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Singularities in Minimax 
Optimization of Networks 

KAJ MADSEN AND HANS SCHJ.ER-JACOBSEN 

Abssirucr-A theoretical treatment of singularities in nonlinear minimax 
optimization problems, which allows for a classification in regular and 
sing&r problems, is presented. A theorem for determining a singularity 
that is present in a given problem is formulated. A group of problems often 
used in the literature to test nonlinear minimax algorithms, i.e., minimax 
design of multisection quarter-wave transformers, is shown to exhibit 
singular& and the reason for this is pointed out. 

Based on the theoretical results presented au algorithm for nonlinear 
minimax optimization is developed. The new algorithm maintains the 
quadratic convergence property of a recent algorithm by Madsen et al. 
when applied to regular problems and it is demonstrated to significantly 
improve the final convergence on singular problems. 

I. INTRODUCTION 

A NONLINEAR MINIMAX optimization algorithm 
with quadratic final convergence has recently been 

presented and applied to circuit optimization problems 
[l], [2]. However, as briefly discussed in [2], ill- 
conditioning may cause slow convergence of the algo- 
rithm even if certain paiameters governing the optimiza- 
tion strategy were tentatively preadjusted. 

The purpose of this paper is to present a theoretical 
treatment of singularities giving rise to ill-conditioned 
minimax problems and to develop a new method to solve 
singular problems. Since it is not always possible to de- 
termine beforehand whether a particular problem is regu- 
lar or singular it is desirable to construct an automatic 
procedure for detection of singularities inherent in a given 
problem. Hence, the new algorithm is able to maintain the 
ultimate quadratic convergence when applied to regular 
problems and to reestablish fast final convergence in cases 
where singularities have been detected during optimiza- 
tion. The efficiency of the new approach is established by 
comparisons with some algorithms reported in the litera- 
ture. But first we turn to a discussion of general aspects of 
singularities. 

II. SINGULARITIES IN MINIMAX APPROXIMATION 

We formulate the minimax problem as that of minimiz- 

Manuscript received August 16, 1975; revised January 22, 1976. This 
work was supported in part by the Alexander von Humboldt Founda- 
tion, Germany, and in part by the Council for Scientific and Technical 
Research, Denmark. 

K. Madsen is with the Institute for Numerical Analysis, the Technical 
University of Denmark, DK-2800 Lyngby, Denmark. 

H. Schjaer-Jacobsen was with the Electromagnetics Institute, the 
Technical University of Denmark. He is now with the Institute for High 
Frequency Techniques, Technical University of Braunschweig, D-3300 
Braunschweig, Germany. 

ing 

0) 

where 

~(~)=~(xI,-~~,xn), j=l;..,m m>n (2) 

is a set of residuals which are nonlinear functions of the 
design parameters (x,; . * ,x,). The following smoothness 
condition is assumed: 

J(~+&)=J(g+gJp)+ o(h) (3) 

where ~~o(h)~~/~~/z~~+O for h+O. The solution of the mini- 
max problem isdenoted by x” and the number of residu- 
als for which the maximum(l) is attained at x=x* is r. 
(In order to simplify the notation we let the cor&ponding 
r functions be f,, . * * ,f,). This means that 

Ifi(x*)l=F(x*), i=l;--,r 

Ih(~* i=(r+l);-*,m. (4) 

Definition I 

The minimax problem is singular with respect to the 
solution x* if the matrix - 

i=l;.*,r 

i = { wq x*>} (5) 
j=l;+.,n 

has rank less than n. Otherwise the problem is regular. 
In order to characterize singular problems the following 

definition is useful. 

Definition 2 

If the limit 

Fi( 2) = lim 
F(x+tukF(x) 

t 7 t-4 
u#O (6) - - 

exists, we say that F is differentiable at x along the line - 
through x and x+u. 

Since x* is a-minimum of F we have for t > 0 

F(x*+tu)-F(x*) >. 
1 
1 

(7) 
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(4 (b) 
Fig. 1. One-dimensional minimax problems. (a) Regular problem, 

n=l,r=2.(b)Singularproblem,n=l,r=l. 

for any direction v, and therefore, if F,‘(x*) 
be 0. 

- - 

The proof of the following theorem is 
Appendix. 

Theorem 1 

exists it must 

found in the 

If the matrix D has rank q then there exists a subspace 
V c R” of dimezion (n - q) such that 

i) vE V*Fi(x*)=O; 
ii) 366 V*FdTx*) does not exist, and there is a posi- 

tive number c SL& that 

F(x*+w)-F(x*) F(x*+tE)-F(X*) 
- >c s t 

(8) 
for all values s < 0 and t > 0 sufficiently close to 0. 

Thus when the minimax problem is regular V= {0}, 
and it therefore follows from (8) that the function +,,,(@G 
F(x* + [w) has an edge at .$‘= 0 for any w #O. In the 
sin&tlarcase there is at least one line along which the 
slope of F is 0, and if q>O there are other lines along 
which F is edged. Consequently, when the problem is 
singular, the solution is not so well determined numeri- 
cally as in the regular case, and if 0 < q < n the minimum 
is situated in the bottom of an edged valley. Therefore 
many algorithms, especially descent methods, perform 
rather badly on singular problems. 

The following theorem has been proved by Curtis and 
Powell [3], and a generalization is given by Bandler [4]. 

Theorem 2 

The r X n matrix D has rank less than r. 
Thus r must be ageast (n + 1) in order that the rank of 

D is n. = 

Theorem 3 

If r < n + 1 then the minimax problem is singular. 
This is a very simple sufficient criterion for testing if a 

problem is singular. 
The intuitive interpretation of the theorem is straight- 

forward. Consider Fig. 1 where the situation is sketched in 
one dimension. Here we have n = 1 and r = 2 in Fig. 1 (a) 
(a regular problem) but r= 1 in Fig. l(b) (a singular 

problem). Clearly the minimum is much better defined 
numerically in the regular case than in the singular one. 

III. A NEW NONLINEAR MINIMAX OPTIMIZATION 
ALGORITHM 

The iterative algorithm described in [2] has quadratic 
final rate of convergence, when the problem to be solved 
is regular. However, when solving singular problems the 
algorithm may perform much slower. One important rea- 
son for this is that it is a descent method, i.e., 

FtXk+I >Q(x,) (9) 

is required. Consequently, when the current approxima- 
tion xk is in a steep valley, the.step length is forced to be 
very small. Therefore in the present approach we occa- 
sionally allow for a step for which (9) does not hold. The 
change we make to the algorithm will not have any 
influence on the final rate of convergence in nonsingular 
cases. 

As in [2] the increment hk to add to xk is found as a 
solution of the linear minimax problem 

where jlhll -max /hi/. The bound hk is adjusted automati- - I 
tally and will be small when a valley is reached. We 
define this to be the case when 

Ifi($)lWXJl-8) (‘1) 

holds for more than one value of j, 6 being a small 
positive number. If this is true for k= q the slope in the 
direction of steepest descent of F is estimated from the 
solution of the linear subproblem (10) at 1~~ with the 
bound A =X,. This estimate is denoted aq. Next five 
further iterations are taken, and the slope aq+s is calcu- 
lated. Now the distance d to the solution is estimated by 
linear extrapolation using the fact that the slope is zero at 
the solution x=x*. Thus we get the estimate - - 

d=d’-~q+J~,+S- ~~11 

where the heuristic bounds 1 and 5 are introduced in 
order to make the process stable. Now X4+s is chosen as d’ 
with the exception that &must not exceed a general upper 
bound A. 

When this special step is taken the iteration is con- 
tinued as before, but no further special step is allowed 
again until F(x,) is less than F(x~+~). This ensures the 
convergence. 

It should be pointed out here that when a regular 
problem is solved the bound X, is inactive near the solu- 
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W 

Fig. 2. Two-dimensional (n = 2) minimax problems arising from opti- 
mization of two-section transmission-line 10: 1 transformers over IOO- 
percent bandwidth. (a) Singular problem, r=2. Variation of Z, and 
Z,, 0 = 0 = n/2. (b) Regular problem, r= 3. Variation of Z, and 8,, 
z,= lo/&, 8,=8,. 

tion, and therefore the present algorithm maintains the 
quadratic final convergence of the algorithm presented in 
PI. 

IV. ON SINGULARITIES IN A GROUP OF TEST 
PROBLEMS 

A group of problems often used in the literature to test 
nonlinear minimax optimization algorithms consists in 
minimization of the maximum reflection coefficient in 
N-section transmission-line transformers. The (normal- 
ized) sample frequencies within the passband are chosen 
such that all frequencies at which the Chebyshev response 
attains its maxima are included. In other words, an a 
priori knowledge of the optimum minimax solution is used 
when selecting the sample frequencies. In the following we 
demonstrate that this may often create singularities if the 
optimization parameters are not carefully chosen. 

Fig. 2(a), (b) reveals contour plots of the objective 
function 

where pj(x> is the complex reflection coefficient of a 10:1 
transformer with loo-percent bandwidth sampled at 11 
sample frequencies Gj. Vector x contains the optimization 
parameters. A discussion in the context of Section II is in 
order. 

Consider first Fig. 2(a) which is the case of a two-sec- 
tion quarter-wave transformer where the characteristic 
impedances are varied, [5]. Clearly, the sufficient condi- 
tion for a singularity presented in Theorem 3 is fulfilled 
and hence the problem is singular. It will be recalled from 
the frequency response of the optimum Chebyshev two- 
section transformer that the maximum reflection 
coefficient is attained at three frequencies, namely, the 
two band limits and the center frequency. The reason for 
having the singularity in Fig. 2(a) is that due to the 
symmetry of the frequency response, the two residuals at 
the band-edge sampling frequencies effectively create only 
one surface in the contour, thereby reducing r from 3 to 2. 

An example of a regular minimax problem is subse- 
quently shown in Fig. 2(b). The problem is generated 
using a two-section transformer, Z, and 8, being the 
optimization parameters with Z,= 10/Z, and B,= 0,. In 
this case we have r=3 corresponding to the situation that 
no directional derivative as defined by (6) exists at x=x*. - - 

V. NUMERICAL RESULTS 

The proposed algorithm for solution of singular nonlin- 
ear minimax optimization problems has been applied to 
minimize the maximum reflection coefficient of 1d:l 
three- and four-section transformers with loo-percent 
bandwidth using different starting points for the imped- 
ances and lengths. According to the developments in 
Sections II and IV these optimization problems are singu- 
lar and hence provide us with a good basis for evaluation 
of the algorithm performance. Moreover, our results can 
be compared with other algorithms applied to the same 
problems. 

We define the residuals& by 

g=;]p,(# j=l;*.,ll 

where the 11 sample frequencies are given by 

(14) 

k= {0.5,0.6,0.7,0.77,0.9,1.0,1.1,1.23,1.3,1.4,1.5} (15) 

in the three-section case and 

~={0.5,0.6,0.667,0.8,0.9,1.0,1.1,1.2,1.333,1.4,1.5} 

(16) 

in the four-section case. 
The transformers are conveniently analyzed by scatter- 

ing matrices and the derivatives aJ/axi are obtained by 
the adjoint network concept [6]. The basis of algorithm 
comparisons will be the number of network evaluations 
(including calculation of the gradients) required to bring 
the maximum reflection coefficient 

P max = max Ipi] 
i (17) 

within 5 correct digits of the known optimum values. 
A three-section quarter-wave transformer was first opti- 

mized with starting point (Z,, Z,, Z,) = (1 .O, 3.16228,lO.O). 
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TABLE1 
OPTIMIZATIONTO~ CORRECTDIGITSOFATHREE-SECTION 1O:l 
TRANSFORMER WITH lOO-PERCENTBANDWIDTH,~=O.OO~,A=~ 

TABLE11 
OPTIMIZATIONTO 5 CORRECTDIGITSOFAFOIJR-SECTION 1O:l 

TRANSFORMER WITH IOO-PERCENTBANDWIDTH,S=O.OOI, A=l, 
h,=O.l 

This optimization required 44 response evaluations 
whereas 99 evaluations’were necessary with the algorithm 
[21. 

Other results are shown in Table I for different values 
of the initial bound A, on the variables. Also shown are 
results obtained by the least pth algorithm of Char- 
alambous and Bandler [7], the algorithm of Madsen et al. 
[2], and the recent algorithm of Charalambous and Conn 
PI. 

In Table II results are shown for the four-section trans- 
former using the algorithm [2] and the present algorithm. 
Here he= 0.1 was chosen. The extremely low number of 
network evaluations used with one of the starting points is 
not typical for the type of problems considered but rather 
an indication of a luckily chosen starting point. 

Clearly, the number of network evaluations required by 
our algorithm is much less than for the method in [2], thus 
emphasizing the relevance of the present approach. 

VI. DISCUSSION AND CONCLUSION 

which implies that F;(x*)=O. Now suppose that w @ V. 
Then there exists j 2 r such that w*fl(x*)#O, which 
means that if u = {sign rr_fJ(x_*)} -w then ur_fJ(x*) > 0. 
Therefore we obiain the following: 

F(~*+t4f)-F(~*)=F(~*+t4f)-~(~*) Based on Theorem 3 a characterization of singular 
minimax problems as opposed to regular ones has been 
established providing a means for automatic detection of 
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ill-conditioning on some types of problems during an 
optimization process. A relevant strategy for optimization 
of singular cases has been developed and implemented in 
an automatic computer algorithm. A discussion of the 
transmission-line impedance transformer viewed as a 
minimax optimization problem has explained why slow 
convergence has often been observed in the literature. It 
has been established that the new algorithm is signifi- 
cantly faster in obtaining the solution to singular minimax 
problems than was the algorithm [2]. 

As pointed out in [2] a singularity at the solution 
normally will not affect the initial rate of convergence, 
which is very rapid. The strategy adopted in the present 
paper when a singularity is detected is active only in the 
vicinity of a singularity. Hence, the present algorithm 
possesses sure over all convergence, quadratic final con- 
vergence with regular problems, and fast final conver- 
gence on singular problems. 

The relative success of the present approach may sug- 
gest that similar improvements are obtainable with the 
recently developed nongradient algorithm [9]. Although 
the method in [9] has proved more efficient than other 
nongradient algorithms it still uses a relatively large 
number of residual calculations when singularities are 
present. This possibility still remains to be investigated. 

APPENDIX 

Proof of Theorem 1: 

Without loss of generality we can suppose that 

f,(x*)=*.* =fi(x*)=F(x*). (A’) 

Since the rank of D is q there exists a vector space V c R” 
(the null space of%) such that = 

Dv=O VEV - -’ - 

D=Wi-0 w @ v. =- -’ - 

This means that if VE V and 1 < i < r then 

=f;:( x*)+0(t) (A2) - 

and therefore we have for sufficiently small values of t 

F(x*+tu)--(x*)=T,arx{fi(X*)+o(t)} 
- y,“:(h(“*)}=“w (A31 

>&*+t+f,(n*)=tfi’f/(x*)+o(t) (A4) 
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and consequently, for t > 0 sufficiently small, 

F(x*+tg-F(x*) 

t 
> + g&(x*) > 0. 

Since 

F(x*+tu)-F(x*) <o 
1, for t <0 

t 

the limit FL(x*) cannot exist, which means 
FI w(x*) n-or F’,(x*) exists. Since (8) is a 
of [A?) and (A6) t&e theorem is proved. 
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