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SINGULAR VECTORS CORRESPONDING TO
IMAGINARY ROOTS IN VERMA MODULES OVER
AFFINE LIE ALGEBRAS

F. MALIKOV

Introduction.

Letg, =n; ® f, ®n} beaKac-Moody algebra corresponding to a symmet-
rizable Cartan matrix A, M(4) the Verma module corresponding to a functional
Ae f¥. Kac and Kazhdan [1] described the set of A for which M(4) is reducible.
This set is the union of countably many hyperplanes H, , € ff labeled by the pairs
(n, @), where n is a positive integer, a a positive root of g,. If Ae H, , then M(4)
contains at least one singular (annihilated by n}) vector of weight 4 — no. If a is
areal root then the singular vector is unique up to a scalar for almost all Ac H, ,

In [2] an explicit formula for this singular vector is found. This solves the
problem of finding singular vectors when A is a positive definite matrix. i.e. when
g, is a finite-dimensional simple Lie algebra, since in this case all the roots are
real. .

The next in difficulty case is that of a matrix 4 with all eigenvalues positive
except one which is 0. Such Lie algebras are called gffine ones and they have
a description independent of the general Kac-Moody algebra theory. In the
simplest case such an algebra is a one-dimensional nontrivial central extension of
the “current” algebra, i.e. the Lie algebras of polynomial functions on the circle
with values in a simple finite-dimensional Lie algebra (sometimes, a larger
algebra with a derivation added to this extension). A general affine algebra is
a subalgebra of such an algebra (see 1.1 for details).

The imaginary (i.e. not real) roots of affine algebras are of the form m- 8, where
m is a positive integer, 6 the “minimal” imaginary root. The hyperplane H, ,,q is
determined by the equation (in A)

{1 M) +g=0

where ¢ is a fixed central element of our algebra and g a number. Since (1) does not
depend on n and m we will hereafter write H, for brevity.
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When the affine algebra is the extension of a current algebra a construction of
certain singular vectors is given in [2] for the modules M(4) with imaginary 4.
The recipe is as follows. Take the Casimir element Y. g,9'€ U(g), where {g;} is

a basis of g and {g'} of its dual, and make it into the infinite series

T,=4% Y (9:®t)@®):
k+l=n
where g ® t™ denotes the function ¢ — g - t" on the circle (here t = exp(\/ — 1" ¢)
with ¢ the angle parameter) and

;) (g ®)ifk <1
G R (g ®tYifk>1

The series T,, is an element of the appropriately completed algebra U(g,). Such
series, though infinite ones, determine operators in M(Z) and provided (1) is
satisfied they are g,-endomorphisms. Therefore, applying these operators to the
vacuum (highest weight) vector we find singular vectors in M(4).

The following conjectures are stated in [2]:

1) If g = sl(2) and 4 is a generic point on Hy then this construction gives all the
singular vectors of M(A).

2) In general, it is possible to get all the singular vectors of M(A) if we apply the
above construction not only to the Casimir element but to any element of the
center of U(g).

In this paper I prove these conjectures not only for the current algebras but for
all affine algebras. Moreover, the obtained information on singular vectors is
sufficient to describe the structure of M(4) completely if 4 is a generic point.

The contents of the paper is as follows. In §1 I give main definitions and
formulate the main results. In§2 I prove the main technical result: the formula for
the bracket of particular elements of the completed universal enveloping algebra
U(g () with elements from g, (Theorem 1). In§3 the results of §2 are applied to the
study of the structure of modules M(A) over the extended current algebras
(Theorem 2). In §4 1 briefly explain how to generalize the obtained results for an
arbitrary affine algebra. Finally, in §5 we study the structure of the algebra
generated by the constructed elements of the completed enveloping algebra.

:(gi®t")-(gi®t’):={

§1. Main definitions and formulation of main results.

1.1. Main definitions. Here we will give the main definitions concerning affine
Lie algebras and Verma modules over them. The reader interested in the rela-
tions with the general theory of Kac-Moody algebras should refer to [3]-[5].

Let g be a simple finite-dimensional Lie algebra, ¢ an automorphism of order



SINGULAR VECTORS CORRESPONDING TO IMAGINARY ROOTS. .. 75

d of the corresponding Dynkin diagram. If we fix a Cartan subalgebra f then
¢ uniquely determines an automorphism of g which we will also denote by g, and
g decomposes into the direct sum of eigensubspaces
g= @ g
0sjsd-1

where o, = exp(2n\/———1 j/d)-id

Consider the current algebra g ® C[t,t ']. (A current is a polynomial on
amanifold, in our case on the circle, with values in g such that to an element a ® ¢
the function exp(k\/j @)-a corresponds.) In g ® C[t™!,¢], distinguish the
subalgebra g, = @ (g"*) ® t'), where res, i is the residue of imod d. The linear

ieZ
space of the affine algebra §, is g, @ C-c @ Cd with the bracket given by the
formula

2) [a®@t"+ac+pdd@"+ac+f-d=
[a,d]@" "+ ma@t"—f-na®t"+3,_, naa)c

where (.,.) is the invariant scalar product in g.

d . . .
CoMMENTS. The vector fieldd = ta on the circle determines a natural deriva-

tion of the current algebra preserving g,. There is a one-dimensional central
extension of g, @ C-d with the help of the cocycle ¢ given by the formula

pa®t",a t") =0, _n'n(@a)eda®@t")=0

and the obtained algebra is §,. Note that §,, is the extension of the current
algebra. In what follows we will abbreviate §;4 by §.

In g, fix a Cartan subalgebra f and the corresponding root system
R=A4,uAd_, where 4,(4_) is the set of positive (negative) roots. Let
g=n_@ f@®n,,wheren, = @ g, and g, the root subspace corresponding

acd +
to a, be the corresponding decomposition.

The case of § is similar. The subalgebra f=f @ C-c @ Cd is the Cartan
subalgebra of §.

In order to define the root system we fix an embedding f* —, f* extending
the functionals on f onto C- ¢ @ C-d by zero. In f*, distinguish the functional
6: f@®C-c—0,Cd—1. Let the root system 4 of §be theset A =4, U A_,
where

Ay =4, 0{a+mb:aeR,meN}u{+m 0: meN}.

The roots of the form R + m- @ are called real, those of the form m- @ imaginary.
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To every root & 4 the space (§); = §

_Je.@t"if f=o+mb

@ =V itp=m-o

corresponds. It follows directly from the definition that § = i_ @ f @ i, where
fly = ® (8), and [h,x] = f(h)x for any he f and x€(§);.

aed +
Therefore, we have obtained the root decomposition of §. Note that the

dimension of the root subspace corresponding to a real root equals 1, that
corresponding to an imaginary root equals dim f = rank g.

For an arbitrary affine algebra the definitions are a trifle more complicated. In
the decomposition g= @ g“ the Lie algebra ¢'” is simple and g, ...,

0sj=sd-1

g“~Y are irreducible g“_’)l-;nodules (cf. [3], [5]). Fix a Cartan subalgebra
£ < g9 (if f is the considered Cartan subalgebra of g then f© coincides with
the set of g-invariant elements of ) and the corresponding sets 47 > A4/, L 44,
the weight systems of the g‘”-modules g’ (j = 1, ..., d — 1). In these notations
f=rP@®C-c®C-dis a Cartan subalgebra of §,. In f*, the distinguished
element 6 is given by the formula

0. fO®C-c—>0,Cd- 1.

The root system of § is the set A = 4, U A_, where
Ay =A% U{a+m 6 ae A" meN}

The root a + m- 0 is called real if « + 0 and imaginary otherwise.
The root subspaces are

P o X T L
gd a+m9 T (resqm) ® tm lfa — 0

where, as usual, f¥ < f is the eigenspace of ¢ corresponding to the eigenvalue
exp(2n \/——1 Jj/d). Note that, as for the current algebras, the dimension of the root
subspace corresponding to a real root equals 1, that corresponding to an
imaginary root equals dimf“**™. We have the direct sum decomposition
8, = @] @, where iy = @ @)

acd +
The above decomposition enables us to define Verma modules over §,. Let

Ae f*. Then the Verma module M(2) is generated by one vector v, called the
vacuum vector, such that

ﬁ+'v;_ =0, h'v;. = A.(h)vlfOI' th.

In M(4), we introduce a graded §,-module structure: Let Q(Q , ) be the set of linear
combinations of positive roots with (non-negative) integer coefficients. It follows
from the definition that
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M) = & M(4),
neQ
where M(A), = {ve M(A): h-v = (1 — n)(h)- v for he f}.
A non-zero element of M(4) is called a singular vector of weight u if

fi,-v=0h-v=ph) vfor hef

If v is a singular vector of weight u+ 4 then the formula ¢(a'v,)=a-v
determines an embedding ¢: M(uw) — M(A). Clearly, v,¢o(M(n) since

0,6 ® M(2),_,+pand o(M{u)e ® M(A),_, ., and therefore M(4) is reduc-
PeQ + peQ
ible.

1.2. The main construction. The completion U(§,) of U(§,) formed by the
series of the form Yy e; D e, @ ", where e, ® " ed,,

X1t txp=nx1 S, SX

acts on Verma modules. Indeed, it is not difficult to see that for an arbitrary
vector from M(Z) only a finite number of terms of such series do not act by zero.

Denote x|, < ... £ x,, the decomposition of n dual to a decomposition x, £
... = x;. On the set of decompositions, introduce a function ¢ setting

8x 155 X)) =[O0 — X ey — Xt X1

Clearly, kle(x,,...,x;) is the number of different permutations of the set
(X1, .05 Xi)e
Let T(g) be the tensor algebra of g. An automorphism o of g extends naturally

onto T(g). Let T(gy = @ T™(g) be the decomposition into eigenspaces
0<k=<d-1
with respect to o.

We proceed to define linear maps
P, T¢sam (q) » U@§,),ne

For this note that T**%” consists of linear combinations of monomials of the
forme, ®... @ e, where e;eg’? and i; + ... + i,, = nmodd. On the mono-
mials of this form set

(3) ‘I’n(el ® e ® em) =

= Y E(X1pe . s Xp)ey R e, ® P
Xie FXm =M,X1 S . S X, X
For the current algebras (¢ = id) the common domain of the operators ¥,
coincides with the whole T(g). Notice that the restrictions of ¥, onto S(g)
coincide with the operators ¥, given with the help of the normal ordering

1
V(e ® ®e, =—’—nT z te, @1 e, @ P

fxptre b xm=n,x5zi;
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where
L€ ® Xt € Rt = e, ® tFe e Coim) ® rFem

and 7 is the permutation of minimal length satisfying x.; < x,; for i <j. The
equation ¥, s, = ‘17,,|s(9) follows immediately from the combinatorial interpreta-
tion of the funcion ¢ given above.

Since this construction is very important, we will give a third formula for the
operators ¥, when §,/C ¢, U(G/C - ¢) and U(§/C - ¢) will be considered. (We will
need this formula in §2.)

Set

lIm’c,,(e1®-“®em)= lim Z ey Rt -e, @

Noowxi++xm=n,x;<N,x;=i,
As above, a simﬂple corollary of the combinatorial interpretation of ¢ is the
ldentity q’,,ls(e) = ‘Pnls(g)

1.3. Main results. If Q is the quadratic generator of the algebra S(g)® then for
o = id we have ([4], [5] Exercise 12.11):

) [%,(), e ® "] = m(c + g) w(%f)

dimg
12

() [P, V(] = (c + 9lm — M¥,.,(2) + 8y, -m(m® — m)c]

where % = (e, f) and g is a number.

If o + id then (4) still holds whereas (5) is replaced by
() [Ya(9), Pul(Q) =

=+ glm —n¥sn@ + 8, Y jn—j)dimgre=ic]
O<j<n~—j
It follows from (5) and (5') that the action of the operators ¥,(22) on M(4)
determines a representation of the Virasoro algebra if A(c) + —g and from (4)
that they constitute a commuting family of [§,, §,] -endomorphism if (c) = —g.
It turns out that (4), and therefore the above statement, holds for an arbitrary
element from S(g)2.

THEOREM 1. Let pe S(g)®. Then

© (4 %00 = n ), [ e ® "] = mic + g) ¥, .., (—Z—’e’)
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Theorem 1 being applied to M(4) with A(c) + g = 0 gives the following con-
struction of singular vectors. Let p,,...,Pnn, be algebraically independent
generators of S(g)® which can be chosen as eigenvectors with respect to o, i.e.
o(p;) = exp(2n-/— 1 m,/d)p;.

Denote X;; = ¥;(p;), where i < 0and i, j agree in a natural way: i = m;(mod d).
If v, is the vacuum vector of M(A) then X; - v, is a singular vector of weight A 4 i- 6
(as follows directly from definitions and (6)).

As we have shown in 1.2, the module M(4)is reducible and A e H,, and therefore
g from (6) coincides with g in equation (1) of the hyperplane Hy (see Introduction).

This construction of singular vectors in the modules M(1) with 4 € H, can be
generalized. Notice that if Ae Hythen A + i- 6 e H,. Indeed, (4 + i- 0)(c) = A(c) +
i-0(c) = —g. Therefore, the vector X, -X;;-v, is also singular of weight
A+ (r+0)0.

It follows from (6) that the polynomial ring in countably many variables
C[...,X;j,...], which hereafter will be denoted by C[ X, acts in M(4) for A€ H,.
Set deg X; = i and let C[ X ] be the space of homogeneous (with respect to this
grading) polynomials of degree m. If ge C[X]™ then g v, is a singular vector of
weight A + m-6.

It turns out that if 4 is a generic point of H, then there are no more singular
vectors in M(4). The exact formulation is as follows.

THEOREM 2. Let A€ H, such that A& U ,U H,, let v, be the vacuum vector
nz1aed (\Z0
of M(2), and let N(4) be the maximal proper submodule of M(2). Then
1) N(A) is generated by the vectors X-v,, where je{l,2,...,rankg},
ie{m; —d,m; —2d,...}.
2) Any singular vector of M(4) of weight A + m — @ is of the form q - v, for some
qe C[X]™,

COROLLARY 1. Any submodule of M(J) is generated by singular vectors if
4 satisfies the conditions of Theorem 2.

Let A*[...,E;,...] be the exterior algebra of the space @C-X;;. In

A*[...,5,;,...], introduce a §,-module structure setting b
G EG N AE = 2 B A AGE AN AEy,
1smsk
where
. 0if gefiy
g =iy =\, .
i-0(g) if gef

COROLLARY 2. For the irreducible module L(3) = M(A)/N(J), if A satisfies the
conditions of Theorem 2 then the following sequence of §,-modules is exact:
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0« L(A) « M(D) &~ A[E]1@ M) « ... & A [E]1®@ M(J) « ...
where

6k(5iljl AL A Eikjk®v;_) =

= Y (=D"E  A...nE

lmjm/\.../\s::ikjk®Xv- Uy
1=msgk

imndm

Corollary 2 enables us to write easily the formal character of the module L(4)
over an arbitrary affine algebra. For simplicity let us prove the corresponding
formula for current algebras. Recall that if a module V is a direct sum of finite
dimensional weight subspaces V = @ V, then its formal character is chV =

Y dim V, - €%, where ¢ is an element of the group algebra of b*. For example,
[

ch M(2) = &* [] (1 — e7*)~4m@:,
aed,

To write the formula for ch L(%) explicitly denote by p(n, k)¥ the number of
representations of a number #n in the form of the sum of k different positive
numbers of [ “colours”, where the numbers may differ either in value or in colour.
It follows from Corollary 2 that

(M chL=e* T e T (= 1Fplm k)= [ (1 = e7) dimo.

mz1 k21 aed 4

From the identity

Y (=1 pm i@ = [T (1 — £

1smk<wx iz1

which is subject to a straightforward verification we deduce

ChL(l) = e* J—[ (1— e—a)—dim(g)l
aed +\N-8
which is the desired formula.

Similarly, Corollary 2 enables us to extend (7) for an arbitrary affine algebra
which implies that (8) holds in general case.

Kac and Kazhdan conjectured this formula for an arbitrary Kac-Moody
algebra for 4 = —p, where p is a particular element of h% (see [1] and also
formula (10) from §2 below which implies that - p satisfies the conditions of
Theorem 2).
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§2. Proof of Theorem 1.

First let us derive some consequences of calculations. We are interested in an
explicit form of [¥,, e ® t™] for p € S(g)®. The algebra U(§,) inherits the filtration
from U(§,) thanks to Poincaré-Birkhoff-Witt theorem. Obviously, the highest
term of this bracket with respect to this filtration equals — %, .(ad e(p)) and
therefore vanishes if pe S(g)®. Besides, we have [¥,(p),e ® 1] =0 for m = 0.

Indegd, let(xy,...,x;)be the multidegree ofe; ® ™' -~ -¢; ® t™. We can rewrite
¥,(p) in the form ¥,(p) = ) ¥{+¥(p), where P& is the sum of all

(x4
the monomials of multidegree (x,, . . ., x;). Clearly, the image of P{*t+*9; §(g) —
U(g,) is closed with respect to the adjoint action of g < §, (but not the whole §,)
and the operator Y1 jtself is a g-module morphism. Therefore,

[¥uphe®1] = [P (phe®1] =
)

(X1,en0 Xk

= Y YHe(—ade(p) =0.
(X1,0000%K)
If m & O then the situation is more complicated since ad e ® t™ changes the
multidegree. However, direct calculations establish the validity of the following
lemma.

LeMMA 1. Let + w be the highest (lowest) weight of the g-module g and e, , the
corresponding vectors. Let {e;} be a basis of g and {e'} the dual basis, e an arbitrary
element of g, pe S(g)°, §, = 4.

Then

1) ['Pn(p)’e ® tm] = m(clf’ﬁm(g?.) + .

Z “s,)m an +m(qi)>
36 i<degp

where g;€ $4°87 7171 (g), of? €C;

) 0, - Lade.e)( 2}

3) if e = ey, then gq; is the highest (lowest) weight vector of S%*?~'"1(g) of
weight + w.

It follows from Lemma 1 that ['7,(p), e ® t™] is a degree 1 polynomial in e and
. 0
the coefficient of e equals ‘}’H,,,(—é).
Since it remains to calculate the constant term, we will assume hereafter in this
section that we consider the quotients of the considered algebras modulo the

ideal generated by c. In particular, (4) implies that the series T, = ¥,(€2) constitute
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the algebra & of vector fields on the circle. This algebra naturally acts in the
spaces F, of generalized i-densities, i.e. tensor fields of the form f(z)~* with
feC[z™',z],AeCbytheformula T, f, = (n — 4 — Am)f, ., Where f, = z"dz™*

LemMma 2. If p e S¥(g) then the space spanned by ¥,(p) (n€Z) is closed under the
action of T,, (meZ) and therefore is an ¥-module. This module is isomorphic to
yk — 1-

PROOF. Letp =Y p; .. &, @ " ®e; (p;,..;, €C, e €q).
The remark at the end of 1.2 implies that

[T, ¥.(p)] = [T, £,(p)] =

lim Y — Z [The, @t e, @] =

Now x1+ - +x=n,x; SN k ..... (72
lim Z - Z P;, i Z x;e; ®tx1 e{j@t"j‘i-m.....eik@txk:
N—oo xy+ o +xp= nx¢<Nk ..... 15j5k
o1
lim — Y Y i—mAy,—mA oty —me, QP e @P* =
N—=w k yitetye=ntmyi SN i,k

(n—(k— 1)m) ¥, m(p).

Therefore the map ¥,(p) » z"** "1 dz**! determines an .#-module isomor-
phism.

Let us prove Theorem 1. Let us start with the extended current algebra.
Lemma 2, 1) of Lemma 1 and the Jacobi identity imply that the maps ¢;:
Fi 1 ®F o= Fr_imt, 0(V(D)®E® )0l ¥, n(q) are L-module
homomorphisms . It is shown in [6] that any #-module homomorphism
F,, @ F,, —» #,, is an invariant differential operator and the classification of
such operators obtained by Grozman [9] implies that

_{0 ifi >2

)
o o
zmifi=1

n,m

Therefore

[Tn(p)’ e ® tm] = m[c an+m (%5’) + 'Pn+m(ql):|

It only remains to prove that

dp
9 -y
® 9, =2 e
since applying ¥,(p) to the vacuum vector of M(4), where A(c) = —z, we get

a singular vector which is only possible for z = g.
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Lete = e, (see Lemma 1). In this case to prove (9) let us recall that thanks to
[7] we can take as generators of the algebra S(g)® the polynomials p,, ..., prankg

op; . . . . .
such that —a% € H, where H is the space of harmonic polynomials. In particular, in

the space of harmonic polynomials of any fixed degree there exists a unique up to
a constant factor highest vector of weight + w, where w is the highest weight of g.
Thanks to heading 2 of Lemma 1, ¢, is harmonic and by heading 3 of Lemma 1 it
ap
€ tow
fore, the second of the formulas (6) is proved for pe {p,,. . ., pm,kg} ife=e,,and
4, = §. To prove (6) for an arbitrary p e S(g)® and e € g for the extended current
algebra we have to make use of the following obvious facts:
D B, p) = T ) W)+ )

Ji+tjk=n

is the highest vector of weight + w and therefore proportional to . There-

where pe S(g)* and degp < ). deg bij

1S7sk

2) The space g @ C-(e, ® C(e_,, ® t) generates §.
Thus, Theorem 1 is proved for extended current algebras.

The second of the formulas (6) becomes obvious for an arbitrary affine algebra
if we recall that §, < §. The first of the formulas (6) is an obvious corollary of
definitions.

§3. Proof of Theorem 2. The case of extended current algebra.

Recall the main facts on the structure of Verma modules. If V is a submodule
of M(A) then V = @ V,, where V, = M(4), n V. Obviously, V $ M(1) implies
aeQ +
Vo = {0}. Therefore, in M(A), there exists a maximal (perhaps zero) proper
submodule N(A).
Let us define the Shapovalov form on M(4)(cf. [1]). Let w: g — g be the Cartan
antiautomorphism of a simple finite-dimensional Lie algebra. Set
D:§-§ 0 =id, 0@t =wlE) @t
Then & is also an antiautomorphism and &((g),) = (§) - ,. The Shapovalov form
is the bilinear functional F(1)(.,.) on M(A) given by the formulas
F(A)(vs,0) = 1, F(A)(v;, M(A)p) = 0if B % 0,
F(A)a v, b-v;) = F(A)(v,, d(a)bv,)

F(A)M(A),, M(A)g) = O for o + §
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and clearly the Shapovalov form is symmetric. Let F,(4) be the restriction of the
Shapovalov form onto M(4),. Obviously, N(4), = Ker F,(4). Kac and Kazhdan
calculated the determinant det F,(4) of the Shapovalov form ([1]) and therefore
found the conditions for reducibility of Verma modules.

THeOREM (Kac-Kazhdan).

= imé,'” n—na
(10 detF,(A) = [] l;[ (i(ha) + plh,) — nﬂ)d (n—na)

n=1a 2

where P is the Kostant function (P(n) equals the number of representations of
a weight # as the linear combination of positive roots with non-negative integer
coeflicients).

We will not comment on formula (10) any more since in what follows we will
only need the following statement. If H, , is the hyperplane given by the equation
Mh,) + p(h,) — n®®/? = 0 then the hyperplane H, ,, (0 an imaginary root) is
given by equation (1), i.e. coincides with H,, and H,\ () \J H,,isdensein
H,. n21 aed +\N-§

Fix a functional z € f* so that z(h,) + Ofor allae 4, and draw the straight line
7 = {A@x): At) = 4 + 1-2, 1€ C} through ie f*.

Consider the family of Verma modules M(A(z)) with i(t)en. Since all the
Verma modules are isomorphic as linear spaces (indeed, M (1) =~ V(#i_)), there is
a map

D: M(A) x M(4) — C(z), D(a,b) = F(A(1))(a, b)

In M(4), introduce the Jantzen filtration (1) M(A)) = M > M! > M?* o ...
setting

M = {ve M(4): D(v, w)e ' C[1] for all we M(1)}

Obviously, N(4) = ML,
Let ord (Q(r)) be the maximal s such that 1° divides Q(z). Then it is easy to see
that ([1])

(11) ord (det F,(4)) = Y, dim(M’),
iz1

Fix AeH, As was shown in 1.3 the polynomial ring in countably many
variables C[X] acts in M(4) which enables us to introduce one more filtration
MA)=°M>'M>*M>...

Let "C[X] be the space of homogeneous polynomials of degree r, where
deg' X;; =1 (do not confuse with the grading introduced in 1.3). Set
'™ =Y IC[X] M()).

izr
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We have
12) ' iMc M
Indeed, Theorem 1 implies 'M <= N(1) = M.,

To prove (12) it remains to make use of the induction.
The following lemma is a key one in the proof of Theorem 2.

Lemma 3. Let Ae H\ | ) | H,,.
nz1 aed N6

Then
1) ord(det F,(A(x))) = ), rankg-dim M(d),_ ;¢

ijz1

2) If ord(det F,(A(v))) = Y. idim (M/'*'M), then (M), = N(4),.
iz1
ProoF. 1) is an obvious corollary of formula (10) and the identity
dim M(4), = P(n).
2) Note that

Y i-dim(M/ M), = 3 dim (M),

izl

Therefore thanks to (11) and (12) we have

Y. i-dim (‘M/** 'M) < ord (det F,(A(r)))

iz1
If this inequality turns into equality we get applying (11) again ‘M = M’, in
particular 'M = M.

Fix an arbitrary homogeneous with respect to the weight decomposition
subspace H = M(A) complementary to * M. Let us identify H with a subspace of
U(ft_) making use of the fact that M(J) is a free U(fi_)-module with one
generator. Introduce a partial ordering on the set of weights by the requirement
that « < pifand only if n — xe Q..

LeMMa 4. Assume that (M), = N(4), for « < 5. Then
(13) (*M), = (H® C[X]v;), fora S

Proor. 1) By induction in the degree of ec U(fi_) let us prove that there is
a decomposition of the forme-v; = Y h; fi(X)-v,, where h;e H, fi(X)e C[X]. If

dege; = 1thene-v,eH. Ife-v,¢ Hthene v, = ey v, + ey v, where ey v, € H,
ey v;e€'M. The hypothesis of Lemma 4 implies that ey = ¢’'- f(X), where
f(X) « C[X]and dege’ < dege, which enables us to apply the inductive hypoth-
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esis since f(X)M(4) = M(A + (deg f)- 6) and the functional A + m 8 satisfies the
conditions imposed on A.
2) Let us prove the uniqueness of the decomposition (13). Let Y h;* fi(X) v, =0
iz0
Without loss of generality we may assume that deg f; < deg f; and the poly-
nomials fy, fi, ... are linearly independent. Then

ho fo(X) v, = — Z hi- fi(X) v,
iz1
which implies that hy - f5(X)- v, belongs to a proper submodule of fo(X)M(A).
Since fo(X)  M(A) = M(A + (deg’ f)- 0), the conditions of the lemma imply that
ho = K f, f e C[X] which contradicts hy v, € H.

Let us pass to the proof of Theorem 2. To prove heading 1) by induction in
aeQ, let us show that (M), = N(1),. We have (M), = N(J) for a« < 0 since in
this case det F,(4) = 0. We have ord (det Fy(4)) = rank g for « = § and

. rankgifi=1
d‘m('M)F{ Ogifi>1

Therefore, ord(det Fy(4)) = Y, i-dim (‘M/*'M),. Thanks to heading 2) of
izt
Lemma 3 the initial statement of induction is proved.

Let (*M), = N(A), for « < n. Making use of Lemma 4 we select a basis B in
(‘M), of the form B = {b;; = h;- X, h;e H, X;e C[X]}, where j is a multiindex of
the form j = {i\,jy, ky; iz, j2, ka; ...} and X; = X¥2, - X§2, -

We have

(14) ord(det F(A)) = Y rankg-dimM(@A —k-1-0), 10 =
I

k21

Lk211=msSrankg
Y, deg' X; = i-dim(‘M/"*'M),
bijeB iz1

Here # denotes the cardinality of a set. The first of the equations (14) follows
from 1) of Lemma 3, the second one from Lemma 4, the third one is obvious, and
the fourth one follows from Lemma 4. As the result we get

ord (det F,(A(x))) = Y, i-dim (‘M/** M),
iz1

By 2) of Lemma 3 this proves the identity (‘M), = N(), and therefore 1) of
Theorem 2.

To prove 2) notice that 1) and Lemma 4 imply M(4) = H ® C[X] v,. Let wbe
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a singular vector of M(4) different from v,. Then

w = Z hi‘xi,hiEH,XEC[X]'U;'
0ZiZn
where the vectors x,,...,x, are linearly independent. Since fi, -w =0, then
under the action of an appropriate element from U(fi,) on w we get
xo= 3, M;x; which contradicts to the fact of the decomposition M(J) =

1Zign

H ® C[X] ‘0;.

§4. Proof of Theorem 2. The case of an arbitrary affine algebra.

In the above proof of Theorem 2 the characteristic properties of current
algebras had been used twice: in the proof of 1) of Lemma 3 we have made use of
the identity

dim (§);¢ = rank g, jeZ
and in formula (14) we have assumed in addition to the reference to Lemma 3 that
(15) #{X,;:i=m} =rankg

In the general case dim (§,);4 = dim /™%, where d is the order of ¢; and it is not
difficult to see that (14) and therefore the proof of Theorem 2 holds also for an
arbitrary affine algebra if we make use of the following generalization of formula
(15).

LEMMA 5. There is a system of generators of the ring S(g) such that
(15’) ¥ {Xij: |i = m} = dim f(resdm)

Proor. It follows from the definition of the elements X;; (see 1.3) that we have
to establish the existence of a family of generators py,. .., Prankqe € S(8)° such that

a(p) = exp(2n/ — 1 m;/d)-p; and
#{m;, i=1,...,rankg: m; = m} = dim fese™

The nontrivial automorphism ¢ only exists for the diagrams of type 4,, D, and
Eg. It is convenient to distinguish the following two cases.

1) The case of 4, and D,. In this case direct verifications show that the
standard (Chevalley) systems of generators (see, e.g. [8], Ch. VIII) will do.

2) The case of E¢ and D, where n > 4. In this case it is possible to do without
tiresome calculations. The algebras of this type have a unique nontrivial automo-
rphism which is a reflection ([8]) and therefore

rankg — 1ifj=0

i RO =
dim b {1 ifj=1
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The group W= W >< {e, ¢} is generated by reflections (here W is the Weyl
group of g). This group acts in the polynomial ring S(f)" = S(g)°. Clearly, the
generators of this ring can be chosen to be eigenvectors with respect to ¢ with
eigenvalues =+ 1. Since (S(f)*)? is also a polynomial ring, the number of gener-
ators which changes sign under o does not exceed 1. The fact that there exists at
least one generator which changes sign is proved by the standard methods of the
theory of groups generated by reflections (see, e.g. [8] Exercise 1 to §8, Ch. VIII).

§5. The brackets of the elements ¥;(p,) and the Zamolodchikov algebra.

In this section we will give the simplest results on the structure of the algebra
generated by the elements X;; = ¥(p)), where i€Z, py,. .., Pran, are the gener-
ators of S(g)°. Hereafter we will replace § by [§,4] (exclude d) and denote the
derived algebra also by §.

In the simplest case g = sl(2), rank g = 1, p, is the Casimir element, and as
follows from (4) the corresponding algebra is the unversal enveloping algebra for
the Virasoro algebra. In the presence of the generators p; of degree greater than
2 the situation gets more complicated.

LEMMA 6. Let p,qe S(g)®, Z be the centre of U(g)/(c + g)U(Q) and n: U(g) »
U@)/(c + 9)U(8) the natural projection. Then

(16) [¥n(p), ¥ul@)] = (c + g)Y and nYeZ

PrOOF. It follows from Theorem 1 that (16) holds for some Y e U(d). Taking
the bracket of (16) with an arbitrary ee g we get

(€ + 9’ U@ ele,[p) Yu(@)] = (c + g)le. Y]
Therefore [e, Y]e(c + g) U(§) as required.

Clearly, any element of Z determines a singular vector in M(1)if A(c) + g = 0,
Therefore, Lemma 6 and Theorem 1 impose some restrictions onto the right-
hand side of (16). For g = sl(3) these restrictions suffice to calculate Y.

Let us give the results of the calculations. Let f, f, be invariant polynomials on
sl(3) given by the formula f(e) = tr p;(e), where p; = $'*!p and p is the identity
(standard) representation of s1(3). The corresponding polarizations p, and p, of
/1 and £, respectively are the generators of S(g)®.

The algebra we are interested in is generated by the elements T, = ¥,(p,) and
W, = ¥,(p,). Let us calculate the brackets between these elements. The formula
(4) takes in this case the form

(17) [Tm’ 1;1] = (C + 3)[(" - m) Tr't+m + 6n,—m%(m3 - m)c
Lemmas 2 and 6 imply

(18) (T Wl = ¢ + 3)(n — 2m) W, .,
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Lemma 6 and Theorem 2 imply that

(19) [Wo, W] =(c + 3)[: Y 0T+ X €+ X Wy +

i+tj=m+n

FX Ty + 806 X200
The simple calculations making use of an explicit formula for the elements p,, p,
show that
20) ot = ¥m —n)
Note also that the elements
1 W, T, T2, T ¢4, W, T,,, (i, m,ne Z)
are linearly independent.

LEMMA 7. There exists a unique algebra with generators T,,, W,, C (m,ne Z) and
defining relations (17)—~(20) such that the elements (21) are linearly independent. The
following formulas are valid.

n—m
48
n—

48

@n*+2m*—Tm-n—8) if m+ ne2Z

=
™20 +2m> — Tmon+4) if m+ne2Z + 1

X = 15(n — m)(n® + m* — 3m-n — 4) + 5x0)

n+2 n+ 2
o ="t )a-4("17)

Lemma 7 suggests that a similar description in terms of defining relations is
also possible for the algebras § constructed for g = sl(n), n > 3.

Note that the passage to the algebra U(§) x J(c), where @[c] is the field of
algebraic functions, we get with the help of the above construction a realization of
the Zamolodchikov algebra which appeared in conformal field theory ([10]). For

T,

e+ 3y
V,=/34(c+3) 722 +5 ¢ W,

this in notations of [10] set L, =

8c
c+3°
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ADDED NOTE. After this work was completed I received a preprint of [11],
where similar results are obtained for the algebras 4{"), B{"), C(,
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This paper is a version of my talks at the Levkovo Winter School on represen-
tation theory and at the seminar on supermanifolds in December 1987.
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