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SINGULARITIES FOR ANALYTIC CONTINUATIONS

OF HOLONOMY GERMS OF RICCATI FOLIATIONS

by Sébastien ALVAREZ & Nicolas HUSSENOT

Abstract. — In this paper we study the problem of analytic extension of
holonomy germs of algebraic foliations. More precisely we prove that for a Riccati
foliation associated to a branched projective structure over a finite type surface
which is non-elementary and parabolic, all the holonomy germs between a fiber
and the corresponding holomorphic section of the bundle are led to singularities by
almost every developed geodesic ray. We study in detail the distribution of these
singularities and prove in particular that they form a dense uncountable subset of
the limit set. This gives another negative answer to a conjecture of Loray using
a completely different method, namely the ergodic study of the foliated geodesic
flow.

Résumé. — Dans cet article, nous étudions le problème d’extension analy-
tique de germes d’holonomie de feuilletages algébriques. Plus précisément, nous
démontrons que pour un feuilletage de Riccati associé à une structure projective
branchée sur une surface de type fini qui est non-élémentaire et parabolique, tous
les germes d’holonomies entre une fibre et la section holomorphe du fibré vertical
correspondante sont conduits vers une singularité par presque tout chemin géo-
désique développé. Nous étudions en détail la distribution de ces singularités et
prouvons en particulier qu’elles forment une partie dense et indénombrable de l’en-
semble limite. Cela redonne une réponse négative à une conjecture de Loray en
utilisant une méthode complètement différente : l’étude ergodique du flot géodé-
sique feuilleté initiée.

1. Introduction

Analytic continuation of holonomy maps. The present paper is de-

voted to the problem of extending analytically holonomy germs of holomor-

phic foliations of the complex projective plane, and of algebraic surfaces

such as CP
1-bundles over compact Riemann surfaces. The study of holo-

nomy maps, or Poincaré maps, of a foliation is of special interest since they

Keywords: Riccati foliation, analytic continuation, foliated geodesic flow, Lyapunov
exponents.
Math. classification: 37D40,37F75, 34M15, 32D15.



332 Sébastien ALVAREZ & Nicolas HUSSENOT

encode the dynamical behaviour of its leaves. For example a fixed point

of a holonomy map corresponds to a periodic leaf of the foliation: analytic

properties of holonomy maps are closely related to various interesting and

famously difficult questions concerning periodic leaves such as their number

or their persistence.

For example in [15] Françoise, Roytvarf and Yomdin study the analytic

continuations, the fixed points and the singularities of holonomy maps of

the Abel differential equation in relation with Pugh’s problem about the

number of isolated real periodic solutions.

In [25] Ilyashenko relates the problems of simultaneous uniformization of

the leaves of a foliation of Ck by analytic curves (with a uniformizing func-

tion which depends analytically on the initial condition) and of persistence

of complex limit cycles. The relation he finds is closely related to the exten-

sion property: the non-extendability of holonomy maps is an obstruction to

simultaneous uniformization. This led Ilyashenko to ask whether holonomy

germs of generic polynomial vector fields exhibit algebraic or transcenden-

tal behaviour, namely if they can be analytically continued along most real

rays (see Problems 8.6. and 8.7. of [24] and Problem 8 of [26]).

Loray’s conjecture. In his study of Painlevé’s work on algebraic differ-

ential equations Loray states the following conjecture (Conjecture 1 of [30]).

A germ of holonomy map h : (T0, p0) →(T1, p1) between two algebraic

transversals of an algebraic foliation of CP2 can be analytically continued

along every path which avoids a countable number of points of T0 called

the singularities.

His idea is that if this conjecture were established it would be possible to

replace the study of the holonomy pseudogroup by that of a (possibly very

consistent) group and that a Galois theory for algebraic foliations similar

to the one described in [28] could be derived from it.

In [13] Calsamiglia, Deroin, Frankel and Guillot give a very precise an-

swer to this conjecture. Their answer depends on the dynamical properties

of the leaves. If a foliation has rich contracting dynamics, then Loray’s con-

jecture does not hold for this foliation. In the other case it holds true. More

precisely, they prove the following:

(1) Loray’s conjecture holds true for singular foliations given by closed

meromorphic 1-forms on the complex projective plane.

(2) A Riccati foliation whose holonomy representation is given by uni-

formization has holonomy germs between lines with a natural

boundary.

ANNALES DE L’INSTITUT FOURIER



ANALYTIC CONTINUATION OF RICCATI FOLIATIONS 333

(3) A Riccati foliation whose holonomy representation is parabolic with

a dense image in PSL2(C) has holonomy germs between lines with

a full singular set.

(4) And finally Loray’s conjecture is false for a generic foliation of CP
2:

such a foliation possesses a holonomy germ from a line to an alge-

braic curve whose singular set contains a Cantor set.

Even if the fourth property is the most spectacular, in this paper we

will focus on the second and third ones. The proof of the third property

consists in using the density of the holonomy group in PSL2(C) in order

to construct inductively paths which lead to singularities. A question arose

naturally: are the holonomy germs led to singularities by a “generic” path?

Of course the term generic has to be precised. In [23] the second author

studied the analytic continuation of holonomy germs along Brownian paths

and the answer he found was quite unexpected (see Theorem 3.6 for the

precise statement).

Given a Riccati foliation whose holonomy group is parabolic and acts

minimally on CP
1, any holonomy germ between two lines T1 and T2 can

be analytically continued along almost all Brownian paths.

The context of Riccati foliation is not generic, but proves to be an excel-

lent one when we want to explore the links between dynamics of foliations

and extendability properties of holonomy maps. Indeed [13, 23] both use

the “duality” between holonomies between lines of Riccati foliations and

projective structures on surfaces of finite type that we shall describe below.

Riccati foliations and projective structures. Riccati equations are

of the form:

(1.1)
dy

dx
= a(x)y2 + b(x)y + c(x),

where a, b, c are rational functions of the complex variable x. It is well

known (see [21]) that this equation is in reality a disguised linear differential

equation dw/dx = A(x)w where w ∈ C
2 and A(x) is a 2 × 2 matrix

whose entries depend rationally on x, and that they are characterized by

the possibility of finding locally a basis of local solutions which can be

analytically continued along every path avoiding the finite set of poles of

A that we denote by (A)∞. This gives rise to a holonomy representation

ρ̃ : π1(Σ) →GL2(C), where Σ = CP
1 \ (A)∞.

Hence the Riccati foliation of CP1 ×CP
1 given by the analytic continua-

tions of the solutions of this equation has the following description. There

are only a finite number of invariant fibers (vertical leaves with singulari-

ties) which are the Lx0
= {x0}×CP

1, where x0 ∈ (A)∞, and any other leaf

TOME 66 (2016), FASCICULE 1



334 Sébastien ALVAREZ & Nicolas HUSSENOT

is everywhere transverse to the vertical fibers. Moreover the CP
1-bundle

over Σ that we denote by Π : M → Σ obtained by removing the invariant

fibers is exactly the one obtained by suspension of the projectivization of

ρ̃ denoted by ρ : π1(Σ) →PSL2(C): we denote by F the induced Riccati

foliation on M .

Let S be a line in CP
1 × CP

1 which is not vertical (or any holomorphic

section of the vertical bundle). Then S = S\⋃
x0∈(A)∞

Lx0
is a holomorphic

copy of Σ which is everywhere transverse to F except maybe at a finite

number of tangency points. The holonomy of F between S and any vertical

fiber Fp ≃ CP
1 then defines naturally a branched projective structure on

Σ which is determined by a development-holonomy pair (D, ρ) where ρ is

exactly the holonomy representation of the equation and D is a nonconstant

holomorphic map from H, the universal cover of Σ, to CP
1 whose critical

points are the lifts of the tangency points and which is ρ-equivariant.

A similar construction can be performed when the variable x describes

a more general algebraic curve. This leads us to consider Riccati foliations

obtained by suspension of representations ρ : π1(Σ) →PSL2(C), as well as

branched projective structures on more general hyperbolic surfaces of finite

type Σ.

Main result. We will study the problem of analytic extension of germs

of holonomy maps along “generic paths”. In [23] “generic” meant typical

for the Brownian motion. Here it will mean typical for the geodesic flow.

And the result we obtain is the exact opposite answer.

Recall that a path leads a germ of holomorphic map between Riemann

surfaces to a singularity if analytic continuation can be performed along

the path, but not beyond its extremity.

Theorem A. — Let Σ be a hyperbolic surface of finite type. Con-

sider a branched projective structure on Σ, represented by a development-

holonomy pair (D, ρ), that is parabolic and non-elementary. Consider the

associated Riccati foliation (Π,M,Σ,CP1,F), the holomorphic section σ0

of Π associated to D, and S = σ0(Σ).

Let p ∈ Σ and x ∈ Fp. Then every holonomy germ h at x between Fp and

S is led to a singularity along a typical developed geodesic ray starting at x.

Moreover this set of singularities is an uncountable dense subset of the

limit set Λρ. Better: it is distributed according to the harmonic measure mp.

Let us explain some of the terms appearing in the statement. A branched

projective structure (D, ρ) is said to be parabolic if the developing map

ANNALES DE L’INSTITUT FOURIER
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reads as z 7→ log z/(2iπ) in a holomorphic coordinate z around each punc-

ture. This implies that the holonomy map around a puncture is conjugated

to a translation.

We call developed geodesic rays the images of geodesic rays by the de-

veloping map, and we say that a developed geodesic ray starting at a point

x is typical if it is the image of a ray which is typical for the Lebesgue

measure.

When the representation does not preserve a measure on CP
1, we say

that the structure is non-elementary. Its action on the sphere has a unique

minimal set Λρ that we call the limit set of ρ. Moreover [14] introduced

the notion of family of harmonic measures which is the unique family of

probability measures (mz)z∈H on CP
1 which is ρ-equivariant and harmonic,

meaning that for every Borel set A⊂CP
1 the map z 7→ mz(A) is harmonic

for the Laplace operator.

In particular all these measures are equivalent (by the mean property)

and supported by the limit set Λρ (by equivariance). By equivariance this

gives a family (mp)p∈Σ on the fibers Fp of the foliated bundle.

Compactification of Riccati foliations. Theorem A deals with ana-

lytic continuation of holonomy germs of a non-singular foliation transverse

to a CP
1-bundle over a non-compact hyperbolic surface Σ.

When the foliation is associated to a parabolic branched projective struc-

ture, it can be compactified (see Section 3.2 of [13], and Section 1.2 of [14]).

This is done by gluing over the cusps a local model for meromorphic flat

connection on the disc D, with a single pole at 0 and parabolic monodromy.

Different models of this sort can be found in Brunella’s work on the bira-

tional geometry of foliations [12].

This way, we obtain a CP
1-bundle over a compact surface, whose fibers

are transverse to a singular foliation, except a finite number of them. The

section S also compactifies as a complex curve S, and the conclusion of

Theorem A also holds for holonomy germs from a generic fiber to S. In

that sense, our result disproves Loray’s conjecture for algebraic foliations

of CP1-bundles over compact surfaces.

The dual result. In order to prove Theorem A, we first give the answer

to a dual problem, which can be expressed in terms of branched projective

structures.

There is a duality between holonomy maps and development which is

used in [13, 23]. Consider a Riccati foliation F and a local holonomy map

h between a fiber Fp, p ∈ Σ and a holomorphic section of Σ. By definition

TOME 66 (2016), FASCICULE 1



336 Sébastien ALVAREZ & Nicolas HUSSENOT

h is the inverse of the developing map D restricted to the range of h. We

shall focus on the research of asymptotic singularities of continuations of

h, i.e. limits of paths D(c) where c : [0; ∞) →H has a limit in ∂H = RP
1.

Hence there are two problems which are dual.

(1) Prove that for a path c : [0; ∞) →H having a limit in RP
1, the path

γ = D(c) has a limit in CP
1.

(2) Prove that the path γ leads the holonomy germ h : (Fp, x) →(S, x′)

to an asymptotic singularity, where x denotes γ(0) and x′ denotes

the projection on S of c(0).

Let us introduce the main dynamical character of this paper. The leaves

of a Riccati foliation F are naturally endowed with a hyperbolic metric (by

lifting the metric of the base) so that it is possible to consider the foliated

geodesic flow Gt on the unit tangent bundle of the foliation T 1F . This flow

possesses a weak form of hyperbolicity called in [7] foliated hyperbolicity

(see also the first author’s thesis [4]). We will use the ergodic properties of

this flow in order to prove our main results: our method is very much in

the spirit of [1, 6, 8, 9].

Since the leaves are locally isometric to the base, the foliated geodesic

flow projects down to the geodesic flow of the base and sends fibers to fibers

as a projective map (see Paragraph 2.2): it is a projective cocycle. Under

the condition of parabolicity of the structure, [9] proves that Oseledets’ the-

orem applies and that Lyapunov exponents exist. If moreover the holonomy

representation does not preserve a probability measure on CP
1, then a com-

bination of the works of Avila-Viana [5] and Ledrappier-Sarig [29] yields the

positivity of the top Lyapunov exponent (see Theorem 2.6). Oseledets’ theo-

rem then provides two measurable Lyapunov sections σ−, σ+ : T 1Σ →T 1F
well defined on a Borel set full for the Liouville measure. Consider the lifts

σ̃−, σ̃+ : T 1
H→T 1

H × CP
1. The dual result of Theorem A is:

Theorem B. — Let Σ be a hyperbolic surface of finite type. Con-

sider a branched projective structure on Σ, represented by a development-

holonomy pair (D, ρ), that is parabolic and non-elementary. Then for every

z ∈ H and dθ-almost every v ∈ T 1
z H:

D(cv(t)) −→
t → ∞

σ̃−(v),

where cv represents the geodesic ray directed by v, and σ̃− is the lift of the

Lyapunov section σ− to T 1
H.

Remark. — It is interesting to note that the set of limits of typical de-

veloped geodesic rays described in the theorem above is independent of the

ANNALES DE L’INSTITUT FOURIER
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choice of a developing map. It only depends on the holonomy of the under-

lying Riccati foliation, and is defined by looking a nonuniformly hyperbolic

attractor of the foliated geodesic flow. A more detailled description of this

set is given by the following theorem.

Distribution of the singularities. Theorem A shows that although

in hyperbolic geometry almost every Brownian path possesses a geodesic

escort, there exists a qualitative difference between the geodesic flow and

the Brownian motion which is due to the fluctuations of the latter. The

remarkable fact is that at the ergodic level, we don’t see the difference:

almost every Brownian path spends almost all of its time close to the limit

of its developed geodesic escort. More precisely, in [23] it is proven under the

hypothesis of Theorem A (see Theorem 3.7) that for almost every Brownian

path ω on H, there exists e(ω) such that:

lim
t → ∞

1

t

∫ t

0

D ∗ δω(s)ds = δe(ω).

We prove that these points e(ω) and the limits of developed geodesic rays

are distributed according to the same law. The main goal of Section 3 is to

study this distribution in detail. As a corollary of the propositions proven

in that section we get the following result:

Theorem C. — Let Σ be a hyperbolic surface of finite type. Con-

sider a branched projective structure on Σ, represented by a development-

holonomy pair (D, ρ), that is parabolic and non-elementary. Consider the

associated Riccati foliation (Π,M,Σ,CP1,F).

Denote by (sp)p∈Σ the family of limits of distributions of developed ge-

odesic rays. Then this family coincides with:

• the family of conditional measures of the projection of the unique

SRB measure (in the sense of [10, 34]) for the foliated geodesic flow

via the canonical map pr : T 1F →M ;

• the family of conditional measures of the unique foliated harmonic

measure (in the sense of [19]) for F ;

• the unique family of νp-stationary measures where (νp)p∈Σ is a fam-

ily of probability measures on π1(Σ) obtained by the procedure

of Furstenberg-Lyons-Sullivan’s discretization of the Brownian mo-

tion;

• the family of distributions of points e(ω), ω Brownian path starting

at p;

• the family of harmonic measures of ρ.

TOME 66 (2016), FASCICULE 1



338 Sébastien ALVAREZ & Nicolas HUSSENOT

This theorem contains implicit statements, namely the uniqueness of the

SRB measure and of the foliated harmonic measure. It is the occasion to

review in a unified way previous results of [3, 2, 14, 23, 32]: we carefully

explain the link between each of these measures in Section 3.

Organization of the paper. In Section 2, we give the main definitions

and results which will be used throughout this paper. In particular we give

a discussion about Lyapunov exponents of the cocycle defined by the foli-

ated geodesic flow in this noncompact setting. In Section 3 we analyze the

distribution of the limit of developed geodesic rays and prove Theorem C.

We also give a proof that this set of limit points is uncountable and dense

in the limit set. In Section 4 we show how to deduce Theorem B from

ergodic-theoretical facts as well as from an integrability result. Section 5

is the main technical section: we prove the aforementioned integrability

result.

Notations. In all what follows, we will use the following notations:

• distCP1 which stands for the Fubini-Study distance in CP
1;

• distH which stands for the hyperbolic distance in H;

• distC which stands for the euclidian distance in C.

2. Preliminaries

Analytic continuation. Let X0, X1 be two Riemann surfaces, and f :

(X0, x0) →(X1, x1) be a germ of holomorphic map. We say that f admits

an analytic continuation along a path c : [0; 1] →X0 if there exists a chain

of discs D0, ..., Dn which cover c, as well as a sequence of holomorphic

maps fk : Dk →X1, such that the germ of f0 at x0 is given by f , and

fk = fk+1 in restriction to Dk ∩Dk+1. The germ of fn at c(1) is called the

determination of f over c(1) and depends only on the homotopy class of c

inside the holomorphy domain of the germ.

Singularities. We say that a path c : [0; 1] →X0 leads the germ f to a

singularity if f can be extended analytically along each path c|[0;1−ε], but

not along c. The point c(1) will be called singularity of f .

ANNALES DE L’INSTITUT FOURIER
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2.1. Hyperbolic surfaces of finite type and

their projective structures

Hyperbolic surfaces of finite type. In the sequel, we shall consider

hyperbolic Riemann surfaces Σ which are not compact and with finite area:

such a surface will be said to be of finite type. By definition, they are

uniformized by the upper half plane H = {z ∈ C; Im(z) > 0} endowed

with the Poincaré metric:

ds2 =
dx2 + dy2

y2
.

A hyperbolic surface of finite type Σ is biholomorphic to Σg \ {p1, ..., pk}
where Σg is a compact Riemann surface of genus g. Neighbourhoods of the

pi are called cusps.

It is well known that in this case the fundamental group of Σ is a free

group, and that there is a fundamental domain P for a copy π1(Σ) ≃ Γ <

PSL2(R), which is an ideal polygon with 2l vertices at infinity, where l is

the maximal number of mutually disjoint non-homotopic geodesics whose

ends arrive to punctures.

Such a surface decomposes as Σ = K ⊔ IntC1 ⊔ ... ⊔ IntCk, where K is

compact, and Ci is a cusp around pi bounded by a horocycle Hi.

Branched projective structures. A branched projective structure on

the surface Σ is a system of branched projective charts (Di, Ui)i∈I . It

means that (Ui)i∈I is a locally finite cover of Σ by open discs, and that

the maps Di : Ui →CP
1 are nonconstant holomorphic maps such that in

the intersection of two domains Ui ∩Uj , the cocycle relation Dj = φij ◦Di

holds for some Möbius transformation φij .

A branched projective structure is, up to projective automorphisms of

CP
1, determined by a development-holonomy pair (D,ρ), where D :H→CP

1

is a nonconstant holomorphic map called the developing map which glob-

alizes the branched projective charts, and ρ : π1(Σ) →PSL2(C) is a mor-

phism called the holonomy representation which globalizes the transition

functions. Moreover the following equivariance relation holds for every

γ ∈ π1(Σ):

(2.1) D ◦ γ = ρ(γ) ◦ D.

Parabolic structures. Consider a branched projective structure on a

hyperbolic surface Σ of finite type characterized by a development-holo-

nomy pair (D, ρ). Denote by pr : H→ Σ the universal cover of Σ.

TOME 66 (2016), FASCICULE 1



340 Sébastien ALVAREZ & Nicolas HUSSENOT

Let Ci be a cusp bounded by a horocycle Hi. In the sequel, C̃i denotes

a connected component of pr−1(Ci), which is invariant by a parabolic ele-

ment γi ∈ π1(Σ) (this is the lift of the translation over the corresponding

primitive closed horocycle Hi).

We say that the structure is parabolic at Ci if there exists hi : C̃i →CP
1

and Ai ∈ PSL2(C) such that:

(1) hi is a biholomorphism onto its image;

(2) hi conjugates the actions of γi and z 7→ z + 1, and Ai conjugates

the actions of z 7→ z + 1 and ρ(γi);

(3) D = Ai ◦ hi in restriction to C̃i.

We say that the branched projective structure is parabolic if it is para-

bolic at every cusp.

Remark 2.1. — Let C̃i, C̃
′
i be two connected components of pr−1(Ci),

corresponding to parabolic elements γi, γ
′
i ∈ π1(Σ). There exists an element

γ ∈ π1(Σ) such that γ(C̃i) = C̃ ′
i and which conjugates γi and γ′

i. We then

have D
|C̃′

i

= ρ(γ) ◦ D
|C̃i

◦ γ−1. This shows that the definition of being

parabolic at the cusp Ci does not depend on the choice of a particular lift

of Ci.

Remark 2.2. — For a branched projective structure to be parabolic, it

is necessary that the holonomy representation is parabolic: the image by

ρ of a parabolic element γ has to be a parabolic matrix of PSL2(C). If

one prefers, the holonomy over any loop around the punctures has to be

conjugated to a translation. As we will see later, this is not sufficient.

Remark 2.3. — Since hi conjugates the action of γi and z 7→ z + 1, it

sends C̃i inside a half plane bounded by a horizontal line. Up to postcom-

position by a Möbius commuting with z 7→ z + 1, we can always assume

that hi(C̃i) ⊂H>1 = {z ∈ C; Im(z) > 1}.

Remark 2.4. — It is convenient to think that a local model for a

branched projective structure which is parabolic at a cusp is given by the

inclusion ι : D→CP
1, D⊂H>1 being invariant by z 7→ z + 1. Indeed, a

structure is parabolic at a cusp Ci if and only if the developing map reads

as ι after holomorphic change of coordinates in C̃i which conjugates the

actions of z 7→ z+ 1 and γi, and a Möbius change of coordinate at the goal

which conjugates the actions of ρ(γi) and z 7→ z + 1.

Remark 2.5. — It is possible to think of the developing map as a multi-

valued holomorphic map over Σ. Then, the structure is parabolic at a cusp

Ci if in some holomorphic coordinate z in Ci, one has D(z) = 1
2iπ log(z).
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Non-parabolic structures in a punctured disc with parabolic holonomy rep-

resentation are given for example by the multivalued holomorphic maps

hn(z) = 1
2iπ log(z) + 1

zn .

Basic examples of parabolic projective structures are given by uniformiza-

tion and more generally by the covering projective structures, whose de-

veloping maps are covering maps onto their images (see [14] as well as the

references therein). There are also exotic parabolic structures constructed

by Hejhal [20] by a surgery process called grafting which produce parabolic

structures which are not of covering type. Finally, ([13],Lemma 8) provides

examples of parabolic projective structures on punctured spheres whose

holonomy representations are dense in PSL2(C). Using the Schwarzian

parametrization of projective structures, it is possible to prove that the

space of (non-branched) projective structures on a surface of genus g with n

punctures has the structure of a complex affine space of dimension 3g−3+n

([14],Paragraph 6.1.).

2.2. The foliated geodesic flow of Riccati foliations

Geodesic and horocyclic flows. The geodesic flow of T 1
H is defined

by flowing a vector v at unit speed along the geodesic it directs. We denote

it by G̃t. It is well known that this flow has hyperbolic properties, and

that the unstable (resp. stable) manifolds are given by horocycles endowed

with the outward (resp. inward) unit normal vector field (horocycles are

horizontal lines and euclidian circles tangent to the boundary of H). These

manifolds foliate T 1
H, and the arc length parametrization of the unsta-

ble (resp. stable) horocycles gives the unstable (resp. stable) horocyclic

flow, denoted by H̃u
t (resp. H̃s

t ). The unstable and stable foliations are

respectively denoted by W̃u and W̃s, and their leaves, by W̃u(v), W̃ s(v),

v ∈ T 1
H.

The saturated sets of unstable and stable horocycles by the geodesic flow

are respectively called center-unstable and center-stable manifolds and are

denoted by W̃ cu(v), W̃ cs(v), v ∈ T 1
H. They form two foliations of T 1

H by

planes called the center-unstable and center-stable foliations and denoted

by W̃cu and W̃cs.

Let Σ be a hyperbolic surface of finite type. We can push these flows

by the differential of the Riemannian universal cover pr : H→ Σ (which is

by definition a local isometry). This defines three flows on T 1Σ denoted

respectively by gt, h
u
t and hs

t . The invariant foliations will be denoted by
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W∗, ∗ = s, u, cs, cu. All these flows preserve a canonical volume form: the

Liouville measure Liouv (normalized in such a way that Liouv(T 1Σ) = 1).

Moreover, the famous theorem of Hopf [22] asserts that the geodesic flow

gt : T 1Σ →T 1Σ is ergodic with respect to the Liouville measure.

Riccati foliations. Given a representation ρ : π1(Σ) →PSL2(C), there

is an associated Riccati foliation obtained by suspension of the action

on CP
1.

More precisely, π1(Σ) acts diagonally on H × CP
1: the action on the

first factor is by deck transformations, and that on the second one is by

ρ. By taking the quotient, we obtain a manifold M , called the suspended

manifold endowed with:

• a fiber bundle Π : M → Σ, whose fibers Fp = Π−1(p), p ∈ Σ are

copies of CP1;

• a suspended foliation F transverse to the fibers of Π, whose leaves

are covers of Σ, and with holonomy representation ρ.

The data of (Π,M,Σ,CP1,F) will be called a Riccati foliation. As was

mentioned in the Introduction, these foliations can be defined by Riccati

equations on closed algebraic curves.

It is then possible to consider a Riemannian metric on M , that we will

call admissible, and which satisfies:

• for the induced metric on each leaf L, the restriction Π|L : L→ Σ

is a Riemannian cover (in particular, all leaves are hyperbolic);

• the induced metric on each fiber is compatible with its conformal

structure, i.e. after a conformal change of coordinates it is the usual

Fubini-Study metric given by:

ds2 =
dx2 + dy2

(1 + x2 + y2)2
.

• leaves and fibers are orthogonal.

If we have moreover a developing map D, we can define a holomorphic

section σ0 : Σ →M of the bundle, called the diagonal section, which is

transverse to F except at a finite number of points, and which is induced

by equivariance by (Id,D) : H→H × CP
1.

Foliated flows. In the sequel let (Π,M,Σ,CP1,F) be a Riccati foliation

endowed with an admissible metric. Since in restriction to the leaves, the

fibration is a local isometry, its differential induces a fiber bundle Π∗ :

T 1F →T 1Σ, where T 1F is the unit tangent bundle of the foliation, i.e. the

set of unit tangent vectors tangent to the leaves of F . This fiber bundle is
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foliated by the T 1L, L leaf of F . We denote by F̂ this foliation. The fiber

Π−1
∗ (v) shall be denoted by F∗,v.

Since any leaf L is uniformized by the Poincaré plane H, T 1L carries

a geodesic flow and two horocyclic flows. Hence we have three flows of

T 1F which, when restricted to a leaf T 1L, coincide with its geodesic and

horocyclic flows. We call them the foliated geodesic flow, denoted by Gt, the

foliated unstable horocyclic flow, denoted by Hu
t , and the foliated stable

horocyclic flow, denoted by Hs
t

Projective cocycles. Bonatti, Gómez-Mont and Vila [9] remarked that

these foliated flows produce locally constant projective cocycles. Indeed,

since all leaves are Riemannian covers of the base, the foliated geodesic

flow projects down to the geodesic flow of T 1Σ. Hence, it sends fibers to

fibers. We shall denote the resulting cocycle by:

At(v) = (Gt)|F∗v
: F∗,v −→F∗,gt(v),

for t ∈ R, and v ∈ T 1Σ. The term cocycle refers to the following formula:

At1+t2(v) = At1(gt2(v))At2(v).

If we choose any orbit segment c = g[0;t](v), then At(v) is the holonomy

map along the path c. Hence, the foliated geodesic flow sends fibers to fibers

as a projective transformation. The cocycle is locally constant because the

bundle is flat: in particular, if two orbit paths c = g[0;t](v) and c′ = g[0;t′](v
′)

are covered by a same chain of trivializing charts, then At(v) and At′(v′)

are equal as projective transformations of CP1.

In the same way, the foliated unstable and stable horocyclic flows produce

cocycles:

Bu
t (v) = (Hu

t )|F∗v
: F∗,v −→F∗,hu

t (v),

Bs
t (v) = (Hs

t )|F∗v
: F∗,v −→F∗,hs

t (v),

Lyapunov exponents. When the representation is parabolic, Bonatti,

Gómez-Mont and Vila [9] proved that Oseledets’ theorem can be applied

to the cocycle At because the following integrability condition holds:

∫

T 1Σ

log+ ||A±1(v)|| dLiouv(v) < ∞.
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A consequence is the existence of Lyapunov exponents for Liouv-almost

every v ∈ T 1Σ:

λ+(v) = lim
t → ∞

1

t
log ||At(v)||,

λ−(v) = lim
t → ∞

1

t
log ||At(v)−1||−1.

By ergodicity of Liouville measure these quantities are constant on a full

and invariant set: we call λ+, λ− these numbers. Remark that λ+ = −λ−.

If Σ were compact, the following theorem would be attributed to Bonatti,

Gómez-Mont and Viana [8]. Since it is not compact, it is a consequence of

the work of Avila-Viana, and of the coding of the geodesic flow.

More precisely, using the Bowen-Series coding of the action of the sur-

face group [11], Series was able to prove that the geodesic flow of Σ is

a sophic system [33]. For our purpose, the modification of this coding by

Ledrappier and Sarig [29] will be more adapted. They provide a geomet-

ric Markov partition with countably many symbols for the geodesic flow

on T 1Σ and locally Hölder height function. They also provide the symbolic

description of the Liouville measure and prove that it has a consistent local

product structure with uniformly log-bounded densities in the local stable

and unstable sets (this is Lemma 3.1 of [29]).

In [5], the authors give a sufficient condition for a locally constant pro-

jective cocycle over a Markov map with countably many symbols endowed

with an ergodic probability measure with the local product structure to

have a simple Lyapunov spectrum. A combination of these works gives the

following:

Theorem 2.6. — Let (Π,M,Σ,CP1,F) be a Riccati foliation endowed

with an admissible metric. Assume that the holonomy representation ρ :

π1(Σ) →PSL2(C) is parabolic. Then the following dichotomy holds true:

• either there exists a probability measure on CP
1 invariant by the

holonomy group ρ(π1(Σ));

• or one has λ+(v) > 0 for Liouville-almost every v ∈ T 1Σ.

The Lyapunov sections. Assume that there is no holonomy invari-

ant measure and that the holonomy representation is parabolic. Then, by

Theorem 2.6, and Oseledets’ theorem, we have that:

Proposition 2.7. — For Liouville almost every v ∈ T 1Σ there exists a

splitting of the linear fiber F̃∗,v = σ+(v) ⊕ σ−(v) such that:

(1) it varies measurably with the point v;
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(2) it commutes with the cocycle: for every t ∈ R, At(v)σ±(v) =

σ±(gt(v));

(3) we have the following properties of attraction:

lim
t → ∞

1

t
log distF∗,v

(At(v)w, σ+(gt(v))) = −2λ+

for all w ∈ F∗,v \ {σ−(v)} and:

lim
t → ∞

1

t
log distF∗,v

(A−t(v)w, σ−(g−t(v))) = −2λ+

for all w ∈ F∗,v \ {σ+(v)}.

(4) the sections are determined by the following properties:

lim
t → ∞

||A−t(v)x|| = 0 if and only if x ∈ σ+(v),

lim
t → ∞

||At(v)x|| = 0 if and only if x ∈ σ−(v).

Remark. — In the third assertion, σ±(v) are thought as elements of the

projective fiber F∗,v. In the last assertion, we see A±t(v) as an element of

SL2(C) acting on a copy of C
2: recall that the bundle is supposed to be

linearizable.

The two subspaces defined in the proposition above can be thought as

elements of the projective fiber F∗,v. Therefore we have two measurable

sections σ± of the bundle Π⋆ which are called Lyapunov sections.

The following proposition is due to Bonatti and Gómez-Mont [6]: it relies

on the fourth assertion stated in Proposition 2.7.

Proposition 2.8.

(1) The two Lyapunov sections commute with the geodesic flows: Gt ◦
σ± = σ± ◦ gt.

(2) The section σ+ commutes with the unstable horocyclic flows: Hu
t ◦

σ+ = σ+ ◦ hu
t .

(3) The section σ− commutes with the stable horocyclic flows: Hs
t ◦

σ− = σ− ◦ hs
t .

3. Distribution of the singularities

The purpose of this section is to prove Theorem C and to give several

descriptions of the distribution of limit points of developed geodesic rays in

the Riemann sphere. This also gives the statistical distribution of the sin-

gularities of holonomy germs from a fiber to the image of the holomorphic

section σ0 along almost every developed ray.
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The results of this section are consequences of Theorem B, which we

assume to hold for the moment. In the sequel Σ will stand for a hyper-

bolic surface of finite type, and (D, ρ) for a parabolic branched projective

structure. We assume that the holonomy group ρ(π1(Σ)) has no invariant

probability measure on CP
1. Under these hypothesis, Theorem B implies

that for every p ∈ Σ and dθ-almost every v ∈ T 1
p Σ we have (with an obvious

abusive notation):

lim
t → ∞

D(gt(v)) = σ−(v).

3.1. Disintegration of the SRB measure of the foliated geodesic

flow

Distribution of the singularities. Unit vectors tangent to Σ are dis-

tributed uniformly according to the Liouville measure. Denote by (dθp)p∈Σ

the family conditional measures of the Liouville measure on the unit tan-

gent fibers T 1
p Σ with respect to the area element of Σ. Hence the limits

of developed geodesic rays in the fiber of a point p are distributed accord-

ing to:

(3.1) sp = σ− ∗ (dθp).

Remark 3.1. — The probability measures sp, p ∈ Σ are quasi-invariant

by holonomy maps of the foliation F : this is another way to say that there

is a well defined measure class on CP
1 which describes the distribution of

limits of developed geodesic rays. This is so because the measure class of

dθp, as well as the section σ− are invariant by center-stable holonomies

(which are smooth since the stable horocyclic flow is smooth).

The SRB measure. [9] proved that the foliated geodesic flow Gt pos-

sesses a unique SRB measure: it possesses a probability measure µ+ whose

basin of attraction has full volume. It follows from the third property stated

in Proposition 2.7 that this measure is precisely described by:

µ+ = σ+ ∗ Liouv.

The flow G−t also possesses a unique SRB measure which is precisely

described by:

µ− = σ− ∗ Liouv.

Notice that even if these measure are singular (since the sections σ+ and

σ− are disjoint almost everywhere) their projections via the canonical map

pr : T 1F →M are equal: we denote it by m. Indeed µ− is exactly the image

of µ+ by the involution v ∈ T 1F 7→ −v.
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Disintegration in the fibers. Here we show that the conditional mea-

sures mp of m on the fibers coincide with the distribution sp defined by

Formula 3.1. The proof follows the lines of that of Theorem F of [1] where

a similar result is stated in the context of Gibbs measures of the foliated

geodesic flow (although this theorem is stated for a compact base its proof

can be copied without modification). The main idea is that the conditional

measures of µ− in the fibers F∗,v are given by the Dirac masses at σ−(v)

and that we obtain conditional measures of m in a fiber Fp by integration

of those of µ− on fibers of unit vectors tangent to p.

Proposition 3.2. — Let m be the projection of the unique SRB mea-

sure of the geodesic flow and (mp)p∈Σ be its system of conditional measures

on the fibers. Then for every p ∈ Σ,

mp = sp.

3.2. Foliated harmonic measure and its discretization

The unique foliated harmonic measure. Each leaf L is endowed with

a Laplace operator ∆L which generates a one-parameter semi-group called

the heat diffusion, characterized by a heat kernel p(t;x, y). This allows for

every x ∈ L to define the Wiener probability measure on the space Ωx

of continuous paths ω : [0; ∞) →L starting at x, that will be denoted by

Wx. It has the Markov property, and projects down to the heat density

p(t;x, y)dy by the map ω 7→ ω(t). A Brownian path starting at x is a

typical path for Wx.

Foliated harmonic measures for F are measures on M which are invariant

by the leafwise heat diffusion operator (which by definition induces on

every leaf L its heat diffusion operator). They have been considered by

Garnett [19] in the context of compact foliated manifolds. In our context

the existence of such measure is guaranteed by the Main Theorem of [3].

Proposition 3.3. — Under the hypothesis of Theorem B, there exists

only one foliated harmonic measure.

Proof. — This can be deduced from the Main Theorem of [3] (which

gives a bijective correspondence between harmonic and stationary measure

for a probability measure on the holonomy group that we shall describe

below), from Furstenberg’s theorem (ensuring the uniqueness of stationary

measures in the present context under some integrability conditions [16])

and from Section 3.4 of the first author’s PhD thesis [4] (which shows the

integrability conditions under the hypothesis of Theorem B). �
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Proposition 3.4. — Under the hypothesis of Theorem B, the projec-

tion m of the unique SRB measure of the foliated geodesic flow is the unique

foliated harmonic measure for F .

In particular the family (sp)p∈Σ defined by Formula 3.1 is the family of

conditional measures of the unique foliated harmonic measure for F .

Proof. — The measure µ+ is invariant by the joint action of the foliated

geodesic and unstable horocyclic flow (see Proposition 2.7). Hence its pro-

jection is a harmonic measure for F : see the proofs of [2, 32] made in the

compact case but which are still valid in our context. �

Discretization. Given a probability measure ν on the fundamental

group π1(Σ) we say that a measure s on the Riemann sphere CP
1 is ν-

stationary if:

s =
∑

γ∈π1(Σ)

ν(γ)ρ(γ) ∗ s.

The discretization of the Brownian motion performed by Furstenberg-

Lyons-Sullivan [17, 31] provides a bijective correspondence between foliated

harmonic measures and stationary measures for the action of the holonomy

group on the fiber (see [3]).

In our context it yields a family (νz)z∈H of probability measures on π1(Σ)

with full support and equivariance property γ ∗ νz = νγz (hence it de-

fines a family (νp)p∈Σ on π1(Σ)) such that the conditional measure of the

unique harmonic measure on the fiber Fp ≃ CP
1 is precisely the unique

νp-stationary measure (see the proof of Proposition 3.3). This provides an-

other characterization of the distribution of limit points of images of most

geodesic rays by the developing map:

Proposition 3.5. — Assume that the hypothesis of Theorem B hold.

Let (νp)p∈Σ be a family of measures given by the Furstenberg-Lyons-

Sullivan procedure of discretization of the Brownian motion. Then for

every p ∈ Σ sp coincides with the unique νp-stationary measure on the

fiber Fp.

3.3. Family of harmonic measures on the Riemann sphere

Limits of developed Brownian paths. In [23] the second author

adopts the point of view of Brownian motion and studies images by the

developing map of Brownian paths (that we also call developed Brownian

paths). The main Theorem of [23] is:
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Theorem 3.6. — Let Σ be a hyperbolic surface of finite type. Con-

sider a branched projective structure on Σ represented by a development-

holonomy pair (D, ρ), that is parabolic and non-elementary. Then the fol-

lowing dichotomy holds:

• if D is not onto, then for all z ∈ H and almost every Brownian path

ω starting at z, there exists e(ω) ∈ CP
1 such that D(ω(t)) converges

to e(ω) when t goes to ∞;

• if D is onto, then for all z ∈ H and almost every Brownian path ω

starting at z, the path D(ω(t)) does not have any limit when t goes

to ∞.

Asymptotic behaviour of developed Brownian paths. Although

in the second case of Theorem 3.6 a developed Brownian path does not have

a limit we can describe its asymptotic behaviour. Almost every developed

Brownian path spends most of its time very close to some point of CP
1,

and the distribution of these points is exactly given by the distribution of

limits of developed geodesic rays.

Theorem 3.7. — Let Σ be a hyperbolic surface of finite type. Con-

sider a branched projective structure on Σ represented by a development-

holonomy pair (D, ρ), that is parabolic and non-elementary. Then for every

z ∈ H and almost every Brownian path ω starting from z, there exists a

point e(ω) ∈ CP
1 such that:

lim
t → ∞

1

t

∫ t

0

D ∗ δω(s)ds = δe(ω)

Denote by ez the distribution of e(ω) subject to the condition ω(0) = z:

by equivariance of D this distribution satisfies the equivariance relation

γ ∗ ez = eγz for every γ ∈ π1(Σ). In particular it induces a family of

probability measures on the fibers Fp (ep)p∈Σ. The proof of Theorem 3.7

in [23] provides more information about ep: it coincides exactly with the

unique νp-stationary measure (recall that νp is given by the discretization

of the Brownian motion). As a consequence, we find that:

Proposition 3.8. — Assume that the hypothesis of Theorem B hold.

Let (ep)p∈Σ be the family describing the asymptotic behaviour of developed

Brownian path defined in Theorem 3.7. Then for every p ∈ Σ, the measure

sp coincide with ep.

Family of harmonic measures. It is classical that by considering the

exit distribution of the Brownian motion on an open set, one obtains a

family of measures, the harmonic measures, on its boundary which is used
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to solve the Dirichlet problem of finding harmonic functions with prescribed

boundary conditions.

It is also possible to associate to any non-elementary representation

ρ : π1(Σ) →PSL2(C) a family of harmonic measures. Namely it has been

shown by Furstenberg [18] that for such a representation, there exists a

unique (up to a null Borel set for the Lebesgue measure) measurable map

β : RP1 →CP
1 which is ρ-equivariant (here the action of π1(Σ) on RP

1 is

the natural extension of that on H which is given by the uniformization).

This map is called the Furstenberg’s boundary map.

By pushing by the Furstenberg’s boundary map β the measure on R

whose density with respect to Lebesgue is given by the Poisson kernel,

Deroin and Dujardin proved the following:

Proposition 3.9. — Let Σ be a hyperbolic surface of finite type and

ρ : π1(Σ) →PSL2(C) be a representation which preserves no measure on

CP
1. Then there exists a unique family of probability measures (θz)z∈H

which verifies the following properties:

(1) it is equivariant: for every z ∈ H and γ ∈ π1(Σ) we have ρ(γ) ∗ θz =

θγz;

(2) it is harmonic: for every Borel set A⊂CP
1 the map z 7→ θz(A) is

harmonic for the Laplace operator.

Once again the equivariance allows us to define a family of measures on

the fibers (θp)p∈Σ. Deroin and Dujardin note that the family (ez)z∈H given

by Theorem 3.7 satisfies these conditions. Hence we can conclude the proof

of Theorem C.

Proposition 3.10. — Assume that the hypothesis of Theorem B hold.

Let (θp)p∈Σ be the family of harmonic measures of the representation ρ

defined in Proposition 3.9. Then for every p ∈ Σ, the measure sp coincide

with θp.

3.4. The set of singularities is uncountable

and dense in the limit set

The distribution is non atomic. We have the following lemma which

will imply that the set of limits of developed geodesic rays is uncountable.

Lemma 3.11. — Assume that the hypothesis of Theorem B hold. Then

the distribution sp is non atomic.
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Proof. — The easiest way to see this fact is to use Proposition 3.5: sp

is the unique νp-stationary measure. But a classical argument shows that

since the holonomy group does not preserve any measure this measure has

to be non atomic for if the contrary were true we could consider the finite

subset X ⊂CP
1 of atoms of greatest mass. For x ∈ X we would obtain by

stationarity:

sp(x) =
∑

γ∈π1(Σ)

νp(γ)sp(ρ(γ)−1x),

which would imply sp(ρ(γ)−1x) = sp(x) for every γ ∈ π1(Σ). Finally the set

X would be invariant by holonomy which contradicts the hypothesis. �

Proposition 3.12. — Assume that the hypothesis of Theorem B hold.

Then for every p ∈ Σ, the set of σ−(v) where v ranges a full dθ-measure

subset of T 1
p Σ is uncountable.

Proof. — This follows directly from Lemma 3.11 and the fact that any

measure supported on a countable set has atoms. �

The distribution charges open sets of the limit set. By hypothesis,

the holonomy group ρ(π1(Σ)) is a non-elementary subgroup of PSL2(C):

it possesses a unique minimal set Λρ called its limit set. We can show the

following proposition:

Proposition 3.13. — Assume that the hypothesis of Theorem B hold.

Then for every p ∈ Σ, the set of σ−(v) where v ranges a full dθ-measure

subset of T 1Σ is dense in the limit set.

Proof. — Firstly all σ−(v) belong to the limit set of the holonomy group

because of the invariance by the foliated geodesic flow: we can always write

σ−(v) = (At)
−1(v)σ−(gt(v)) and for almost every v, At(v) is a word in the

generators of ρ(π1(Σ)) whose length goes to infinity with t.

Secondly for every p ∈ Σ, v ∈ T 1
p Σ and γ ∈ π1(Σ), ρ(γ)σ−(v) belongs to

the image of the restriction of σ− to T 1
p Σ: by minimality of the action of the

holonomy group on its limit set this implies that the image of the restriction

of σ− to T 1
p Σ is dense in the limit set. In order to see this fact, work in

the universal cover of Σ. There is a identification T 1
H ≃ H×RP

1 obtained

by associating to a vector v the couple (z, ξ) = (cv(0), cv(∞)) where cv is

the geodesic directed by v. This identification trivializes the center-stable

foliation (we will also meet in the sequel a different identification which

trivializes the center-unstable foliation) and conjugates the natural actions

of π1(Σ) on these two spaces. Since the section σ− commutes with the
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center-stable foliations, its lift can be written in coordinates as:

σ̃−(z, ξ) = (z, ξ, s̃−(ξ)).

Now the equivariance relation ρ(γ)s̃−(ξ) = s̃−(γξ) shows that for all v ∈
T 1

p Σ, ρ(γ)σ−(v) ∈ σ−(T 1
p Σ). That concludes the proof. �

4. Limits of developed geodesic rays

4.1. Distance between diagonal and Lyapunov sections along

geodesics

Until the end of this article, Σ is a hyperbolic surface of finite type, and

(D, ρ) is a parabolic branched projective structure. We consider the asso-

ciated Riccati foliation (Π,M,Σ,CP1,F), the associated diagonal section

σ0, and we endow M with an admissible metric. Furthermore, we assume

that the holonomy group ρ(π1(Σ)) has no invariant probability measure

on CP
1.

The diagonal section σ0 clearly induces a smooth section of the unit

tangent bundle, that we also denote by σ0 : T 1Σ →T 1F which is invariant

by the holonomy over the unit tangent fibers T 1
p Σ. We also call it the

diagonal section of Π∗.

Developing map and the cocycle. Recall that by definition, a de-

veloped geodesic ray in CP
1 is the image of a geodesic ray of H by the

developing map D. We want to prove that in that case, a typical developed

geodesic ray has a limit.

Recall moreover that for every v ∈ T 1Σ, At(v) is the holonomy map along

the orbit segment g[0;t](v). Hence, we have the following important formula

which holds (with the obvious abusive notation D(gt(v)) = D(c̃v(t)) for the

lift c̃v(t) of the geodesic directed by v) for every t ∈ R:

(4.1) D(gt(v)) = (At(v))−1σ0(gt(v)).

North-South dynamics. By definition of Lyapunov sections (see Pro-

position 2.7), the fiberwise dynamics of the cocycle over a geodesic orbit

is nothing but a North-South dynamics. More precisely, a simple applica-

tion of the ε-reduction theorem of Oseledets-Pesin (see [27]) implies the

following useful proposition.

Proposition 4.1. — Let (Π,M,Σ,CP1,F) be a Riccati foliation with

a parabolic holonomy representation which preserves no measure on CP
1.
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Let 0 < λ1 < λ2 < λ+. Then for Liouville-almost every v ∈ T 1Σ, there

exists T0 such that for every t > T0, we have:

At(v)−1
[

cD(σ+(gt(v)), e−λ1t)
]

⊂D(σ−(v), e−λ2t),

where D(x, r) denotes the disc in CP
1 centered at x and of radius r for the

Fubini-Study metric.

Henceforth, by Formula (4.1) and Proposition 4.1, if we want to prove

that for Liouville almost every v ∈ T 1Σ,

(4.2) lim
t → ∞

D(gt(v)) = σ−(v),

it is enough to prove the following key proposition:

Proposition 4.2. — Let (D, ρ) be a non-elementary parabolic bran-

ched projective structure on a hyperbolic surface of finite type Σ. The fol-

lowing Ricatti foliation is denoted by (Π,M,Σ,CP1,F) and the associated

diagonal section by σ0. Then there exists a Borel set X ⊂T 1Σ gt-invariant

and full for the Liouville measure such that for every 0 < λ1 < λ+, and

every v ∈ X , there exists T1 such that for every t > T1, we have:

σ0(gt(v)) /∈ D(σ+(gt(v)), e−λ1t).

Proposition 4.2 implies Theorem B. Until the end of this paragraph,

we assume that Proposition 4.2 holds true. Let us state what remains to be

proven. As we mentioned before, this proposition implies that (4.2) holds

almost everywhere for the Liouville measure. In other words, it implies

that the conclusion of Theorem B holds only for Leb-almost every z ∈ Σ.

It remains to prove that it holds for every z. Before we begin the proof of

the theorem, let us make some remarks.

(1) Even though the section σ− is a priori only defined on the gt-

invariant set full for the Liouville measure X , we know by Proposi-

tion 2.8 that it commutes with geodesic and stable horocyclic flows:

it is well defined on the whole center-stable manifold of every point

of X .

(2) Since σ− commutes with the geodesic flows, if the conclusion of

Theorem B holds for a vector v ∈ T 1Σ, it also holds for every gt(v),

t ∈ R.

(3) All center-stable manifolds, except those of periodic orbits and those

corresponding to the cusps, are planes. In particular for every z ∈ Σ

and dθ-almost every v ∈ T 1
z Σ, the center-stable manifold of v is

simply connected.
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(4) For every z ∈ Σ and dθ-almost every v ∈ T 1
z Σ, there exists v′ ∈ X

such that v′ ∈ W cs(v) and distcs(v, v′) < 1/2.

Hence, it is enough to prove that for every v′ ∈ X whose center-stable

manifold is simply connected and every v ∈ W s(v′) with dists(v, v′) < 1,

we have:

lim
t → ∞

D(gt(v)) = σ−(v).

In order to do so, we will need the following proposition, whose proof is

postponed until the next paragraph.

Proposition 4.3. — Let (D, ρ) be a parabolic branched projective

structure on a hyperbolic surface Σ of finite type. Then the section σ0 :

Σ →M is Lipschitz.

Now consider v′ ∈ X whose center-stable manifold is simply connected,

as well as v ∈ W s(v′) such that v′ = hs
δ(v) with 0 < δ < 1. Then, for

every t > 0, dists(gt(v), gt(v
′)) = δe−t. Moreover, since the center-stable

manifold is simply connected, the following conjugacy formula holds for

every t > 0:

(4.3) At(v) = (Bs
δe−t(gt(v)))−1At(v

′)Bs
δ(v).

In particular, this shows that

At(v)−1σ0(gt(v)) = (Bs
δ(v))−1At(v

′)−1Bs
δe−t(gt(v))σ0(gt(v)).

Since σ0 is Lipschitz, there exists C > 0 such that for every t > 0, we

have:

distM (σ0(gt(v)), σ0(gt(v
′))) 6 Ce−t.

Moreover, for every t > 0,

distM (σ0(gt(v)), Bs
δe−t(gt(v))σ0(gt(v))) 6 δe−t.

Hence by the triangular inequality, we have for every t > 0:

distM (σ0(gt(v
′)), Bs

δe−t(gt(v))σ0(gt(v))) 6 (C + δ)e−t.

Recall that v′ ∈ X : we can apply Proposition 4.2, and if we have chosen

0 < λ1 < λ2 < Min(λ+, 1), we get T2 > 0 such that for every t > T2:

Bs
δe−t(gt(v))σ0(gt(v)) /∈ D(σ+(gt(v

′)), e−λ1t).

From Proposition 4.1, we deduce that for every t > T2:

At(v
′)−1Bs

δe−t(gt(v))σ0(gt(v)) ∈ D(σ−(v′), e−λ2t).
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Finally, we use the fact that the map (Bs
δ(v))−1 : F∗,v′ →F∗,v is Lipschitz

to prove the existence of C ′ > 0 such that for all t > T2:

distCP1(At(v)−1σ0(gt(v)), σ−(v)) 6 C ′distCP1(At(v
′)−1Bs

δe−t(gt(v)), σ−(v′))

6 C ′e−λ2t.

It proves in particular that limt → ∞ D(gt(v)) = σ−(v). Hence, assuming

Proposition 4.2 Theorem B is proven. �

Proof of Proposition 4.3. — Before giving the proof of the proposition,

let us recall a consequence of the uniformization theorem. For a puncture

pi of Σ, there is a distinguished local holomorphic coordinate z around pi

with z(pi) = 0 where the metric reads as:

(4.4) ds2 =
|dz|2

(|z| log |z|)2
.

The next lemma asserts that holomorphic changes of coordinate near

punctures of Σ are close to be hyperbolic isometries.

Lemma 4.4. — Let D∗ be the unit disc punctured at the origin, endowed

with the complete hyperbolic metric given by (4.4). Let h : (D∗, 0) →(D∗, 0)

be a germ of biholomorphism fixing the origin. Then h∗(ds2) and ds2 are

conformally equivalent with a conformal factor which tends to 1 at the

origin.

Proof. — Write the Taylor expansion at the origin of the germ h as∑∞
n=1 anz

n with a1 6= 0. The desired conformal factor is precisely given by:

ϕ(z) = |h′(z)| |z| log |z|
|h(z)| log |h(z)| .

Since a1 6= 0, we have |h(z)| log |h(z)| ∼ |a1z| log |z| = |h′(0)| |z| log |z|,
as z→ 0, which implies that the conformal factor tends to 1, as claimed in

the lemma. �

Now, let us come back to the proof of Proposition 4.3. It is enough to

prove that the developing map D is Lipschitz over a fundamental ideal

polygon P . Such a polygon may be written as a union of a compact part

and a finite number of cusps. It is possible to assume that all cusps Ci ⊂ Σ

lie inside a holomorphic chart where the metric reads as (4.4).

For the Fubini-Study distance, the diameter of CP1 is π/2. Hence it is

enough to prove that D is Lipschitz in restriction to each cusp, and to the

closed π/2-neighbourhood of the compact part. The latter is immediate

since this closed neighbourhood is compact and D is holomorphic.
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Now choose a cusp Ci and consider a connected component C̃i of

pr−1(Ci), associated to the parabolic element γi ∈ π1(Σ). By the parabol-

icity of the structure, inside C̃i, D reads as Ai ◦ hi, where Ai ∈ PSL2(C)

conjugates the actions of z 7→ z+ 1 and ρ(γi), and hi : C̃i →H>1 is biholo-

morphic onto its image and conjugates the actions of γi and z 7→ z + 1.

It is enough to prove that hi is Lipschitz in a fundamental domain of the

action of γi.

Claim. — Inside a fundamental domain for γi, hi is Lipschitz for the

hyperbolic metric at the source and at the goal.

Establishing the claim suffices to end the proof, because inside H>1 the

hyperbolic metric is conformally equivalent the the Fubini-Study metric

with a conformal factor given by:

ϕ(x+ iy) =
y

1 + x2 + y2
,

which is smaller than 1 in H>1.

It remains to prove the claim. First, consider the projection H→D
∗ given

by z 7→ e2iπz: it is invariant by z 7→ z+ 1, and the projection of the hyper-

bolic metric is precisely the standard metric (4.4). The biholomorphism hi

passes to the quotient and gives a biholomorphism of Ci inside a domain Di

which is strictly included in D
∗ (it lies in fact in the domain 0 < |z| < e−2π).

The hyperbolic metric reads as (4.4) in a holomorphic chart: we can now

use Lemma 4.4, as well as the fact that Ci, Di lie strictly inside D
∗. This

biholomorphism, and thus hi, is Lipschitz for the hyperbolic metric. �

4.2. Reduction to a problem of integrability

Subexponential evolution of the distance. In the sequel we intend

to prove a stronger statement than Proposition 4.2 which clearly implies it.

We shall prove that the evolution of the distance between the diagonal and

Lyapunov sections is subexponential along a typical orbit of the geodesic

flow.

Proposition 4.5. — Let (D, ρ) be a non-elementary parabolic bran-

ched projective structure on a hyperbolic surface of finite type Σ. Let

(Π,M,Σ,CP1,F) be the associated Riccati foliation and σ0 be the associ-

ated diagonal section. Then there exists a Borel set X which is invariant

by the geodesic flow and full for the Liouville measure such that for every

v ∈ X :

lim
t → ∞

1

t
log distCP1(σ+(gt(v)), σ0(gt(v))) = 0.
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Problem of integrability. In order to prove Proposition 4.5, we will

use the following classical fact which is an application of Borel-Cantelli

lemma.

Proposition 4.6. — Let (X,B, µ) be a probability space, and T :

X →X be a µ-preserving transformation. Let ϕ : X →R be a measur-

able function which is µ-integrable. Then there is a set X ⊂X which is

T -invariant and full for µ such that for every x ∈ X ,

lim
n → ∞

1

n
ϕ ◦ Tn(x) = 0.

Proposition 4.5 is now a consequence of Proposition 4.6 and of the fol-

lowing property of integrability whose proof is the object of Section 5.

Proposition 4.7. — Let (D, ρ) be a non-elementary parabolic bran-

ched projective structure on a hyperbolic surface of finite type Σ. The

associated Riccati foliation is denoted by (Π,M,Σ,CP1,F) and the associ-

ated diagonal section by σ0. Then the measurable function defined by the

following formula

(4.5) ψ(v) = Sup
t∈[0;1]

log distCP1(σ+(gt(v)), σ0(gt(v)))

is Liouville-integrable.

5. Proof of the integrability

In order to prove the integrablity of ψ, it is convenient to work in the

cover T 1
H = H×RP

1 endowed with coordinates that trivialize the center-

unstable foliation. The main idea is to use the facts that σ+ commutes with

the center-unstable foliations, and σ0 with the foliations by unit tangent

fibers. Hence when we lift them to the cover, they realize as graphs of

functions of (z, ξ) ∈ H×RP
1 in CP

1, the first one depending only on the ξ

variable, and the second one depending only on the z variable. Finally we

are able to separate variables, which simplifies a lot the computations.

5.1. The center-unstable foliation and lifts of the sections

Trivialization of the center-unstable foliation. We may consider

the identification T 1
H ≃ H × RP

1 obtained by sending v on the couple

(cv(0), cv(−∞)) where cv is the directed geodesic determined by v.
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This identification is an equivariance: it conjugates the actions of the

group of direct isometries PSL2(R) on T 1
H by differentials and on H×RP

1

by diagonal maps. Moreover, it also trivializes the center-unstable foliation:

a slice H×{ξ} has to be thought as filled with unstable horocycles centered

at ξ, and geodesics starting at ξ.

We denote by Gt(z, ξ) the restriction of the geodesic flow to the center-

unstable leaf H × {ξ}. Hence, each of the slices H × {ξ} has a foliation

denoted by Gξ, which is defined as the orbit space of this restricted geodesic

flow.

In these coordinates, the Liouville measure is obtained by integration

against the length element dξ of the measures:

dmξ(z) = k(z; ξ)dLeb(z) =
y

(x− ξ)2 + y2

dx dy

y2
.

The density k(z; ξ) is the famous Poisson kernel inside the hyperbolic plane.

Lifts of the sections. The section σ+ can be lifted as an equivariant

section

σ̃+ : H × RP
1 →H × RP

1 × CP
1.

Since σ+ commutes with the center-unstable foliations, the lift reads in

these coordinates as:

σ̃+(z, ξ) = (z, ξ, s̃+(ξ)),

where s̃+ : RP
1 →CP

1 is a measurable map satisfying the equivariance

relation s̃+ ◦ γ = ρ(γ) ◦ s̃+ for every γ ∈ π1(Σ).

Similarly in these coordinates the lift of σ0, which is the developing map,

reads as follows:

D(z, ξ) = (z, ξ,D(z)).

We shall fix now a fundamental ideal polygon P ⊂H which can be de-

composed as a union of a compact part K, and of 2l cusps C+
i bounded

by the geodesic sides of the polygon, as well as by segments of horocycles

where we recall that l is the maximal number of mutually disjoint and

non-homotopic geodesics whose ends arrive to punctures. Proving Propo-

sition 4.7 is equivalent to proving that:

I =

∫∫

P ×R

ψ̃(z, ξ) dmξ(z)dξ < ∞,

where:

(5.1) ψ̃(z, ξ) = Sup
t∈[0;1]

∣∣log distCP1(s̃+(ξ),D(Gt(z, ξ)))
∣∣ .
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We will decompose this integral as a sum IK +
∑2l

j=1 IC+
j

, where IK is

the above integral taken on K × R, and IC+
j

on C+
j × R, and prove that

each of these terms are finite.

5.2. Integrability over the compact part

Foliations of the compact part. For ξ ∈ R, consider the set Kξ =⋃
z∈K G[0;1](z, ξ), and K ′ =

⋃
ξ∈R

Kξ. The set K ′ is a compact subset of

H, and has the property that for all z ∈ K and ξ ∈ R, G[0;1](ξ, z) ⊂K ′.

It is also foliated by the traces of Gξ: when z ∈ H, let Lξ(z) denote

K ′ ∩ Gξ(z). Then we have that for all z ∈ K and ξ ∈ R, ψ̃(z, ξ) 6 ψ̃′(z, ξ)

where:

ψ̃′(z, ξ) = Sup
w∈Lξ(z)

∣∣log distCP1(s̃+(ξ),D(w))
∣∣ .

Hence, in order to deal with the compact part, it is enough to prove the

integrability over K ′ × R of ψ̃′.

Remark that the latter function is constant along the Lξ(z): it will be

useful for the proof.

Decomposition of the compact part. The developing map D is holo-

morphic and nonconstant. As a consequence it has only a finite number of

critical points in the compact set K ′, that we denote by (aj)j∈J .

Hence there exist a number δ > 0, a finite number of disjoint discs

(Uj)j∈J centered at aj and of hyperbolic radii 2δ, as well as a finite number

of discs (Vα)α∈A of hyperbolic radii δ such that:

• K ′ ⊂ ⋃
j∈J Uj ∪ ⋃

α∈A Vα;

• for every j ∈ J and α ∈ A, Vα ∩DH(aj , δ) = ∅;

• for every j ∈ J and α ∈ A, D(Uj) and D(Vα) are proper open sets

of CP1;

• when restricted to Vα, the developing map is a biholomorphism to

its image.

Since D(Uj) are proper open sets of CP1, each of these sets are included

in an affine chart so that we can imagine these sets as included in C. Hence

the restriction D|Uj
reads as follows: there exist an integer nj > 1 and a

map hj : Uj →C which is a biholomorphism on its image such that for any

z ∈ Uj :

(5.2) D(z) − D(aj) = hj(z)nj .
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Lower bound for the distance between the two sections. The fol-

lowing lemma allows us to treat the problem of existence of critical points.

Lemma 5.1. — There exists a constant C0 > 0 such that for all z ∈ K ′

and s ∈ D(K ′), we have:

distCP1(D(z), s) > C0

∏

D(w)=s

distH(z, w).

Proof. — We start by noticing that by the decomposition of K ′ that we

described in the previous paragraph, there exists an integer n such that

each element of D(K ′) has at most n preimages in K ′. Hence, since K ′ has

finite diameter, it is enough to find a constant C > 0 such that for z ∈ Ω,

Ω being either a set Uj or a set Vα, and s ∈ D(Ω):

(5.3) distCP1(D(z), s) > C
∏

w∈Ω,D(w)=s

distH(z, w).

When Ω is of the form Vα, Inequality (5.3) holds for some universal C

because D is a biholomorphism in restriction to each of these open sets,

which are uniformly far from the critical points: the derivatives of the D|Vα

are uniformly bounded away from zero.

When Ω is of the form Uj , it contains a unique critical point aj . Then as

we mentioned above, there exist an integer nj > 1 and a map hj : Uj →C

such that in an affine chart the restriction of D to Uj reads as (5.2). By

compactness, in restriction to Uj and to D(Uj) we may compare respec-

tively the hyperbolic and spherical distances with the euclidian one with a

uniform distortion. Then Inequality (5.3) will hold with the euclidian dis-

tance because hj is a biholomorphism (its derivative is bounded away from

zero independently of j) and because for every z1, z2 ∈ C and n ∈ N, we

have the following equality:

|zn
1 − zn

2 | =
∏

wn=zn
2

|z1 − w|.

�

Upper bound of the integral. Over the compact K ′, the Poisson

kernel k(z, ξ) is, up to a uniform multiplicative constant, controlled by

1/(1 + ξ2), which is integrable over R. Hence, by Fubini, it is enough to

find a constant C1 independent of ξ ∈ R such that for every z ∈ K ′:
∫

K′

ψ̃′(z, ξ)dLeb(z) 6 C1.

ANNALES DE L’INSTITUT FOURIER



ANALYTIC CONTINUATION OF RICCATI FOLIATIONS 361

Let ξ ∈ R. Then there are two cases. Either s̃(ξ) belongs to the 1/1000-

neighbourhood of D(K ′), or it does not. In the latter case, the function

ψ(., ξ) is bounded from above by log(1000) in K ′, which has a finite area.

In the first case we can, by pushing it slightly by the geodesic flow, enlarge

the compact K ′ in such a way that D(K ′) contains s̃(ξ).

Assume now that D(K ′) contains s̃+(ξ). The number of preimages of

s̃+(ξ) insideK ′ is finite and bounded independently of ξ ∈R. By Lemma 5.1,

and since CP
1 has finite diameter, we find that there is a constant C > 0

which is independent of ξ such that:

ψ̃′(z, ξ) 6 C +
∑

D(ζ)=s̃+(ξ)

φ̃(z, ζ, ξ),

where φ̃(z, ζ, ξ) = Supw∈Lξ(z) | log distH(ζ, w)|. It is then enough to bound

from above by a uniform constant the integral over K ′ of each φ̃(., ζ, ξ),

ζ ∈ K ′, ξ ∈ R.

Integrability over the compact part: end of the proof. We have

shown that in order to get the integrability of ψ̃ it is enough to prove the

following lemma:

Lemma 5.2. — The integrals over K ′ of the functions φ̃(., ζ, ξ), ζ ∈ K ′,

ξ ∈ R against the Lebesgue measure are bounded independently of ζ, ξ.

Proof. — The set K ′ is compact and foliated by the Lξ(z). Hence, pass-

ing through each point ζ ∈ K ′, there is a segment of horocycle centered

at ξ, denoted by Hξ(ζ), whose length is bounded independently of ζ and ξ

and such that K ′ ⊂ ⋃
z∈Hξ(ζ) Lξ(z).

In the compact set K ′ we have the following facts.

(1) It is well known that given two points z1, z2 that belong to the same

horocycle, the horocyclic distance between them, which we denote

by disthoro(z1, z2), is given by the following formula:

(5.4) disthoro(z1, z2) = 2 sinh
distH(z1, z2)

2
.

Hence for z, ζ ∈ K ′ on the same horocycle centered at ξ, the horo-

cyclic and geodesic distances between them are in a uniformly log-

bounded ratio.

(2) Since the horocycle segments Hξ(ζ) have bounded lengths and cur-

vatures, their arc length parametrizations are uniformly bounded

independently of ξ in the C1-norm.
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(3) Since moreover each horocycle Hξ(ζ) is orthogonal to the geodesic

segments Lξ(ζ), we obtain by Fubini that the Lebesgue measure

is, when restricted to K ′, equivalent to the measure obtained by

integration of the arc element along the geodesics Lξ(z) against

the arc length element along the horocycle Hξ(ζ), with a Radon-

Nikodym derivative which is log-bounded independently of ζ, ξ.

(4) The functions φ̃(., ζ, ξ) are constant along the Lξ(z) whose lengths

are uniformly bounded.

From all this we find a number C > 0 such that for all ζ ∈ K ′, ξ ∈ R:
∫

K′

φ̃(z, ζ, ξ)dLeb(z) 6 C

∫

Hξ(ζ)

| log disthoro(ζ, s)| dλξ,ζ(s),

where λξ,ζ denotes the arc length element of Hξ(ζ).

Now since the logarithm is integrable at 0, and since the arc length

parametrizations of the horocycles Hξ(ζ) are C1-uniformly bounded, a

change of variable shows that these curve integrals are uniformly bounded.

This finishes the proof of the lemma. �

5.3. Integrability over the cusps: the model case

The inclusion. Recall that a local model for the developing map of a

parabolic structure in a cusp is given by the inclusion ι : C+ =
[
− 1

2 ; 1
2

]
×

[1; ∞) →֒ CP
1. In order to study the integrability problem over a cusp, we

will first treat the analogous problem for this model. In the final paragraph,

we will perform a change of coordinate, in order to treat the general case.

In coordinates, the Liouville measure reads in H as:

dLiouv = k(x+ iy; ξ)
dx dy

y2
dξ.

The goal of this paragraph is to prove that when D = ι, the following

integral is finite:

∫

R

∫ ∞

1

1

y2

∫ 1
2

− 1
2

ψ̃(x+ iy, ξ)k(x+ iy; ξ)dx dy dξ.

Remark 5.3. — Since we know how to prove the integrability of our

function inside the compact part, we can enlarge it if necessary and in

particular it is enough to study this problem for y lying in the interval

[y0; ∞) for some y0 ≫ 1: we shall choose this constant later.
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Decomposition of the integral. We will use bounds on the Poisson

kernel in order to decompose the integral into two parts. Recall that the

following formula holds for all x, ξ ∈ R and y > 0:

k(x+ iy; ξ) =
y

(x− ξ)2 + y2
.

Choose y0 large enough so that there is a uniform constant C > 1 such

that for every x ∈ [−1/2; 1/2] and y ∈ [y0; ∞):

(1) when |ξ| > −1/2 then:

k(x+ iy; ξ) 6 C
y

ξ2 + y2
;

(2) when |ξ| < 1/2 then:

k(x+ iy; ξ) 6 1.

As a consequence, it is enough to prove that the three following integrals

are finite:

I[−1/2;1/2] =

∫ 1
2

− 1
2

∫ ∞

y0

1

y2

∫ 1
2

− 1
2

ψ̃(x+ iy, ξ)dx dy dξ

I(−∞;−1/2] =

∫ − 1
2

−∞

∫ ∞

y0

1

y

1

ξ2 + y2

∫ 1
2

− 1
2

ψ̃(x+ iy, ξ)dx dy dξ

I[1/2;∞) =

∫ ∞

1
2

∫ ∞

y0

1

y

1

ξ2 + y2

∫ 1
2

− 1
2

ψ̃(x+ iy, ξ)dx dy dξ

We will first have to use a geometric argument in order to bound the

integrals of the function ψ̃ on horizontal slices [−1/2; 1/2] × {y}, and then

conclude by simple calculus.

Pencils of geodesics. Given real numbers ξ ∈ R, and y > 1, we can

consider the pencil of geodesics starting at ξ and passing through the hor-

izontal slice [−1/2; 1/2] × {y}. Denote this pencil by Gξ. Denote by Gξ(z)

the geodesic passing through ξ and z. Denote by Lξ(z) the orbit segment

G[0;1](z, ξ). We want to estimate the distance between s̃+(ξ) and the seg-

ments Lξ(x + iy), x ∈ [−1/2; 1/2] and y > 1. We will be interested in the

part of this pencil defined by:

(5.5) Aξ(y) =
⋃

x∈[−1/2;1/2]

Lξ(x+ iy).

Remark 5.4. — In these coordinates the function ψ̃ reads as follows for

z = x+ iy with x ∈ [−1/2; 1/2] and y > 1:

ψ̃(z, ξ) = | log distCP1(s̃+(ξ), Lξ(z))|.
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Remark 5.5. — The set {(x + iy, ξ);x = ξ, y > 1} is of zero Liouville

measure. Hence in the sequel, we will only consider the case where x 6= ξ. In

other words, the only (hyperbolic) geodesics we shall consider are euclidian

half circles orthogonal to the horizontal axis.

Lemma 5.6. — There exists a uniform constant C0 > 1 such that for

y > 1 and ξ ∈ R, the set Aξ(y) is included in the part of the complex plane

identified with [−C0y;C0y] × [C−1
0 y;C0y].

Proof. — It is enough to prove the existence of a constant C > 0 such

that along every geodesic ray L of length 1, the variation of real and imag-

inary parts is 6 Cy, where y is the lowest imaginary part of a point of L.

By applying a similitude of the complex plane, which is a hyperbolic

isometry, it is enough to assume that the geodesic segment L is included

in the half circle centered at 0 and of euclidian radius 1. More precisely, we

intend to prove that the real and imaginary parts of elements ofG[0;1](e
iθ, 1)

vary in intervals uniformly of the order of sin θ = Im(eiθ). By symmetry, it

is enough to consider the case where θ ∈ (0;π/2].

First, notice that when θ1 < θ2:

distH(eiθ1 , eiθ2) =

∫ θ2

θ1

dθ

sin θ
= log

tan(θ2/2)

tan(θ1/2)
.

This implies that if k(θ) > 1 is defined so that distH(eiθ, eik(θ)θ) = 1,

then k(θ) has to be uniformly bounded from above. In order to see this,

use tan θ ∼ θ for θ small, as well as a lower bound c of the derivative

|D(log ◦ tan)|, which is uniform in some compact interval [ε;π/4]. Using

the equality 1 = log[tan(k(θ)θ/2)/ tan(θ/2)] we obtain, for ε small enough,

that k(θ) 6 2e for θ ∈ (0; 2ε], and k(θ) 6 1 + 2(cε)−1 for θ ∈ [2ε;π/2].

In other words, along a geodesic segment of length 1 starting at eiθ the

argument stays uniformly of the order of θ.

By the Lipschitz property, when s ∈ [1, k(θ)], we have that | cos(sθ) −
cos θ| and | sin(sθ) − sin θ| are smaller than (k(θ) − 1)θ. Since moreover

θ 6 π/2 sin θ in [0;π/2], we obtain the desired uniform bound. �

Hence it allows us to work in Aξ(y) with euclidian, spherical or hyperbolic

metrics indinstincly with a controlled distortion.

Lemma 5.7. — There is constant C1 < 1 such that for every y ∈ [1; ∞)

and ξ ∈ R, we have:

distCP1(z1, z2) >
C1

y
distH(z1, z2) >

C2
1

y2
|z1 − z2|,

when z1, z2 ∈ Aξ(y).
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Proof. — The spherical and hyperbolic metrics are conformally equiva-

lent with respect to the euclidian one with conformal factors respectively

given by 1/(1 + x2 + y2) and 1/y. A use of Lemma 5.6 allows us to con-

clude. �

We need a third lemma which allows us to compare horocyclic and geo-

desic distance in hyperbolic geometry.

Lemma 5.8. — There exists a number y0 ≫ 1 such that for every y > y0,

ξ ∈ R and x1, x2 ∈ [−1/2; 1/2] we have:

distH(z1, Lξ(z2)) 6 disthoro(z1, Lξ(z2)) 6 2distH(z1, Lξ(z2)),

where zk = xk + iy.

Proof. — Notice that when y > y0 and x1, x2 ∈ [−1/2; 1/2] we have

uniformly distH(x1 + iy, x2 + iy) 6 1/y0. Hence using Formula (5.4) as well

as a uniform Lipschitz constant of sinh in a neighbourhood of 0 we conclude

that the inequality holds when y0 is large enough. �

Integrals on the horizontal slices. The following proposition is the

main technical ingredient: it will allow us to conclude the proof by simple

calculus.

Proposition 5.9. — There exists constants y0 > 1 and C > 0 such

that for every y ∈ [y0; ∞) and ξ ∈ R:

∫ 1
2

− 1
2

ψ̃(x+ iy, ξ)dx 6 C log(ξ2 + y2).

The function ψ̃ has been defined as the log of the Fubini-Study distance

of s̃+ to geodesic segments Lξ(z). The idea of the proof is to control the

restriction of this function to horizontal slices, up to logarithmic quantities,

by the log of the euclidian distance of the projection of s̃+(ξ) on this hori-

zontal slice. Using the integrability of the logarithm in the neighbourhood

of 0 we will be able conclude the proof.

Before we carry on the proof let us make the following comment: in order

to prove the proposition it is enough to assume that s̃+(ξ) ∈ Aξ(y). Indeed

we can again distinguish two cases. Either it lies at distance > 1/1000

of Aξ(y) and ψ̃(x + iy, ξ) 6 log(1000) so that the estimation stated in

Proposition 5.9 is valid. Or it belongs to the 1/1000-neighbourhood of Aξ(y)

and, by slightly enlarging the interval [−1/2; 1/2], we come down to the case

s̃+(ξ) ∈ Aξ(y).
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Auxiliary functions. We will prove Proposition 5.9 by coming down

to a problem of euclidian geometry. In order to do this we need to consider

four auxiliary functions.

Assuming s̃+(ξ) ∈ Aξ(y) for some y > y0 and ξ ∈ R we consider s0 the

projection of s̃+(ξ) on [−1/2; 1/2]×{y} along Lξ(s̃+(ξ)). Of course there is

the possibility that the geodesic segment Lξ(s̃+(ξ)) meets [−1/2; 1/2]×{y}
twice in which case the projection is not well defined. If it occurs, we define

s0 as the intersection with the least real part when ξ < 0, and with greatest

real part when ξ > 0.

We define for z = x+ iy, x ∈ [−1/2; 1/2]:

• ψ̃1(z, ξ) = | log distH(s̃+(ξ), Lξ(z))|;
• ψ̃2(z, ξ) = | log distH(s0, Lξ(z))|;
• ψ̃3(z, ξ) = | log distC(s0, Lξ(z))|;
• ψ̃4(z, ξ) = | log distC(s0,Gξ(z))|.

Denote by Jk the integral
∫ 1/2

−1/2
ψ̃k(x+ iy, ξ)dx for k = 1, 2, 3, 4.

Lemma 5.10. — Let y > y0 and ξ ∈ R with s̃+(ξ) ∈ Aξ(y). Then there

exist positive constants C1, C2, C3, C4 independent of ξ such that for all

x ∈ [−1/2; 1/2]:

∫ 1/2

−1/2

ψ̃(x+ iy, ξ) dx 6 J1 + C1 log y(5.6)

6 J2 + C2 log y(5.7)

6 J3 + C3 log y(5.8)

6 J4 + C4 log y,(5.9)

Proof. — Inequality (5.6) follows directly from Lemma 5.7 where we

compare the Fubini-Study and hyperbolic distances inside Aξ(y).

Inequality (5.7) follows from Lemma 5.8 where it is proven that horo-

cyclic and geodesic distances are comparable in Aξ(y) when y > y0. Indeed,

for z = x+ iy, x ∈ [−1/2; 1/2] the horocyclic projection of s̃+(ξ) (resp. s0)

on the geodesic segment Lξ(z) is defined by sliding along the horocyle cen-

tered at ξ and passing through s̃+(ξ) (resp. s0) which is both orthogonal to

Lξ(z) and Lξ(s̃+(ξ)) = Lξ(s0). Since the geodesic segment [s0; s̃+(ξ)] has

a length bounded by 1 it means that these two horoyclic distances are in a

uniformly bounded ratio, thus proving Inequality (5.7).

Inequality (5.8) also follows from Lemma 5.7 where we compare the hy-

perbolic and euclidian distances inside Aξ(y).

The last inequality is trivial. �
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Euclidian geometry. Lemma 5.10 enables us to deal with euclidian

orthogonal projections on hyperbolic geodesics which we recall are euclidian

half circles. It is very easy to compute euclidian radii of the geodesics

Gξ(x + iy) and to see that in particular they are uniformly bounded from

below independently of ξ, x ∈ [−1/2; 1/2] and y > y0.

Lemma 5.11. — Let x ∈ [−1/2; 1/2], y > y0 and ξ ∈ R. Then the

euclidian radius of the geodesic Gξ(x+ iy) is given by

(5.10) Rx =
(ξ − x)2 + y2

2|ξ − x| .

In particular we always have Rx > y0.

Proof. — We will prove it for x = 0 and ξ > 0. Using Pythagoras’

theorem in the triangle whose vertices are 0, iy and the euclidian center of

the geodesic gives the following relation:

R2 = (R− ξ)2 + y2,

from which first assertion of the lemma follows easily.

In order to see that we always have R > y0 we apply the inequal-

ity of arithmetic and geometric means to y2 and ξ2 and remember that

y > y0. �

We will use the following lemma which compares the orthogonal projec-

tion of a point on the unit circle with its projection in the horizontal direc-

tion. Consider the first quadrant S+ = {z ∈ C; |z| = 1, Re(z) > 0, Im(z) >

0}, and for a small ε, consider S+(ε) = {z ∈ S+; Re(z) > ε}. Consider also

the images S− and S−(ε) of these sets by the reflection z 7→ −z̄.

Lemma 5.12. — If ε is small enough we have:

(1) for every z ∈ S±:

distC(z ± ε, S1) > ε2.

(2) for every z ∈ S±(ε):

distC(z ∓ ε, S1) > ε2.

Proof. — Let us show the first assertion. By symmetry it is enough to

prove the statement when z ∈ S+.

Consider the function of the complex variable f(z) = distC(z + ε, S1) as

well as the constraint function g(z) = |z|2 − 1. The function f is smooth

on S+ (since it does not vanish) and g is smooth everywhere.

By the theory of Lagrange multipliers, if an interior point of the arc S+

is a local extremum of f then the gradients ∇f and ∇g are colinear at this
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point. But for every z ∈ S+, ∇zg is colinear to the vector z and ∇zf is

colinear to the vector z + ε. In other words if z is a local extremum then

z and z + ε are colinear: this is only possible if z = 1. Finally we find that

there is no local extremum in the interior of S+.

Hence the extrema of the restriction of f to the arc S+ are precisely

its extremities. But by Pythagoras’ theorem f(i) =
√

1 + ε2 − 1 ∼ ε2/2 <

ε = f(1) for ε small enough. Hence when ε is small enough one has for all

z ∈ S+, f(z) > f(i) > ε2.

The second assertion follows by the same type of arguments. Indeed,

because when z ∈ S+(ε), z − ε /∈ S1, we have that the function h(z) =

distC(z − ε, S1) is smooth on S+(ε), and the argument of Lagrange multi-

pliers is again valid. �

Proof of Proposition 5.9: case 1. Call North pole of a circle of C

its point with highest imaginary part. Choose y > y0 and ξ ∈ R. For

x ∈ [−1/2; 1/2], we shall denote by N(x) the North pole of Gξ(x+ iy). The

first case we treat is the following.

(∗)
All North poles of geodesics starting at ξ and passing through

(−1/2; 1/2) × {y}have real part outside of [−1/2; 1/2].

In particular, in that case every geodesic of the pencil Gξ passing through

the horizontal slice [−1/2; 1/2] × {y} intersects it only once. Note that, at

least when y0 is large, this case includes the case ξ ∈ [−1/2; 1/2].

Let z = x + iy. Recall that s0 is the projection on [−1/2; 1/2] × {y} of

s̃+(ξ) along Lξ(s̃+(ξ)). By Lemma 5.11 the euclidian radius of the geodesic

Gξ(z) is given by:

Rx =
(ξ − x)2 + y2

2|ξ − x| .

Choose y0 large enough so that Lemma 5.12 is valid with ε < 1/y0. Call

S the half circle of euclidian radius 1 obtained by dividing Gξ(z) by Rx.

Recall the definition of S+(ε), with the obvious generalization to circles

which are not centered at the origin. A point z ∈ S lies in S+(ε) if the

real part of z− ε is more than or equal to that of the North Pole. We have

defined S−(ε) by applying a reflection with respect to a vertical axis.

By the hypothesis we made on the North poles and since the segment

with extremities z and s0 is included in [−1/2; 1/2] × {y}, we have z/Rx ∈
S±(|s0 − z|/Rx) (the sign depending of the relative position of z and the

North pole N(x)). Hence by use of Lemma 5.12 with ε = |s0 − z|/Rx:

distC

(
s0

Rx
, S

)
= distC

(
z

Rx
+
s0 − z

Rx
, S

)
>

( |s0 − z|
Rx

)2

.
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Multiplying by Rx gives

1 > |s0 − z| > distC(s0,Gξ(z)) >
|s0 − z|2
Rx

.

Passing to the logarithm and using the fact that (ξ−x)2+y2 is in uniformly

log-bounded ratio with ξ2 + y2 gives a constant C > 0 such that:

| log distC(s0,Gξ(z))| 6 C + 2 |log |s0 − z|| − log− |ξ − x| + log(ξ2 + y2),

where log−(ξ) = Min(log ξ, 0) is the negative part of the logarithm.

Now integrate this inequality against the variable x ∈ [−1/2; 1/2]. On

the one hand we have that
∫ 1/2

−1/2
|log |s0 − (x+ iy)|| dx is bounded indepen-

dently of s0. On the other hand log− |ξ − x| 6= 0 for some x ∈ [−1/2; 1/2]

only if ξ ∈ [−3/2; 3/2]. But the integral of the logarithm on an interval of

length 1 inside [−3/2; 3/2] is uniformly bounded.

Finally we find a constant C ′ > 0 such that for all y > y0 and ξ ∈ R

such that Hypothesis (∗) holds, we have:

J4 =

∫ 1/2

−1/2

| log distC(s0,Gξ(x+ iy))| dx 6 C ′ + log(ξ2 + y2).

By Lemma 5.10 we can conclude the proof of Proposition 5.9 in the first

case. �

Proof of Proposition 5.9: case 2. It remains to treat the following

case:

(∗∗) There exists x1 ∈ [−1/2; 1/2] such that Re(N(x1)) ∈ [−1/2; 1/2].

By symmetry, it is enough to treat the case ξ > 1/2, (the case |ξ| 6 1/2

has already been treated in the previous paragraph). Before we show how

to deal with Hypothesis (∗∗), let us assume the following hypothesis, which

is more restrictive.

(∗∗′)

Every geodesic Gξ(x+ iy), x ∈ [−1/2; 1/2] intersects

the horizontal slice [−1/2; 1/2] × {y} exactly twice,

except one which is tangent to the slice.

In that case, we have an involution ρ : [−1/2; 1/2] →[−1/2; 1/2] which

associates to x the real part of the other intersection with [−1/2; 1/2] ×
{y} of the geodesic Gξ(x + iy). Call x0 the fixed point of this involution:

Gξ(x0 + iy) is tangent to [−1/2; 1/2] × {y}.

Lemma 5.13. — Assume that Hypothesis (∗∗′) holds. The involution ρ

is smooth and its derivative is bounded independently of x ∈ [−1/2; 1/2],

y > y0 and ξ.
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Proof. — Consider the reflection ρ0 : x ∈ [−1/2; 1/2] 7→ −x. For x ∈
[−1/2; 1/2], consider the map τx defined as the translation z 7→ z+(Rx−ξ).
Since ξ > 1/2, it is easily seen that if for each x we apply τx to Gξ(x+ iy)

we obtain a family of concentric circles whose common center is the origin.

Hence one shows ρ(x) = τ−1
x ◦ρ0 ◦τx(x). Finally ρ is smooth and in order

to bound its derivative, it is enough to bound that of x 7→ Rx.

Yet it is obvious from (5.10) that dRx

dx = 3/2 + y2

2(ξ−x)2 (use here that

ξ > 1/2 > x). Since by definition of x0, we have y = ξ − x0 > y0 which is

large enough, and |x − x0| 6 1, we obtain that ξ is far from 1/2 so that(
ξ−x0

ξ−x

)2

, and hence the derivative of Rx, is clearly bounded independently

of x, ξ and y > y0. This concludes the proof of the lemma. �

Now, assuming Hypothesis (∗∗′), we can cut the integral below into two

parts, and then perform a change of variable x′ = ρ(x) to one of the pieces.

Using the lemma above as well as the fact that distC(s0,Gξ(x + iy)) =

distC(s0,Gξ(ρ(x) + iy)) we find a constant C > 0 such that:

∫ 1/2

−1/2

| log distC(s0,Gξ(x+ iy))|dx 6 C

∫ 1/2

x0

| log distC(s0,Gξ(x+ iy))|dx.

Now, since ξ > 1/2, the North poles N(x), x ∈ [−1/2; 1/2] have real

parts outside (x0; 1/2] and we can end the proof under this hypothesis as

we did under Hypothesis (∗). �

Now we show that assuming Hypothesis (∗∗), it is possible to come down

to Hypothesis (∗∗′) by enlarging the horizontal slice [−1/2; 1/2]×{y}. This

is object of the following:

Lemma 5.14. — Assume that Hypothesis (∗∗) holds for some x1 ∈
[1/2; 1/2], y > y0 and ξ ∈ R. Then, there exists an interval I = I(y) con-

taining [−1/2; 1/2], with length bounded independently of y and ξ, such

that every geodesic Gξ(x + iy), x ∈ [−1/2; 1/2], intersects exactly twice

I × {y}, except one which is tangent to the slice.

Proof. — The geodesic Gξ(x1 +iy) intersects twice the slice [−3/2; 3/2]×
{y}. This implies in particular that there exists x0 ∈ [−3/2; 3/2] such that

Gξ(x0 + iy) is tangent to {z; Im(z) = y}. If one prefers, y = Rx0
= ξ − x0

(recall that ξ > 0).

Now recall that when we apply the translation τx to the geodesics Gξ(x+

iy) we get concentric circles. Thus we have for every x, x′ ∈ [−1/2; 1/2],

|Re(Nx) − Re(Nx′)| = |Rx − Rx′ | 6 Supx∈[−1/2;1/2]
dRx

dx . But we have al-

ready computed this derivative, and since y = ξ − x0 > y0 for some
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x0 ∈ [−3/2; 3/2], we see that when y0 is large enough, this derivative is

uniformly bounded from above independently of y > y0 and ξ.

This implies that all the North poles N(x) have their real parts in an

interval of uniformly bounded length: the geodesics Gξ(x + iy) intersect

twice an interval which is at most twice bigger. We can conclude the proof

of the lemma. �

This lemma proves that up to replacing the interval [−1/2; 1/2] by some

interval I of uniform length, we are reduced to Hypothesis (∗∗′), which we

just treated. This ends the proof of Proposition 5.9. �

End of the proof of the integrability. We will now show how to

finish the proof of the integrability using Proposition 5.9.

We will bound individually each of the three integrals defined above.

Firstly, using a bound log(ξ2 + y2) 6 C ′ log(y) when ξ ∈ [−1/2; 1/2] we

find:

I[−1/2;1/2] 6 C

∫ 1
2

− 1
2

(∫ ∞

y0

log(ξ2 + y2)

y2
dy

)
dξ 6 CC ′

∫ ∞

y0

log y

y2
dy < ∞.

Secondly, by Proposition 5.9:

I[1/2;∞) 6 C

∫ ∞

1/2

∫ ∞

y0

1

y

log(ξ2 + y2)

ξ2 + y2
dy dξ

= C

∫ ∞

1/2

∫ ∞

y0

1

y3

log((ξ/y)2 + 1) + 2 log y

(ξ/y)2 + 1
dy dξ.

Using a change of variable u = ξ/y as well as the integrability on [0; ∞)

of the functions u 7→ log(u2 + 1)/(u2 + 1) and u 7→ 1/(u2 + 1) we obtain a

constant C ′ > 0 such that for every y > y0:

∫ ∞

1/2

log((ξ/y)2 + 1)

(ξ/y)2 + 1
dξ,

∫ ∞

1/2

1

(ξ/y)2 + 1
dξ 6 C ′y.

Thus we find:

I[1/2;∞) 6 CC ′

∫ ∞

y0

1 + 2 log y

y2
dy < ∞.

Finally, a similar argument allows us to show that I(−∞,−1/2] is finite,

and this concludes the proof of Proposition 4.7, in the very particular case

when D is assumed to be the inclusion. The next paragraph shows how to

deduce the general case from the study of the simple model.
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5.4. Integrability over the cusps: the general case

Using the parabolicity. The structure (D, ρ) is parabolic: after Möbius

changes of coordinates at the source and at the goal, it is possible to assume

that D : H>1 →H>1 is a biholomorphism on its image which commutes

with z 7→ z + 1.

It comes from the proof of Proposition 4.3, that the modulus of D′ for the

hyperbolic metric has to be bounded away from 0 and ∞ in a fundamental

domain of z 7→ z + 1 (which we may choose to be C+): since D commutes

with the hyperbolic isometry z 7→ z + 1, it is bounded in the whole H>1.

This implies that D is bilipschitz in the whole H>1.

Controlled distortion in a box. The key idea is that in the box Aξ(y)

defined by (5.5), it is possible to control the distortion of spherical distance

induced by D.

Proposition 5.15. — There exist constants C > 0 and α > 1 such

that for every y > 1, ξ ∈ R and z1, z2 ∈ Aξ(y),

distCP1(D(z1),D(z2)) >
C

yα
distCP1(z1, z2).

The fist step in the proof of this proposition is to prove:

Lemma 5.16. — There exist constants C1 > 0, α > 1 such that for

every y > 1, and ξ ∈ R, D(Aξ(y)) is included in the part of the complex

plane identified with [−C1y
α;C1y

α] × [C−1
1 yα−1

;C1y
α]

Proof. — Consider x ∈ R, y > 1, z0 = x + i and z = x + iy. We have

distH(z0, z) = log y. Since D is bilipschitz, the quantity

∆ = distH(D(z0),D(z))

lies in [α−1 log y;α log y] for some α > 1.

A classical argument of hyperbolic geometry (see Section 5.9 of

Thurston’s notes [35]) shows that since D is bilipschitz in H>1 and fixes

∞, it sends the vertical geodesic ray [z0; ∞) onto a curve which stays at

bounded distance, say δ, of the vertical geodesic ray [D(z0); ∞). Moreover,

D is bounded in the compact set [−1/2; 1/2] × {1}, Im ◦ D is invariant by

z 7→ z+1, and Re◦D commute with this translation. Hence, Re(D(z0))−x

and Im(D(z0)) are uniformly bounded functions of x.

Define respectively ph and pe the orthogonal projections of D(z) on

[D(z0); ∞) for the hyperbolic and euclidian metric. Note that pe and D(z)
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have the same imaginary part. By triangular inequality, the difference be-

tween ∆ and distH(D(z0), ph) is uniformly bounded. Finally, since Im(D(z0))

is uniformly bounded, the same holds for ∆ − log(Im(ph)).

Now, the curve D([z0; ∞)) stays in a cone around the (complete) ver-

tical geodesic passing through D(z0) whose angle is bounded by a quan-

tity depending only on δ. Elementary trigonometry implies that the ratio

Im(ph)/Im(pe) is uniformly log-bounded. We deduce that the difference

∆ − log Im(D(z)) is uniformly bounded. A similar argument also shows

that the difference Re(D(z)) − Re(D(z0)) stays in a log bounded ratio with

Im(D(z)).

From all this, we deduce the existence of uniform C ′ > 0 and α > 1 such

that for every x ∈ R and y > 1, D(x + iy) lies in the part of the complex

plane identified with [x− C ′yα;x+ C ′yα] × [C ′−1yα−1

;C ′yα].

Now in order to finish the proof, use Lemma 5.6: when x ∈ [−1/2; 1/2],

Aξ(y) stays in a box which is uniformly of the size of y. �

We now finish the proof of Proposition 5.15 using Lemma 5.16. The proof

of Lemma 5.7 adapts to prove the existence of constants C2, C3 > 0 such

that for every y > 1, and z1, z2 ∈ Aξ(y), one has:

distCP1(D(z1),D(z2)) >
C2

yα
distH(D(z1),D(z2))

>
C2C3

yα
distH(z1, z2)

>
C2C3

yα
distCP1(z1, z2),

where the last inequality is true because we recall that the hyperbolic and

Fubini-Study metrics are conformally equivalent with a conformal factor

6 1 in H>1. �

End of the story. Recall that we want to prove that the function ψ̃

defined by (5.1) is Liouville-integrable in C+ × R. Since for every x ∈
[−1/2; 1/2], y > 1, z = x + iy and ξ ∈ R, G[0;1](z, ξ) ⊂Aξ(y), there is

something to prove only when s̃+(ξ) ∈ D(Aξ(y)). In that case, by Proposi-

tion 5.15, we have for every t ∈ [0; 1],

log(distCP1(s̃+(ξ),D(Gt(z, ξ)))) 6 C ′ + α log y

+ log(distCP1(D−1(s̃+(ξ)), Gt(z, ξ))),

C ′ being a uniform constant. Using the Liouville-integrability of the map

(x, y, ξ) 7→ C ′+log y in C+×R, we see that the Liouville-integrability of ψ̃ is

implied by that of a function that we already treated in the last paragraph.
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This allows us to conclude the proof of the general case of Proposition 4.7,

and consequently that of Theorem B. �
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