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ABSTRACT.   If (X, x) is a pointed scheme over a ring fe, we introduce
a (generalized) partition ord(x, X/k).   If G is a reductive group scheme over k,

the existence of a nilpotent subscheme N(G) of Lie(G) is discussed.  We prove
that ord(x, N{G)¡k) characterizes the orbits in N(G), their codimension and their
adjacency structure, provided that G is Gln, or Spn and 1/2 e k.   For SOn only
partial results are obtained.  We give presentations of some singularities of N(G).
Tables for its orbit structure are added.

Introduction.  Let G be a reductive algebraic group over a field of charac-
teristic p.   Let g be its Lie-algebra and NiG) the closed subset of the nilpotent
elements of fl, cf. [19].  The (7-orbits in NiG) are characterized by weighted
Dynkin diagrams,cf. [20, III].  Consider the following question. Is it possible
to classify the orbits in NiG) using only the local structure of the variety N(G)?
We prove in (4.3) that the answer is positive if G is Gln or if G is Spn and p
=¿2.

To this end we introduce a local invariant "ord" for any pointed scheme
in §1.  We develop the theory of NiG) over an arbitrary ground ring k in §2.
In §3 we restrict our attention to the classical group schemes.  Using a cross
section we obtain information about the orbit structure of NiG).  Our main
theorem (4.2) relates ord(x, NiG)/k) to the Jordan normal form of the nilpotent
endomorphism induced by x in the classical representation.

This paper is a condensed version of [13].  The author wishes to express
his gratitude to his thesis adviser, Professor T. A. Springer.

Conventions and notations.  The cardinality of a set V is denoted by # V
Any infinite cardinal is represented by °°. If x is a real number then [x] is the
greatest integer in x.  All rings are commutative with 1.  Let M be a module
over a ring A.  If Mis free the rank of Mis denoted by rg^M.  An element c G
A is called M-regular if a: M —► M is injective.  Let a = (av . . . , ar) be a
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sequence in A.   The ideal generated by a is denoted by (a).  The sequence is
called M-regular if a, is (M/<(a;-)K/W)-regular for all i, cf. [12, 0IV 15.1].

Unless stated otherwise * is an arbitrary ground ring.  General references
for schemes and group schemes are [11], [12] and [8]. If we consider a *-scheme
as a functor from *-algebras to sets, cf. [11, p. 17], then the letter R is used to
denote an arbitrary *-algebra.  If X is a *-scheme and R is a *-algebra then X^
is the R-scheme X <8>k R.   If X is an affine scheme then its coordinate ring is
denoted by A(X). HA is a local ring its maximal ideal is denoted by mA and
its residue field by k(A). If X is a scheme and x EX then we write mx : = m^
and k(x) : = k(.4) where A : = 0XtX-

1. A near-partition for a local fc-algebra.
(1.1) A near-partition X is a subset of N2 such that if (m, n) G X and i <

m and / < n then (/, /) G X.  The set of near-partitions is denoted by WP.  The
duality mapping D:   UP—* WPis induced by (i, /) l—► (/, i).   The set WPis
ordered by X < M if and only if X C \x. We write |X| : = # X.  A near-partition
X is called a partition if |X| < °°.  The set of partitions is denoted by P.

If X G UP, the nonincreasing sequences X* and X* in {0} U N U {°°} are
defined by

\n>i« (n, 0 G X o \¡ > n.

Clearly X(- = (£>X)' = sup {n G N|X" > i}, and dually. A near-partition X is
completely determined by its sequence X* (or X*). We write X* = (\t, . . . ,
Xr) if X,. = 0 for i >r.   If X, M G UP, we define X + ß G UP by (X + ¿u)" : =
X" + n", where x + °° : = °° + x : = °° for all x.   If X* = (Xt, . . . , Xr) and
ju,. = (j/j,..., ps) then (X + p)* is the sequence obtained by ordering (Xx, . . . ,
Xr, /ip . . . , /iy), see [9, Proposition 6].

(1.2) Definition. A linear extension over a ring * is a surjective mor-
phism e: E —>• A of local *-algebras such that m^kerie) = 0. Its near-partition
ord(e) is defined by

ord"(e):=rgk(£)(ker(e)nm£+1).

A linear extension e: E —► A is called versal over * if for any linear extension
f : F —> B over * and any local *-morphism 0: A —> B there exists a (clearly
local) *-morphism y: E —> F with f ° 7 = 0 ° e, see diagram (i).

(1.3) Proposition.   Let diagram (i) be a commutative diagram of k-
algebras such that e and f are linear extensions, that 0 is a flat local morphism
and that mAB = mß.   Then we have ord(e) > ord(f).
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(i)

Proof. Let h G N. We prove that ord"(e) > ord"(f). It suffices to
prove that the ideal ker(f) n mp+1 is generated by the image of ker(e) n mE+1.
We may assume that ker(e) n mE+l = 0. Now the mapping m£+1 —* A
induced by e is an injection of A -modules. Since B is flat over A, it follows that
mE+l ®E B —* B is injective and hence that Tor£r(£/m£+1, B) = 0. This im-
plies injectivity of

kertf) ®E iElmE+i) -+F®E (£Vm£+1)

so that ker(f) n mE+lF = mE+ ̂ erft) = 0. On the other hand mAB = mB implies
that mEF + ker(f) = mF, so that mE+1F= mF+1. This proves ker(f ) n mF+ i = 0.

(1.4) Let A be a local fc-algebra. Ife: E—*■ A is a versal linear extension
over k then (1.3) implies that ord(e) > ord(f) for any linear extension f:F—> A
over k.   On the other hand there exists a versal linear extension e: E —> A
over k.   In fact, write A =R/A where/? is some polynomial fc-algebra.  Let
M be the ideal in R such that m^ = MjJ.   Then R/MJ —■*■ A is a versal linear
extension over k, compare [15, p. 37]. Now we can give the following:

Definition.   ordiA/k) : = ord(e) where e: E —► A is some (or any)
versal linear extension over k.

Example.  Let k be a field. Put H : = k[Tt.Tm]. Let a = ialt
.. . , ar) be a sequence in H.  Let a¡ be homogeneous of degree 1 + \¡ where X
is a partition with Xr+ j = 0.  Assume that the ideal <a> is not generated by a
strict subsequence of a.  Consider the local ring A : = (///<a))p where p = <T1,
..., Tm). Then ord(i4/Jfc) = X.

In fact e:  (///p(tf>),, —*■ A is a versal linear extension over k and ord"(e)

= #MX/>«} = X".
(1.5) Proposition. Let A be a local k-algebra and R a k-algebra. Assume

that A or R is flat over k.  Let p G Spec (A ®fc R) contract to mA.   Then
ordiAlk) < ord(G4 ®k R)9IR).

Proof. Let e: E —*■ A be a versal linear extension over k.  Put / : =
ker(e).  Let q G Spec(/? ® R) be the inverse image of p. Since A or R is flat
over k, (/ ® R\ is an ideal in (£" ® R)<,. Put F : = (£ ® /?)q /q(/ ® /?),, so
that f :  F —*■ iA ® /?)p is a linear extension over R. One verifies that
/ ®k(£)k(/?) "*■ ker(f) is injective and hence that ord(e) < ord(f). This suffices.
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(1.6) Proposition.   Let A be a local k-algebra, x = (xlt..., xm) an
A-regular sequence in mA and fa nonzero element of<x>. Put B —A¡{f)and
C = Alix).  Let r G N and let p be a partition with p* = (r - 1).

(a) IffE mrAthen p + ord(4/*) < ord(5/*).
(b) ///€ m^1 rtew ord(5/*) <p + ord(C/*).

Proof.   Let e:  ZT —► /í be a versal linear extension over *.  Put / =
ker(e).  Choose y¡ G E with e(y¡) — x¡ and £ G E with e(g) = /.   Put F : =
ElgmE and G : = E/mE<,y). The linear extensions f : F—* B and 7j:  G —► C
are versai over *.   Since x is a regular sequence, we have I O <y> = 0.  So the
induced mappings I —► ker(f) and / —► ker(îj) are injective. This implies that
ord(e) < ord(f) and ord(e) < ord(îj).

(a) Now it suffices to prove:
(*) If n < r then 1 + ord"(e) = ord"G).

We may assume that g G m£+1. The cokernel of the injection / n mE+ ! —>
ker(f) n m£+1 is isomorphic to (g)lgmE; this proves (*).

(b) By (*) it suffices to prove:  If f<£ mA+l then ord"(f) < oid"(j])- We
may assume g G <y>.  Since / G m"A+1 we have g fc mE+1.  Using that / n <y> =
0, one shows that the mapping ker(f) n mF+1 —► ker(i?) n ni^+1 is injective.

Remark.   Usually (1.6) (a) is applied in the situation where /itself is A-
regular, m = 1 and xt = f

(1.7) If X is a *-scheme and x E X then (X, x) is called a pointed k-scheme.
We define ord(x, X/k) : = oid(Ox, */*)• Pointed *-schemes {X, x) and {Y, y)
are called smoothly equivalent if there are smooth *-morphisms f.Z —* X, g:
Z —► Y and a point z E Z with /(z) = x, g(z) = y.  This is an equivalence rela-
tion on the class of pointed /fc-schemes, to be denoted by (X, x) ~ (Y, y).  See
[12, IV 17] for the definition and the basic properties of smooth morphisms.

Theorem. If(X, x) ~ (Y, y) then oidQc, X¡k) = ord(y, Yjk).

Proof.  We may assume that there is a smooth *-morphism /:  X —* Y
with f(x) = y.

Using the regularity of the noetherian local ring Ö^/m^Ö^and the
arguments of the proof of [12, IV 19.2.9], we construct a subscheme Z of X
containingx such that 0Zx — 0X,XI^ where a is an 0^-regular sequence,
that 0Y,y ~~* 0Z x is flat and that my0z x is the maximal ideal of 0Z x.  By
(1.6) (a) we have ord(x, X¡k) < ord(x, Z/k). Using (1.3) one proves that
ord(x,Z/*)<ordO, 17*).

We may assume that Y = Spec A and y = mA where A is a local *-algebrd.
Choose a versal linear extension e: E —* A over *.  By [12, IV 18.1.1] there
is a smooth ^-algebra R such that Spec (A <8>E R) is isomorphic to an open neigh-
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the nilpotent scheme of a classical group 5

bourhood of* in X.   So 0X,X — (A ®E R\ for some p G Spec(¿l ®E R) con-
tracting to mA. By (1.5) we have oid(AlE) <ord((/l ®ER)JR). It is easy to
see that this implies ord(y, Y/k) < ord(x, Xfk).

(1.8) The following remark will not be used in the sequel.  For proofs
and details we refer to [13].

Remark.  Let A be a noetherian local fc-algebra. Then oidiAjk) is a par-
tition.  It is equal to oidiA/k) where A is the completion of A.   If k is noether-
ian regular and A is of essentially finite type over k, then oxdiA/k) = oidiA/Z).
A is regular if and only if ord04/Z) = 0.  If A = RjJ where / is an ideal in a
noetherian regular local ring R, then ord(^4/Z) is determined by the sequence
^(/),cf.[14,p.209].

2. The nilpotent scheme.
(2.1) Consider an action h of an affine group scheme G on an affine

scheme A'over fc  We have the morphisms h, pr2 :  G xfc X =3 X.   The orbit
Gx of x G X is defined as the subset ^(prj'OO) of X   Let F be a subscheme of
X.   Let U be the open set where the induced morphism hv:  G xfc V —■*■ X is
smooth.   F is called a cross section at x if x G F and e/ j/\(x) G Í/.   Here e,vy.
V —* G xk F is induced by the unit e G Gik). The subscheme l7 is called a
global cross section if U —► Spec(fc) is surjective.   V is called an invariant sub-
scheme if the morphism hv factorizes over V.

Let AiX)G be the equalizer of the comorphisms AiX) =t /1(G) ®fc AiX).
If Y is an affine fc-scheme, a G-invariant fc-morphism /:  X —*■ Y corresponds to
a comorphism A{Y) —> AiX) factorizing over A(X)G. We define the affine
quotient of the action by [X/G] : = SpecGápf)07).  It is called universal if the in-
duced morphism [X^R^IG^R^] —► [X¡G]^R^ is an isomorphism for any fc-algebra
R.

Remarks, (a)  Let G be smooth over k. Then pr2 and h are smooth
morphisms.  If x G Gx then iX, x) ~ (X, x'), cf. (1.7).  If V is a cross section
atx then iX, x) ~ iV, x).

(b) The condition, that the affine quotient [X/G] is universal, is a local
condition on Spec(fc) for the topology if p q c), cf. [8, IV], see [13, p. 38]. If
A: is a field any affine quotient is universal.

(c) Other types of quotients are discussed in [17, p. 3].

(2.2) Proposition.  Assume in (2.1) that the morphism X —* Spec(fc)
is smooth and irreducible cf. [12, IV 4.5.5] ,and that V is affine and a global
cross section.

(a) The morphism AiX)G —*■ AiV) is injective.
(b) IfAiX)G -+AÍV) is bijective then [X/G] is universal.
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Proof,  (a) Consider a nonzero /G A(X)G. Assume that f\V = 0.  There
is a commutative diagram (i), so we have/0 hv = 0.

pr2
GxkV-* V

0) A1
/

f\V

Spec(*[J])
The morphism hv is flat on ¿7, so hv(U) is an open subset of X with /l*K(C/)
= 0. Since / =£ 0, there is a generic point ;c of Supp(/(}^-). Let p G Spec(*)
be the image of x.   Let £ be the unique generic point of X ®k k(p). As hv(U)
—* Spec(*) is surjective we have % G hv(U) and hence x ¥= %. Since 0Xx ®k
k(p) is regular there is an 0Xx ®k k(p)-regular element t G mx.  By [12, IV
11.3.7], t is Ö^-x-regular. It is easy to see that this contradicts the choice of x.
The argument used here was suggested by P. Deligne.

(b) Let R be a *-algebra. We have to prove that u: A(X)G ® R —>
A(X,Rs) (R) is bijective. As the assumptions of (a) are stable under base-change,
the morphism v: A(X^R^) (R) —* A(V) ® R is injective by (a). So it suffices
to observe that v ° « is bijective.

(2.3) Let G be a smooth affine group scheme over *.   Recall that the Lie-
algebra Lie(G) is defined as the group functor such that Lie(G)(i?) is the (addi-
tively written) kernel of the morphism G(R[8]I(52)) —* G(R) induced by 5 l—►
0 where R is a *-algebra. Lie(G) is a smooth affine group scheme, in fact a
vector bundle. There is a canonical action of G on Lie(G). If R is a *-algebra
then Lie(G)(Ä) - De(G(iJ)). See [8, II 4]. Usually we write fl : = Lie(G).

If K is a field over *, a section x E i(K) = Lie(G^Ky)(K) is nilpotent if
and only if its image is a nilpotent endomorphism of F for some (or any) immer-
sion of G^j in a AT-group Gl{F), cf. [2, p. 151]. A point x E g is called nilpo-
tent if the corresponding section x E $(k(x)) is nilpotent.

(2.4) Definition. Let G be a reductive group scheme over *, cf. [8, XIX
2.7]. If the affine quotient [g/G] is universal, cf. (2.1), then we define the «i7-
potent scheme N(G) : = p-1p(0) where 0 G $(k) is the zero section and p: g —►
[fl/G] is the quotient morphism.

Proposition. Let N(G) be defined.
(a) A^(G) is a G-invariant closed subscheme of%.
(b) IfR is a k-algebra then N(GW) = N(G)iR).
(c) A point x E g is nilpotent if and only ifxE N(G).

Proof, (a) is trivial, (b) is a consequence of the assumption that [g/G]
is universal, (c) By (b) we may assume that * is a field and that x E i(k). Now
it is well known. The "if-part" follows from Cayley-Hamilton by an embedding
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of G in some GliF). The "only-if-part" is a consequence of the following

Lemma. Let G be a reductive k-group over a field k. IfxG fl(fc) has the
additive Jordan decomposition x = xs + xn, then xs is in the closure of the or-
bit Gx.

Proof. Adapt [22, (4.4)] or [21, p. 92].
(2.5) Let G be a reductive group scheme over A:.  By (2.1) (b) the existence

of a nilpotent scheme is a local condition on Spec(&) for the topology ifpqc).
So we assume that G is of constant type (cf. [8, XXII 2.7]) with specified root
system R = iM, R, p), i.e. a root system R in a given lattice M (cf. [7, p. 287]).
Let f be the torsion index (cf. [7, p. 294]). Let /be the connection index (cf.
[4, p. 167]).  Consider the following conditions:

(i) r1 G k and if R n 2M ¥= 0 then 1/2 G k, cf. [7, p. 296].
(ii) r1/"1 G *•
(iii) If R has a component of type A¡ then (/ + 1)_1 G k, of type B¡, C¡,

D¡, G2 then 1/2 G k, of type E6, En, F4 then 1/6 G k, of type Es then 1/30
Gfc

The conditions (ii) and (iii) are equivalent and imply (i).

(2.6) Theorem.   Let G be as in (2.5) satisfying condition (i).
(a) The affine quotient [8/G] is universal.   The quotient morphisms

p: g —> [g/G] is flat. 7V(G) is defined and flat over k.
(b) Let Tbea maximal torus of G with Weyl group W, cf. [8, XXII 3].

Put t : = Lie (70- The affine quotient [t/IV] is universal.   The canonical morphism
[t/W] —► [fl/G] is an isomorphism.

(c) Assume that (2.5) (ii) holds. Let n:  G —*■ ad (G) be the projection
onto the adjoint group, cf. [8, XXII 4.3]. Then /V(ad(G)) is defined and equal
to NiG).

Proof.  (1) We may assume that G is split with respect to a (resp. the)
maximal torus T, cf. [8, XXII 2.3]. Now T = DsiM) and A(t) = S(M) ® k.  The
group scheme W is the constant group scheme associated to the abstract Weyl
group of R. By (2.5) (i) and [7, pp. 295, 296] the affine quotient [t/W] is uni-
versal and the quotient morphism t—*-[t/W\ is flat.

(2) By [8, XIII 5.1] and [12, IV 17.8.3] the subscheme t is a global cross
section for the action of G on fl, cf. (2.1). By (2.2) this implies that Ai&)G —►
Ait)w is injective.

(3) We may assume that k = Z[l/m], cf. [8, XXV 1]. It follows from
[20, II 3.17'] and [22, p. 220] that ̂ (fl)G ®fc Q -+Aiïf ®fc Q is bijective.
Consider a G Ait)w. There is at G Aii)G and a nonzero s Ek with a¡ It = sa.
Put R = k/(s). Now a1 ® 1R [t(Ä) = 0, so by (2) we have ax ® \R = 0 in

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8 WIM HESSELINK

/1(g) ® R. So there is a2 EA(¿) with al = sa2. Since s is A(G) ® >4(g)-regular we
have a2 E A($)G. Since s is ,4(t)-regular we have a = a2 |t. This proves that
A(i)G —* A(t)w is bijective. So we have proved (b).

(4) With (b) and (2) one proves that [g/G] is universal in the same way as
in (2.2) (b).  Let U be the open subset of g where p is flat.  Since t —► [g/G]
is flat by (1) and (b), and t C g is a regular immersion, we have t C U by [12,
0IV 15.1.16]. As U is G-invariant this implies U = g by the lemma in (2.4). The
other assertions of (a) follow immediately.

(5) In the notations of [8, XXII], condition (2.5) (ii) implies that the
central isogenies G —> corad(G) ®ss(G) and ss(G) —* ad(G) are étale morphisms,
by [8, VIII 2.1] and [8, XXI 6.5]. So we have an isomorphism

,l(Lie(ad(G)))ad<G) ® ,4(Lie(corad(G))) = A(g)G.

With this isomorphism one proves (c).
Remarks, (i) Assume that the order of the Weyl group is invertible in *.

By [22, (6.9)] the morphism p is normal cf. [12, IV 6.8.1]. (ii) If / > 2 there
is a semisimple group scheme G of type D¡ over Z such that [g/G] is not univer-
sal.

(2.7)   Corollary. Let G be as in (2.6). Let di.dr be the degrees
of R.   Consider the partition X defined by \¡ : = dr+1_¡ - 1 if i < r and Xr+1
: = 0. Let x be a point of the zero section of g.   Then ord(x, 7V(G)/*) = X.

Proof. By (1.7) we may assume that G is split with maximal torus T.
Let A(i)G - k[al, . . . ,ar] where av . . . , ar are algebraically independent and
a¡ is homogeneous of degree dr+l_¡ = 1 + Xf, cf. [7, Theorem 3].  We have
On(g),x = 0tiXK&>-  Since 0t x is flat over A(&)G the sequence a is 08>x-regu-
lar. By (1.6) (a) this implies that ord(x, N(G)¡k) > X. Let p G Spec(*) be the
image of x.   By (1.5) we may replace * by the residue field k(p). Now the
assertion follows from the example in (1.4).

Remark.  If * is noetherian regular the multiplicity of the local ring
0n(G),x 's eaiual to njLjG?,-, i.e. the order of the Weyl group. This is proved in
[13, p. 55] using the methods of [18].  Compare [16, p. 386].

3.   In the classical Lie-algebras.
(3.1) We fix a free *-module F of rank n. The scheme End(F) is defined

by End(F)(R) : - EndR(F ®k R), cf. [11,1 9].  The group scheme Gl(F) (resp.
Sl(F)) is the open (resp. closed) subscheme of End(F) where the function det
G>l(End(F)) is invertible (resp. where det = 1).  Gl(F) and Sl(F) are reductive
group schemes over * of type An_l, cf. [6] and [8].  End(F) is identified with
Lie(G/(F)) by x ** 1 + 5x where x E End(F)(R), see (2.3) or [8, II 4]. Now
LieiS/iF)) consists of the endomorphisms with zero trace.
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Assume 1/2 6 fc   Let e be 0 or 1. An e-form 0 on F is a nondegenerate
bilinear form 0: F x F —*■ k which is symmetric if e = 0, alternating if e = 1.
By "nondegenerate" we mean that the mapping F—► F" defined by / r—►
<j)(f, -) is bijective. Let 0 be an e-form. The subgroup functor G\F, 0) of
GliF) is defined by x G G'iF, 0)(F) if and only if

«xf, xg) = <¡>if,g)      if.gGF® R).

We define GiF <j>) : = G'iF, 0) D 57(F).  If e = 0 then GiF, 0) is the special
orthogonal group scheme. If e = 1 then GiF, 0) = G'iF, 0); it is the symplectic
group scheme.  Put / : = [Vtn] and f : = n - 21.   So f is 0 or 1.  If e = 1 then
? = 0. Now GiF, 0) is a semisimple group scheme of type B¡ if e = 0, f = 1,
of type C, if e = 1, f = 0, of type £>, if e = f = 0, cf. [6] and [8]. The com-
mon Lie-algebra of GiF, 0) and G'iF, 0) is denoted by g(F, <¡>).  For x G
End (F) (F.) we have x G fl(F, 0)(F) if and only if

<Kxf, g) + <Kf, xg) = 0        if,g£F®R).
Convention. In the rest of this paper we consider two cases.
Case I. G: = G' : = GliF), l: = n.
Case II. (e, f) where e, f G {0, 1}, e +f < 1: 1/2 G k, 0 is an e-form on F,

G : = GiF, 0), G' :=G'iF, 0), h = 2/ + f.
In both cases / is the reductive rank of G We put fl : = Lie(G). While

considering Case II it is convenient to label concepts introduced for Case I with
the index /, e.g. fl C fl/ = End(F).

(3.2) Lemma. Case II. Let <¡>l be another e-form on F. Then there is a
faithfully flat étale k-algebra R such that 0X and 0 induce equivalent forms on
F®R.

Proof. By [15, pp. 34, 35] the scheme lsom(0j, 0) is smooth over k. If
K is an algebraically closed field over k then lsom(0j, 0)(^O ^ &• Hence by [12,
IV 17.16.3] there is a faithfully flat étale fc-algebra R with lsom(01, 0)(F) =£ 0.

(3.3) Definition.  In Case I, z G fl(F) is called a standard nilpotent with
base-data (f, X) if f = ifl,..., fr) is a sequence in F ® R and X is a partition, such
that X1 = r, that the set {zaf¡}, where 1 < i < r and 0 < a < X,-, is a basis of F ® R and
thatza// = 0ifa>X/.

In Case II, z G fl(F) is called a standard nilpotent with base-data (f, X, ß, a)
if z G 87(F) is a standard nilpotent with base-data (f, X), ß is a permutation of
{1,..., /■} where r = X1, and a: {1, . . ., r} —>• R is a mapping such that

Í WU zhf¡) = (- WO   if/ = 0f and a + ¿ + 1 = X,-,
)  0(z% zbf¡) = 0   otherwise.
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Remark.  Clearly |X| = n.  In Case II the assumptions imply

(2) ctiiT1 ER,   ß2=id,   X^X,.,   a<0O = (-l)*rl+VO.

(3.4) The set Pf is defined as the subset of P consisting of the partitions
X such that for any m > 1 with m = e (2) the number of indices i with \¡ = m
is even.  These partitions are called orthogonal, resp. symplectic; in [10, p. 556].
We define P(n) as the set of partitions X with |X| = n, and Pe(n) := Pe (~\ p(n).
We write P,es to denote Pin Case I and Pe in Case II. So in (3.3) we have X G

(3.5) If x E g is nilpotent, cf. (2.3), then the section x E g(k(x)) is a stand-
ard nilpotent by [20, IV].  Let X G P(n). We define O(X) as the set of points
x E g such that the section x is a standard nilpotent with partition X.  In case
II we have 0(X) = 0,(X) n g, and C(X) # 0 if and only if X G Pe(n).

Let * be a field and x GO(X). By [20, IV] we have O(X) = G'x, andO(X)
# Gx if and only if we are in the very-even case: Case II (0, 0) with X,- even for
alii.

(3.6) Lemma. Case I. If X G P{n), there is a standard nilpotent element
z E g(/t) with partition X.

Case II. If\ß and a satisfy the conditions (3.3X2), then there is an e-
form 0j on Fand a standard nilpotent element z E g(F, 0,)(*) with base-data
(f, X, ß, a) for some sequence f in F.

Proof. Case I is trivial.
Case II. Choose a standard nilpotent z G %¡{k) with base-data (f, X). Let

0t: F®F—*k be the bilinear form defined by (3.3)(1). One verifies that
0j is an e-form on F with z E g(F, 0, )(*).

(3.7) The standard cross section. Let z E g(&) be a standard nilpotent ele-
ment with base-data (f, X), resp. (f, X, ß, a). Below we construct a linear subscheme
¿eg such that i(R) = [¡(R), z] © L(R) for any *-algebra R. This implies that the
subscheme z+LC%isa cross section for the adjoint action of G in all points of
the section z, cf. (2.1). In fact the tangent morphism of Ad: G x (z +L) —► g at
the section (e, z) is the surjective morphism g ©I —■* g given by (x, y) i—*• [jc, z] +
y. So smoothness of Ad at (e, z) follows from [12, IV 17.11.1].

Let * be the set of pairs (i, a) with 0 < a< \¡. Put /(i, a) : = zaf¡.
Then {/(0)|0 G *} is a basis of F.   Let {u(0)} be the dual basis of F~.  This
means that {u(\}/)} is the basis of F"= Hom(F, *) with

<"(<W, /(O = 5 ̂ .   (Kronecker delta).

The coordinates i-(0; \¡j') on g, are defined by £(0; 0')(*) = <w(0), xf($')).
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Clearly {£(0; i¡/')\\¡/, 0' G *} is a basis of fl/fc) . Let {e(0; 0')} be the dual
basis of fl/fc). We have

[eQ, a;j, b), z] «eft a;j, b - 1) - e(/, a + l;j,b)

where e(z, a; /, b) = 0 if a > \¡ or ô < 0. In Case I let g^-, Li} and Z, be the
linear subschemes of fl defined by

8,y(F):=Z Reii,a;j,b),
a,b

V) : - Z /kfc a; A X, - 1),   0 < a < min(Xf, Xy),
LiR): = ZLijiR).

U

Then we have fl,y = [fl,y, z] 8 Lij and fl = [fl, z] 0 Z,.
Case II. The coordinates r/(0; 0') on fl are defined by tî(0; 0')(jc) =

WWO, «/WO)-  Since î?(0; 0') = (-l)1 + e7?(0'; 0) we have a basis of g(jfc)"
consisting of the t¡Q, a; j, b) with i < j, or i = / and a < b + e.  Let j(0; 0') be
the dual basis of fl(/r). One shows that

\yih a;j, b), z] =yii, a;j, 6-1) +yii, a-l;j,b)

if i < /', or i = / and a < b - 1,

\yii, a; i, a + 1), z] = y(i, a~l;i,a + l) + 2eyQ, a; i, a),

\yii, a; i, a), z] = y(i, a-\;i,a)   if e - 1,

where yi$i; 0') = 0 if not yet defined.  For / </ let fl^, L¡j and L be the linear
subschemes of fl defined by

0//*):= T.RyQ.e-J.b),
a,b

LijiR) ■ - ¿ /îyft \ - 1 ; /. *)   if t < j,
b

Lu(R): = T,Ry(i> \ - 2 + e - a; i, \ - 1 - a), 0 < a < fc(X, - 2 + e),

L(R):=Z,Lir(R)./</

Then we have g/;- = [%if, z] 0 L¡¡ and fl = [g, z] 8 Z,.
Let F" be identified with F in such a way that (w, /> = 0(w, /). Putting

\i\a = (-l)aa(/)_1, we get the following glossary:
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V\J(i,a) = u(ßi,\i-l-a),

|i|aTj(i, a;j, b) = m X,- - 1 -a;j, ¿>)|g,

y(i, a;j, b) = \i\ae{ßi, X, - 1 -a;j, b) - (-l)e\j\be(ßi, X, - 1 - b; i, a)

if i < /, or i = / and a < b,

y(i, a; i, a) = \i\ae(ßi, \ - 1 - a; i, a)   if e = 1,

y(i, a; j, b) = 0   otherwise.

Remark.   In Case I our z + L is one of the cross sections of Arnold [1].
(3.8) An elementary calculation shows that L(k) is a free *-module of

rank / + 7(e)(X) if we write 7(e)(X) : = y(X) in Case I and 7(€)(X) : = ye(\) in
Case II where

7(X) : = 2X0'-1)\-   ifXGPOi),

Te(X) : =£(/ - l)\ + (2e - 1)[% # {i|Xf = 1 (2)}]   if X G Pe(«).

Now the centralizer of z ing(fc) is also a free *-module of rank / + T/e)(X).   By
[20, I 5.6] we have the following:

Corollary. Assume that k is a field.
(a) Ifx G O(X) then dim(Gx) = dim (g) - / - 7(e)(X).
(b) There is a unique nilpotent orbit Creg of maximal dimension.
Creg = ZX") where v* = («) in the Cases I and II (e, 1 - e) and v* = (tj -

1,1) in Case II (0,0).  We have dim (Creg) = dim (g) - /. If C is another nil-
potent orbit in g then dim(C) < dim (g) - / - 2.

See also [1],[20, IV 2.28] and [21, p. 136].
(3.9) The mapping S: P(«) —* Pis defined by (2X)m : =  2,-^X,- (m G

N).   As the corresponding propositions in [10, p. 567] are false, we shall prove
the following:

Proposition. Let X, p E P(£)(«) be such that

{(i} ={i>GP(e)(n)|ZX>2!>>2,i}.

Then there are p, a, r G P-ej with X = p + a, p = p + t and a, t as described
in the following table.
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Case o* Tm ResMctions
I (P,q) (p +1,9-1) p>q>)
GO (P.P) ip + l,p~l) p>lmCp = ei2)

,(*!) ip.q) ip + 2,q-2) p>q>2
[l\(b2) ip.p.q) (p + l,p + l,q-2) P>q>2

'(b3) ip.q.q) ip + 2,q-l,q-l) p>q>\
(64) (p.P.d.q) ip + Lp + hq-hq-D   p>q>\

mdp = q£e (2)

Proof. See (1.1) for the addition of partitions.  Case I may be left to
the reader.  Case II.  It is easy to see that we may assume disjointness:  if Xf =
ju; then \ = 0. Now we have to prove X = a, p = t as in the table.

(a) Assume that there is a minimal / G N with X, with X; ¥= 0 and X, =
e (2). There is a maximal m G N with Xm = Xz. Define v G P£(«) by v¡ =
X¿ + 1, vm — Xm - 1 and v¡ - \¡ otherwise. Clearly SX > Si>. Using disjointness
one proves Sp > S/u, so that v = p. and, again by disjointness, we are in case (a).

(b) Now X,- ̂ e (2) whenever \ > 0. By disjointness there is an m G N
with pm > Xj > [im + j. It is easy to see that we can define v G Pe(«) satisfy-
ing 2v > Sju as follows:

If jum ̂  e (2), then vm=\im~2 and v¡ = m, if *" < m;
if jum = e (2), then vm_l =vm =pm-l and v¡ = p.¡ if 1 <m - 1;
if ßm+i î e (2), then vm + 1 = jum + i + 2 and vi = juf if / > m + 1;
ifMm + 1 =e(2),then^m + , - vm+2 =ßm+1 + 1 and^«^ if t>m + 2.
One proves that LX > "Lv, so that X = v and we are in one of the four

cases (b).

(3.10) Theorem.   Let k be a field.  Consider z G 0(X) and x G CXju).
We have zEGx-Gx if and only if SX > Sju.

Remark. This theorem is due to Gerstenhaber, see [9, p. 327] and [10,
pp. 567-569]. His proof for Case II is incomplete, see (3.9). Our proof seems
to be more explicit.

Proof.  We may assume that z and x are rational points. So z is a stand-
ard nilpotent in fl(&) with partition X. If / G N then the endomorphism z' of
F has rank (2Z)X)', see (1.1) for the definition of D.

Assume that z G Gx - Gx.   The rank of z' is less than or equal to the
rank of xl. This implies 2£>X < XDp and hence 2X > 2m by [9, p. 327]. As
X =£ p. it is easy to see that SX > S/i.

Assume that SX > S¿u.  We have to prove that z G Gx. We may assume
that X and ju are as in (3.9).  So X and n are not both very-even, cf. (3.5), and
it suffices to prove that z G 00).   Using the notations of (3.7) we shall con-
struct v G %ik) and a sequence f(f) (f G k) in such a way that z{t) = z + ty G
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g(*) is a standard nilpotent in g/*) with base-data (f(0, p) if t + 0. This will
prove z G 0(p).

Using a direct sum decomposition we may assume p = 0, X = a, p = t;
cf. (3.9).

Case I.  We have X* = (p, q) and p, = (p + 1, q - 1).  Let ((fv f2), X)
be base-data for z.   Put^ : = e(l, q-\;2,q- 1). Put/t(0 : = /2 and, if q >
lj2{t): = tfl-zf2. We have

0<a<q-l~z(t)af1(t) = z%,

q<a<p =*z(071(0 = fóa_1/1,

0 < a < c? - 2 ■* z(0a/2(0 = tzafx - za+1f2,

z(ty+lft(t)  =0   and   z(09_1/2(0 = 0.

This implies that z(t) G 0(p) if t * 0.
Case II. Of the five possibilities, cf. (3.9), we only treat (b3) and (b4)

with q > 2. The other cases are easier, see [13, (4.3.7)], and already settled in
[10, pp. 568, 569]. We choose convenient base-data {{fv . . . , fr), X, ß, a) for
z.  The verifications are left to the reader.

(b3) \* = ip,q,q),p = q^e (2), r = 3, ß = id, p* = (p + 2, q - 1, q
- 1). Choose

y :~y(î,p-1,2,0)+y(i,P-v,3,0)
= e(l, 0; 2, 0) + e(l, 0; 3, 0) + e(2, q - 1; \,p - 1)- e(3, q - 1; l.p - 1),

/,(0 : = /2. /2(0 : - ^2 and W ■ = zp~q + 7, - íf3 + tf3-
(b4) X* = (p,p,q,q),p = q$e (2), r = 4, 0 = id, p* = (p + 1, p + 1,

<7 - 1, q - 1).  Choose
y: = y(l,p-l;3,0)+y(l,p-l;4,0)

+ X2,p-l;3,0)+7(2,p-l;4,0)

= <?(1, 0; 3, 0) + e(l, 0; 4, 0) + e(2, 0; 3, 0) + e(2, 0; 4, 0)

+ e(3, q - 1; 1,p - 1) - e(4, f - 1; l,p - 1)

- e(3, ? - 1; 2,p - 1) + e(4, <? - 1; 2,p - 1),
A(0 : = /,. ftm ■ = h, hit) : = z/3 and f4(t) : = z"-*+7, - <f3 + í/4-

4. The classical nilpotent scheme, singularities.
(4.1) The symmetrical polynomials alt . .. ,anE .4(End(F)) are defined

by the equation

det (a: + T • id) = T" +  ¿ T"-mam(x)
m = l
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THE NILPOTENT SCHEME OF A CLASSICAL GROUP 15

in R[T] where F is a fc-algebra and x G End(FXF).  They are invariant under the
adjoint action of GliF) on End(F).  Let X = (xi;) be the matrix of x with re-
spect to some basis /,,...,/„ of F.   Then

omix) = Z det(x,y),./e/

where the summation is over all subsets / of {1, . . . , «} with #1 = m.
Case II. Clearly am |fl G Auf. Let* be the matrix <t>(f¡, /}). We have

x G fl(F) if and only if *X = - <itf$_1.  This implies that om |fl = 0 if m is odd.
Assume e = f = 0. We define t¡ G ,4(8) by r¿(x) : = Pf (í>X), where Pf denotes
the Pfaffian, cf. [3, §5, no. 2].  Using loe. cit. one proves that rj = det(<p)a„
and thatrzG^(fl)G.

We define the sequence a = (av . . . , a¡) in ,4(6) as follows.  In Case I we
put a¡ : = o¡.  In Case II (e, 1 - e) we put a¡ : = a2i. In Case II (0, 0) we put
a¡ : = o2i if í < /, and a¡ : = t¡.

Theorem,  (a) Ai$)G is the free polynomial ring k[al.a¡\.
(b) 77ze sequence a is Ai<¡)-regular iin any order).
(c) NiG) = Spec 04(fl)/<a>), it is flat over k.
id) NiG) is smooth over k in the points of£Xy) where v is, cf. (3.8)(b).
(e) If k is a normal ring then NiG) is a normal scheme.

Proof, (a) Let u: k[Tv ..., T,) —> AH)G be defined by T¡ h-> a¡. We
have to prove that u is bijective.  Replacing k by a faithfully flat ^-algebra (cf.
(3.6) and (3.2)), we may assume the existence of a standard nilpotent z G 8(fc)
with partition v, cf. (3.8)(b).  Let z + L be the cross section of (3.7). By (2.2)
the morphism v. Aiti)G -^-Aiz + L) is injective. Case by case one shows that
v ° u is bijective, so that u is bijective.

(b) and (c).  By [7], Theorem (2.6) applies.  So Aft) is flat over Aii)G.
So we have (b) and (c).

(d) We may use the cross section of (a). Now (z + L) n /V(G) is a cross
section at z for the action of G on NiG), and the assertion follows from (z + L)
n NiG) = Spec(fc).

(e) By (c) and [12, IV 6.14.1] we may assume that k is a field.  Now
NiG) is nonsingular in codimension one, by (d) and (3.8)(b). So NiG) is normal
by Serre's criterion [12, IV 5.8.6].

Remarks, (i) There are other ways to prove the theorem, either avoiding
(3.7) or avoiding (2.6) and [7]. (ii) It can be shown that NiSliF)) exists and is
equal to NiGliF)), where k is arbitrary.  Here (2.6) does not apply.

(4.2) If X G r\n), the partition SX is defined in (3.9).   Case II (e, 1 - e).
If X G Pe(n) where n = 21 + 1 - e, then we define the partition S£X by (SeX)f
: = (SX)2i_e.  Case II (0, 0).  If X G P0(«) where n = 21, then we define S0X
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: = 0 + v where 6, v G Pare given by 6¡ : = (SX)2l+1 and p* : = (ViX1 - 1).
Note: in the last case X1 is even and (SX)j = X1 - 1. We write S(e^ to denote S in
Case I and Se in Case II. S^j means that e = 0 is excluded in Case II.

Theorem. Consider x G ©(X). Then ord(x, NiG)/k) = S(1)X in Cases I
and II (1,0), and ord(*, N(G)¡k) > S0X in Case II (0, f).

Proof.   (1) By (1.7) we may replace (7V(G),.x) by a smoothly equivalent
pointed scheme. So by (3.6) and (3.2) we may assume the existence of a standard
nilpotentz G g(fc) with partition X. By (2.1) (a) we may assume that x = zip) for
some p G Spec(fc).  Put A : = 0gJC and B : = 0N'G),x- We have B = A¡^
where a is the A -regular sequence of (4.1), or rather its image in A.

(2) Let / be the ideal in Ai<¡) corresponding to the section z.  So x corre-
sponds to the prime ideal / + pAi<¡). We claim

(a) If 1 < i < n and m : = 1 + (SX)„+ w then a, G Jm.
(b) In Case II (0, 0) we have r¡ G Jm where m : = lA\l.
Proof of (a). It suffices to consider Case I. Let (f, X) be base-data for z.

Using the notation of (3.7) we define

ap :=det£(0; 0%^'ep

if 0 =£ P C ^.  So a¡ = Sojr, where the summation is over all P with #P = i.   If
£(0; 0') £ / then we have 0' = (/, ¿), ^ = (j, a + I) for some / and a. Consider
P with #P = i.   If 77 is a permutation of P then one verifies that

# {(/; a) G P\rrQ, a) #</, a + 1)} > 1 + (SXL,^,. » m.

This implies opEJm, proving (a).
Proof of (b). We may assume that k is reduced. Now the assertion follows

from rf = det($)a„ GJ2m, cf. (a).
(3) By (1.6)(a) it follows from (2)(a), (b) that ordiB/k) > S(e)X. This

proves the theorem in Case II (0, f)- In the rest of the proof Case II (0, f) is
excluded. It suffices to prove

(*) ord(F/Ä;)<S(1)X.

By (1.5) and (4.1)(c) we may replace k by an algebraic closure of the field k(p).
So henceforth k is an algebraically closed field. Now x and z may be identified.
Let (f, X), resp. (f, X, ß, a) be its base-data.

(4) We prove (3) (*) by induction on n = |X|.  The cases with n < 1 are
trivial.  So assume n > 2. Put r : = X1.  Let p be the partition with p* = ir - 1).
The partition ß is defined as follows.

Case I. jur : = Xr - 1, p{ : = Xf if i =£ r.
Case II. If Xr is even then pr : = \ - 2 and p¡ : = X,- otherwise. If Xr is
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odd so that Xr_1 = X,, then p,^ : = pr : = Xr - 1 and p¡ : = X¡ otherwise.
One verifies that pE P^ and that S^X = p + S(i)P-
We have F = Z*/(0)> 0 G *, cf. (3.7).  Let P be the subset of * contain-

ing (r, 0) and in Case II also (ßr, Xr - 1). Put F : = 2*/(0), 0 G F, and F' : =
2*/(0), 0 G F.   Clearly F = F' ® F". In Case II the form 0' : = 0|F' is nonde-
generate and hence a 1-form on F'. We put G' : = Gl(F') in Case I and G' : =
G(F', 0') in Case II.  So the convention (3.1) concerning G' is not applied here.
We put g' := Lie(G'), etc.

Let

(*'   X2\
\Xl   X3J

be the matrix of x with respect to the decomposition F — F' ® F'. Now x' is
a standard nilpotent in g'(*) with partition p. Consider the ring

B'--=oN,G')iX> = ot->x.Ka;)i<n).

By induction we have ord(f?'/*) < 2/jOi.  One verifies that

fw     x2\
W !-»■

\*1     *3/

defines a regular immersion «: g' —> g such that u(x') = x, u°(on) = 0 and
u°(Oj) = o'¡ if i < n, where «°: ^4(g) —* A($¡) is the comorphism. Put R : =
AH(a¡)¡<n) so that 5 = /?/v/-> where / is the image of an in R.  Now there is an
F-regular sequence x in R such that B' = R/ix) and /G <x>.  By (1.6)(b) this
implies

ord(5/*) < p + oid(B'lk) < p + 2(1)p = S(1)X

provided that / ^ mrR 1. So in order to prove the theorem it suffices to prove
that

(*) o* é <tow*> + mA+ï
where we have used the notation of (2).

(5) In Case II we normalize the base-data of x as follows: ßi ¥= i if and only
if X,- is odd; \ßi -1'| < 1 for all i; if i > ßi then a(i) = 1. Now i < ßi implies
a(i) = (-1) '. With the notation of (3.7) we define a linear subvariety M of g.

dse I. M : = S *e(i, 0; /, Xy - 1) (1< i, / < r).
Gzse? II.Af := S*y(i, X,- - 1;/, Xy - 1) where the summation is over all

pairs (i, /) such that í = / or i<ßi<j < ßj.  So in this case M C M¡.
The ring A(x + M) is considered as a graded *-algebra such that x corre-

sponds to the augmentation ideal. The functions op\x + M are homogeneous,
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Oy \x + M is homogeneous of degree r.  So it suffices to prove

(*) o* \x + M <£ ((oplx + M)P¥¡^).

(6) Case I. It is easy to see that x + M has a subvariety xx + Mx such that
op\x1 + Ml + 0 if and only if P = ^!. This proves (5)(*) and the theorem.

Case II. Consider the subvariety xt + Mi of x + M where

*i : = x + T,y(i, X,. - 1; i, Xf - 1),
i>ßi

Mx : = ZkyQ, \ - 1;/, Xy - 1) (i < A t</< ßj).
Now Jfj is a standard nilpotent in fl/(^) with base-data (f, X') such that

Mx = Zkie'Q, 0;/, Xj - 1) + e'(/, 0; /, X) - 1))
«</

with respect to the new base-data. In order to prove (5)(*) and hence the theo-
rem, it suffices to show that

(ty |x, + M1 £ <iop\xl + M^p^y).

This is a consequence of the following:

Lemma   Assume char(fc) =£ 2. Let r G N.   Consider the ring k[T¡j] where
Ki<j<r. PutTij:=Tjiifi>j. PutQ: = {\.r}. If0±PCQ
define op : = det^),,-^   Then aQ £ ((a^p^g).

Proof. We may assume r > 3. Let / be the ideal generated by all Tt¡
such that 1 =£ |/ -/| =£ r - 1, and all 7^. It is easy to see that aP <£ / if and only
if F = Ö-

(4.3) The following facts are not proved here, see [13, pp. 11—13].
(i) The mapping S^: P(i)(")~* Pis injective.
(Ü) If SXX < Sxm where X, p. G P^n) then SX < Sfx.
(in) If XG P(1)(«) then 7(1)(X) - 2|S(1)X|.
Using (1.7), (2.1)(a), (3.5), (3.8), (3.10), (4.2) we get the following

Corollary. Case I and II (1,0). Letx G O(X) and y G NiG).
iz)y G O(X) if and only if oidiy, N{G)lk) = ord(x, N(G)lk).
(b) yEGx if and only if (N(G), y) ~ (N(G), x), cf. (1.7).

Assume that k is a field.
(c) codimOGx, NiG)) = 2|ord(x, N(G)lk)\.
id)yEGx if and only ifoxdiy, NiG)/k) > ord(x, N(G)¡k).

(4.4) Remark.   In (4.2) Case II (0, f), inequality occurs if Xx is even and
also if X* = (3, 3, 2, 2), but we have equality if X* = (3, 3, 2, 2, 1). In the
last case we have
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codim(Gx, N(G)) = y0(X) > 2|20X| = 2|ord(x, N(G)/k)\

if * is a field, compare (4.3)(c) and (4.9) table Bs.
(4.5) The polynomials fa are defined by fa : = 0 if a < 0, /0 : = 1 and

fa : = 2,>i^/a_,- if a > 0.  They are determined by the generating function

a=0 \      <>1 '

Clearly /a(*,) = X\ if a > 0. One can prove that

faixvx2) = lZ^~i)xr2ix2 (0<i<^).
Let Am denote the affine space over * of rank m, say with coordinate

ring k[Xv . . . , Xm]. It is pointed in some point of the origin section. The
Kleinian singularities A¡ and D¡ are the pointed subschemes of A3 given by one
equation:

A,, l>l,byX\+i + X2X3 = 0,
D,, I > 3, by X1'1 - XyX\ + X\ = 0, if 1/2 G k.

We define the following singularities.
If / > 3, AA, in A2 x A4 by

f,(Xv X2) + Y^3 + Y2Y4 = 0,

*2fi-i(Xv X2) - Y4(X,Y2-X2Y1) + Y2Y3 = 0.

If 1/2 G k and / > 3, BB¡ in A2 x A4 by

//_1(2J1, - X\) - 2F, r3 + Y\ - Y\ = 0,

*2/i-2(2*,. - X\) + (Y3 - Xx rx)2 - X\ Y\ - 2Y4(Xt Y4 - X2 Y2) = 0.

If 1/2 G k and / > 2, CC, in A3 x A2 by

{X\ -XxXj +XJI+ 2X3YtY2 + X2Y22 = 0.

If 1/2 G * and / > 5, CD, in A2 x A4 by

/mC*i. xi) + *iH - *21'2 - rl + 2r2r4 = 0,

*2/l-3(*i. ^2) + *a(*i *i + Yl - 2^1 ̂ 3) + A - 0.

If 1/2 G jfc and / > 3, £>£>, in A3 x A3 by

(^2+x2+x2)'-1+72+72+^3 = 0,

*1^1 +^2^2 +*3>'3=0-
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(4.6) Proposition. Assume in Case II that I + e + f > 3. Consider X G
P(e)(n) with 0 < 7(e)(X) < 6, c/. (3.8). //x G O(X) then (N(G),x) is smoothly
equivalent (cf. (1.7)) ro the singularity (cf. (4.5)) given in the following table.

G                             X,                         Dynkin  diagram ^Cel^'     singularity

Gl       ,   n >  2     (n-1,1) r«-°0_o 2 An_1

!<---—•—>/

S02Jl+1, 4  > 2 (21-1,1,1)               <—2—)r-g 2 An_a

Spn   ,  £  > 2 (24-2,2)                  <_.2=4=1 2 D¿ + 1

S02)l   ,   4  >  3 (24-3,3)                             <---<^° 2 D^
Gl„     ,   n>4 (n-2,2) f«---2-o-o-~» ]   4 AAn-ln

<

S02Ä. + 1'   *  >  3      C2*"3'3'15 «---2-^r-r^ "* BB¿

4

4
0        2,01-3     (3,3) «-„=4=, it DD

op2£,

=   2     (2,2,1)

> 2     (2)1-2,1,1)
<-n-^—B H CC4

4  > t     (24-4,14) ^-_o-c-0=4=9 4 CD4+1

SQ2l,     I >  3 (24-3,1,1,1)1 2»°

4   =   4     (4,4) \o
DD„

0 "2
4  >  b     (24-5,5) 4--o-o_< U CD4

Remark. We have 7(e)(X) = codim(Gx, N(G),k(x^).   For the singulari-
ties with 7(e)(X) = 2, compare [5] and [21, pp. 140-158]. In the table we have
added the Dynkin diagram of the section x E g(k(x)),cf. [20, III, IV], where
«-means a string with numbers 2 attached to the nodes.

Proof. The classification of all possibilities for X is easy. By the sequence
of reductions used in (4.2)(1) we may assume that x = z(p) where z is a standard
nilpotent with partition X and p G Specf*). In Case II the base-data for z may
be prescribed witliin the bounds set by (3.3)(2). Let z + L be the cross section
of (3.7). Then (z + L) D N(G) is a cross section at z for the action of G on
N(G). So (N(G), x) is smoothly equivalent to ((z + L) n N(G), z(p)) by (2.1)
(a). The two singularities to be determined for Gln will be examples in (4.7)
and (4.8). We do not give the tedious calculations needed to settle Case II, see
[13, p. 79] for some indications.

(4.7) Case I with X* - (p, 1'), i.e. (p, 1, . . . , 1) with q times 1. We
have n = p + q and r : = X1 = q + 1.  On z + L we define the coordinate func-
tions £a, %ij as follows: if F is a *-algebra and x E(z + 2-XF), then
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(1)   x = z - £ £a(x)e(l, p - a\ 1, p - 1) -     £       I (*>(/, 0; /, X, - 1).
a=1 0\/)#(i,D

So^(z+Z,) = *[£a,y. Put?n=0.
If a > 1, let sa, Aa G fejfy] be defined by

21

(2)
sa =Zdeta//)//e/

= Zdeta//)//e{l},

where in both cases the summation is over the subsets / of {2,..., r) with #/ = a.
Clearly, if a > r then sa=ha = 0. The subscheme iz+L)n 7V(G) of z + L

is defined by the equations am |(z + L) = 0 (1 < m< w). One verifies that
m-l

(-iram|(z+I) = ?m+Sm+ £  ÇaSm_a   ifl<m<p,

I (~l)mam |(z + Z.) = Am_p + s„, + £ ?asm_a   if p < m < n.
«=i

The first p equations can be solved inductively. With the notations of (4.5) we ob-
tain %m =fm(si,-S2' • • • »"^ff) (I ^m<p). So (z +L) n/V(G) is isomorphic to
the subscheme of Spec &[£«] defined by the equations

(4) hm-p+  £  V/^.---.-s,) = 0      (p<m<«).
a=0

Examples, (a)X* = (« -1,1). PuttingXl=-%22,X2-%l2,Xi = %2l,
we get the singularity An_x, cf. (4.5).

(b) X* = in - 2,1,1). The scheme (z +L)C\ /V(G) is isomorphic to the sub-
scheme of A8 = Spec^ity]), where 1< i, / < 3 < i + /, defined by the equations

(5)
fn-i(rsv-s2)-hi=°>

hfn-2^~sV "s2) + h2 - °>

where

sl = «22 + «33'

S2 = ^22^33 ~ ^23^32'      and        A2 =

nl = «12?21  "*" ̂13^31'

0      $12     *13

?21      É22     ?2 3

?31     ?32     ?33

(4.8) Case I for arbitrary X. We use a different cross section, viz. z + L" de-
fined by L" : = SfJLj where Z,~ : = Ltj if / # 1 or / = 1 and I'^/F) : =
S0<6<x.Re(l, 0;/, b) if / =£ 1, see (3.7). Again we have
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(N(G), x) ~ ((z + L") n N(G), z(p)).

Putp: = Xvq: = n-Xl andp* : = (p, l*7). Putz' := E^eO.fl + 1; l,a), so
that z' is a standard nilpotent element in g(*) with partition p. In the obvious way
we define base-data (f\ p) for z'. The cross section z' + L' at z' used in (4.7) con-
tains z + L". So we can use the elimination in (4.7) of |a, 1 <a <p, substituting
into the matrix (%t) at some places the constant functions 0 or -1, cf. (4.7)(1).

Example.  If X* = (n - 2,2), n > 4, we use the matrix

(£//) = rx  -x,

KY2    -X2

and we obtain the equations (4.7)(5) where st = -Xl, s2 = -X2, Ax = YiY3 +
Y2Y4 and h2 = Y4(Xt Y2-X2Y1)- Y2Y3. So (z + L") n N(G) is isomorphic
to the singularity AAn_1, cf. (4.5).

(4.9) Tables for the orbits in N(G). We give the adjacency structure (cf. (3.10)),
the Dynkin diagram (cf. [20, IV]), the codimension of the orbits 7(e)(X) (cf. (3.8)),
and the partition ord = ord(x, N(G)¡k) (cf. (4.2)). The number of orbits is denoted
by #. In the cases S02l with even /, the partition X may represent two orbits, cf.
(3.5). We give the Dynkin diagram of one of them and indicate how to get the
other one by the symbol ^ .

For SOn we give 20X, which is a lower bound of ord, cf. (4.2). Whenever
there are reasons to assume ord =£ 20X, we give a conjectured value of ord or a ques-
tion mark. AsD2=Al + AV B2 = C2 and£>3 =^43, the values of ord for the
cases S04, SOs and S06 are not conjectural.

Gl: X,

2

1   1

Dy y(X)      ord.

0 0

2 1

**   =   3

Gl3       X.             Dy o-o y(\) ord.

3 2     2 0            0

2   1 11 2            1

111 00 6            21

Aj+A,       S0„       X,

#   =  4

Dy o ■» Y0(X) (Z0X).

2 2 0 0

0 2 2 0

0 0 4 11

ord,
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B2   =  C2

4*  =   it

S05       X» Dy 1-y-n Y0(X)     (S0X), ord,

5 2     2              0         0                  0

311 20              21                  1

221 01              41                  2

8 3   1 3  1

Sp„       X. Dy  a=É= Y^X) ord.

it 2     2 0         0

2   2 0     2 2         1

2   11 10 4          2

1* 0     0 8          3   1

Gl. X*
4

3   1

2   2

2   11

1*

2     2 2

2     0 2

0     2 0

10 1

0     0 0

Y(X)

0

2

4

6

12

ord^

0

1

1 1

2 1

3 2  1

S06       X, «¿^—o y„(X) (2„X).     ord,

5   1 2     2     2 0            0

3   3 0     2     2 2             1

3111 200 4            11

2211 011 6            11          21
Is 0     0     0 12            3   2  1

so. X*
7

5 11

3 3   1

3 2   2

3 1*

2 2   l3

l7

Y0(X) (Z0X).    ord.?

0 0

2 1

4 11

6 2   1

8 3   1

10 3   1 3   2

18 5   3   1
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SPe

**  =   8

X.

6

4   2

4   11

3   3

2   2   2

2   2   11

2   1"

l6

o-a-4-a     Y¡(X)       ord,

2     2     2 0 0

2

4

4

6

8

12

18

1

2

1 1

2 1

3 1

4 2

5 3   1

Gl.

¥*    :    7

5

4   1

3   2

3   11

2   2   1

2   l3

Is

1     0

0     0

Y(X)

0

2

4

6

8

12

20

ord»

0

1

1 1

2 1

2 11

3 2   1

4 3   2   1

#* =  12

^L
2 2

2 2

0 0

0 2

0 0

1 1

0 0

0 2

0 0

0 0

Y„(X)     (Z„X).

0 0

ord, 7

2

4

4

6

8

12

12

14

24

1

1 1

1

111

2 11

3 2   1

2 11

3 2   1

5 3   3   1

1   1

3   2   1

3   2   2
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so_

# = 13

9

7   11

5   3   1

5   2   2

5   1"

4   4   1

3   3   3

3   3   I3

3   2   2   11

3   l6

2*1

2   2   I5

I9

0

2

4

6

ord,?

10

12

18

1 6

? 0

32

0

1

1 1

2 1

3 1

1 1

2 11

3 11

3 2 1

5 3 1

3 2 1

5 3   1

? 5   3   1

2   1

3   3   2

5   3   2

SP.

# = 14

X .

8

6   2

6   11

4   4

4   2   2

4   2   11

4   1*

3   3   2

3   3   11

2   2   2   2

2   2    2 11

2   2   1"

2   I6

Ie

-<a£=D        Y,(X)       ord.

0

2

4

4

6

8

12

8

10

12

14

18

24

3 2

0

1

2

1 1

2 1

3 1

4 2

2 11

3 1   1

3 2   1

4 2   1

5 3   1

6 4   2

7 5   3   1
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GX, X .

6

5 1

4 2

4 11

3 3

3 2   1

3 111

2 2   2

2   2   11

2 1"

=#= = 11

Y(X)

0

2

4

6

6

8

12

12

14

20

30

ord.

0

1

1 1

2 1

1 1   1

2 11

3 2   1

2 2   11

3 2   11

4 3   2   1

5 4   3   2   1

SO,

44  -

11

9   11

7   3   1

7   2   2

7   1111

5   5   1

5   3   3

5   3   111

5   2   2   11

5   l6

4   4   3

4   4   111

3   3   3   11

3   3   2   2   1

3   3   l5

3   2   2   2   2

3   2   2   1"
3   Ia

2   2   2   2   l3

2   2   l7

1"

0     0

Y0(X)      (Ï,X).

0

2

4

6

ord, ?

0

1

1 1

2 1

8               3   1

6 111

8 2   11

10 3   11

12 3   2   1

18 5   3   1

10 2   11 2   2   1

12 3   11 3   2   1

14 3   2   11

16 3   2   11  =ord.,cf. (4.4)

20 5   3   11

20 4   3   2   1

22 5   3   2   1

32 7   5   3   1

26 5321        5332

34 7531        7532

50 9   7   5   3   1
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*f>

0

2
4

4

6
8

12

6

8

10

10

12

14

18

24

14

16
20

20

22
26
32

40

50

ord,

0

1

2

1 1
2 1
3 1

4 2

111

2 11
3 11

2 2 1

3 2 1

4 2 1

5 3 1
6 4 2

3 2 11

4 2 11
5 3 11

4 3 2 1

5 3 2 1
6 4 2 1
7 5 3 1

8 6 4 2

9 7 5 3 1
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SO,

44 = 16

* .

9   1

7   3

7  111

5   5

5   3   11

5  2   2  1
5   Is

4   4   11

3   3   3   1

3  3  2  2

3  3  1*

3   2   2   l3

3  l7

2*1  1
2   2   Is

l1

Y.U)     (2.X). ord,?

i m

0

2

4

4

6

8

12

8

1 0

1 2

14

1 6

2 4

2 0

2 6

4 0

0

1

1 1

1 1

111

2 11

3 2  1

111

2 111

2 111

3 2 11

3 2 2 1

5 3 3 1

3 2 2 1

5 3  3  1

7 5  4   3  1

2  11

3   111

3   3   2   2

5   3   3   2

Gl,

#   =   15

V

X .

7

6   1

5  2

5  11

4   3

4   2   1

4   l3

3   3   1

3   2   2

3   2   11

3   1*

2   2   2   1

2   2   l3

2   Is

0 0

0 1

1 0

0 0

Y(X)

0

2

4

6

6

8

12

10

12

14

.'0

18

2?

30

42

ord,

0

1

1 1

2 1

111

2 1  1

3 2  1

2  111

2 2   11

3 2   11

4 3   2   1

3 /  ;   1   1

4 3   2   11

r   4   ?   2   1

6   5   4   3   2 1
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ord,?

** = 31

2   2   0   0   0   0 24

0   110   11 12

14

0  2  0  10  0 16

0   0   0   2   0   0 16

0   0   2   0   0   0 18

332211     010100 20

33  l6                020000 26

3   2*1                   1   0   0  0   1   1 24
322  Is           101000 28

3  1'                    200000 40

222222     000002 30

2222  1*       000100 32
22  Ie                010000 42

1**                       0  0  0  0  0  0 60

0

1

1 1

1 1

111

2 11

3 2  1

1 1

1111

2 111

2 111

3 2 11

3 2 2 1

5 3 3 1

2 111

2 111

3 2  11

3 2  111

3 2   2   11

3 2   2  11

5 3   3   11

4 3   2   2 1

5 3   3   2 1

7 5   4   3   1

4 3   2   2   1

5 3   3   2  1

7 5  4   3  1

9 7   5   5  3  1

111
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B, SOia

/

44 = 35

X,

13

11,1,1

9 3  1
9 2   2
9 1111

7 5  1

7 3   3
7 3   111

7 2   2   11
7 l6

6 6   1

5 5  3

5 5  111

5   4  4
5   3   3   11

5   3   2   2   1

5   3   l5

5   2   2   2   2

5   2   2   1*
5  Is

4   4   3   11
4   4   2   2   1
4   4   Is

3   3   3   3   1

3   3   3   2   2

3   3   3   1"

3   3   2   2   l3

3   3   1'

3   2*1  1
3  2  2  Is

O       O       O       O-

3  1 i o

2S1

2*15

2  2  l9

1 13

-*- Y0(X) C20X).    °rd.?

222222 0 0

222220 2 1

222020 4 11
222101 6 21
222200 8 31

202020 6 111

220020 8 211
220200 10 311

221010 12 321
222000 18 531

020201 8 111     211

020020 10 2111

020200 12 3111

101101 12 2211
200200 14 3211

201010 16 3211        ?

202000 20 5311

210001 20 4321

210100 22 5321

220000 32 7531

011010 16 3211  3221
020001 18 3211   3321

020100 22 5311   5321

000200 20 33211

001010 22 43211

002000 24 53211

010100 26 53211       ?

020000 34 75311

100010 30 54321

101000 36 75321

200000 50 97531

000001 36 54321        ?

000100 40 75321        ?

010000 52 97531        ?

0 0 0 0 0 0 72 11,9,7,5,3,1
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Gl. X .

i*   -  22 i

O   O  O  O O  O   O

2 2 2 2 2 2 2

2 2 2 0 2 2 2

2 2 0 2 0 2 2

2 2 10 12 2

2 0 2 0 2 0 2

2 110 112

2 2 0 0 0 2 2

0 2 0 2 0 2 0

1110 111

2 0 0 2 0 0 2

2 0 10 10 2

2 10 0 0 12

0 110 110

0 2 0 0 0 2 0

10 10 10 1

110 0 0 11

2 0 0 0 0 0 2

0 0 0 2 0 0 0

0 0 10 10 0

0 10 0 0 10

10 0 0 0 0 1

0 0 0 0 0 0 0

Y(X)

o
2

4

6

6

8

12

8

10

12

14

20

14

16

18

22

30

24

26

32

42

56

ord,

0

1

1 1

2 1

111

2 11

3 2 1

1111

2 111

2 2 11

3 2 11

4 3 2 1

2 2 111

3 2 111

3 2 2 11

4 3 2 11

5 4 3 2 1

3 3 2 2 11

4 3 2 2 11

5 4 3 2 11

6 5 4 3 2 1

7 6 5 4 3 2 1
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