D, and f.

In (Epps and Krivitzky 2019), we showed that the tail of 

the noisy singular values s̃
�
 follows a Marchenko–Pastur 

distribution 𝜖′ŝ
�
 . That is, s̃

�
≈ 𝜖

�
ŝ
�
 in the tail � ≥ k

�
 , where 

k
�
 is defined as the minimum index for which s̃

�
< 𝜖

√

D . 

This suggests a noise estimation procedure: Fit the tail of 

the data ( ̃s
�
 for � = k

�
,… , T  ) with 𝜖′ŝ

�
 , and then upon set-

ting 𝜖�ŝ
k
𝜖
= 𝜖

√

D at the tail-start index k
�
 , find the estimate 

𝜖 = 𝜖
�
ŝ

k
𝜖
∕
√

D . One difficulty with this approach is that k
�
 

is unknown a priori, because it depends on � . Therefore, 

a slightly more elaborate procedure is required.

Given a guess of the tail-start index k, we use least 

squares to fit a Marchenko–Pastur distribution 𝜖′ŝ
�
 to the 

tail of the noisy singular values s̃
�
 (�=k,…,T) . The mean square 

error between log10(𝜖
�
ŝ
�
) and log10 s̃

�
 is:

The �′ that yields the minimum L is found by solving 
dL

d(log10 �
�)
= 0 for �′ , which yields

Thus, for each choice of tail-start index k, Eq. (27) can be 

used to find the best fit ��(k) , and (26) can be used to evaluate 

the associated error L(k).

The actual tail-start index k
�
 can then be estimated as the 

index for which the fit error L(k) is a minimum. This assump-

tion is reasonable, because k
�
 marks a rapid departure of 

the noisy singular values from the fitted Marchenko–Pastur 

distribution.

For example, Fig. 13a shows a distribution of noisy sin-

gular values and the resulting best-fit Marchenko–Pastur 

distribution. Figure 13b shows the mean square error L(k) 

(26) and the fitted noise level, log10 �
�
(k) (27) versus tail start 

index k. Observe that the mean square error L(k) has a clear 

minimum (at the index marked k̄
𝜖
 ), which suggests that the 

overall best fit is formed with k = k̄
𝜖
 . Moreover, note that 

there is very low sensitivity of the inferred noise level ��(k) to 

the particular choice of index k̄
𝜖
 , so this procedure provides 

a robust way to determine �′.

For i.i.d. noise, w = f = 1 , and the above methods can be 

used to find �′ and k̄
𝜖
 . For spatially-correlated noise, w and 

(26)L =
1

T + 1 − k

T
∑

�=k

(log10 𝜖
� + log10 ŝ

�
− log10 s̃

�
)2 .

(27)log10 𝜖
� =

1

T + 1 − k

T
∑

�=k

(log10 s̃
�
− log10 ŝ

�
) .

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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f need to be determined as part of the fit. In our procedure, 

we determine the best fit using (26)/(27) for a series of f, so 

that we build a table of L(k,f ) . The best fit is that correspond-

ing to the k and f for which the fit error L(k,f ) is a minimum.

Spatially‑correlated Noise

Spatially-correlated noise can occur in experimental data 

that are spatially smoothed during collection or processing. 

For example, PIV data are typically collected from over-

lapping interrogation windows, and processing typically 

includes smoothing by a weighted average over the nine 

nearest neighbors. Such a dataset effectively has fewer than 

D independent data sites. Thus, it is reasonable to expect that 

the singular values of spatially-correlated random data still 

follow a Marchenko–Pastur distribution, but with param-

eter y = T∕D replaced by fT / D (see Epps and Krivitzky 

2019, Appendix D). Indeed, we have empirically found this 

approximation to work well when D∕T ≳ 20 and D∕fT ≳ 5 . 

The ‘spatial-correlation factor’ f represents the ratio

so f > 1 indicates effectively-fewer independent data sites 

due to spatial correlation.

For example, consider random data with spatial cor-

relation that is produced by taking a moving average of 

i.i.d. random data. Such an average could either have uni-

form weighting 1 / w or Gaussian weighting (see MATLAB 

(28)f = D∕(effective number of independent data sites) ,

(a) Example Singular Values

(b) Tail Matching Metrics

Fig. 13  Example Marchenko–Pastur tail fit: a singular values; b (top) 

mean square error, L(k) (26) and (bottom) fitted noise level, log10 �
�
(k) 

(27). Here, T = 40 , D = 100 , � = 0.001 , k
�
= 27 , k̄

𝜖
= 26 , 

𝜖
�

k̄
𝜖

= 1.272𝜖 , and 𝜖 = 1.003𝜖
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(b) Spatial correlation factor f versus window width w

Fig. 14  a Singular values of random data smoothed over selected 

window widths w. Each dataset is fit with a Marchenko–Pastur dis-

tribution, with the correlation factor f as shown. Here, T = 100 , 

D = 4000 , � = 1 . For uniform smoothing, �� = �∕
√

w . b Spatial cor-

relation factor f plotted versus smoothing window width w; the uni-

form smoothing data are from a, and the Gaussian smoothing data 

and PIV data are given in (Epps and Krivitzky 2019)
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gausswin function), where w is the width of the smooth-

ing window. Figure 14a shows the singular values of random 

data with uniform spatial smoothing. The w = 1 curve cor-

responds to the original i.i.d. data (no smoothing) and is well 

represented by the original Marchenko–Pastur distribution 

( f = 1 ). Clearly, the ‘spatial-correlation factor’ f increases 

with increasing ‘smoothing window width’ w.

Figure  14b shows these f versus w data for uniform 

smoothing and Gaussian smoothing, as well as the f versus 

w̃ data from the synthetic PIV example for several PIV pro-

cessing schemes. These w̃ data were determined in (Epps 

and Krivitzky 2019) so as to match the theoretical prediction 

of rmse(ũ
1
 ) to the numerical value. Equation (12) is a curve 

fit to these synthetic PIV data and provides an empirical 

relationship between w and f.

The precise value of w is not critically important for noise 

filtering, since it is recommended that w = 1 be used in (13) 

to the evaluate rmse(ṽ
k
 ) for PIV data. However, it is con-

ceivable that one might be interested in knowing the precise 

value of w for a particular flow problem or PIV processing 

scheme. Under those circumstances, it is recommended to 

use a known dataset to determine the f–w relation for the 

new PIV processing scheme before post-processing the tar-

get data.

Summary of error estimation procedure

To summarize, the following procedure is used to determine 

f, k̄
𝜖
 , �′ , 𝜖 , and w:

1. For each f = 1.0, 1.1,… , floor(D∕T)9 and tail-start index 

k = 1,… , �����(0.8 T),10 compute the unit Marchenko–

Pastur distribution ŝ
�
 , evaluate (27) to determine the 

best-fit noise level ��(f ,k) , and compute the associated 

mean square error L(f ,k) via (26).

2. Find the f and index k for which L(f ,k) is a minimum. Set 

k̄
𝜖
 to this selected k.

3. Form a preliminary estimate of the measurement error: 

 Equation (29) follows from the observation that the 

noisy singular values s̃
k
 rapidly depart from the March-

enko–Pastur distribution 𝜖′ŝ
�
 near the value 𝜖�ŝ

�
= 𝜖

√

D . 

Note, however, that typically �′ is greater than the true 

� while �′′ is less than � , so a weighted average of �′ and 

�
′′ typically forms the best estimate of �.

(29)𝜖
�� =

𝜖
�
(f ,k̄

𝜖
) ŝk̄

𝜖

√

D
.

4. Find index 

5. Estimate the measurement error by 

6. Using the best fit f, evaluate (12) to find w.

This approach has proven to be straightforward and robust 

under an array of singular value distributions, error levels, 

and datasets. This procedure provides a robust alternative 

to the traditional “scree test” (Cattell 1966), which can be 

foiled by closely spaced singular values, such as those in 

Sect. 3.2 example.

Appendix 2: Derivation of optimum 
reconstruction when using noisy modes

Consider reconstruction using the noisy mode shapes 

{ũ
�
, ṽ

�
} and some optimum singular values s̄

�
 to be 

determined:

We now derive the s̄
�
 that minimize the reconstruction loss 

�
r
≡ ‖� − Ā

r
‖2

F
 (4). In general, the loss can be written as:

with implied summation over k = 1,… , T  and � = 1,… , r , 

i = 1,… , T  , and j = 1,… , D . The minimum loss can be 

found by taking partial derivatives of (34) with respect to 

each s̄
�
 and setting them to zero

now with no implied sum over � . Clearly, the optimum s̄
�
 is 

s̄
�
= s

�
c
�

 with c
�
 defined as

(30)k
𝜖�
= minimum k such that s̃

k
< 𝜖

�

√

D .

(31)𝜖 = min

{

𝜖
�, 𝜖

�� + (𝜖� − 𝜖
��)

k̄
𝜖
− k

𝜖�

floor(0.8T) − k
𝜖�

}

.

(32)Ā
r
=

r
∑

𝓁=1

ũ𝓁 s̄𝓁 ṽ
⊺

𝓁
,

(33)𝛥r = ‖�‖2

F
+ ‖Ār‖

2

F
− 2AijĀij ,

(34)𝛥r = s2

k
𝛿kk + s̄2

�
𝛿
��

− 2UikŨi� sk s̄
�

VjkṼj� ,

(35)
𝜕𝛥r

𝜕s̄
�

= 2s̄
�
− 2UikŨi� sk VjkṼj� = 0 ,

(21)

c
𝓁
≡

T
∑

i=1

D
∑

j=1

T
∑

k=1

UikŨi𝓁 VjkṼj𝓁 sk∕s
𝓁

,

c
𝓁
≡

T
∑

k=1

(uk ⋅ ũ
𝓁
) (vk ⋅ ṽ

𝓁
) sk∕s

𝓁
.9 For i.i.d. data, only use f = 1.

10 We cap k at 0.8 T  in order to leave sufficient singular values in the 

tail to yield a reliable and meaningful tail fit.
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With a similar development, the expected value of the loss 

⟨�
r
⟩ is found to be minimized by setting s̄

�
= s

�
⟨c

�
⟩  . This 

expected value can be evaluated using the perturbation the-

ory results from (Epps and Krivitzky 2019) as follows:

Note that the expected values of the resulting O(�) terms are 

zero, because ⟨W
(1)

im�
⟩ = ⟨N

(1)

jm�
⟩ = 0 . Also note U

ik
U

i�
= �

k�
 

and VjkVj� = �k� . Thus, (36) reduces to

The remaining two expected value terms are given in (Epps 

and Krivitzky 2019). To O(�4) , we find

Upon summing over i and j, the result simplifies to

Finally, in terms of the canonical angles, we have

where cos�
𝓁
≡ ũ

𝓁
⋅ u

𝓁
 and cos �

𝓁
≡ ṽ

𝓁
⋅ v

𝓁
 . Upon regroup-

ing, this optimum reconstruction can be interpreted as 

Ā
r
=
∑

r

𝓁=1
(ũ𝓁⟨cos�𝓁⟩)s𝓁(ṽ

⊺

𝓁
⟨cos �𝓁⟩) . In words, the most 

accurate reconstruction is the one that uses the correct singu-

lar values (mode amplitudes) and the projections of the clean 

singular vectors into the noisy singular vector directions.

An estimate of the canonical angle term ⟨c
�
⟩ from (40) 

can be made as follows:

where

and

(36)

⟨c
𝓁
⟩ = ⟨Uik(Ui𝓁 + � W

(1)

im𝓁
Um𝓁

+ �
2 W

(2)

im𝓁
Um𝓁

+⋯)

⋅ Vjk(Vj𝓁 + � N
(1)

jm𝓁
Vm𝓁

+ �
2 N

(2)

jm𝓁
Vm𝓁

+⋯)⟩ sk∕s
𝓁

.

(37)

⟨c
�
⟩ = 1 + �

2Ui�⟨W
(2)

im�
Um�

⟩ + �
2Vj�⟨N

(2)

jm�
Vm�

⟩ + O(�4)

(38)

⟨c
�
⟩ = 1 −

�
2w

2

�m + �
�

(�m − �
�
)2
(1 − �m�

)U2

i�

−
�

2

2�
�

�
D − w + w

�m(3�� − �m)

(�m − �
�
)2

(1 − �m�
)

�
V2

j�
.

(39)⟨c
�
⟩ = 1 −

T

2
[rms(�

ũ
�
)]2 −

D

2
[rms(�

ṽ
�
)]2 + O(�2) .

(40)⟨c
�
⟩ = ⟨cos�

�
⟩⟨cos �

�
⟩ + O(�2) .

(41)c̄
k
≡ ⟨cos𝜙

k
⟩ ⟨cos 𝜃

k
⟩ + O(𝜖2) ,

(42)

⟨cos�
k
⟩ = 1 −

T

2

�
rms(�

ũ
k
)

�2

⟨cos �
k
⟩ = 1 −

D

2

�
rms(�

ṽ
k
)

�2

,

where �̃�
k
≡ s̃

2

k
 (Epps and Krivitzky 2019).

Appendix 3: Hypothetical data 
reconstruction methods

In general, the reconstruction Ā
r
=

∑

r

𝓁=1
ū𝓁 s̄𝓁 v̄

⊺

𝓁
 from 

(3) depends on the choice of rank, as well as estimates of 

the clean singular values and vectors. In this section, we 

consider hypothetical reconstruction methods that use 

various combinations of the noisy and clean variables: 

ū
�
= {ũ

�
, u

�
} , v̄

�
= {ṽ

�
, v

�
} , and s̄

�
= {s̃

�
, s

�
, s

�
c
�
} , where 

c
�
 is defined below. Obviously, the methods that use the 

clean variables ( u
�
,s
�
,v

�
 ) are only hypothetical, because 

these clean variables are unknown if just given Ã ; neverthe-

less, these methods are interesting, because they illustrate 

the best-case scenarios for reconstruction losses. Comparing 

these hypothetical data reconstruction methods allows us to 

answer two important questions:

Which has more of an effect on the reconstruction loss, 

perturbations to the singular values or to the singular 

vectors?

Figure 15 shows that reconstruction loss is affected much 

more by perturbations to the singular vectors than by per-

turbations to the singular values. For example, the recon-

struction loss due to perturbed singular vectors ũ𝓁s𝓁 ṽ
⊺

𝓁
 (blue 

curve) is much larger than that due to perturbed singular 

values u𝓁 s̃𝓁v
⊺

𝓁
 (green curve).

How important to the reconstruction accuracy is it to esti-

mate the clean singular values?

Observe that the ‘ ̃u𝓁 s̃𝓁 ṽ
⊺

𝓁
 ’ reconstruction (red curve) has 

a local minimum (near r = k
2
 ), whereas the ‘ ̃u𝓁s𝓁 ṽ

⊺

𝓁
 ’ recon-

struction (blue curve) has nearly constant loss for r > k
2
 . 

Thus, the advantage of estimating the clean singular values 

is that the resulting reconstruction loss will be much less 

sensitive to the choice of rank.

(43)

rms(𝜎
ũ

k
) ≈ min

�

√
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𝜖
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k

�
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T

T
�
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k
(�̃�

m
+ �̃�

k
)

(�̃�
m
− �̃�

k
)2

�
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2
�

(44)

rms(𝜎
ṽk
) ≈ min

�
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2
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Assessment of reconstruction error predictions 
from perturbation theory

In this section, we use perturbation theory to make theoreti-

cal predictions of the expected reconstruction losses ⟨�
r
⟩ (4) 

for each of the hypothetical reconstruction schemes shown in 

Fig. 15. This analysis is relegated to the appendix, because these 

perturbation theory predictions are relatively poor. Indeed, 

Fig. 15 shows poor agreement between the mean reconstruction 

loss determined from Monte Carlo simulations (solid curves) 

and the perturbation theory predictions derived herein (dashed 

curves, formulae in Table 2). The reason for the poor agreement 

is that the perturbation theory predictions are not very accurate 

for k > k
2
 , which is the region of interest in Fig. 15.

One interesting result is that perturbation theory predicts 

that most of the loss is due to the perturbations of the singu-

lar vectors, not the singular values. Indeed, comparing Eqs. 

(61) and (63), we find that if the clean singular values are 

used for reconstruction (instead of the noisy ones), then the 

loss is only improved by �2
r.

Table 2 summarizes the perturbation theory predictions 

of the expected loss from reconstructions of the form:

The entries of Table 2 are derived as follows. In general, the 

expected loss ⟨�
r
⟩ ≡ ⟨‖� − Ā

r
‖2

F
⟩ is

where � = s
2 , and summation is implied over k = 1,… , T  

and � = 1,… , r , i = 1,… , T  , and j = 1,… , D . The crux of 

(3)Ā
r
=

r
∑

𝓁=1

ū𝓁 s̄𝓁 v̄
⊺

𝓁
.

(45)⟨𝛥r⟩ = ‖�‖2

F
+ ⟨‖Ār‖

2

F
⟩ − 2⟨AijĀij⟩ ,

(46)⟨𝛥r⟩ = 𝜆k𝛿kk + ⟨�̄�
�
⟩𝛿

��
− 2⟨UikŪi� sk s̄

�
VjkV̄j�⟩ ,

8 12 16 20 24 28 32 36 40
10
-5

10
-4

10
-3

10
-2

(a) §3.1 example

12 16 20 24 28 32 36 40
10
-6

10
-5

10
-4

10
-3

(b) §3.2 example

Fig. 15  Mean reconstruction loss ⟨�
r
⟩ ≡ ⟨‖� − Ā

r
‖2

F
⟩ , comparing results from Monte Carlo simulations (solid curves) to perturbation theory 

(dashed curves, formulae in Table 2)

Table 2  Expected reconstruction loss ⟨�
r
⟩ ≡ ⟨‖� − Ā

r
‖2

F
⟩ from several reconstruction methods

�
r
=

r
∑

𝓁=1

u𝓁s𝓁v
⊺

𝓁

(56)
⟨�

r
⟩ =

T∑
k=r+1

�
k

(57)

Ā
r
=

r
∑

𝓁=1

u𝓁 s̃𝓁v
⊺

𝓁

(58)
⟨�

r
⟩ = �

2
r +

T∑
k=r+1

�
k
+ O(�4)

(59)

Ā
r
=

r
∑

𝓁=1

ũ𝓁s𝓁 ṽ
⊺

𝓁

(60)
⟨�r⟩ = �

2(D − T)r +
T∑

k=r+1

�k + 2�
2

r∑
�=1

T∑
p=1

p≠�

�
�
(�p+�� )

(�p−�� )
2
+ O(�4)

(61)

Ã
r
=

r
∑

𝓁=1

ũ𝓁 s̃𝓁 ṽ
⊺

𝓁

(62)
⟨�r⟩ = �

2r + �
2(D − T)r +

T∑
k=r+1

�k + 2�
2

r∑
�=1

T∑
p=1

p≠�

�
�
(�p+�� )

(�p−�� )
2
+ O(�4)

(63)

Ā
r
=

r
∑

𝓁=1

ũ𝓁s𝓁 ṽ
⊺

𝓁
c̄𝓁

(64)
⟨𝛥r⟩ =

T∑
k=r+1

𝜆k +
r∑

�=1

𝜆
�
(1 − c̄

�
)2 + 𝜖

2(D − T)
r∑

�=1

c̄
�
+ 2𝜖

2

r∑
�=1

T∑
p=1

p≠�

𝜆
�
(𝜆p+𝜆� )

(𝜆p−𝜆� )
2

c̄
�
+ O(𝜖4)

(65)
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estimating ⟨�
r
⟩ is in evaluating ⟨AijĀij⟩ = ⟨UikŪi� sk s̄

�
VjkV̄j�⟩ 

using perturbation theory.

For method (56), Ā
r
=

∑

r

𝓁=1
u𝓁s𝓁v

⊺

𝓁
 , we have ⟨�̄�

�
⟩ = 𝜆

�
 

and ⟨AijĀij⟩ = ⟨UikUi� sks
�

VjkVj�⟩ = sks
�
𝛿k� = 𝜆

�
𝛿
��

 . Trivi-

ally, the loss (46) then is ⟨�
r
⟩ = ∑T

k=r+1
�

k
 (57). This is the 

minimum possible loss for a rank r reconstruction, per the 

Schmidt theorem (1907).

For method (58),  Ā
r
=

∑

r

𝓁=1
u𝓁 s̃𝓁v

⊺

𝓁
 ,  we have 

⟨�̄�
�
⟩ = ⟨�̃�

�
⟩ , which we found in (Epps and Krivitzky 2019) 

to be:

We have ⟨AijĀij⟩ = ⟨UikUi� sk s̃
�

VjkVj�⟩ = s
�
⟨s̃

�
⟩ . In (Epps 

and Krivitzky 2019), we derived ⟨s̃
�
⟩ , from which directly 

follows

with implied sum over � = 1,… , r . With these results, Eq. 

(46) yields ⟨�
r
⟩ = ∑T

k=r+1
�

k
+ �

2
r + O(�4) (59).

For method (60) Ā
r
=

∑

r

𝓁=1
ũ𝓁s𝓁 ṽ

⊺

𝓁
 , we have ⟨�̄�

�
⟩ = 𝜆

�
 

and ⟨AijĀij⟩ = ⟨UikŨi� sks
�

VjkṼj�⟩ . Working through the 

algebra, we find (with O(�4) accuracy)

With some effort, we have (with O(�4) accuracy)

with implied sum over � = 1,… , r and p = 1,… , T  but 

p ≠ � . Inserting (50) into (46) and simplifying, the result is 

Eq. (61) listed in Table 2.

For method (62) Ā
r
=

∑

r

𝓁=1
ũ𝓁 s̃𝓁 ṽ

⊺

𝓁
 ,  we have 

⟨�̄�
�
⟩ = ⟨�̃�

�
⟩ , which was given in Eq. (47). We also have 

⟨AijĀij⟩ = ⟨UikŨi� sk s̃
�

VjkṼj�⟩ . Using perturbation theory 

results from (Epps and Krivitzky 2019), we find

(47)
⟨�̃�

�
⟩ = 𝜆

�
+ 𝜖

2

�
D −

T�

p=1

p≠�

𝜆p + 𝜆
�

𝜆p − 𝜆
�

�
+ O(𝜖4) .

(48)

⟨AijĀij⟩ = 𝜆
�
𝛿
��

+
𝜖

2

2

�
D − 1 −

T�

p=1

p≠�

𝜆p + 𝜆
�

𝜆p − 𝜆
�

�
𝛿
��

+ O(𝜖4) ,

(49)

⟨AijĀij⟩ = 𝜆
�
𝛿
��

+ 𝜖
2
𝜆
�

�
Ui�W

(2)

im�
Um�

+ Vj�N
(2)

jm�
Vm�

�
.

(50)

⟨AijĀij⟩ = 𝜆
�
𝛿
��

− 𝜖
2 1

2
(D − T)r − 𝜖

2
𝜆
�
(𝜆p + 𝜆

�
)

(𝜆p − 𝜆
�
)2

(1 − 𝛿
�p) ,

(51)

⟨AijĀij⟩ =
�

Uik(Ui𝓁 + 𝜖 W
(1)

im𝓁
Um𝓁

+ 𝜖
2 W

(2)

im𝓁
Um𝓁

+⋯)

⋅ sk

�
s
𝓁
+ 𝜖

�
�̂�
(1)

𝓁

2s
𝓁

�
+ 𝜖

2

�
�̂�
(2)

𝓁

2s
𝓁

−
(�̂�

(1)

𝓁
)2

8s3

𝓁

��

⋅ Vjk(Vj𝓁 + 𝜖 N
(1)

jm𝓁
Vm𝓁

+ 𝜖
2 N

(2)

jm𝓁
Vm𝓁

+⋯)

�
.

Note that upon expanding and collecting terms, the expected 

values of the resulting O(�) terms will be zero, because 

⟨W
(1)

im𝓁
⟩ = ⟨N

(1)

jm𝓁
⟩ = ⟨�

(1)

𝓁
⟩ = ⋯ = 0 . Also note U

ik
U

i�
= �

k�
 

and VjkVj� = �k� . Thus, we are left with

The remaining terms can be evaluated using the methods in 

(Epps and Krivitzky 2019). With some effort, we find

with implied sum over � = 1,… , r . Inserting (53) and (47) 

into (46), we have

which simplifies to the final result, Eq. (63).

For method (64), Ā
r
=

∑

r

𝓁=1
ũ𝓁s𝓁 ṽ

⊺

𝓁
c̄𝓁 , we effectively 

have s̄
�
= s

�
c̄
�
 so 

∑
r

�=1
⟨�̄�

�
⟩ = ∑

r

�=1
𝜆
�
c̄

2

�
 . We also have 

⟨AijĀij⟩ = ⟨UikŨi� sks
�

VjkṼj�⟩c̄� , which is c̄
�
 times the sum-

mand in method (60). Working through the algebra as in 

method (60), we find (with O(�4) accuracy)

Again, the sums involving c̄
�
 and c̄2

�
 do not combine neatly, 

and the loss (46) works out to be that in Eq. (65).
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