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INTRODUCTION

Consider a smooth map f : V—^W between smooth manifolds. Its local structure

can be extremely complicated. As part of this structure we have the singularity subsets

off, which we now introduce briefly.

For each point j&eV, we have the differential fp : Tp->T-, where T denotes

the tangent space to V at p, and T^ that to W at fp. One can classify the points of V

according to the rank of fp :j&eS'(/) if the kernel offp has dimension exactly i. (Our

notation here is unusual; this set has been called S'f/) if v^w, or Si
~

v+w
{f) if v^w,

where v and w are the dimensions ofV and W [7].)

Thorn proved [7] that for " most5? maps/, these sets S^(/) are in fact (non-compact)

submanifolds ofV. If this holds for/, we can consider the restriction f\ ̂ \f) : ̂ (f) -^W,

which is again a smooth map of manifolds, and define S^Qfj^S^yiS^y)). One

hopes that S''^/) is again a smooth manifold, so that S"'^/) can be defined, etc.

For examples, see [7], [9] and [5].

This direct approach is hardly satisfactory, and is certainly awkward technically;

it is by no means trivial to see that S''^/) has any chance of being a manifold. We

adopt a different approach, using jet spaces, which were introduced by Ehresmann [2].

We construct, by means of iterated jacobian extensions, subsets S1 of the jet space,
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22 J. M. B O A R D M A N

independent of any map^. These induce subsets S^y) of V, defined for any map/

and any finite sequence I of integers. Our main theorem (§ 6) asserts that all the

subsets S1 are submanifolds in the jet space, and we compute their codimensions. This

implies that the sets ̂ (f) are submanifolds ofV for (c sufficiently good 5? maps/ with

the same codimensions. Enough such maps exist, in the sense that they approximate

to any given map. We also show that for these maps, our sets S^V) coincide with

those given by the naive geometric approach outlined above. Much use is made of the

infinite jet space J°°(V, W), and of a canonically defined vector bundle over it, which

we call the total tangent bundle.

In § 7 we show that the inductive procedure due to Porteous [6], for constructing

the sets S^/) and the intrinsic derivatives off, always works for " good 5} maps/.

As the proof is algebraic, analogous results are valid for the algebraic case, the

complex case, etc.

Various conversations with B. Morin, I. Porteous, and Prof. R. Thorn, have helped

to clarify many points. Finally I should like to thank Prof. C. T. C. Wall for suggesting

the problem to me originally.

§ o. Notation.

R denotes the field of real numbers. It will usually be the groundfield. We

write A®B and Hom(A, B) respectively for A®nB and Hom^A, B). K1 denotes real

^-space, regarded as a real vector space or as a smooth manifold.

All our manifolds are assumed to be smooth (in the C°° sense), paracompact,

without boundary, and finite-dimensional unless otherwise stated. They need not be

connected. We write V^ for a manifold V having dimension y. Also all maps and

bundles are tacitly assumed smooth. By a submanifold of a manifold, we mean a subset

locally smoothly like R^xocR^xIf for suitable m and n, as in [3, p. 18, 19]; n is

called the codimension of the submanifold. Submanifolds need not be closed subsets.

The only infinite-dimensional manifolds we shall encounter are the infinite jet spaces

and their submanifolds.

If A is a subspace of the base of the bundle S, ^ A denotes the part of the bundle

over A. We call any sequence EgDE^DEgD . . . DE^, of vector bundles, or vector spaces,
a
 f^g- ^e shall usually, as here, denote vector bundles and maps by heavy type :

E, F, a :E->F, etc. The vector bundle Hom(E, F) is defined when E and F have

the same base space, and has fibre Hom(E|j&, F|j&) over p. It is occasionally convenient

to write R also for any product vector bundle whose fibre is the field R of real numbers.

We find some of the ideas and notation of sheaf theory useful, although we use

no results. I fV i s a manifold, and U is open in V, we write ^{V)^ or simply ^(U),

for the R-algebra of (smooth) real-valued functions on U, and y{p) for the algebra

of germs at j&eV of (smooth) real-valued functions. We write m? for the ideal in ^(j^),

or in e^(U) for any open set U containing p, consisting of the functions that vanish at p.
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SINGULARITIES OF DIFFERENTIABLE MAPS 23

We note that ^{p) is a local ring (though not Noetherian), having ntp as its unique

maximal ideal. If, further, E is a smooth real vector bundle over V, we write similarly

F^U) for the set of smooth sections ofE defined on U, and F^) for the germs of such

at p. By means of scalar multiplication, F^U) is a ^'(U)-module, and F^) is a

y{p) -module. In particular the tangent bundle T == Ty of V is a smooth vector bundle,

and we remark that 1̂ (11), the set of smooth vector fields on U, acts on the ring e^(U)

as the module consisting of all derivations of ^"(U).

Apart from sheaf notation, we reserve brackets mainly for bracketing. Functional

notation is normally denoted merely by juxtaposition, and composition by o. We occa-

sionally use . for multiplication and bracket combined: OLX.^ means the product of OLX

and ^y, and not a(^.(B^). Some such convention is useful when dealing with multi-

plicative properties of operators.

References thus [ ] will be found listed at the end.

We shall use the symbol • to signal the end of a proof, or the absence of any
further proof.

§ i. Jet spaces and total vector fields*

In this section we recall (e.g. from [2], [8]) the jet spaces J^V, W) and certain

of their properties, some of them well known, some less well known. We shall be

particularly interested in the infinite jet space J°°(V, W), for reasons which will soon

become clear. It is the only jet space over which the total tangent bundle D can be

defined. This vector bundle, which is the natural setting for our theory, is in effect
already well known in various disguises.

Since we are concerned only with local properties, we need study in detail only

the case when W == R^ and V is an open subset of W — provided we cast our definitions

in a sufficiently invariant form to allow piecing together.

We take coordinate functions (^, x,, . . . ,^) on V or R", and [y^y^ ...,^J

on W== R^. Given n (0^72^00), an equivalence relation ̂  is defined between germs

of maps from V to W as follows: f^g if and only if/and g are germs defined at the same

point peV,fp==gp, and their partial derivatives at p of orders <^n agree. The third
condition may be expressed invariantly as

r==g: y^q} Im^ +1 -> y{p} Im; +1,

where q==fp=gp. If m^n, ^ is a smaller equivalence relation than ^.

Definition (1.1). — The jet space J^V, W) (o^^oo) is the set of equivalence

classes of germs of maps from V to W, under the equivalence relation /^. If m^n,

we have the canonical projection map < : J^V, W) ->JP(V, W). If/is a germ at p, then

f->p and f->fp also induce projection maps n^ : J^V, W) ->V and n^ : J^V, W) -^W.

Given any map /: U-^W, where U is open in V, we have the associated jet section

(called/to^ in [2]) JY: U->p(V, W), which takes each point peV to the class of the

germ of/ at p. The image (J^)? of p is called the n-jet off at p.
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24 J. M. B O A R D M A N

We shall usually omit the suffix oo.

Trivially J°(V,W)^VxW, by the projections n°y and T^. There are obvious
transitivity relations such as J

n
f=^o]

m
f and ^==7^07^.

So far, Jp(V, W) is merely a set. Let us take W^R^ and V open in R\ with

the coordinate functions ̂  on V andj^ on W as above. Corresponding to each coordinate

function ^ on V, we have the coordinate vector field ^ on V. We shall always regard a

vector field on V as a derivation of the ring ̂ '(V), as well as being a section of the tangent

bundle Ty. Then the vector field d, may be defined by d.x^o i f j= t=z , and d,x,== i;

as such it is called partial differentiation with respect to x^ and written ^/^.. Any

vector field on V has the form Sa,^, where a,e^(V) (i^z'O), and it is well known

that these account for all the derivations of the R-algebra ^"(V). It follows that the

action of any vector field d on any function (B on V is given by the well-known chain rule

(1.2) rfjB=Z;<.iB.^-
i

These vector fields ^ commute. Given any sequence o-==(c^, (^, . .., crj of

non-negative integers, we write formally d° for the iterated operator d^d^
2
. . . d^ on ^(V),

x° for x^x^
2
.. .^% and or! for c^! erg! . . . cr^! We call [ c r j =S(T, the mfer of (T, or of^°.

i
We can now write down an obvious set of coordinate functions onJT^V, W), at least when n

is finite, namely the functions X,, Y^, and Z^, for i^i^v, i^j^w, and I<|(T[^;

these are defined by

(1.3) X,=^v; Y,=Z,,o=^.o7^; Z^/=(rf°(^o/))^

where/is the germ sitp of any map from V to W. These functions define an isomorphism

of sets J^V, W^VxR^, where the precise dimension k does not interest us. These

isomorphisms may be used as local charts in an atlas to makeJ^V, W) a smooth manifold,

for general manifolds V and W. All the projection maps n^, etc., become projection maps

of smooth fibre bundles, and the jet sections jy are smooth.

Remark. — If n> i, J^V, W) is not a vector bundle over VxW with projection TC^

(unless W is a vector space). This is because there is no canonical way of adding n-jets

in the fibres. Nevertheless, its fibres are all diffeomorphic to euclidean space, and it

has a canonical zero section (the jets of constant maps).

If n=co, it is still possible to make J(V, W)==J°°(V, W) into a strange kind of

infinite-dimensional manifold by this means. It is not necessary for us to do this,

because all we require are the concepts of smooth function onJ(V, W), and certain vector

fields defined algebraically as derivations. These structures are more easily introduced

as follows. The projections TT^ induce a map

j(V,W)->Hmr(V,W)

from J(V, W) to the inverse limit of the finite jet spaces J^V, W) which is trivially an

injection. It is a well-known classical result, due to E. Borel, that this is actually

an isomorphism, but we shall not make essential use of this fact. However, it does suggest
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SINGULARITIES OF DIFFERENTIABLE MAPS 25

what structures to give to J(V, W). We give J(V, W) the inverse limit topology, which

has as base the sets ^)~~
1
(U), where n is finite and U is open inJ^V, W). We give

J(V, W) the limit differential structure, in the following sense, which is suggested by
sheaf theory.

Definition (1.4). — A function 0 : U-^R, where U is open in J(V, W), is called

smooth if it is locally of the form Yo^, where Y is a smooth function on some open

subset ofJ^V, W). (The integer n may have to be unbounded on U.) We write ^(U)

for the ring of smooth functions on U, and ^{s) for the ring of germs at ^eJ(V, W)

of smooth functions. Thus ^'(j-)=lim ^(TT^).

Hence the composite OoJ/ of any smooth function 0 on J(V, W) and any jet

section Jf: N->JfV, W) is again smooth.

Transversality.

We shall need Thorn's celebrated transversality lemma, which is the keystone of

general position theory. The usual form [8] is not quite good enough for our purposes;

we need a variant that applies to the infinite jet space J(V, W). The only <( submani-

folds " ofJ(V, W) we propose to consider are those of the form (TcJ'^Q^), where Q is

a submanifold ofJ^V, W) and n is finite; these submanifolds have finite codimension.

It is obvious what transversality of a jet section to such a submanifold should mean,

in view of the relation ^f^rc^ojf.

Theorem (1.5). — Let Q^, Q^, . . . be countably many submanifolds of J^V, W)

(where n^co). The maps f: V->W whose jet section jy: V -^J^V, W) is transverse to Q^

for all i form a dense subset of these space L of all maps from V to W, where L is equipped with

the fine-C^-topology (or any of the other usual topologies).

Proof. — I f / z i s finite, this result is well known (see [8] or [i]). The space L is

a Baire space, i.e. the intersection of countably many dense open subsets of L is still

dense. The subset L, of maps/such thatj^is transverse to Q^ is a countable intersection

of dense open subsets, by the usual proof based on Sard's theorem; hence OL^ is again

of this type, and therefore dense. |

The significance of transversality is that if J"/ is transverse to Q^ and Q has codi-

mension k, then {3
n
f)~

l
{Q^ is a submanifold of V, also having codimension k. Here we

use the convention that the empty set can be given the structure of a ^-manifold for any

integer n, positive or negative! (Clearly every point of it has a neighbourhood of the

required form.) Thus if v<k, transversality asserts that (.PjQV does not meet Q .̂

Total vector fields,

We formally define total vector fields as certain operators acting on functions on

the jet space J(V, W), by defining them locally on the coordinate system (1.3) and

requiring the chain rule ( i . 2) to hold. This will succeed, because by our definition (1.4)

any smooth function on J(V, W) is locally a smooth function of finitely many of these

387
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26 J. M. B O A R D M A N

coordinate functions. The total tangent bundle will be defined as the vector bundle

having total vector fields as its sections.

Assume now that V is open in R^, and that W^R1^. We use the coordinate

functions (1.3).

Definition (x.6) . — The total vector field D, (i^'O) on J(V, W) is defined by :

D.X^o if k+i,

: D,X,=i,

^^(^ZJ.T? where T=(<y j , . . ., a,_^ G,+ i, (7,+i, . . ., ^).

Let U be open in J(V, W). We call a total vector field on U any linear combination of

operators, SO^D,, where 0,e^'(U).
i

Hence Z^=D°Yj, and we therefore have no further use for the symbols Z.g.

Operators with the above properties are sometimes called total differential operators;

whence our terminology.

It is clear that we cannot define total vector fields on J^V, W) unless n==oo.

This is why we are working with the infinite jet spaces.

We can now rewrite (1.3) in terms of (i .6) :

Lemma (1.7). — The functions X,(i^z0) and D°Y^ (i ̂ j^w, o^ |(j |^n) factor

through J^V, W), to yield a set of coordinate functions on J^V, W). •

Before we can pass to global properties of total vector fields, or even define them

globally, we must describe the total vector fields D^ invariantly. Let N be open in V, and

/:N-^W any map. By the definition (1.3) of Z^, the identity D,OoJ/=^($oJ/)

holds for the coordinate functions (1.3), and hence for any function <De^(U), where U

is open in J(V, W), by the chain rule (i .2). More generally, by taking linear combi-

nations, given any vector field d on N, there is a total vector field D on [n^)~
l
{'N), which

is characterized as an operator by the equation

(1.8) D<S>oJf==d(<S>o]f).

We have now eliminated the dependence of D on the particular coordinate systems;

so that it can be defined for general open sets N with vector fields d on them.

Definition (1.9). — We define locally the total tangent bundle D overJ(V, W) as the
(( smooth " vector bundle having the total vector fields {D^, Dg, . . . , Dj as a base of

sections. Elements of the fibre over ^eJ(V, W) are called total tangent vectors at s. They

induce linear functionals ^"(^)-»R satisfying the usual derivation formula.

This vector bundle D is canonically identified by (1.8) and the correspondence

d->D with the induced bundle {n^T^. We write D==7r^rf. Its sections are the total

vector fields. Hence any jet section Jf gives us back the vector field d=(Jf)*D. Since

by definition any total vector field has the form SO^D^ locally, we deduce from (1.8) that
i

(i.10) D<DoJ/=((J/)*D)(<I>oJ/).
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SINGULARITIES OF DIFFERENTIABLE MAPS 27

In the language of differential equations, any map /: V->W yields an integral

submanifold (J/)V of the subbundle D of the (c tangent bundle " to J(V, W). The

situation here is obviously entirely different from the finite-dimensional case.

When U is open in J(V, W), we have described the inclusion

(!•") I\(7rvU)cr^(U),

where T==Ty is the tangent bundle of V.

Lemma (1.12). — Suppose DeF^U) lies in the image of (1.11). Then D(Oo-n:J

factors through -^n+if^ any function O : TT^U-^R.

Proof. — Over a coordinate neighbourhood in V this is clear from (1.6), ( i .7),

and the chain rule (i .2). |

Remark (1.13). — For any open set U in J(V, W), F^U) is generated, as a

^(U)-module, by 2u globally defined vector fields on V, included by ( i . n). For the

tangent bundle Ty of V is a direct summand of a product vector bundle of fibre dimen-

sion 2V, the components in Ty of the base of sections of this product bundle are the
required generators.

Lemma (1.14). — The Lie product [D', D'^DTT—D'T)' of any two total vector

fields D' and D" is again a total vector field.

Proof. — This is clear from (1.6). Alternatively, from an invariant point of view,

it is evident from (1.8) that the inclusion (1.11) respects Lie products. This, with

bilinearity, is enough, for if O' and 0" are in ^(U), and D' and D" are total vector

fields on U, we have

[<D'D', (I)//D'/]=0/a)"[D', D / ']+(D'D'$' /.D"—$' /D / /0'.D'

(where . is used as in § o). |

Rank and total rank.

Let us first define the rank and corank of a set of functions on any manifold V.

Let j&eNcV, and let A be any subset of ^v(N)• ^r each aeA and each tangent

vector deT^\p to V a.t p, we have the real number afaeR. This induces a linear map

(1-15) TyIj^R^

where R4 stands for the vector space consisting of all maps from A to R.

Definition (i. 16). — The rank of A at p, rk^A, is defined as the rank of the linear

map (1.15). The corank, or kernel rank, of A at p, written kr^A, is defined as the

dimension of the kernel of ( i . 15).

Evidently, rkp A + kr A == v.

We can do the same for total tangent vectors. Given seV cJ(V, W), and a subset A

of ^(U), we construct the linear map

(1.17) D s-^R
A
.

389



28 J. M. B O A R D M A N

Definition (1.18). — The total rank of A at s, written trkgA, is defined as the rank

of the linear map (1.17). The total corank, or total kernel rank, of A at j, written tkr^A,

is defined as the dimension of the kernel of ( i . 17).

Evidently, trkg A + tkr^ A == v.

The sets N and U appearing in the above definitions are irrelevant, for if ^eTy ] p

and aeA, the number da depends only on the germ of a at p.

The total rank is, in a sense, universal :

Lemma (1.19). — Suppose jeUcJ(V, W),^=TCv^, and y : N — ^ W is a map such

that j&eN, N is open, and {Jf)p==s. Let A be a subset of ^(U); then we have also the set

(J/rAc^CJ/)-1^. Then

trk,A = rk, (J/)'A, tkr.A = kr, (J/)*A.

Proof. — This is a trivial deduction from (1.8). •

Definition (1.20). — Let U be open in J(V, W). We call the set of functions

{<I\, <I>2, . . ., <l^} in ^(U) totally independent at seV if its total rank at s is exactly k.

We say it is totally independent on U if it is totally independent at every point of U.

Clearly we must have k^v.

Lemma (i. 21). — Let U be open in J(V, W), and {<t^, Og, . . ., 3>J a totally independent

set of functions on U. Then there exist total vector fields D^ on U (i^z'O), uniquely defined

by the conditions

D,0,.=^ (i^JO),

where 8 denotes the Kronecker delta function. These form a base of sections over U, i.e. a ^'(JJ)-base

of the module ^(U). Moreover, [D,, D,.]==o for all i, j .

Suppose in addition that 0^, Og, . . ., <S>y, and an extra function ^.factor through functions

on T^UCJ^V, W). Then for each i, D,Y factors through TT^U.

Proof. — Since the total vector fields are to be uniquely specified, we may assume

that U is so small that we already know D|U is a product bundle. Let {^ , ^, . . ., ^}

be any base of sections o f D j U . By definition, the determinant det(^.<I^)4=o every-

where on U, and the matrix (^Oy.) therefore has an inverse, (oc^.) say. Put U.==Sa^;

these are the unique total vector fields having the desired property. They form a base

of sections of D [ U, because they are everywhere linearly independent.

For any z , j , k, [D,, D^=D,D^--D,.DA-O. But by (1.14) [D,, D,.] is

also a total vector field, from which fact we may conclude that it is zero.

If the functions ^ factor through TT^U, and we choose a base of sections

{^, ^, . . ., ^} induced from vector fields on V by (1 .11) , we see from (1.12) that

the functions ^0. and hence a, factor through TT^^U. Thus D .̂Y also factors

through TI^ ̂ U. •

Let us give one consequence of transversality. We recall the ideal rr^ of functions

vanishing at q.
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SINGULARITIES OF DIFFERENTIABLE MAPS 29

Lemma (1.22). — Let Q^be a submanifold o/'J(V, W), j&eV, and f: V—W a map

such that Jf is transverse to Q^atp, and s==(Jf)p(=Q^. Thennearp, Z^^/)'"^^) isasubma-

nifold of\. Let ac<^'{s) be the ideal of all germs of functions vanishing on Q .̂ Then

dim Ker(/|Z)^tkr,(a+^m,),

where q==fp and (/|Z)^ is the differential T^p-^^q o// |Z:Z-^W.

Proof. — Near s, Q is the inverse image of a submanifold of J^V, W), for some

finite A. Transversality, with the aid of the implicit function theorem, implies that

(J/T a generates the ideal of germs at p of functions vanishing on Z. By (1.19),

tkrg(a+^wmff)=krp((J/)*^+/*r^)• Now a tangent vector at p always kills m^, kills

(J/T a
 ^ ^d ^ly if l t 3S tangent to Z, and kills/"m^ if and only if it lies in Ker/^. •
This suggests that to define the singularity subsets ̂ (f) of a map/in a satisfactory

manner we should work with the total coranks of certain ideals of functions on the jet

space, and then use (i .22) to identify this approach with the naive geometric approach

when suitable transversality conditions hold. This is precisely what we shall do in the

later sections.

§ 2. The singularity subsets.

In this section we shall define the singularity subsets S^/) of a map f: V->W.

The jacobian extensions of certain ideals of functions on V are clearly relevant. These

ideals will depend on the map f. Since we shall need to know what happens as / is

allowed to vary, we must say what sort of dependence this is. We avoid this difficulty

by defining our jacobian extensions universally, on the jet space J(V, W).

Let U be any open subset ofJ(V, W), and y the sheaf of germs of smooth functions

on J(V, W), which we defined in (1.4).

Definition (2.1). — Given any subset A ofe^'(U), its kth total jacobian extension A^A

is defined as the ideal of^(U) generated by A and the set of all nxn minors det(D^),

where D^ e F^ (U), ô . e A (i ̂  i, j< n), and n = v — k + i. Conventionally we define

A'-^A^^U).

As always, v is the dimension ofV, and D is the total tangent bundle overJ(V, W),

defined in (1.9).

The curious index is chosen to make the statement of the following trivial lemma

as simple as possible. We have the maximal ideal nig in j^(U), of functions vanishing

at s. In ( i . 18) we defined the total corank tkr^A of A at s.

Lemma (2.2). — Suppose seU and Acntg. Then tkr^A^A; if and only if

A^Acm,. •

The number of generators for the ideal A^A in (2 .1) is vast, and quite impractical

for computation. We next show that most of them are redundant.

Lemma (2.3). — Suppose that the subset A of ^(U) generates the ideal a, and that the

subset 0. generates F^U) as a ^(U) -module. Then the ideal ^a is generated by A together
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with all the nXn minors formed as in (2. i), but using only functions in A and total vector fields

in Q,, where n == v — k + i •

Proof. — We take a typical minor det(D^), where D^eF^U) {i^i^n), and

o^ea (i^j^yz). By hypothesis, we can write D^Sq^D^ and o^==S^a^ for
X [x

suitable elements 9^, d^e^(U), D^e^, and a eA. Then

U^=2^^.D^a^+S(p^^D^^.^.a^,
A, (A A, {A

with the bracketing convention mentioned in § o. The minor det(D^a) therefore lies

in the required ideal, by standard linear algebra. |

This simplifying result has many useful corollaries.

Corollary (2.4). — A^A^A^a. •

Corollary (2.5). — If the ideal a is generated by v—k elements., then A^a=a.

Proof. — All the n X n minors under consideration contain a repeated column,

since n==v — k-\-1. |

Corollary (2.6). — If the ideal a is generated by functions on a subset of JT(V, W), then

A^a is generated by functions on a subset of J^1^, W).

Proof. — By ( i . 13), Fj^U) is generated by vector fields on TiyUcV. The result

now follows from (1.12) . |

Corollary (2.7). — If a is a finitely generated ideal of e '̂(U), then so is A^a.

Proof. — By (1.13), F^U) is a finitely generated ^(L^-module. •

Corollary (2.8). — A^ is compatible with restriction. If UDU', a is a given ideal

in ^"(U), and a' is the ideal in J^CLT) generated by a|U', then A^a'^A^a U') is the ideal

generated by (A^ a) [ U'.

Proof. ^- By (1.13), F^U') is generated as a ^(U^-module by globally defined

total vector fields. |

Corollary (2.9). — For any subset A of^(U), A°A is the ideal generated by A, provided U

is sufficiently small.

Proof. — This is clear locally, for ifU is small enough, F^U) is a free ^'(U)-module

on v generators, and then the minors under consideration all have a repeated row. Hence

they contribute nothing to A°A. |

The last corollary is a further reason for our indexing system.

Determinants tend to be unhianageable; we would much prefer to handle linear

transformations. We shall show in due course that this can be arranged.

Before doing this, we show l|hat there are results for subbundles of D U parallel

to (2.3), etc. j

Lemma (2.10). — Let E be an]v vector subbundle o/'D|U, and put F=== F^U). Suppose

that the ideal a of ^(U) is generated by the subset A, and that the ^(U) -module F is generated

by the set Q. of total vector fields. Then the ideal a+Fa is generated by K and the set of functions

on U of the form Da, where DeD, and aeA. (We write FAfor the additive subset of^(U)

generated by all elements of the form Da, where DeF and aeA. It is already an ideal

because F is a e^'(U) -module.)
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Proof. — Take a typical element D=S^.D, of F, where [B,e^'(U) and

D,e0. {i^i<^m), and a typical element oc=Sy^, where ^.e^U) and o^eA (i ̂ j^n).

Then '

Da=Sp^.D,a,+Sp,a,D,Y
^ j tj

lies in the required ideal. |

Corollary (2.11). — a+Fa=a+FA. •

Corollary (2.12). — If a is a finitely generated ideal of ^(U), then so is a+Fa,

provided U is small enough. |

Corollary (2.13). — Let A be a subset of ^(U), and U' an open subset of U. Then

the ideal F^U^AjlT) is generated by (rA)|U'.

Proof. — From the proof of (2.10), and (1.13), we need only use sections of E
defined over U in computing F^LT^AlU'). •

Now we shall suppose that the subbundle of D|U is not merely any vector

subbundle. Suppose given a subset G of ^(U) containing exactly v—k elements,

which is totally independent everywhere on U (see § i). Then the set of all total tangent

vectors that annihilate G is a subbundle K of D|U having fibre dimension k. Such

subbundles have special properties.

Lemma (2.14). — The sections ofK. are closed under Lie product, i.e.

[ rK(U), rK(U)]crK(U).

Proof. — Take any two sections D^ and Dg of K, and a<=C. Then

[D^, D^]OL=D^D^—D^D^==O.

But by (1.14) [D^, DJ is again a total vector field, and therefore is a section of K. •

We come now to the main reduction lemma.

Lemma (2.15). — Let U be open i n J ( V , W), and C and K as above. Put F= I\(U).

Then for any ideal a of ^(U) generated by a subset A containing C we have

A^a=a+ra .

Moreover, the ideal FA is independent of the choice of C.

Proof. — Write D|U=KeL, and C={oq, a^, . . ., ocy_j. As in the proof

of (i .21) we can define total vector fields D, (i ^i^v—k), as sections ofL, by the equations

D^=8^. (i^t,jO—A;). These form a base of sections of L. We apply (2.3), using

only the total vector fields D, together with those in F, and using only those functions

in A. By construction, FG == o. Any non-zero n X n minor (where n = v—k + i) of the

restricted jacobian matrix must contain a row of elements of the form Doe with DeF,

and therefore lie in FA. On the other hand, we obtain the whole of FA, for the element

Da (DeF, aeA) arises as the minor formed from the rows {D^, Dg, . . ., D^_^, D} and

columns {04, a^, . . ., ay_^, a}. Hence the ideal FA is generated by the nxn minors

of the jacobian matrix (Da), where aeA and D lies in F or is some D,. As in the proof
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of (2.3), removing the restriction on the total vector field D does not enlarge this ideal.

It is therefore independent of the choice of C.

Finally, A^a^a^- rA==a+ Fa, by (2.11). •
Lemma (2.16). — Suppose further that in (2.15) C and A. are sets of functions on

TT^UcJ^V, W). Then the ideals a+Fa and FA are generated by functions on

^lUcr-^V.W),.

Proof. — We need consider only the case when T^U is small, so small that

C={(D^,02, ...,0,-J extends to a set {<^, Og, ...,<D^, . . . ,<DJ of v functions

on T^U, totally independent everywhere on U. Then the base of total vector fields

{
D
!^ ̂  • • - 5 Dj on U constructed by (1.21) has the property that for any

function Y on T^U, D.T is a function on ^+iU. Since F has the ^(U)-base

{A-fc+i? ^-/c-t^ • •^n j ) we deduce that the ideal FA is generated by functions
on TT^U.

Finally we observe that by (2.11) a+ra==a+rA. |

We are ready to define the singularity subsets and deduce some of their elementary
properties.

Let I=(ii, n, . . ., zj be any sequence of integers; we say I has length n. We

propose to define a subset S1 of the jet space J(V, W) for each sequence I. Let N be

a subset ofJ(V, W), ^eN, and put q == n^seVf. Then we have the ideal nx^ in <^w(y),

or in ^(TC^N), of real functions vanishing at q. We may include it by the projection TT^

in y[s), or in ^"(N), as an additive subgroup. We recall from (1.18) the notion of

total corank. Our definition is motivated by (2 .2) and (1.22).

Definition (2.17). — We work in ^(s). We define the subset S1 ofJ(V, W) by

tkr,n^=^,

tkr^m^,

jeS1 if and only if < tkr^A^A^m^^,

^tkr,A ^ n- l . . .A2A ^ lm^==4.

Formally we put S^^J^VyW). We write A^. for the ideal A^A^"1. . .A^A^m .

This definition is clearly invariant, if not very useful. We could instead have

worked with ideals in ^'(N) instead of ^(^), and used the same definition as above.

It follows from (2.4) and (2.8) that we obtain the same subset 21.

Remark. — 2^=0 unless

fa) z'i ̂  4 ̂  4 ̂  • • • ̂  ̂ n-i ̂  ̂  ̂  °.

(2.18) ^b) v^i^u—w,

\ c) if z\ == u—w, then ^ = ̂  = = . . . = = ̂ .

We have an increasing sequence of ideals, whose total coranks must therefore decrease.

Also, m^ is generated by w elements, which shows that trk.m^w and hence
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tkr^m^y—w. Further, A^;-M/'Tn^==^'(N) .rr^, by (2.4) and (2 .5)5 which has the same

total corank and jacobian extensions as m^, by (2.4). We shall see that conversely

S^O if (2.18) holds.

Remark (2.19). — If we keep I' =(z'i, 4, . . ., in-i) fixed, and vary ^, we partition

the set S1 into the sets S1, according to the total corank of the ideal A1 TTL. It follows

that as I runs through all sequences of length n, J(V, W) is partitioned into subsets S1.

The ideal ^rUq is finitely generated, by (2 .7)3 and indeed by functions on

T^NcrCV.W), by (2.6). Hence by (2 .2) we have:

Lemma (2.20). — S1 is the inverse image under r:^ :J(V, W) —"J^V, W) of a subset

<?/\r(V,W), if! has lengths •

We deduce from (2.17) our definition of the singularities of a map y:V->W:

Definition (2.21). — Given a map f ' : V->W, we define its singularity subset ̂ (f)

as {Jf)~
l
(S^

l
), for each sequence I, where ]f: V -^J(V, W) is the jet section.

Hence the sets ^(f) in V possess the same partition properties (2.19) as the

sets^in^V.W).

Lemma (2.22). — Take n=i. Then pe^{f) if and only if dimKery==z, where

f^ : Ty|j& -> Tw\fP is the differential off at p.

Proof. — This result is immediate from (1.19) and (2.2) . •

This shows that oar set ̂ (f) is as in [7], apart from the numbering system for i.

Remark. — The sets ̂ {f) can be computed without reference to the jet space, and

in a finite number of steps if, say, f'.V-^K^is polynomial. For the total jacobian

extension of an ideal of functions on the jet space induces the ordinary jacobian extension

of the induced ideal of functions on R^. Thus the images of the ideals A1 TTL may be

computed as successive jacobian extensions of the subset f^m^Cm?, where fp==q.

Moreover, by (2.3), we need take only carefully chosen coordinate functions and vector

fields in the computations.

However, it is difficult to establish general properties of the sets S1 from the defi-

nition in terms of determinants. It is possible to use (2.15) to formulate the definition

in terms of vector bundles, with no mention of determinants. This is what we shall

do in § 3.

§ 3. Special flags of bundles.

It is clear that the definition (2.17) we have given of the singularity subsets S1

ofJ(V.W), though invariant, is unmanageable. In this section we develop another

approach, in terms of " special 5? flags of vector bundles, which is useful, but whose

invariance requires proof.

Throughout this section let I==(z\ , z'g, . . ., i^) be a fixed sequence of integers of

length yz>o, satisfying v^i^i^ . . .^-i^ o, and put r^^i,^? • • • 5 ^ - 1 ) ? its curtail-

ment. We set IQ ==u to unify the definitions. We use much of the notation of § i
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without comment, and suppress the inclusions TT^, etc. In particular, we have the total

tangent bundle D over J(V, W), and the sheaf ^ of germs of functions on J(V, W).

Definition (3. i). — A special I-flag K over the open subset U of (J(V, W) is a flag
of subbundles of D | U,

D | U = K o D K , D K , D . . . D K , ,

where K, has fibre dimension i, {o^r^n), such that there exists a system of subsets C,
of^(U) (i^r^) satisfying:

a) Cy contains exactly iy_^—iy elements ( i ^ r ^ y z ) ;

b) C^uC^u...uC^ is totally independent on U (see (1.20));

c ) r,.G,.=o, where F^ is the module of sections of K^ ( i ^ r ^ / z ) ;

d ) CiCJ^w^C^U), and

acr,_,r,_2...rj\^(^u)c^(U) (i<r^),
(each F, acts on ^(U), and TCW : ̂ w(^wU) C^(U));

e ) Cy is a set of functions on TC, _ ^ U c]' ~
1 (V, W) (i ̂  r ̂  n).

Axiom e) is a purely technical condition, designed to simplify one proof in § 5.

We shall usually assume that some such system of subsets C, has been selected.

Lemma (3.2). — F, is closed under Lie product, [I\, FJcF^ (i < r^n).

Proof. — K,. is exactly the bundle of total tangent vectors killing C^ u Cg u . . . u C,.,

by a) and b). Hence Fy is closed under Lie product, by (2.14). •

Remark (3.3). — We can curtail a special I-flag to obtain a special I'-flag, by

forgetting K^. We call it S{\ Thus assertions about special flags will all be proved by

induction on the length of I. Conversely, given a special I'-flag, we can always extend

it trivially to a special I-flag, if ^==^_i , by taking K^==K^_^ .

Definition (3.4). — The ideal 3^C^(U) of a special I-flag S{ is defined as

-3^=r,^(N)+r,r,^(N)+...+r,r,_,...r,r,^(N),
where N=7TwUcW and TT^ : ̂ w(N) C^(U). We say that S{ is null at seU if 3^Cm,,
the ideal of functions vanishing at s.

We usually use this definition in the inductive form

3^=I\J^wU) if n = i ,

3^=3^+1^3^ if n>i.
(3.5)

Lemma (3.6). — The ideal 3^ in ̂ (U) is independent of S{. It is generated by functions

on the subset T^U o/J^V, W).

Proof. — By (2.15), the ideal F^^n^V) is invariant. By induction on the length

of I, suppose 3^ is invariant. Then (2.15) shows that 3^ ==3^, +T^. is invariant.

By n applications of (2.16) we see from (3.5) that 3^ is generated by functions on TT^U. •

Given a special I-flag ̂  over U, and an open subset U7 cU, we can define in the
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obvious way the restricted special I-flag S{ U' over U'. We see from (2.13) and ( i . 13)
that its ideal 3 .̂ is generated by 3^|U'.

Lemma (3.7). — The ideal 3^ is finitely generated^ ifU is small enough.

Proof. — If a is a finitely generated ideal in ^(U), so is a+F^a, for any r,

by (2.12). If U is small enough, e.g. TT^U contained in a coordinate neighbourhood

in W, the chain rule (1.2) shows that I\^(7^U) is a finitely generated ideal. Then

from (3.5)3 by induction on length, 3^ is finitely generated. •

Actually the hypothesis on U is unnecessary.

Lemma (3.8). — Suppose the real vector space 3^(3^ +m^)==(3^/3^)®^(U)R is

spanned by the images of certain elements ^e^. Then in ^(s) the image of 3^ is generated

as an ideal by the images of 3^, and these elements a,.

Proof. — This is a particular case of a well-known lemma attributed to Nakayama.

y{s} is a local ring (though not Noetherian) having nig as its unique maximal ideal.

We have proved above, in (3.7), that the image of 3^ in ̂ (J) is a finitely generated ideal a,

say, since ^'(U) ->^{s) is surjective. Let b be the ideal in ^(s} generated by 3^ and

the elements a,, and put M==a/b. Then we know M is a finitely generated

y{s} -module, and satisfies M==mgM. We have to prove M==o.

Suppose that on the contrary {^, ̂ , . . ., x^} is a minimal set of generators of M,
r

where r>o. We may write ^=== S (3 ,̂, with P,em. (i ̂ i^r). Since I-—&,. is
1=1 r-l

invertible, we can deduce that ^=(I—^) - 1S [B^, which contradicts the mini-
mality of r. B

We next establish the equivalence of this theory with that of § 2, in several steps.

Lemma (3.9). — Let S{ be a special I-flag defined over UcJ(V, W). Suppose seV,

and put q = rc^eW. Then

3^+^'(U).Tn,=AIm, ̂  A1".. .A^A^m,.

Proof. — Let SV be the special I'-flag obtained by curtailing S{. Put a^^'mq.

Then by induction on the length of I, suppose we have established a==3^ +e^(U) .rrL.

We apply (2.15) to G= C.uC^u ... uC^, K,, and a. We find

AITn,=A"a=a+^,a==3^+^(U).m,+^^+^,(^(U).m,).

Now by (3.5) 3^==3^+r^, and by (2.11)

^(U).m,+r,(^(U).m,)=^(U).m,+r,m,c^(U).m,+3R.

Hence ^m^^+^U) .m^.

The initial induction step, when n == i, is slightly different. Application of (2.15)

to Ci, Ki, and m^, yields A^m^^U) .Tn^+I\m^=^"(U) .m^+I\^w(TCwU), since I\

kills constants. This last expression is ^(U).Tn.+3^, by (3.5). •

Lemma (3.10). — Let S{' be a special V-flag defined on an open set U'9^, and put q == TC^J.

Suppose that ^/ is null at s, and that tkr,(3^ +^"(U') .m^) ̂ . Then there exists an open set

UcU', VBS, such that the restricted special I'-flag K' U extends to a special I-flag K on U.
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Proof. — We have to construct U, C^, and K^. This is easy if n= i. If n^ 2

write P'=(^, ^, . .., ^..g), and ft" for the special P'-flag obtained by curtailing A'.

(ft'^O and 3^-0 if ^==2.)

Since ft' is null at s, I\_i annihilates the ideal 3^/+^'(U') .rr^, and there-

fore trk,(3^+^(U').m,)0--^_,. But we are given trk,(3^+^(U') .m,)^ v-i,.

If we compare these two ideals, we see that the only extra term in the second

is I\_^_2.. .F^r^^^V). But C i U C 2 U . . . u C ^ C 3 ^ ; hence there exists

a subset C^ of this extra term having exactly i^^^—in elements, such that

C^uCgU . . . uC^_ iUC^ is totally independent at s. We can further choose G^ as a

set of functions on ^^U'cJ^^V, W), because from (2.16) r^_^ . . . ̂ ^^(^w17')
is generated by such functions. Then (3.1) e ) holds. This set C^uC^u...uC^ is

totally independent at s, and therefore totally independent in some neighbourhood U

of j. We take K^ as the bundle of total tangent vectors on U that kill these functions.

We have constructed a special I-flag over U. |

Theorem (3.11). — (Equivalence.)

a) Let ft be a special l-flag over U, where U is open mJ(V, W). Then ft is null at seV

if and only if j'eS1.

b) If jeS1, there exists a special I-flag defined on some neighbourhood of s.

Proof. — We may rewrite the definition (2.17) ofS1 in the inductive form:

j-eS1 if and only if ^eS1 and tkr^A1'm.q==i^, where q==n^s. We prove both

parts of the theorem by induction on the length of I.

a) Assume jeS17, and that ft' is null at s, where ft' is the curtailment of ft.

Then jeS1 if and only if tkrg A1 m^ = ̂ . This condition may be written tkrgA1^^^^,

since we know by (3.9) that A1 trig contains the totally independent set C^ u Cg u . . . u C^

of v—i^ functions. By (2 .2) this condition is equivalent to A^^A^A1!^^^. Now

by (3.9) A^^J^+^TU) .rr^, which is contained in m, if and only if ft is null at s.

b) Suppose j'eS1; then certainly j'eS1 . Suppose we already have a special

I'-flag ft' defined on a neighbourhood U' of J. By a) above, ft' is null at j; and

tkr^(3^ +^'(U') .^q)==in by (3.9) and the definition of 21. Then (3.10) constructs

the required special I-flag. |

We have in this theorem achieved our object of showing that the singularity

subsets S1 can be defined by linear methods, without recourse to determinants.

§ 4. Multilinear forms on flags.

We show that a special flag, defined as in § 3, gives rise to various multilinear

forms. In this and the following sections, we shall need many vector bundles and maps

of vector bundles, which we denote by E, F, a:E->F, etc. We shall simplify the

notation by using the same symbol E, say, for any restricted vector bundle E | N, preferring

to specify separately the subset N concerned.

Take I==(^, 4, . . ., z'J, I '==(z\, ^, . . ., ^_i), and a fixed special I-flag ft over
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UcJ(V,W). We use all the notation of § 3. Take a fixed point j-eU, and put

^=7Tw^eW. We shall write K, for the fibre K,\s of K, over s; then K^ F,/m,F,.,

where r\ is as in § 3 the module of sections ofK^. Thus we have a surjection r^->K^

of vector spaces ( i^r^yz) . From (3.4) we have

s^s^+r.r^.. .r,r^(7^u),

where ^' is the curtailed flag, a special P-flag. The iterated action on m. of the total

vector fields may be expressed as a R-linear map

r,®r,_,®...®F2®r,®m,-^.
Theorem (4.1). — Let S{ be a special 1-flag over U, and ^ its curtailment. Then for

each point se\J there exists a unique map z^{s) such that the diagram

r,®r,_,®...®r,®i\®m,—————> u

K,®K,_,®.. .®K,®K,®(m,/mjj ^> 3^/(3^+m^)

commutes. Moreover, s^(j-) is symmetric, in the sense that it factors through the symmetric tensor

product to yield

^(.) : (K,OK,_,0.. .OK,OK,)®(m,/m2,) -> 3^(3^+m^).

(For the precise definition of the symmetric tensor product K^OK^_^0 . . . OKgOK^,

see (4.2) below.)

Proof. — Now Ker(r^—K^) is generated additively by sections of the form aD,

where aern,, and DeF,. Take D.eF,. (Kr^n), aem,, and p, y6^-

a) D^D^_i. . .D^^aD,. . .D^=i;D'a.D"p, for various differential operators D'

and D", products of the D, (where . brackets and multiplies, as indicated in § o). In

this case, D"[Be3^ for every term except a .D^D^_^. . .D^D^p, which lies in nig 3^.

b) DA_^..Dl((B.Y)==SD'[3.D / /Y, where D'p and D'y are in 3^,, except for

the terms D^D^_^. . .D^.y and [B.D^D^i. . .Diy, which lie in m,3^.

^ If also D^_^eF^ for some r ( i<r^7z) ,

D,.. .D,D,_,.. .D,(B-D,.. .D,_,D,.. .D,p=D,.. .D^,[D,, D,_J.. .D,p,

which is in 3^ because the Lie product [D^, D^_J lies in F^, by (3.2).

Assertions a) and ^ show that s^(j-) can be defined. According to (4.3) below,

c ) is enough to establish symmetry. |

Digression on symmetric tensor products.

Let A be a vector space. The permutation group G on n symbols acts on the yz-fold

tensor product A® A®. . .®A by permuting the factors. The symmetric tensor product

AOAO.. .OA is defined as the largest quotient of A®A®.. .®A on which G acts
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trivially, i.e. the quotient of A®A®. . .®A by the subspace spanned by all elements

of the form ax—x, where aeG and A:eA®A®. . . ®A. Since G is generated by trans-

positions, even by transpositions of two adjacent factors, we may restrict the choice of a

to such permutations.

Lett2bea(unordered)baseofA$then Q x Q x . - . x n i s a b a s e o f A ® A O O . . . ® A .

G also acts on Q x Q x . . .X^. We denote the orbit set by 0.00.0. . .0^. Then

0.00.0...00. is a base of AOAO. . .OA.

For each i such that I^^TZ, let B^ be a subspace of A. We wish to define the

symmetric tensor product B^ 0 Bg 0 . . . 0 B^. A certain amount of care is needed, because

we have at least three candidates, in general all distinct.

Definition (4.2). — We define the symmetric tensor product B^OBgO. . .OB^ as the

image of the composite

Bi®B2®.. .®B^cA®A®. . .®A-> AOAO. . .OA.

However, there are common cases when the various choices coincide.

Lemma (4.3). — Suppose the vector sub spaces B^ [i^i^n) of A satisfy

a) Bi3BpB33...3B»_pB^,

or

b) Bi:)B2DB3D...DB^,B^_iCB,,, and B^==B^nB^. Then the kernel of the

symmetrwtion map

BsEB^Bg®. . .®B^ -^BiOBgO.- .OB^

is spanned by elements of the form

b^®. . .®&,®^i®. . .®^—&i®. . .®&,+i®^,®. . .®^,

where ^eB^. (i ^^72), and ^eB^nB^^ (z=r, r+ i ) , for some r{i^r<n).

Proof. — Choose a base 0. of A such that Q n B^ is a base of B -̂ for all i, which is

possible in either case. It is clear that the exhibited element lies in the kernel Z of the

symmetrization map; we have to prove that Z is spanned by such elements.

Take a general element -s:eZ. Then

Z=S;a^^®(o^®. . .®ovx,

for various base elements o^eOnB^. ( i ^ z ^ % ) , and real numbers a^, where X runs

through some indexing set. Now (QOQO . . . OH) n (B^OBgO . . . OBJ is a base of

B^OBgO. . .OB^, by our choice of f2. For each T^eQO^O . . . 0^, let ̂  be the sum

of the terms of ^ for which co^ ̂ 0^ ^0 . . • OO)^^=T]; then ^==S^, and we must

have again that ^eZ for all T]. We may rewrite ^ in the form

S^(7((^®6)2®. . .®<oJ,
o

where the elements co^eQ are not necessarily all distinct, and (T runs through certain

permutations in G. With suitable numbering, the coefficient (B^ of the identity permuta-
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tion will be non-zero, or else ^==0. Since ^eZ, we must have S(^==o. It follows

that Z is spanned by elements of the form

co^cog®. . .®co^—cr(co^®co2®. . .®coJ,

subject to ci^eti n B^ n B^ ( i ̂  z^ 72).

Let r be the maximum index such that crr4=r; then crr<r, co,.eB^_^, and c^eB^,

where ak==cr-{-i, in all cases. Let T be the transposition (err, ar-\-1). Let us write

jy=(ji)^®co2®. . .®co^; then we observe that TcyeB, and that we may therefore write

y— qy == [y— ̂ ay) + (Tcy— cy/).

The second term on the right, T(T^—q^, has the required form. By construction, the

disorder of TO- is less than the disorder of <r, where we mean by the disorder of a the

number of pairs of integers (z,j) such that i<j and m>GJ. Downward induction on

disorder therefore yields the desired result. |

We can draw two corollaries from (4.1).

Corollary (4.4). — We may deduce from s^(j) the bundle map

(K^OK^iO . . . OK20K,)®Hom(P, R) -> R

over S1', where P = TT^T^, and R denotes the product line bundle.

Proof. For each jeS1', K is null at s by (3.11), 3^cn^, and evaluation gives

3^/(3^' + ̂ 3^) -> ̂ )/m^R.

We identify Hom(P, R)|.y with Tt^/mj. Then composition with e^(^), as ^ varies,

yields the required bundle map. We can deduce from (4.1) that it is continuous. |

Later on, when we have discovered that S1 is a submanifold ofJ(V, W), we shall

be able to say that we have a smooth bundle map.

Corollary (4.5). — Evaluation induces a bundle map

a^ : (K^OK^OK^_,0 . . . OK20K,)®Hom(P, R) -> R over S1.

Proof. — We pointed out in (3.3) that we could trivially extend the special I-flag S{

to a special I'^-flag ^+, where I4 '^^,^, . . ., \_^ ^, zj. The assertion follows by

applying (4.4) to ^+. •

X B, — Even though the vector spaces K, are invariant over S1, s^(J) and a^

depend on the choice of the special I-flag S{. Later, in § 7, we shall compute their

indeterminacy.

We shall need an upper bound for the number of generators of the ideal 3^3 which,

by (3.6), is independent of .ft. We find a bound by considering the multilinear forms

we have just introduced. By construction,

s^) : K,®K^_,®... 0K20K,0(m,/mj) -> 3^(3^ + m^)

is surjective. We deduce from Nakayama's lemma, in the form (3.8) :

Lemma (4.6). — If the ideal ̂  in ^(s} can be generated by v' elements, and the rank

of the linear map s^(^) is K, then the ideal 3^ in ^{s) can be generated by v' +K elements. |
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We have therefore to find a lower bound for the dimension of the kernel ofs;^).
Symmetrizing e^{s) helped.

We have not yet exhausted our knowledge ofKer e^(j). By the very definition (3.1)

of special I-flag, F, was chosen to annihilate a totally independent set C^ u €3 u . . . u C
of functions on UcJ(V, W). Let us write this fact in bundle form.

We express the action of the F, on ^wC^wU) as a R-linear map

r,_i®r,_^.. .®r2®r,®^(^u)-^ ^-(U).
By definition (3.1) d ) , C, lies in the image of this map. We lift each of the z,_i--z,

elements of C^. By means of the isomorphism Hom(P, ^[^^^(^^^/(m2^-R. i),

each element of F,_i®. . .®I\®^w(7^U) yields a smooth section of the vector bundle

K,_^®K,_2®.. .®K2®K^®Hom(P, R).

For each element of C,., we have a section of this vector bundle.

Definition (4.7). — Having made the preceding choices, we define the vector

bundle H^ as the product vector bundle with fibre R^, where m==i^_^—i^ and the

smooth bundle map h, : H, -> K,_i® . . .®Ki®Hom(P, R) by sending the base

sections of H^ to the sections corresponding to the elements of G^.

Let H,. be the fibre ofH^ over s, etc. Then we have, trivially, from (3.1)^) and d ) ,

the result:

Lemma (4.8). — The composite map

K^K^,®...®K,®H, ̂  K^...®K^(m,/m^) ̂  3^+m^)

is ^ero (i ̂ r^n). |

Hence e^(J) vanishes on the image of i ®h^ and on the kernel of the symmetrization

map. We need to know how these various subspaces are related. The situation is

somewhat complicated, and when dealing with symmetric tensor products we must,

of course, be careful with brackets. In order to abbreviate, let us write for the moment :

F =(K,OK^O...OK,)®Hom(P,R),

E^(K,OK,_,O...OK,)®H,, {i^n)

G,=(K,OK,_,0.. .OK,)0Hom(K,_,/K,, R) (i^r^),

K =K^®K^_,0. . .®K,®Hom(P, R).

We again write F, E^, etc., for the fibres over the typical point s.

The bundle map hy: H^->K composed with the symmetrization map K—^F
yields a bundle map

(4.9) h,:E,^F (i^r^n).

If S{ is null at s, we have also the linear maps (4.5) associated to the subsequences
(^2, . . . , ^ _ i ) Of I,

a,_, : K,_ ,®K,_,®K,_2®. . .®Ki®P'->R (i<r^),
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and also ^ : Ko®P'-^R, where we put P'==Hom(P,R) and KQ=D|U (as we have

already done in the definition of G^). We may partially dualize, and write this as

<_, : K,_i®K,_2®.. .®Ki®P' -> Hom(K,_i, R).

Since S{ is null at s, this map factors through Hom(K^_i/Ky, R). We deduce the map

k,:K-^G, (i^r^).

Lemma (4.10). — Over jeS1, the above maps ky : K->G^ (i ̂ r^n) are symmetric,

and yield maps ~k, :F->G^. The composite k^h^ : E^F—G^ {i^r, t^n) is ^ero if t<r,

and an isomorphism if t==r.

Proof. — Consider ^_i. Since it is symmetric, and S{ is null at j, it factors
through

a[_,: {(K,_,/K,)0(K,_,/K,)0... 0(K,/K,)}®P^Hom(K,_,/K,, R).

Since S{ is null at s, and the set of v—iy functions G^uCgU . . . uCy is totally inde-
pendent at j, the sequence

(4-") o^H,-—^Hom(K,_i,R) -> Hom(K,, R) -> o
ar-ihr

must be exact. It follows that ^'r-i^r
 ls an isomorphism. We also know that a^_^

vanishes on the image of

K,_i®K,_2®. . . ®K,0H< —> K,_i®. . . ®K,®P'

whenever t<r, by (4.8) applied to a curtailment ofj^. When we have established the

existence of A,., these facts will give us kyh^ ==o when t^r, and the required isomorphism
when t == r.

We have established, by constructing ^_i, that ^ : K->G^ factors through the
quotient

A={K,OK,_,O...OKJ®{(K,_,/K,)0...0(K,/K,)}®P /

of K. We assert that A is also a quotient of F, from which the rest of the lemma follows,
by the diagram:

K^®...®K,®H, —> K —> K^®...®K,®Hom(K,_i/K,,R)

i \ \ i
E, ———:——> F ---> A ———-> G,

^r

We must show that

B={K,OK,_,O...OKJ®{(K,_,/K,)0(K,_,/K,)0...0(K,/K,)}

is a quotient of K^OK^_^0 . .. OK^. Now by (4.3) the kernel of the symmetrization

map

K,®K,_,00.. .OOK,(x)K^ K,OK,_,0 . . .OK,OK,
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is generated by elements of the form

^®.1 . .®^®^®. . .®^--<®...®^_^(x)...®^,

where rf.eK, {i^i^n) and also ^^eK^. It is clear that this element gives o in B

unless t==r, in which case ^ and ^_i lie in K^, and therefore give o in K^__^ /K^ . Hence

the kernel of the symmetrization map is contained in Ker k y , and we can deduce the
existence of k y . |

The map s^(J) factors through F by (4.1), and vanishes on ^,E, (i^r^),
by (4.8).

Corollary (4.12). — For any point j'eS1, the rank of the linear map s^(j) is at most

K=WKi-(Zo-Zi)K,-(^-4)K2-...-(^_i-zjK^

where K,=dim(K^OK^_iO . . . OKJ(i^r^).

Proof. — From (4.10) we see that the maps hy are all injective, and that their

images in F form a direct sum of some subspace. The dimension of E^ is (^- i—^r)^?

and the dimension of F is WK^, where w is the dimension of W. •

Hence we have by (4.6) an upper bound for the number of generators of the

image of the ideal 3^ in ^{s} whenever jeS1.

Remark. — Given /: V-^W, j^eS^/), and a special I-flag ̂  on a neighbourhood

of s = {Jf)p, Jf induces a flag in Ty having corresponding properties, including linear

maps (J/)\. By taking coordinates compatible with the flag, i.e. (J/^K,. spanned by

the first iy coordinate vector fields (which is possible by (3. i) and (i .21)), it is easy to

see that the linear maps (J/)\ over p are arbitrary, subject to symmetry, (4.8), the

nonsingularity condition (4.11), and the nullity condition

^|K,+i®K,®.. .®K2®Ki®P'==o

when r<n. In particular one can show that 21 is non-empty whenever I satisfies (2.18).

The best-known case of a multilinear form over a point j&eV is the hessian quadratic

form Tv|j^®Tv[^->R of a map /: V—^R, defined whenever p is a critical point of/.

In this case the indeterminacy is zero.

§ 5. Special flags and tangent vectors.

We have established in § 4 an upper bound for the number of generators of the

ideal 3^ of a special I-flag S{. In this section we find a lower bound, by constructing

formal tangent vectors to the jet space J(V, W). Our main theorem will hang on the

fact that these two bounds coincide.

We first set up some machinery for constructing explicitly certain tangent vectors

to J(V, W). We make much use of the notation of § i.

Suppose given a fixed map / : V-^W^, and a fixed smooth homotopy / : V-^-W

passing through/, so that /o==/. Let U be open in J(V, W), and take cDe^U) and
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a total vector field DeFo^). We have by ( i . i) the jet section J/; : V ->J(V, W),

and we put , rh T^ ^ fj^r^
\ y^^0!/, rf=(J/)D,

^W-^°Jft. d{t)={]f^

[ ^'-^'(o), ^^'(o),

where 9'(^) and rf^) denote the ^-derivatives of 9^) and d(t). The derivative rf'^) has

a meaning if we interpret a vector field on V as a section ofTy. Thus we have functions 9

and 9'5 and vector fields d and rf', all defined on (J/)"1^). We use corresponding

notation for other functions and vector fields constructed in this way. If the total

vector field D is induced from a vector field on V by [ i . n), it is obvious that d(f) is

constant and d'=o.

Lemma (5.1). — Given j^eV, s = (J/)^£U, and a homotopy f^ passing through/as above,

then O-xp'j&GR is a tangent vector to J(V, W) at s. We have, for 0, Ye^U) and

DeF^Uj, the formulae

(9^=9^+9^ and W-d^+d^' in ^((J/)"1^)),

and

(W-^+^cp in rva/r^u)),
where ^denotes multiplication by 9, an operator on '^r\{{]f)~l(V)), and T==Ty is the tangent

bundle to V.

Proof. — ^(U) is generated by I\(V) as a ^"(U^-module, by ( i . 13). The formulae

follow. Evaluation of the first at p shows that we have constructed a tangent vector. |

Remark. — These tangent vectors are c < tangents along the fibre 5? of

Try : J(V, W) —^V, i.e. in the kernel of d^y. It can be shown that all such tangent vectors

can be obtained by this method.

Corollary (5.2). — If D^ (i ̂ i^n) is a total vector field on U, and 0 is a function on U,

then

(^^...^9)'=<^...<9+^^\..^9+...+^^...<9+^^...<9. •

Lemma (5.3). — Given p^{Jf)~l{V) cV, assume the homotopy f^ is such that 9'emn

for all OeJ^^w11)? included in ^(U) by {n^)\ Then ^'em^"' whenever Ye^Tr.U)

is a function on TT/U cJ^V, W).

Proof. — As local coordinates on J^V, W) at [Yf)p^ we may choose functions of

the form D^D^_^. . .DgD^O, where 0 is defined on a subset of W, k-^r, or Y, defined

on a subset ofV, by (i .7). For these functions the conclusion is immediate from (5.2).

For general functions on TT^U, the result follows from this by the chain rule (1.2). |

Now let {<I\, (&2, . . ., <E\J be a totally independent set of functions (see (i .20))

on U. Then (1.21) constructed canonically associated total vector fields D^ on U,

defined by D^=(L. As above, we assume given a homotopy f^ and use it to define

functions <p^ and 9^, and vector fields ^ and d^ defined on (J^'^U), for i^i^v. Total

independence implies by ( i . 19) that the functions 9^ locally form a set of local coordinates

on V, with the vector fields ^ as corresponding coordinate vector fields, since ^9^=8^.

405



44 J. M. B O A R D M A N

Then (5.1) applied to d^=S^ yields d^^+d^=o. But any vector field d on

^J/)"1^) has the form Sa,fl?,, where we must have oc,==Ap,. In this case we find
v

(5.4) <=-S^9;.4. (i^O).

Suppose now that A is a special I-flag (see § 3) defined over U.

Lemma (5.5). — Suppose the special I-flag S{ is null at seV. Then we can find a set

ofK tangent vectors ^ ( i^A^K) to J(V, W) at s such that:

a) 8^((I)o7^_i)==o for every function 0 on ^_^U,

b) The induced maps 8^3^ : 3^->R <m? /rn^r^ independent in Horn (3^, R).
The number K is given by

(5-6) K==WKl-(^0-^)Kl-(^l-^2)K2-...-(^_,-^JK^

where K,==dim(K^OK^O ... OK,) ^^(4.12) .

Proo/. — Take any map /: V-^W such that {Jf)p=s, and put q=^s^fpE\\r.

We may as well work with germs at p and s. Take local coordinates {Y^, Yg, .. ., Y^}

on W at q, included as functions on J(V, W) by TT^. Now the set C^u GgU ... u C^

of functions associated to the special I-flag S{ in (3. i) is totally independent on U. IfU

is small enough, this set may be extended to a totally independent set of v functions

{<I\,<D2, . . . ,<DJ, numbered so that C,={(&, : i,<:^z,_J for i^r^n. Then as

above we obtain the germs 9, at p, which we may regard as a set of coordinates at p.

For each homotopy passing through /, we have defined new functions 9,' and y\,

and vector fields d^ near p. By (5.1), each such homotopy gives rise to a tangent

vector y{s} ->R given by C^q/^. Let S be the set of all homotopies passing through/

such that J^'em^. By (5.3), the corresponding tangent vectors annihilate all germs of
functions on ^"^V, W).

Let 0. be the set of all {n+ i) -tuples (G^, G^, . . ., G^, Y,), where each G, is

one of the base total vector fields in F, (the sections ofK,; see (3.1)) for i^r^n, and Y,

is one of the chosen coordinate functions on W. Then R°, the set of all maps from 0.

to R, is a vector space. To each element <^=(G^,G^_^ . . . , G ^ , Y ^ ) of 0. we

associate the function Y^=G^G^_,. . .G^eg^ the ideal (3.4) of the special flag ^;

we shall need only such functions. We consider the map 6 : 3-^R° defined by

(6^)(o == ̂ p(=R (coeQ; ^eS). We define the rank of 6 as the dimension of the subspace

of R° spanned by its image. To complete the proof of (5.5), we have to show that
rk 6 ̂  K.

By (5.2) we have

y^g^gn-l' • 'gl^k+gngn-1- '§l^k+' • • +gngn-l' • 'gl^k+gngn-1' ' 'gifk-

Thus we may express 6 as the sum 6=6o+6i+ . . .+6^ of maps 6,, by setting

f(9o^ ={gngn-l • • •&^)A

\W^={gngn-l' • -g'r- • •<?2 l̂J^ (l^^Tz).
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The triangle inequality gives

(5.7) rk 6 ̂ rk 60— rk 61— rk Og— . . . —rk 6^.

The separate terms of this inequality will correspond to the terms of (5.6). We shall
in fact prove

frk6o=^iq,

(rke^(^_,-^)K, (i^r^).

That rk 60= WK^ is easy. The various g^ are coordinate vector fields on V, and we

note that thej^ may be chosen arbitrarily in m^. Let 0. denote Q. symmetrized as far as

possible, so that Q has WK^ elements. Clearly 60 is symmetric, and factors through 0..

Each element coeQ corresponds to some differential operator ^°==^n<?n-i • • ' § 1
 an(!

coordinate^; if we choose the homotopy ^eE such that

(j^^y0 (abbreviated notation as in § i)

U'=o for j^k,

we have (6o^)co==(7!, and 6^^ vanishes on the rest of 0.. Hence rk6o==^iq.

We still have to prove rk Qy ̂  (^ _ ^ — ^) K^ . We have the formula (5.4)

^=2^.9^.^. We substitute this in 6^ and consider the j-th term, which yields on

evaluation

(5-8) -{gngn-l- • •^+l(^yj^)<?r-l- • -glJk}?'

There are three cases:

Case 1. —j^iy Then D eFy, and every term in the expansion of (5.8) vanishes

by (3.4), since S{ is null at j.

Case 2.—^>^__i. Then O^eC^u GgU . . . u Cy_^, and owing to the axiom (3. i) e )

in the definition of special flag, O^ is a function on the subset TC^_^U ofJ^^V, W).

Hence (pjem^"^2, by (5.3). But ̂  is preceded in (5.8) by only n—r-{-i derivations,

which shows that every term in the expansion of (5.8) is zero.

Case 3. — ^<;^_i. As in Case 2, yjem^"'^1. This time, only one term in

the expansion of (5.8) can possibly be non-zero, namely

—gngn-l- ' ' g r + l g r ^ j P ' ^ g r - r ' -gi^k?'

Only the first factor depends on the homotopy ^, so there are at most Ky independent

functions on 0. here, since we have symmetry.

When we add up, Gases i and 2 contribute nothing to rk6^, and each of the

^ _ i — i y indices^* in Case 3 contributes at most K^. With (5.7), this completes the

proof. |

Remark. — This proof is the only place where we use axiom e) of the definition (3.1)

of a special I-flag. It would be desirable to dispense with the need for this axiom.

Informed hindsight shows that all our results hold without it.
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Corollary (5.9). — If the special 1-flag ft is null at ^eJ(V, W), we have

rk,3^rk,3^+K,

where K is given by (5.6), ft' is the curtailed special Y-flag, and r==(zi, i^ . . ., in-i)-

Proof. — In (5.5) we produced K tangent vectors. All we have yet to check is that

these annihilate 3^.. This is obvious, because according to (3.6) 3 .̂ is generated by

functions on Trn-lUcJ^^V, W), and we assumed 3^/cnts. •

§ 6. The singularity submanifolds.

In this section we collect together results from the previous sections, in order to

state and deduce the main theorems.

We take fixed manifolds V° and W^ having dimensions v and w respectively.

Theorem (6.1). — For each sequence l=(i^,i^, ...,^'J of integers, the subset S1

defined in (2 .17) of the jet space J(V, W) is a submanifold (not necessarily closed) having codimen-

sion Vj , where the number \»j is defined below (6.5). In fact, S1
 is the inverse image of a subma-

nifold of J^V, W) having codimension V j . The set S1
 is empty unless I satisfies (2.18).

If jeS1, there exists a special I-flag ft {see § 3) defined on a neighbourhood V of s, whose

ideal 3^ (3.4) in ^(U) is locally the ideal of functions vanishing on S1. If we set q=^se'\N,

we have, over U, 3^+T^g•^'(^)=A Intg, the iterated total jacobian extension [see § 2) ofm.,

where mq is the ideal in ^y(7^yU) of functions vanishing at q. The ideal 3^ is independent of

the choice of ft.

Theorem (6.2). — If f: V->W is a map whose jet section Jf: V->J(V, W) (see § i)

is transverse to S1, then S^/), which is defined as (J/)"""1^1), is a submanifold of V having

codimension ^j. If^-,j denotes the extended sequence (^, z'g, . . . . i ^ , j ) , we have

^(^svisv)).

Also, when 1=0, 2^ (/)=={/? e V : dim Kerj^=^'}, where fy : Tp-»T^ is the differential

off at p.

Theorem (6.3). — Any map f\ V->W may be approximated in the fine-C^ sense by

a map g : V—^W whose jet section Jg : V->J(V, W) is transverse to all the submanifolds S1.

These are our main theorems.

Remark. — The principal assertion of (6. i), that S1 is a submanifold, was already

known for n == i, or ^ == ̂  = = = . . . = = ̂  = i [7] and for n = 2 [4].

We have yet to define the number ^j. Let I==(z\ , 4, . . ., z'J be any sequence

of integers satisfying i^i^ . . . ̂ ^^o. (We need consider only this case, by (2. i8).)

Definition (6.4). — We define \ as the number of sequences (ji,^? ' - ' i J n ) °^

integers that satisfy

fa) h^h^-^Jn.

[b) i^j,>o for all r ( i ^ r ^ 7 z ) ;
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[jij as the number of sequences (Ji,^? • • -sJn) of integers that satisfy

f a) Ji ̂ h > - ' • ^7n (as above),

(b') i^j^o for all r ( i ^ r ^ T z ) , and ^i>o;

and then define

(6.5) VI=(^-y+ll)^.^,,,^-(^\-^2)^,^3,...^n-(^2-^)^

For example, if v==w, we have Vg^^1 0? ^M^^, ^5,5 5 5 ==625, and
V8,7,6,5,4= 7629. The numbers soon become large.

If we take all the sequences counted in defining (JLj and omit any zeros from their

ends, we obtain the identity

(6-6) ^l.^2....,^==x^l,^2,...,^n+x^,...,tn-l+•••+x^l,^2+x^l•

Put I/^^,^, . . . , ^ _ i ) as usual, and also IQ==V\ then comparison of the formulae

for Vj and Vp gives, in conjunction with (6.6), Vj = v? + K, where

(6.7) ^==w^-{iQ-i^-{i,-n)\^^ ..,^-...-(^-2-^-i)^.i^-(^-i-^)\^

Proof of (6.1).— Take j'eS1. Then by (3.11), there exists a special I-flag S{

over a neighbourhood U ofj, and l^nU is exactly the set of zeros of its ideal 3^.

We see that the three formulae for K in (6.7), (4.12), and (5.6) are

identical, since Ky==\ ̂ ^ ,...,in
 ls t^le dimension of the symmetric tensor product

K^OK^_iO . . . OK,.^OK,. By induction on the length of I, (4.6) and (4.12) show

that the image in ^{s) of the ideal 3^ can be generated by v^ elements. But (5. g)

shows, again by induction on length, that rkg 3^ > v;. Thus the ideal 3^ in ^{s} is

generated by Vj germs having linearly independent differentials.

Further, we know (and need to know!) from (3.7) that the ideal 3^ is finitely

generated locally^ i.e. that the ideal 3 ,̂ in ^(U') (which is generated by 3^|U' by § 3)

is finitely generated, for some small neighbourhood U' of s; it follows that we can find

a smaller neighbourhood U" ofj and Vj functions on U", whose differentials are linearly

independent everywhere on U", that generate the ideal 3^1 u"« Their common zeros,

S^nU", therefore form a smooth submanifold of U" having codimension Vj.

The other assertions in (6. i) are collected from (2.20), (2.18), (3.9), and (3.6). •

Proof of (6.2). — Now S1^) is a submanifold of V having codimension Vj.

By (2.22), j&e2:V|SV)) if and only if j&eSV) and dim Ker d(f\^{f)) \p==j.

By (1.22), (6.i), and the definition (2.17) of S^, these conditions are equivalent

to pe^(f). •

Proof of (6.3). — This is immediate from the form of the transversality theorem

given in (1.5). •

The formulae for the codimension of the singularity submanifolds S1 depend only

on the difference v — w, not on v and w separately. This is no accident, for there is

a " suspension " operation for singularities. Given any map /: V—^W, we may consider
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fx i : V x R -> W x R, and it is not difficult to prove that S^/X i) = S^/) x R, for
all I.

More generally, consider a level-preserving map f : V x R^ -> W X R^. For each

^R^, we have /< : V-.W. Then one can show that S^/) n (Vx^) ̂ S^CA fo1' each I.

Remark (6.8). — The previous remarks give rise to a useful general procedure for

making any map transverse by adding extra coordinates. Let f: V-»W be any map.

Then for sufficiently huge k we can take a " homotopy 5?
 ft : V->W (^eR^) passing-

through f=fo, such that for some given r the associated map VxR^—^J^V, W) given

by (A ^^(Jft)?
 ls locally a projection. This map is certainly transverse to any subma-

nifold of J^V, W). The map we require is the associated level-preserving map

V ^ V x R ^ — ^ W x R^, which has corresponding transversality properties. In practice,

one is interested only in transversality to particular submanifolds, and in this case the

number k can be considerably reduced by judicious choice of the homotopy.

We have decomposed J^V, W), and therefore for a given transverse map f: V->W

the manifold V, as the disjoint union of finitely many submanifolds S1 or S^^/), where I

runs through the sequences of length r. Such decompositions are called manifold collections,

or stratifications. Their precise definition is still rather fluid. Unfortunately, it is a defect

of the theory of singularities, in its present state, that this decomposition does not satisfy

any of the sets of axioms proposed for manifold collections. For example, even the

dimension axiom fails, an observation due essentially to Whitney [9].

To see this, take V=W==R2, with sets of coordinates {^, x^} on V and {ji?j^}

on W, and consider the map y:V->W given by

hi°f=^+xi

[y20f=l)X^

where b is a parameter. Then we find that oeS2'^/} if b==o, but that oeS1'1'1'1'1^)

if &=t=o. Thus S2'0 contains points of the frontier of S1'1'1'1'1, in spite of the fact that

their respective codimensions are 4 and 5.

The criticism that the above map is not transverse is met by adding extra coor-

dinates, as in (6.8). We could take the result as a map f: R7—^7 given by

^1°/= ̂ 2 + 4 + ̂ 3 + ̂ 4 + -^55

j^o/== bx^ +X^XQ+ x^,

yi°f=^ (3^7)-

The discussion remains essentially unchanged.

The remedy is in principle clear; we need to decompose the manifolds S1 still

further, by taking account of more structure. We already have more structure available.

Take b == o in the above. We have a special 2-flag, whose form a [ o is given in terms

of the coordinate tangent vectors {^, ^3} to V at o and {d^y ^} to W at o, by:

^®^~»o, ^®8^->d^ ^®a,->o,
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with zero indeterminacy. This is not a <c general " symmetric linear map, and ought

to be separated off from the ordinary points of S2' ° in a submanifold of its own, with
higher codimension.

The problem of finding an entirely satisfactory decomposition seems deep and
difficult.

§ 7. Intrinsic derivatives.

Now that we know the subsets S1 of the jet space J(V, W) are submanifolds,

we return to the study of the bundle maps a^ introduced in § 4. These are now known

to be smooth. We have pointed out already that they depend on S{. In this section

we look for their invariant properties.

Our principal tool is the concept of intrinsic derivative, introduced by Porteous [6].

Let E be a vector bundle over the manifold V. We consider the tangent bundle Tg

of its total space |E[. The projection TT : [E|-^V induces the short exact sequence

(7.1) o^E|^T^T^o,

where ^e|E| and p==ns^ and Tg and Tp are the tangent spaces at s and p. Any

section -^ ofE such that -^p=s has a differential d^ : Ty-^Tg which splits (7. i). This

is not in general canonical. However, if s lies on the zero section, we may take ^ as

the zero section itself, which certainly is canonical. In this case, (7.1) splits canonically,

(7.2) T^T,@E\p.

Suppose now that ^ is a general section ofE, and that a : V->R vanishes at p\

then the section a^ induces, with the aid of (7.2), a map Tp—>E\p.

Lemma (7.3). — This map Tp-»E|j& induced by the section a^ of E as above; is given

by d->d(x..-^p for each tangent vector deTy.

Proof. — We may work locally, and assume that E is a product bundle, having

{Xi5 X2? • • • 5 Z n } as a base of sections. Suppose that ^=Sa^ is a general section
i

of E, and that d is a tangent vector at p. If we compose ^ with the product projection

|E[->E[j&, and identify 'E\p with its own tangent space at any point, this compo-

site induces d->^d^.^p. Hence oc% induces rf->Sflf(ao^) .^p. By assumption,

fl?(aa^)==fi?a.a^+aj&.rfa^=rfa.a^, so that the last map can be written

rf-»i;rfa.a^./,^===rfa.^. •

Lemma (7.4) (Porteous). — Let a : E->F be a map of vector bundles over V. Then

the map a induces the canonically defined intrinsic derivative ofa. at j&eV,

(7.5) ^(a) : Tp -> Hom(Ker a, Goker a),

where a : E->F denotes the restriction of VL to the fibres over p.

Proof. — Let / be any section of E such that a^j&===o; then by the preceding

discussion the image section a^ induces a map Tp—^F. This map clearly depends
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R-linearly on ^. We require a map that depends only on ^, not on y^. Now any

section of E that vanishes at p is a R-linear combination of sections of the form a/,

where OL? = o, a : V-^R, and 7 is a general section ofE. For such a section, (7.3) shows

that the image of Tp->F lies in Im a. Dividing out by Im a yields the desired map,

which we can write in the given form. •

The method suggested by Porteous for defining the singularity sets S^/) of a map

/: V->W is to apply (7.4) to the differential df : Ty-^/*T^ at p, define a submanifold

of V by a rank condition, over which the maps (7.5) will assemble to form a new bundle

map, apply (7.4) to this map, and continue as far as possible. We shall show that for

sufficiently good maps, namely those whose jet sections are transverse to all the subma-

nifolds S1 of J(V, W), this process always succeeds. Moreover, the necessary trans-

versality condition at each step appears explicitly, and needs no mention of the jet space.

To prove all this, we shall nevertheless work universally, on the jet space J(V, W).

Take a fixed sequence I=(?i, i^ .. .3 in) of integers, and a special I-flag S{ (see § 3)

defined on the open subset U ofJ(V, W). As in (3. i) we may choose sets of functions Cy

on U, and construct a bundle H,. having fibre dimension iy_^—^, and a bundle map

as in (4.7) ^ ^ ̂  ->K^®K^®.. .®K,®Hom(P, R)

over U for i^rO, where P==(('H:^YT^)\V. We write S,. for S'1 when

J==(ii, 4, ..., iy) is obtained from I by curtailing, and Sp for J(V, W).

As before, we write E, a, etc., for the fibre of a vector bundle E, etc., or a vector

bundle map a : E->F, etc., over a typical point seU. We have the surjective symmetric

linear map (4.1)

s^) : K,OOK^®.. .®K,OOHom(P, R) -> 3^/(3^+m^)

where S{' is the curtailed special I'-flag, r==(i^, i^ ..., ^-1)5 and 3^ and 3 .̂ are their

ideals (3.4). This was used in (4.5) to construct a symmetric bundle map, which we

now write in the form
K^®K^®K^_i®.. .®Ki-^P over 2^.

(Here, and in future, we frequently partially dualize linear maps without comment,

and use standard natural isomorphisms.) Actually, we can do better. Denote by T,.

the tangent bundle to S^ (o<r<^), a subbundle of the restriction to S^ of the tangent

bundle to J(V, W). (The fact that these vector bundles have infinite fibre dimension

will cause no difficulty. Alternatively, we could work entirely over J^V, W).) Then

by (6. i), if jeS^_i, T^_i is precisely the set of tangent vectors at s that annihilate 3^;

which shows that over S^ the above bundle map extends canonically to a bundle map

b^:T^®K^®K^0...®K^P over S^.

It is still induced by evaluation. Further, T^ is the set of tangent vectors at s that

annihilate 3^, and is therefore by (6.1) the kernel of

^ : T,_, -> Hom(K,<x)K^®.. .®K,, P).
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Similarly for the curtailed flags. Let us write b^ for the corresponding bundle map

over S,. (i^r^n), and set conventionally bo=d7Tw : TQ->P. Then we have the exact
sequence of bundles

(7.6) o^T^T,_^Hom(K^K,_,(x)...®K,,P) over S,

for i^ r^%.

We deduce from (7.6) that

(7-7) K,=KinT,_, over 2, (Kr^).

For by induction on r assume Ky==K^nTy_^ then if r<n,

K,nT^(K,nT,_,)nT,=K,nT,=Ker(b;[K,)=K^, overS,,.,,

by nullity and the short exact sequence (4.11). The induction starts trivially with

K,==K,nTo.

We deduce also that

b,:T,_i®K,®K,_i®.. .®Ki->P over S,

is symmetric. According to (4.3) b) and (7.7), this assertion contains no new
information.

Our next step is the construction of some bundles, which we shall need for expressing

the intrinsic derivatives. For the moment, they are not genuinely bundles, but merely

functions assigning to certain points seV some vector space related to previously defined

vector spaces. We work in the fibres over s.

We put PQ=P. Suppose we have already defined a surjection

<;,_i : Hom(K,_iOK,_20 .. . OK^, P) -> P,_i over S,_2,

where we use the symmetric tensor product as defined in (4.2). If ^eS^_^ we define

^ : Pr-i'^Q.r as t^le cokernel of the composite

^T—^-" Hom(K^OK,_,0. . .OK,, P) -^ P,_,,
6r-l |Kr_i Cr-i

and then define c, : Hom(K,OKy_tO .. . OK-i, P) ->Py as the coimage of the compo-

site u^, which is

(7.8) Hom(K,OK,_iO...OKi,P)

n
Hom{K,®(K,_iO ... OKi), P}sHom{K,, Hom(K,_iO ... OKi, P)}

Hom(l, Cr_i) •

Hom(K,, P,_,)

Hom(l, er)

Hom(K« Q,).
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This inductive definition starts with ^ : P==P() and continues for i^r^n, ending with

^n+i and Q.n+r
Thus P,. and Q .̂ are defined over s when jeS,._,.

In the fibres over s we consider the following linear maps :

c, : Hom(K,OK^O .. . OK,, P) -> P, (^S,_i; o^r^),

^r+l ^ Fr -> Q.r-1 (^r; O^r^),

~h\: Hom(K,OK,_iO.. .OK,, P) -> Hom{(K,OK,_,0... OK,)®H,, R}

which is obtained from ^ (compare (4.9)), when i^t^r+i^n+i, and

I;' : Hom(K,OK,_,0.. .OK,, K,_,/K,) ̂  Hom(K,OK,_,0.. .OK,, P)

which is obtained from ^ _ i ] K ^ _ i with the help of (7.6) and (7.7), when
i^^y-4-i^^-^i . (Some interpretation is required. When t = r + i, we interpret

K,OK,_^O. . .OK< as R. We must also put T_^= To.)

Lemma (7.9). — a) Ozw any point se^ (o^r^yz) ^ ̂ ^ ^ ^fif h\ (for i^t^r)

present Hom(K,OK,_iO . . . OK^, P) as a product of vector spaces.

b) Over any point ^eS^+i {o^r<n) the maps e,^c, and h\ (for i^^r+i) present

Hom(KyOK^_iO .. . OK^ P) as a product of vector spaces.

c) Over any point se^(o^r^n) the maps k^ (for i^t^r) present Ker Cy as a sum

of vector spaces.

d) Over any point ^eS,_i (o^r<%) the maps k\' {for i^^r+i) present Ker<^+i^,)

^ a ^MW q/' vector spaces.

proof. — We work by induction on r, and consider the commutative diagram over

a point seTty,

K^, -> K, ̂  Hom(K,OK,_,0.. .OK,, P) ——^——. P,^ Q^
r r n n

Hom{K,®(K,_iO... OKi), P}-^ Hom(K,, Q,),

where Vy is obtained from (7.8).
We assume b) and d ) for r—i. Then Ker((?,^,+i) is presented as a sum by

injections

Hom(K,_,OK,_20.. .OK,, K^/K,) -> Hom(K,_iO . . . OK,, P)

for i^t^r. Hence Ker ^ is presented as a sum by injections

Hom{K,®(K,_iO.. .OK,), K^/KJ -^ Hom{K,0(K,_,0 .. .OK,), P}.

By (4.10) these yield injections

I;' : Hom(K,OK,_,0.. .OK,, K,_,/K,) -^ Hom(K,OK,_,0... OK,, P),

whose images evidently lie in Ker^, and present as a sum some subspace of Ker^.

Hence Ker^ cannot be too small.
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On the other hand, Hom(K,_iO. .. OK^ P) is presented as a product by
projections

(e^_,: Hom(K^O.. .OK,, P)^Q,,

(Hom(K,_,0 ... OK,, P) -> Hom{(K,_,0 ... OK^H,, R},

for i^t^r. These induce a product presentation of Hom{K,®(K,._^0 . . . OKJ, P},

whose restriction to Hom(K,OK,_^0 . . . OK^, P) yields projections

^ : Hom(K,OK,_,0.. .OK,, P)^P,,

[h\: Hom(K,OK,_iO . .. OK,, P) -> Hom{(K,0 . . . OK<)®H,, R},

again using (4.10). It is not immediately apparent that these maps present

Hom(K^O. . . OK,, P) as a product; all we know from this is that the intersection

of their kernels is zero. Hence Ker c^ cannot be too large.

However, h\ and k\' have the same rank, so that our two estimates for the dimension

of Ker c, agree. This shows that we must after all have sum and product presentations

of Ker ^, as required. This proves a) and c ) for r.

Finally we must compare Ker c, with Ker(^^), when jeS^,. We must

divide out by Im(^|K^), which is isomorphic to K^/K^,, and projects isomorphically

to Hom(H^, R). These last two spaces are the required extra factors in b) and d ) .

The induction starts trivially with r===o. •

Corollary (7.10). — The fibres P,. and CL. form smooth vector bundles P^ and Q^ over

^r (i^y^), and we have smooth bundle maps

c, : Hom(K,OK,_,0 . . . OK^, P) ->P, over S,,

e, : P,._i-»Q^. over S,,

u, : Hom(K,OK,_iO ... OK,, P) -^ Hom(K,, Q,) over S,.

Proof. — We deduce from (7.9) that the dimensions of P,. and ̂  are constant

over S,. Fibre cokernels and images of smooth bundle maps are again smooth vector

bundles, provided only that their fibre dimensions are locally constant. |

Lemma (7.11). — We have the bundle map

c,_ib,_i |K,_,:K,_,->Hom(K,_,OK,_20...0K,,P)^P,_, over S,_,,

Over S^, its kernel is K^ and its cokernel is Q^. Then (7.4) gives rise to the intrinsic derivative

bundle map

d(c,_,b,_JK,_,) :T^->P,cHom(K,, QJ over S,,

which coincides with the composite

T,_, -> Hom(K,OK,_,0 . . . OK,, P) -> Hom(K,, QJ.
"n Un

Proof.—We work in the fibres over ^eS^. Since ^_^( i®^) vanishes on

K,_,®K,_,®K,_,®.. .®K^H<
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for t^n— i by (4.8), and we have the product presentation (7.9) a), we know

Ker(^_,^_JK,_,)=Ker(^_JK,_,)=K,.

The cokernel of ^n-i^n-ilK-n-i is CL ̂  definition.

The rest of the lemma is trivial. Both bundle maps were defined, in effect, by

taking vector fields passing through given tangent vectors, applying their product to

a function on W, and evaluating. The only difficulty was to arrange for the result to

be well defined. In the case of &„ this was done by taking only those vector fields lying

in a special I-flag ft; K,. is intrinsically defined only over S^, and a special I-flag is a

way of artificially extending the bundle K,. locally, in a carefully controlled way. In that

case, dividing out by certain subspaces, as in the definition of intrinsic derivative, was
unnecessary.

It follows that d(<^_ib^_JK^_J factors through the image of u^, which is P^. •

Definition (7.12). — Given the sequence I=(z'i, i^ . . ., zj as before, we define

the (^+i)th total intrinsic derivative as

d^=d(c^l<_JK,_,) :T,_^P, over S,

for n>o, and d^==dn^ : T_i=To->Po.

Lemma (7.13). — The intrinsic derivative d .̂̂  yields the short exact sequence

o -^ T, -> T,_, ̂  P, -> o over S,.

Proof. — We again work in the fibres over ^eS^. As before, from (4.8),

^ : T^®K^K^_i®. . .®Ki®Hom(P, R)-^R

vanishes on (i®^)(T^®K,,®K^_i®. . .®K^®H^) for t^n. This fact, with the
product presentation (7.9) a), shows that

Ker ̂  = Ker(^ &,) = Ker b, = T,,

by (7.6). If we compute the dimensions ofT^_i/T^ from (6.1) and (6.7), and of P^

from (7.9), we find that they agree, term for term. Hence the sequence must be
exact. •

Theorem (7.14). — Over 2^, the bundles, P^, Q^, and K^, and the bundle maps

c, : Hom(K,OK,_,0 . .. OK,, P) -> P,_,,

en:Pn-i->Q^

u, : Hom(K,OK,_,0 . . . OK,, P) -> Hom(K,, <^),

and

"n+i : •••n-l'^'Pn?

^r^ invariant, in the sense that they do not depend on the choice of the special I-flag ft.
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Proof. — This is evident from (7.11) and the inductive definitions, granted that

Co : P==Po and d^w : TQ-^P are invariant. •

Hence we are fully justified in calling d-n+i ^
le intrinsic derivative; it depends

only on the sequence I.

We are now ready to assemble our results, and interpret them in the case of the

singularities of a map. Now Ky is contained in D, the total tangent bundle, by definition,

but Ty is not. We put Sy=T^nD over the point <yeJ(V, W)< These spaces do not

form a bundle over any of the sets Sy. Given a map f: V-^W, we may use its jet

section Jf: V->J(V, W) to induce bundles Ky, Py, etc., and bundle maps c,., etc., over

subsets of V, which we denote by the same letters. We again use K^, P,., Cy, etc., for

their fibres over a typical point j&eV. Our conclusion will be that in suitable cases

these bundles and maps can be constructed on V without reference to special flags or to

the jet space. On the other hand, the direct description fails to elicit certain of their

properties, notably symmetry.

Given a map f : V-»W and a sequence I ==(^i, z'g, .. .3 in) °t integers such that
v ̂  z'i ̂  z'2 > . . . ̂  ̂  ̂  o, we consider the following inductive hypothetical construction:

We start from the data (a^):

(a,) Take So(/)=V, S_,=Ty, Ko=Ty, c,:P=P,==f^, and

W)=d/: S_,=T^/*T^=Po.

More generally, suppose that for some r (o<r^7z) we have the data:

(a,.) a) A submanifold S^_i(/) of V.

b) A subbundle S^^cTy defined over 2^_^(/).

c ) Subbundles K.^_^cKy_^c. . . cKiCKo=Ty defined over S^_i(/}, such that

K,-iCS,_2.
d ) A bundle map

c,_, : Hom(K^OK,_,0 .. . OK,, P) -> P,_, over ^_,(/).

e ) A bundle map dy(f) : Sy_2->P^_i over S^_i(/).

Then we continue the construction with:

(Py) We define Sy(/) as the set of points peTiy_^f)cV over which

dy(f) [ K y _ ^ : K^r-i
 -> Pr-i ^as kernel rank Zy.

(Yr) Over Sy(/), we may define K^cKy_i as the kernel bundle and e^ : P^-i-^Q^r

as the cokernel of the bundle map d^(jf)|K^_i : K^_i-^Py_i.

(8,.) We define the bundle map

u, : Hom(K,OK,_iO . . . OK,, P) -> Hom(K,, Q,) over S,(/)

in terms of c^_i and e^ as in (7.8).

(sy) Assume the bundle map Uy in (8,.) has constant rank over S^(y), so that we

can define the coimage bundle map

c,: Hom(K,OK^O . . . OK,, P) -> P, over S,(/).
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We call P, the symmetric subbundle of Hom(K,, Q^).

[Q Assume that the intrinsic derivative bundle map (7.5) S,_i->Hom(K,, QJ
over S,(/) of d,(/)|K,_i factors through P, to yield

d,+iC/) : S,_i -> P, over S,(/),

where S^_i is the tangent bundle ofS^_i(/).

(•/],.) Assume that K,cS,._i over S,(/).

(6,) Assume that S,(/) is a submanifold of V.

Then we have (a^+i), by restricting domains of definition as necessary.

We need to know when the assumptions hold, so that the construction can proceed.

Their validity will be expressed in terms of the following condition:

M 4+i(/) '-^t-i-^^t ls surjective in the fibres over points j&eS^(/).

Theorem (7.15). — If (^) holds for o<t<r, the assumptions (s,), {Q, and (73,), are

valid, and S,(/) is exactly S^/), the subset defined in (2 .21) , where J=(z'i,^ • • •^ r ) -

If also (i,) ^ ̂ , ̂  the assumption (6,) ^ yfl̂ 'a?. The conditions (4) hold for all t if and only

if the jet section Jf : V-J(V, W) is transverse to ̂ for all t, which is true for a fine-G^-dense

subset of the maps f : V—^W.

Proof. — We see by induction that locally all the above bundles, etc., are induced

from the corresponding bundles with the same names obtained from special flags over

open sets in J(V, W). For these the required inductive assumptions hold, if we use T,

instead of S,, and all there is left to check is that the conditions (4) are equivalent to

transversality, so that the S<(/) are submanifolds and have the bundles S^ as their tangent
bundles.

We have to compare (ij with the condition:

(K<) J/;V->J(V,W) is transverse to S,.

Now by the short exact sequence of (7.13), (4) is equivalent to T^+(T^nD)=T^_i

over 2^n(J/)V, or alternatively T,+D==T,_i+D. Also (0 may be written

^^-I^TO. Hence given (i^_i), the conditions (i^) and (K^) are equivalent. This
is all we need. •

In particular, the intrinsinc derivatives d^^ induce bundle maps d,,i(/).

Definition (7.16). — Given a suitable map /:V->W, and a sequence I,

the r-th intrinsic derivative off (i^r^Tz+i)

dr(/) : S,_, -> P,_i over S,_i(/)

is induced from dJ(T,_2nD) by Jf.

It is therefore symmetric.
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