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Abstract. In this paper, we investigate the singular solutions of time harmonic Maxwell
equations in a domain which has edges and polyhedral corners. It is now well known
that in the presence of non-convex edges, the solution fields have no square integrable
gradients in general and that the main singularities are the gradients of singular functions
of the Laplace operator [4, 5]. We show how this type of result can be derived from the
classical Mellin analysis, and how this analysis leads to sharper results concerning the
singular parts which belong to H': For the generating singular functions, we exhibit
simple and explicit formulas based on (generalized) Dirichlet and Neumann singularities
for the Laplace operator. These formulas are more explicit than the results announced in
our note [10].

Introduction

Solutions of time-harmonic three-dimensional Maxwell equations
curlE —iwpuH =0 and curlH +iweE =]

with electric or magnetic boundary conditions have singularities near corners and edges
of the boundary of the domain. This well-known fact has, for example, important conse-
quences for the construction of numerical approximation of the solution. Just as for other
elliptic boundary value problems, the singularities can be analyzed by standard techniques
[17, 21, 15, 12] that go back to Kondratev’s technique of Mellin transformation.

The special form of Maxwell equations allows us to go further in the analysis of the
regularity and the singularities. Some known results are:

the H' regularity for convex domains, SARANEN [26],
e the H'/? regularity for Lipschitz domains, COSTABEL [8],

a description of singular functions for cones with a smooth basis, SARANEN [25],

e corner singularities for the corresponding two-dimensional problem, MOUSSAOUI
[23], see also section 3.



Further regularity results can be found in KRICEK - NEITTAANMAKI [19], HAZARD -
LENOIR [16], AMROUCHE - BERNARDI - DAUGE - GIRAULT [2]. In all these cases,
the main singularity is the gradient of a singular function of the Dirichlet or Neumann
problem for the Laplace operator, thus is reduced to a problem that can be considered
as well known [15, 12]. This relation can be extended to a more general class of piece-
wise smooth domains that have “screen” or “crack” parts, BIRMAN - SOLOMYAK and
FiLoNov [4, 5, 13].

We will show that, in such a class of domains, not only the first, but all singular
functions for the Maxwell boundary value problems can be obtained in simple ways from
Dirichlet or Neumann singular functions of the Laplace operator.

More generally, we will assume that the domain €2 is polyhedral, that is, its boundary
consists of plane faces, straight edges, and corner points: such a polyhedron needs not to
be Lipschitz nor simply connected. Thus {2 can have screen parts, in which case there is
only H* regularity with s < 1/2. We find another type of non-Lipschitz domains with
the same bad regularity: These domains are, as exemplified by a domain between two
cones with the same vertex, not locally simply connected. Here the simple equation

“Maxwell regularity = Dirichlet regularity —1"”

is violated: The Dirichlet problem can even have H? regularity in such a case. The
singular functions at such a corner are generated by topological objects: the elements of
the cohomology space of the base of the cone, see section 6.

For a better understanding of this new phenomenon, consider the case of a domain be-
tween two circular cones with the same vertex and the same axis. In spherical coordinates
we have with 0 < 6y < 0; < m inaball B(0, p):

QN B(0,po) ={(p,0,0)| pe€(0,p), by <O <, p€l0,2m)}.
We consider the functions
O(p,0,p) = logtang and Y(p,0,p0)=p.
Both functions are harmonic, and with the cylindrical and cartesian variables
r=\x2+y2=psind and (z,y,z) = (psinfcosy, psinfsinp, pcosh)
we have
1 <xz Yz

u:=gradd® = — -

T . T
— , —1 and v:=gradV¥V = (—-%, = 0] .
p\r2’ r r2

Both v and v are harmonic vector fields:

curlu = curlv =0, divu =dive =0.



On 0N) near the vertex, w is normal and v is tangential. Thus u satisfies “electric”
and v “magnetic” boundary conditions. Both functions are in H° near the vertex for
s < 1/2. They correspond to electrostatic and magnetostatic singularities, respectively.

Maxwell’s equations are not an elliptic system. But the elimination of one of the
two fields E or H yields a variational formulation in a special “physical” energy space
whichis X := H(div)NH (curl), the space of square integrable vector fields with square
integrable curl and divergence. The underlying boundary value problem is then a second
order elliptic system, but set in a non-standard space. Instead of this space X , also the
Sobolev space H! could be used in a similar variational formulation. Both variational
formulations are based on the same bilinear form and both have unique solutions which,
for non-convex domains, will not coincide in general. The second one is the projection in
X of the first one onto H'. But the most important fact is that only the formulation in
the space X gives back a solution of the original Maxwell equations.

This situation is important for numerical approximations: If one uses standard finite
elements that are contained in H' , then the “true” solutionin X cannot be approximated,
and mesh refinement at the corners and edges does not help. A possible solution is to
augment the finite element space by the explicitly known singular functions, ASSOUS -
CIARLET - SONNENDRUCKER [3] and BONNET - HAZARD - LOHRENGEL [6]. In such
a method, the approximation is determined by the regularity of the regular part, i.e. the
solution minus the singular function. This regularity can be quite different for different
choices of the singular function. In particular, if the singular function is not constructed
by our explicit formulas, but from abstract principles, then this regularity can be quite
low, typically H*® with s < 4/3, see sections 3 and 4.

Plan. The outline of our paper is as follows:

We begin with preliminaries where we define the class of polygonal and polyhedral
domains in which we will work, and the basic functional spaces with L? curl and diver-
gence. Then starting from the classical Maxwell equations for a homogeneous material
we give equivalent variational formulations involving the form (curl, curl) + (div, div)
in spaces of X -type. The question of equivalent formulations will be discussed in more
details and generality in section 7.

In section 1, we start with the principal part of the equations obtained in the prelimi-
naries: these are our Maxwell problems; we discuss the alternative formulation in the H'!
subspaces, which we call pseudo-Maxwell problems, and the link with the singular solu-
tion spaces of the Laplace operator; we conclude this section by a result (Theorem 1.4)
on the characterization of these problems by the regularity of the divergence.

In section 2, as a preparation for the description of all singularities of the solutions
of the Maxwell and pseudo-Maxwell problems, we formulate some results from [12] on
the edge and corner singularities of the Dirichlet and Neumann Laplace operator on a
polyhedral domain. We present the main arguments of the proofs. We also obtain a
precise description of complementary spaces in the X -spaces of the H' subspaces.



In section 3, we give a complete description of the Maxwell and pseudo-Maxwell
singularities in plane polygonal domains, using the results of Lemma 3.1 whose proof is
postponed to section 5. It turns out that, at each non-convex corner, one singular function
is interchanged between the solutions of the Maxwell and pseudo-Maxwell problems.

In section 4, we state all our results about polyhedral domains, relying on Lemmas 4.1
and 4.4 which give explicit formulas for all the Maxwell corner and edge singularities
respectively. We have got a classification of these singularities in three main types, for
example concerning the electric field,

1. Gradients of Laplace Dirichlet singularities,
2. Divergence-free fields whose curls are gradients of Laplace Neumann singularities,

3. Fields whose divergences are Laplace Dirichlet singularities.

When the domain is not locally simply connected in the neighborhood of the corner, the
first two types are enriched by topological singularities of similar structure (the notion
of Dirichlet and Neumann Laplace singularities has to be extended in a suitable way),
but this concerns only the singularity exponents —1 and 0, respectively. The other sin-
gularity exponents are those of the Laplace Neumann problem and those of the Laplace
Dirichlet problem *1. Concerning the magnetic field, the roles of Neumann and Dirich-
let conditions are interchanged. We conclude this section by results about the pseudo-
Maxwell problems. While for the Maxwell problems the main singularities are gradients
of Laplace singularities, for the pseudo-Maxwell problems they can only be described as
sorts of Stokes singularities.

Lemma 4.4 is proved in section 5 devoted to singularities in plane sectors or wedges
whereas Lemma 4.1 is proved in section 6 in which singularities in polyhedral cones are
investigated. The results concerning polyhedral cones are summarized in Table 1. For
solutions of the original time-harmonic Maxwell equations, the singularities of type 3 are
absent, and there is a symmetry between the singularities of the electric and the magnetic
field. The results are summarized in Table 2.

In section 7, we compare several different commonly used variational formulations
for the time harmonic Maxwell equations. For this comparison, we can admit rather gen-
eral conditions corresponding to anisotropic inhomogeneous materials. When the mate-
rial coefficients are smooth, the principal singularities are those of problems with constant
coefficients. This corresponds to the choice made in the first six sections.

Preliminaries

0.a Domains and Sobolev spaces

Here are first a few definitions about domains and spaces. We want to consider rather
general piecewise smooth domains which need not to be Lipschitz, in general: such do-
mains can easily appear in applications and some of them have already been studied as



mentioned above. We denote by & = (z,y, 2) the cartesian coordinates in R* and by
x = (z,y) the cartesian coordinates in R?.

As in [12], the definition of the classes of domains is recursive. Let B(x,r) denote the
ball of center = and radius 7. In R? we define:

e The 2D corner domains as bounded domains €2 in R? or S? such that in each point
x of the boundary there exists r, > 0 small enough such that to each connected
component €2, ;, of QN B(x,r,) belongs a diffeomorphism ,; transforming
(), into a neighborhood of the corner 0 of a plane sector of opening in (0, 27],
x being sent into 0.

e The polygonal domains as the 2D corner domains with straight sides (indeed any
bounded domain whose boundary is a finite union of segments).

In R3 we define:

e The 3D corner domains as bounded domains €2 in R? such that in each point x of
the boundary there exists 7, > 0 small enough such that to each connected compo-
nent €, ; of QNB(x,r,) belongs a diffeomorphism Y ; transforming €2, ; intoa
neighborhood of the corner 0 of a cone T'; of the form {x € R?, z/|z| € G, ;}
with G, ; a 2D corner domain of S?, x being sent into 0.

e The polyhedral domains as the 3D corner domains with straight faces (indeed any
bounded domain whose boundary is a finite union of polygons).

We say that €) in one of these classes is locally simply connected if for any x in its
boundary, 2N B(x, ;) is simply connected.

The space H'()) is the space of complex-valued distributions u € D'(€2) which
belong to L*(€2) and such that each component of their gradients belongs to L*(£2) . The
space H'/2(0€2) is the space of traces of H'(€) where it is understood that Of) is the
“unfolded” boundary of €, that is, in the neighborhood of each point € Q \ © in the
topological boundary of €2, 02 is the disjoint union of the parts of the boundaries of (2, ;
which are contained in €\ 2. The space H~/2(912) is the dual space of H'/2(992).

Moreover, we introduce the spaces H(curl;(2) and H(div;Q):
H(curl; Q) = {u e D'(Q)° | we L*(Q)°, curlu € L*(Q)°} (0.1)
H(div;Q) = {ueD'(Q)?| wue L*(Q)? divu e L*(Q)}. (0.2)

For any w € H(curl; (), the tangential trace u x 1 is well defined in H~/2(9Q)*
due to the Green formula:

Vv € H'(Q)?: /u-curl’u—curlu-v:(uxn,v)m. (0.3)
Q

Similarly, for any u € H(div;{2), the normal trace u - n is well defined in H~/2(9)
by the Green formula:

Yo € HY(Q) : /divuc,0+u~gradg0:<u-n,gp>69. 0.4)
Q



0.b Time harmonic Maxwell equations

The classical time harmonic Maxwell equations at the frequency w in a homogeneous
isotropic body occupying €2, with permeability ;2 > 0 and permittivity € > 0 are

curlE —iwpyH =0 and curlH +iweE =] in (. (0.5a)

Here E is the electric part and H the magnetic part of the electromagnetic field. They
are supposed to be square integrable fields. By a change of unknowns p and e can be
set to 1. The right hand side J is the current density. The exterior boundary conditions
on 0 are those of the perfect conductor (2 denotes the unit outer normal on 052 ):

Exn=0 and H-n=0 on 0. (0.5b)

We see that if w is not zero, and if J belongs to H(div;(2) we deduce from the above
first order system (0.5a) that E and H belong to H(curl;Q) N H(div;2) and that,
according to (0.3) and (0.4) the boundary conditions (0.5b) make sense. Thus there holds

Ec Xy and He€ Xp 0.6)

where X and Xp are the two closed subspaces of H(curl;Q) N H(div;$2) defined
respectively as

Xy ={u€ H(curl; Q)N H(div;Q)| uxn=0 on 00} (0.7)
Xr={ue H(cur;Q)NH(div;Q)| u-n=0 on 00} (0.8)

Integrating by parts with test functionsin X orin Xp and taking into account the equa-
tions which can be obtained by calculating the divergence of both equations in (0.5a), we
prove in section 7 (in a wider generality concerning the permeability p and the permit-
tivity ¢ ) that there holds the following result.

Theorem 0.1 We assume w # 0. Let J € H(div;Q) and define the functionals on
H(curl; Q) N H(div; )

1
f(v):= iw/]-’u +— [ divJ divw and  h(v) = /J-curl'u.
Q W Jao Q
(1) If (E,H) solves (0.5), then u = E solves (0.9)
u€e Xy, Yve Xy, /curlu-curlv+divu dive —w?u-v = f(v), (0.9)
Q
and u = H solves (0.10)
ue Xr, YveXrp, / curlu - curlv +divu dive —w?u-v = h(v), (0.10)
Q

(2a) If u solves (0.9) and w? is not an eigenvalue of the Laplace Dirichlet operator on
Q, then (E,H) = (u, (iw)"" curlu) solves (0.5).

(2b) If u solves (0.10) and w? is not an eigenvalue of the Laplace Neumann operator
on Q, then (E,H) = (iw™" (curlu — J),u) solves (0.5).
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1 The Maxwell and pseudo-Maxwell problems

In this section, we assume that (2 is a simply connected polyhedral domain in R3.

1.a Variational formulations

We call Maxwell problems the principal parts of problems (0.9) and (0.10), 1.e.
u € Xy, Yve Xy, /curlu-curlv+divu divv:/f-v, (1.1)
Q Q

and

ue Xp, VYveXrp, /curlu-curlv+divu div'u:/f-'u, (1.2)
Q Q

with a right-hand side f € L?(Q)3. Both problems are uniquely solvable since, as we
assumed that €) is simply connected, the form

a(u,v) := / curlu - curlv + divu divo
Q
is strongly coercive on Xy and X7, i.e. satisfies
2 2 . 2
dc>0, Yue Xy, alu,u)> C<||u||L2(Q) + || curl'u,||L2(Q) + || div uHL2(Q)>,

and the same in X, see [2] for example.

We will consider these problems rather than problems (0.9) and (0.10) in the major
part of our paper because they are simpler and their edge and corner singularities have the
same principal parts as problems (0.9) and (0.10).

The non-standard feature of these problems is the nature of the variational spaces.
Both spaces are embedded in H _(£2)? but not in H'(2)? in general: for a polyhedral

loc

domain €, it is known [9] that X is embedded in H'(€)? if and only if © is convex,
and the same holds for Xr.

However, it turns out that the form « is also coercive on the subspaces of H'()?
Hy = XyNHYQ)? Hp=XprnHY(Q)?
which means that
>0, YueHy, alu,u)>c ||u||21(9) ,

and the same in Hp, see [9]. Therefore the variational pseudo-Maxwell problems

u € Hy, Yv € Hy, /Curlﬁ-curlv—i—divﬁ divv:/f-v, (1.3)
Q Q
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and

w € Hp, Yv e Hrp, /curlﬂ,-curlv—l—divﬁ divv:/f-v, (1.4)
Q Q

are uniquely solvable for any f € L?(Q)3.

In order to understand the nature of the non- H! solutions of the Maxwell problems
(1.1) and (1.2), one first has to study complementary subspaces of the closed subspaces
Hy of Xy and Hp of Xp. These complements are related to edge and corner singu-
larities of the Dirichlet and Neumann problems for the Laplace operator, as we shall see.
The Laplacian appears if we consider conservative fields, that is, gradients of potentials.
The question is then the H? regularity of the potentials. Conversely, it has been known
for some time that for the non- H' singularities, it is also sufficient to study gradients.
To describe this result more precisely, we introduce the domains of the Laplace Dirichlet
AP and Neumann AN°U operators as follows

D(APT) = {pe H'(Q)| Ape [2(0))
D(ANY) = {pe H'(Q)| Ap e L*Q) and 9,0 =0o0ndQ}.

Let us recall from [15, 12] that for any polyhedron the space H?(2)N big (€2) is closed in
the domain D(AP™), but that for non-convex polyhedra, the elliptic regularity theorem
does not hold between L?*(2) and H?()), and similarly for the Neumann problem. We
can immediately see that for any function ¢ belonging to D(AP) but not to H?(12),
the vector function grad ¢ belongsto X butnotto Hy , and similarly with D(ANY)
in relation with the spaces Xp and Hp . That the converse also holds has been shown by
BIRMAN - SOLOMYAK [4, 5], cfalso [6].

Theorem 1.1 Let §2 be a locally simply connected polyhedral domain.
(i) For any closed complement Kp;, of H*(2) N HY(Q) in D(APT), we have

XN = HN D grad KDir-
(ii) For any closed complement Kne, of H*(Q) N D(AN®Y) in D(ANY), we have
XT = HT D gI‘ad KNeu'
Precise descriptions of the spaces Kp; and Kye, will be given below in section 2.
Our result is that in the presence of nonconvex edges, these spaces are infinite-dimensional

(see Corollary 2.8), whereas for the corresponding two-dimensional problems, their di-
mension is equal to the number of nonconvex corners, see (2.7).



1.b The regularity of the divergence

The solutions of problems (1.1) and (1.2) have a divergence with optimal elliptic reg-
ularity, i.e. diva € H'(Q) , whereas nothing similar holds for the solutions of problems
(1.3) and (1.4).

Theorem 1.2 5
(i) The divergence q = divw of the solution of problem (1.1) belongs to H'(Q) and is
the solution of the Dirichlet problem

ge HY(Q), Ag=—divf. (1.5)

(ii) The divergence q = divu of the solution of problem (1.2) belongs to H'(Q)) and is
the solution with zero mean value on ) of the Neumann problem

g€ HY(Q), VYpe H(Q), /gradq~gradp:—/f~gradp.
0 0

(iii) If div f = 0, then the solutions of both Maxwell problems (1.1) and (1.2) satisfy
divu =0.

PROOF. (i) If w solves (1.1), then taking as test functions v = grad ¢ with ¢ €
D(AP™) we obtain

Vi € D(APY), <divu, ADirgp>Q = <f, grad gp>Q, (1.6)
with (, ), the duality product in €2. But the solution of (1.5) satisfies

Vpe H'(Q),  (gradg, gradp), = —(f, gradp),,

whence _ _
Vi € D(AP™), <q, AD‘rg0>Q = <f, grad g0>Q.
Thus divu — ¢ is orthogonal to the range of AP™ | which is the whole L?((2).

The proof of (ii) is similar and (iii) follows from uniqueness for the Dirichlet and Neu-
mann problems. u

For the divergence ¢ of the pseudo-Maxwell solution w of problem (1.3), there
holds, instead of (1.6):

Voe HA(QNH'(Q), (G, AP ¢), = (f, grady), . (1.7)
Now for this “very weak™ Dirichlet problem, there is no uniqueness in general. We define

K, « orthogonal complement in L(2) of AP™(H?N ﬁ[l(Q)) : (1.8)



This space is isomorphic to Kp;, . Its elements are often called dual singular functions
because of their duality with singularities. They are the solutions of the totally homo-
geneous problem in its “very weak” form (1.7), see [22, 15]. We obtain the following
result.

Theorem 1.3 For f € L*(Q)3, let w and u be the solutions of problems (1.1) and
(1.3) respectively. Then divu — divu € Ky, . A similar result holds for problems (1.2)
and (1.4).

1.c Boundary value formulations

Maxwell and pseudo-Maxwell solutions differ by their regularity, but they are, in fact,
solutions of one and the same boundary value problem. To understand this somewhat
unusual situation, we introduce the following non-symmetric weak formulations:

u € Xy, Yv € Hy, /curlu-curlv+divu divv:/f-v, (1.9)
Q Q

u € Xy, Yve Hrp, /curlu~curlv+divu divv:/f~v. (1.10)
Q Q

Both Maxwell and pseudo-Maxwell solutions satisfy these problems. By using C* func-
tions in Hy or Hp as test functions, we see in the standard way that the “electric”
problem (1.9) has the following strong form

curlcurlu — graddivu = f in (), (1.11a)
uxn=0 on 0, (1.11b)
divu =0 on 0, (1.11¢)

whereas the “magnetic” problems corresponds to the boundary value problem

curlcurlu — graddivu = f in (), (1.12a)
u-n=0 on 0, (1.12b)
curlu xn =0 on 0. (1.12¢)

Here the partial differential (vector Laplace) equation is understood in the distributional
sense. The “stable” boundary conditions (1.11b) and (1.12b) correspond to the definition
of the variational spaces. The “natural” boundary conditions (1.11c) and (1.12c) are ob-
tained after integration by parts and have to be understood in a weak sense, (1.11c) for
example in the sense of the “very weak” Dirichlet problem (1.7).

If one takes into account that C*> functions in Hy or Hy that vanish in a neighbor-
hood of the singular parts of the boundary, are dense in Hy or Hyp,see [11], itis easy to
see that for f € L*(2)® and u € Xy or u € X respectively, the weak formulations
(1.9), (1.10) and the boundary formulations (1.11), (1.12) are completely equivalent. For
the rest of this section, we concentrate on the “electric” problem (1.9). The results for
(1.10) are analogous.
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Theorem 1.4
(1) To any q € K3y, there exists a unique w € Xy, solution of (1.9) with f = 0 such
that
divu = q.
(i) Let f € L*()® and w be a solution of (1.9). Then
a) w is a solution of the pseudo-Maxwell problem (1.3) if and only if uw € H'(Q)3.
B) w is a solution of the Maxwell problem (1.1) if and only if divu € H'(Q).

(iii) If div f = 0 then w is a solution of the Maxwell problem (1.1) if and only if

divu = 0.

PROOF. (i)Let q € K, . The splitting Xy = Hy @ grad Kp;, (Theorem 1.1) defines
the bounded operator S

S XN — KDir
u +—— Su, suchthat w —gradSu € Hy.

Let u be the solution of the problem
u e Xy, Yve Xy, /curlu~curlv+divu divv:/qA(Sv).
Q Q

As S|gy =0, wu satisfies (1.9) with f = 0. With test functions v = grad ¢ for any
Y € H? N H}(2), we obtain that divu is orthogonal to AP™(H? N H}(Q)) whereas
with test functions v = grad ¢, ¥ € Kp;, , we have S(grad ) =1 whence

Vi) € Kpa, /divqu:/qu.
Q Q

As q is also orthogonal to AP*(H? N H}(Q)), we deduce that divu — ¢ is orthogonal
to A forall ¢ € D(APY), therefore divu = q.

If f=0 and divu = 0, (1.9) combined with the splitting Xy = Hy ® grad Kp;,
yields that

Yv € Xy, /curlu-curlv+divu dive = 0.
Q

Hence u = 0, which proves the uniqueness.

(ii) o) was explained above.

(ii) 3) One direction is given by Theorem 1.2: if u solves (1.1), then divu € H*(Q).
Let conversely u € Xy be a solution of (1.11) with divu € H'(f2). By subtracting the
solution of problem (1.1) with the same f, we reduce to the case when f = 0. Then

11



(1.11a) yields Adivu = 0, and (1.11¢) with the assumption gives divu € }011(9) :
Therefore divu = 0. Whence curlcurlu = 0 and

/ curlu - curlw =0, Yw € C*(Q)*.
Q

As C*(Q)? is dense in H(curl; (), we find that curlu = 0. As § is simply con-
nected, we can conclude that ©w = 0. ]

2 Singularities of the Laplace operator

In this section we recall and reformulate results from [15] and [12] relating to corner
singularities in a polygonal domain and to edge and vertex singularities in a polyhedral
domain. For the reader’s convenience, we will sketch the main arguments of the proofs.

2.a Polygonal domains

The results of this paragraph are proved by GRISVARD, see for example [15], but
we present them with the method of [12] which is inspired by the classical paper by
KONDRAT’EV [17]. The presentation of [12] is based on the introduction for each corner
of several spaces of pseudo-homogeneous functions, which allows an optimal treatment
of the polynomial part in the data and the solution.

The notion of corner is obvious if () is a Lipschitz polygon. If €2 has crack part in
its boundary, we have to use the notations introduced with the definition of a polygonal
domain in the Introduction.

Let a be an element of the unfolded boundary of €2, corresponding to a point & €
Q\ Q. Thus a belongs to the boundary of one of the (2, ; and we say that a is a corner
of (1 if the corresponding sector I',; is non-trivial (opening # 7 ) and we denote I';;
by I'y and €, by V,. Let A be the set of the corners a of 2. With each corner a,
we associate local polar coordinates such that

I, = {(ra,Qa) |7e >0,0<6, < wa} where w, is the opening of ', .

Let ¢ be the solution of the problem APy = f with f € H*Y(Q), s > 0.
Away from any neighborhood of the corners of 2, the solution ¢ has the optimal H**!
regularity. Near each corner a, ¢ has an asymptotics as r, — 0, which contains in
general other functions (the singularities) than the polynomials (the Taylor expansion).

Letus fix a € A. The asymptotics and the regularity of the solution ¢ in a neighbor-
hood of a only depend on special spaces of (pseudo) homogeneous functions Y, (T',)
and Z}, (T',) defined below. We drop the subscript a in the notations when no confusion
is possible.

12



Forany \ € C,let Sp, (') be the space

Q
(L) = {®(r,0) =11 "log"r ¢,(6) | ¢ € H'(0,w)}. 2.1)

q=0

Only certain subspaces Y7,.(I') contribute to the asymptotics of o : For A € C, Yy, (T')
is defined as the subspace of S}, (T') :

V5, (D) = {® € S3,(T) | A® is polynomial in (z,y) }. (2.2)

o If )\ is a positive integer, Y3 (') contains the space P2 (I') of homogeneous
polynomial (thus non-singular) functions ® of degree A\ satisfying the Dirichlet
boundary conditions. The space of singularities Zp, (I') is defined as a comple-
ment of P (') in Y3, (T)

e If )\ isnot a positive integer, Z3, (T') is simply defined as
Zp(T) = {® € 55,(I) | A® =0}. (2.4)

We denote by Ap; (') the set of A € C such that Z3, (') is not reduced to {0} . This
is a discrete set: this fact is a consequence of the ellipticity of the boundary value problem
to which it corresponds, see AGRANOVICH - VISHIK [1]. We can refer to Ap;(I") as the
set of singular exponents because only its elements A produce singularities, which are in
general of the form r*¢() .

In the case of AP, Api:(I") is closely related to the spectrum of the one-dimensional
Dirichlet problem on (0, w)

[¢]

H'(0,w)>¢ +—— —050€ H '0,w). (2.5)

Its eigenvalues are (’IZ)—”)2 with eigenvectors sin I%FQ and foreach k € Z* (set of non-zero

km/w

integers) the functions r sin Z—”H are non-zero elements of Ygf;/ “(T) . There holds

Lemma 2.1 Let ' be a plane sector of opening w # . Then

b kezy} if w#2r
Apu(T) = { b2 .
{§,k<00rk0dd} if w=2m.

Forany )\ € Ap;(T), the singularity space Z3{, (') is generated by

o 7 sin \@ if A\¢ N
P r(log rsin A + 6 cos M) — L(—=L) if AeN,

sinw

where (x,y) = (rcosf,rsinf) are Cartesian coordinates.
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Concerning the Neumann problem, definitions are similar: we set

Reall) = {@(x) = 3L log™ 6,(6) | ¢, € H'(0,0)},
Vi) = {®€ S.(T)| AP ispolynomial and 0,P

81“:0}’

then the singularity spaces Z3.,(I') and the set of exponents Axe,(I') are defined along
the same lines as above. There holds

Lemma 2.2 Let T" be a plane sector of opening w # w. Then Axew(I') = Apy(T") and
for any X\ € Axeu(T), the singularity space Z}. (T') is generated by

o 7 cos A0 if \¢N
New r*(logrcos A — Osin A0) + = (—=2-)*  if AeN.

sin w

Coming back to the polygonal domain (2, we use a smooth cut-off function y such
that x(rq) is 1 in a neighborhood of a and is zero outside V, , and we set
QD)\DiLa ('CE’ y) = X(TG) CI))\Dir,a (TG? ea)’

where @gir,a is the generating function in Lemma 2.1 corresponding to the sector I', .
Then one has the following theorem of splitting in regular and singular parts.

Theorem 2.3 Let ¢ be such that f = AP™p belongs to H*"1(Q). If forall a € A
the exponent s does not belong to Api.(T'y), then there exist coefficients vy, for each
A € Api(T'a) N (0, s) such that

P=> > YaPbua € HT(Q). (2.6)
acA0<A<s

A similar statement holds for the Neumann problem.

After localization near a corner a , the key of the proof is the Mellin transform

1
o7

Mlpl(A)

r

o d
/ r~2p(r cos §, rsin 0) o
0

M (] is defined for Re A < 0 and holomorphic. Moreover, the inverse Mellin transform
on the line Re A = 0 gives back ¢

o= /Rwr Mgl() dA.

Let h:=1r?f = r*Ag. Then MIh] is defined for Re A < s, meromorphic with poles
on A € N corresponding to the Taylor expansion of h in a. Moreover, with

L) : HY0,w) 3¢ —— 826+ N\ H(0,w),
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forany A € C and ¢ € H'(0,w) there holds r2A(1*¢) = r*L£(\)¢, whence
VAEC, ReA<0, LM\ = M.

As L(\)~! is meromorphic in C, the function £(\)~'*M|h](\) is a meromorphic ex-
tension of M[p] for 0 < ReX < s. The poles of £(\)™! are the square roots of
the eigenvalues of the operator (2.5), i.e. the ’j}—” , k € Z*. With ¢, the inverse Mellin
transform on the line Re A = s

o= [ PLO)TMEI) i
Re A=s
there holds by Cauchy’s residue formula

Yo — p = Res 7 L(A)*MI[h](N).
0<Re\p<s 2=
Moreover Y, is regular: it belongs to the subspace of H**(T") with zero Taylor part

at the corner a of T'. The residue in )\, belongs to the space Sp?.(I") and satisfies
r2A<Res r*c(A)*lM[h](A)) = Res *MIh](\)
A=Xo A=Xo

xalyQQ ) xalyQQ
= E 0°h(a) = E 0°f(a).
aql ad (a) 7“ -2 ayl ol f(a)
al=\o—

la|=Xo

Thus the residue in Ay of 7*£(\)"'M[h](\) belongs to Y32(T'). The separation from
the polynomial partin P, (T'), c¢f (2.3), yields the splitting of ¢ in the Theorem. |
For s = 1 the only contribution to the singular part comes from non-convex angles

with the first exponent = < 1. Thus spaces Kp; and Kne, as introduced in Theo-
rem 1.1 can be defined as

Kpi; = Span <90%f§”21 | wa > 7T> and  Kyew = Span <90§{:1“a | wq > 7r>. 2.7
Moreover
Klgir = Span <QD]317;7/:Q - wDir,a | Waq, > 7T> (28)

—7/wa

where p;, o is the solution of the problem APy = A(¢pire ") and similarly for the
Neumann problem.

2.b Corner singularities in polyhedral domains

The results of this paragraph can be found in [15] and again we adopt the presentation
of [12].

Let C be the set of the corners ¢ of the polyhedral domain 2 C R?, that we define
similarly to the corners of a polygon, with the requirement that for any ¢ € C the corre-
sponding cone I';; , denoted by I'.,is a non-trivial cone (i.e. it is neither a half space nor
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a dihedron). The corresponding neighborhood €1, ; is denoted by V. . In local spherical
coordinates p, € R, 9. € S?, the cone T',. is:

.= { Pe;Ve) | pe >0, 9. € G. C SQ} with a spherical polygonal domain G.. .

Let us fix ¢ € C. The asymptotics at ¢ of the solution ¢ of a Dirichlet problem
on Q depends on the spaces Y3, (I'.) and Z3..('.) defined similarly to the case of
dimension 2. We drop the subscript ¢ in the notations when no confusion is possible.

Analogously to (2.1), we introduce
Q [¢]
Sp(T) = {®(p, ) = p* Y "log?p ¢y (¥) | ¢, € H'(G)}. (2.9)
q=0

Then the spaces Yy, (I') and Z). (') are still defined by (2.2) (where A is now the
three-dimensional Laplacian) and (2.3) respectively. Moreover Ap;,(I') is still the set of
A € C such that Z}, (T') is not reduced to {0} .

Let AB" be the positive Laplace-Beltrami operator with Dirichlet conditions on G .
The operator AP is self-adjoint with a compact inverse. Let G(AR™) be its spectrum.
From the expression of A in polar coordinates

p°A = (pd,)? + pd, — A

we obtain that the set of exponents Ap;,(I") contains the roots of the equations A\(A\+1) =
p with € S(ARF):

Lemma 2.4 Let I be a polyhedral cone and let ny be the number of its faces. Then
peSAFIIN i np =1
Api(T) = { %i\/,u—i-i uG@(AD‘r)} if np =2
{- , HES(AGMIUN,  if np >3,

where Ny is the set of integers > 2. For any non integer X € Ap(I'), the singu-
larity space Z}, (T') is the space of the functions ®p. = p*¢(19) where ¢ spans the
eigenspace of ARY corresponding to the eigenvalue 1= \(A+1).

Coming back to the polyhedral domain ) we set
90/\D’§,c(377 Y,z ) X(IOC) q)Du“ c(p67 196)7

where ®3P  p=1,..., P isabasis of Zp,(T.). Then there holds
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Theorem 2.5 Let ¢ € HY(Q) such that AP%y belongs to H*~1(Q) and let ¢ € C.
If s — % does not belong to Ap;(T'.) then there exist coefficients v)P for each )\ €
Apir(Te) N (—%, 5 — %) and each p =1, ..., P, such that

X(pe)o— D> D WPepk, € HVY(RT, pldpe; L(Ge)), (2.10)

1 1
—5<>\<S—5 p

where H*T'(RT, p?dp; L*(G)) denotes the H*™' space on R with measure p*dp
and values in L*(G).

The proof follows the same lines as that of Theorem 2.3 and is based on the Mellin
transform of x(p.) ¢ with respect to the corner ¢, i.e. (we drop the subscript ¢)

dp

M) = 5- [~ eto0) 2.

where ¥ € G. The “operator pencil” is now
LO) : H(G)3¢ +— AA+1)¢—Agdec H(G),

and the “regular part” (g is provided by the inverse Mellin transform on the line Re A =
s — 2 of LIA)T'M[R](N) with h = p*A(xep). But, due to the presence of the edges
of I', corresponding to the corners of G, with ¢, we obtain no improvement in angular
regularity, but only in the radial direction. That is why the regular part in Theorem 2.5

belongs to H*!(R", p? dp; L*(G)) . ]

Similar definitions and results hold for the Neumann boundary condition if we define
the spectrum & (AR™) of AX" as the set of non-zero eigenvalues of AN,

2.c Edge singularities in polyhedral domains
For the sake of brevity, we describe the following results only for Dirichlet boundary
conditions. The results and the method are those of [12, §16]: see Theorem 16.9.

Let £ be the set of the (open) edges e of (2: for each point « € e, there exists a
neighborhood (2, ; in which 2 coincides with the wedge W, =I'¢ x R, where I'; isa
plane sector given in local polar coordinates by

.= {(7‘8,«98) |7e >0, 0< 6, < we} with w, the opening of T, .

We obtain local cylindrical coordinates by the adjunction of a coordinate z. along the
edge e. Let ¢ € ﬁ[l(Q) such that APy € H*~'(Q). Before giving in the next
paragraph a description of the singularities of ¢ along the whole edge e, we are going
to discuss briefly the structure of its singularities along e away from the corners of €.

So, let us fix e € £ and drop the subscript e. We investigate ¢ € ig (T x R) with
compact support, solution of the Dirichlet problem on the wedge AP"p € H*"}T'xR).
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Let w be the opening of the sector I' and ((x, Y), z) be the coordinates in I' x R.
The partial Fourier transform with respect to the variable z, p(z,y,2) — ¢(x,y,§),
transforms the equation Ay = f into

VEER, Y(x,y)el, (2402 —&)¢(x,y,8) = flz,y.6).

The change of variables (z,y,¢) — (Z,7,€) = (||, |£]y, &) transforms the above prob-
lem for each non-zero £ into

V(#,9) €T, (02402 —1)@(F,§,8) = Ef(2,75.£). (2.11)

Thus for each ¢, we have an equation on I' involving the two-dimensional Laplacian as
principal part. Writing the above equation (2.11) in the form

AYp=g+1v in T,

we derive from Theorem 2.3 by a bootstrap argument that the singularities of v have
themselves expansions as 7 — 0, starting with the singularities of AP in T':

6@ 9) - x) Y A (0 + Y eNFe) € HT), @12

0<A<s 1<g<s=A

where the sum extends over A € Ap;(I') and integer ¢, and 7 = /22 + 2. The
singular functions @7, are those defined in Lemma 2.1, while the supplementary ones:

i € St (1),

depend only on w, A and ¢ (*). Coming back to the original variables (z,y,¢) and
using the homogeneity of the functions @, we obtain (if no A belongs to N)

By &) = 3 PO (xrigl) @bl 0)
0<A<s
T lenrieh ey 0)) € HEHD).

1<g<s—A

The inverse partial Fourier transform yields the splitting of ¢ into regular and singular
parts

pley,2) = D (Kol 2) oy (r.6) 2.13)

Y Kl z) 9L00)) € HUNT X R),

* The ®N¢ are solutions of the recursive equations APT®NT = dNI2 If A ¢ N, &N is zero for
odd ¢ and of the form cr?®}. foreven ¢, with ¢ € R depending on w Aand q.
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where the edge coefficient v* is the inverse Fourier transform of |£[*4*(€). Thanks to
the uniformity of the first splitting (2.12), we obtain that |£]*3*(£) belongs to L*(R),
and hence 7 € H**(R) ("). The operator Kr acts as a lifting of trace and is defined as

Krld)(r, €) = x(r|€]) 5(9).

Finally, setting

RDlrF s[ ](l’,y,Z) = ICF[ )\](T Z) cbl)Sir(r 6) (2143)
+ Y Kel02(r,2) BRL(r0),  (2.14b)
1<g<s—\

we can write the expansion (2.13) in a synthetic way as

p— > Rhur. € H( xR) with € HA(R). (2.15)

0<A<s

In the block R, 1. ,[v*] . the term Kp[yY] @3, in (2.14a) is the leading term.

2.d Combined corner and edge singularities in polyhedral domains

The results and the method are those of [12, §17]: see Theorem 17.13. In [12] the
splitting of the solution in regular and singular parts is localized near each corner and in
the remaining interior parts of each edge. Here we give a new formulation of the results
which is global on the whole domain.

We are going to give a decomposition into regular and singular parts of the solution
¢ of the Dirichlet problem AP"yp € H*~1(Q) on the polyhedral domain (2. The corner
contributions are already present in (2.10). As for the edge contributions, they have a
similar structure to those of (2.15) and involve for each edge e € £, coefficients 73
defined on e for A in the set of exponents Ap;(T'e), ¢f Lemma 2.1, associated with the
bi-dimensional Laplace operator on the sector I'. generating the wedge which coincides
with ) in a neighborhood of e.

In order to state the regularity of the coefficients 7, along the edge e € £, we use a
smooth function d. on the closed edge €, which is equivalent to the distance to the ends
of e: if for example e = {x | r =0, z. € (—1,+1)}, we can take de(z.) =1 — 22.
The weighted Sobolev spaces V}'(e) which are the correct spaces for the coefficients 2
are defined for m € N and n € R by

Vi'(e) = {y e L) | (de)"" 0% v e L*(e), k=0,1,...,m}

and by complex interpolation for non-integers m .

Combining the corner expansions (2.10) for each corner ¢ € C, with a blow up of
each edge e € £ atits ends (which are two corners of (2) and an edge expansion like
(2.15), we can prove

T Essential for the estimates is the invertibility of the operator A — 1 from H'(I') onto H~*(T).
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Theorem 2.6 (i) Let ¢ € ﬁ[l(Q) such that AP"y belongs to H* *(Q). If for all
celC, s— % does not belong to Api(T';) and if for all e € £, s does not belong to
Apir(Te), then there exist:

e Coefficients y)P foreach A € Api(Te)N (=3, 8 — ) and p=1,..., P,

2 2
e Functions v} € V= (e) foreach A € Api(Te) N (0, s)
such that
=D DL D Tebhe =D DL fbwenhd] € HU(Q).  (216)
cEC,%<)\<s,% P ecf 0<A<s

(ii) Conversely, for any coefficients v’ € R and any functions ) € V‘g_;)‘(e) there
exists a function ¢ admitting the expansion (2.16) and such that AP*p € H*~1(Q) .

To describe the operators ﬁgir,e;s , we need to define the smoothing operator /C|:]

adapted to the edge e, cf (2.14), and for this we introduce the stretched variable

Ze 1
Ze = dz,
/0 de(2)

where z = 0 corresponds to an interior point of e. The change of variable z, — Z is
one to one e — R and for any function v defined on e, we set 7(Z.) = 7(z.) . Then
Ke[V](pe, ze) is the convolution operator with respect to Z :

1 t r
e ey ce) — - - ~t_Ne dt ith 6:_67
Kol (per 7) /Ma(pe)v( )t with g, = ¢

where « is a smooth function in S(R) such that [, @ = 1. Then the block &, ..,[7.]
has the following structure

ﬁgir,e;s[’yé\] (l‘, Y, Z) = ’Ce [72] (pe> Ze) q)gir,e (pea 96) (21721)
+ > Kelv 2 (per ze) DB (pe.be).  (2.17b)
1<]ql<s=A

In the leading term (2.17a), @gir,e is the function defined in Lemma 2.1 for w = w,
and in (2.17b) q is a multi-index, 9 is a derivative of 7} of order < |q| and @AD%g,e
belongs to SptlU(T,) .

The theorem of regularity is an obvious particular case of the previous one:

Theorem 2.7 Let ¢ be such that AP"p belongs to H*"1(Q). If for all ¢ € C, the
intersection Api(Ic) N (—%, 5 — %) is empty and if for all e € &, the intersection

Apir(Te) N (0, s) is empty, then ¢ € H*T1(Q).
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As a particular case of Theorem 2.6 for s = 1 we obtain a characterization of the
space Kp; , ¢f Theorem 1.1, namely that Kp; is parametrized by certain discrete co-
efficients corresponding to corners and by edge coefficients from the weighted Sobolev
spaces V;'(e) associated with nonconvex edges.

Corollary 2.8 Let Co = {c € C, Api(Te) N (—3,2) # 0} and & ={e € &, we > w}.
For any c € Cy there is only one )\ in Api(I'c) N (—%, %) and we denote by Ppy, .
the corresponding singularity. For any e € & there is only one \ in Ap;(I'c) N (0,1)

and we denote by Py, e = Te /% sin ) Jwe the corresponding singularity. Then for any

complementary space Kp;, of H* N I—ifl(Q) in D(AP™) the following mapping is one
fo one:
Ko~ Tlec, B % [eeg, V217" (e)
p (Yer Ye)s

where 7. and 7. are the coefficients such that

Y — Z Ve X(p0> q)Dir,C(pc’ 190) - Z Ke ['78](987 Ze) q)Dir,E(pe’ 06) € HZ(Q)

ceCo ecéo

Remark 2.9 The only information which is not a straightforward consequence of Theo-
rem 2.6 is the fact that for any ¢ € Cy there is a single element A in Ap;, (') N (—%, %) .
This is a consequence of the monotonicity of Dirichlet eigenvalues. The first eigenvalue
(1 of the Laplace-Beltrami operator on the unit sphere is simple and is 0. The second

one iy is triple and is equal to 2. Thus the first A > 0 in Ap(T.) is > 0 and the

second oneis > —% 4 /pp + 5 = 1. m

3 Singularities of Maxwell operators on polygonal domains

The previous analysis for the Laplace operator can be extended to any strongly elliptic
boundary value problem, see [12]. We explain now how this analysis can be adapted to the
Maxwell problems on polygonal domains in two dimensions. In this section, we describe
the singular functions and the sets of singular exponents, and state our main results. The
constructions leading to these results will be presented in section 5.

3.a Bi-dimensional Maxwell equations

Maxwell equations in R? are obtained from the three-dimensional ones by the elim-
ination of one coordinate (say z ) and of the corresponding component in the fields. The
curl has now two (dual) forms, one scalar when applied to 2D fields curl v = 0yvy—0sv1
and one vectorial when applied to scalar functions curlw = (Gyw, —0,w) . The defini-
tions of the divergence and gradient are obvious: divw = 0jv; + 009, and grad w =
(01w, Dw) . The space Xy is then the space of v € L?(Q)? such that curlv and divw
are L?(Q), and with tangential boundary conditions.
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Thus the Maxwell “electric” problem under consideration is:

uc Xy, Yve Xy, /curlu curlv 4+ divu div'u:/f-'u, (3.1
Q Q

and the corresponding boundary value problem is for f € L*(2)%:

curlcurlu — graddivu = f in Q,
uxn=0 and divu=0 on 0, (3.2)
ue L2(Q)? curlue l*(Q) and divu € H(Q).

Of course we have also the pseudo-Maxwell version of problem (3.1) by replacing
the variational space Xy by Hy = Xy N H'(Q)%.

We are going to investigate the solutions w when the data f belong to the Sobolev
space H*"(Q)?, with s > 1. Since the boundary value problem (3.2) is an elliptic
system, the solution u belongs to H*™1(V N Q)? for any open set V such that V' does
not meet any corner of (2. The singular behavior of w is attached to the corners a of
Q.

3.b Homogeneous function spaces
Like for AP | we start with the introduction of the corresponding spaces of homo-
geneous fields S3 , YA and Z) on a plane sector I".

Let us denote by T'* = T'\ {0} the closure of T' without its vertex. Then Cg°(T™)
denotes the space of smooth functions with compact support contained in I'*. We note
that the space S}, (T') introduced in (2.1) can be equivalently defined as

Q
SBII‘(F) = {(I) € HI{)C(F*) ‘ ¢ = T)\ ZlquT ¢q(9)}a
q=0
where Igfﬁm (T*) is the space of ® such that for all x € C°(T'*), the truncated function
x® belongs to H'(T") . We define similarly
B Q
SN(I) = {U e X°(T") | U=r*> log'ru,(0)}, (3.3)
q=0
where U € X12¢(I'"*) means that for all y € C°(T™*), the truncated field YU belongs to
Xx . Thus U x n is zero on JI'. The space Y (I') corresponding to Yy (T') in (2.2)
is defined as:
YA(D) ={Uesy()| divUe ST,

o . (3.4
curlcurlU — grad divU is polynomlal}.

Note that the natural boundary condition divu = 0 on 0f) is present in the condition
divU € Sp. (') which also takes into account the regularity condition divu € H(€Q).
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e If ) isapositive integer, Y (I") contains the space P (I') of homogeneous poly-
nomial fields U of degree A satisfying the boundary conditions U X n = 0 and
divU =0 on 9I'. Like in (2.3), let Z}/(T') be a complement of P (T') in ¥ (T)

Yy (D) =Zy(T) @ Py (D). (3.5)
e If ) is not a positive integer, Z*(T") is simply defined as
{UesSy(D)| divU e Sp,'(T), curleurlU — graddivU =0}. (3.6

We denote by Ay (T') the set of A € C such that Z3(T') is not reduced to {0}. We
prove in section 5:

Lemma 3.1 Let I" be a plane sector of opening w # 7. Then the set of electric Maxwell
singular exponents is

AnD)={XxeR\{1} | A+1 or A—1belongsto Apy(T)}.

The corresponding spaces Zx(T') of singular functions are generated:

(i) If \+1¢€ Api(T") by

UM (7">‘ sin A0, r cos )\9) if ¢ N
N (Tk(logr sin A0 + 0 cos ), r*(logr cos A0 — @ sin 9)) if AeN,

These functions are the gradients of the Dirichlet singular functions of the Laplace
operator AP | thus have zero curls and regular divergences.

- (r* sin A0, —r* cos \G) if N¢N
M (r*(logrsin A0 + 0 cos §), —r*(logrcos A\ —Osinf)) if A€ N,

The divergences of these functions are the singular functions of AP .

3.c Regularity and singularities in X

With U]A\,’f”a for p = * the generating functions in Lemma 3.1 corresponding to the
sector I', , we set for each a € A

uN” (z,y) = X(ra) UN%(Ta, 0a).

Definition 3.2 Let s > 0 and a € A. We call admissible singular functions the func-
tions ug\v’f’a € Xy \ H*™(02)? such that div u?\fa € H'(Q). The set of corresponding
exponents \ is called the set of admissible exponents and denoted by Ay (T'y) . [ |
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Lemma 3.3 Forany s > 0 and a € A there holds

An,s(Ta) = {Ae(-1,s]| A+1¢€ Apu(la)} (3.7a)
U{reLs]| A=1€ Ap(Ta)}- (3.7b)

Indeed we deduce from Lemma 3.1 that ) Na " belongsto Xy ifand onlyif A > —1.

Jr

The divergence of wy . is zero near a, thus always belongs to H'(Q2). However the

,a

divergence of u?‘v’_ is non zero and singular near a and belongs to H'() if and only
if A\—1 > 0. Finally uN belongs to H*t1(Q)? if and only if A\ > s. ]

Here follows the statement of regularity and singularity for problem (3.1).

Theorem 3.4 Let w be the solution of problem (3.1) with f € H51(Q)?.

(i) If for all a € A, the exponent s does not belong to Ay.s(I'y), then for each X in
An.s(Ty) there exist coefficients vy if A+1 € Ap(Ta) and v~ if A—1 € Ap(Ta)

such that . .
u — Z Z v u?\,; c H*t(Q)% (3.8)
ac€A NeAy..(Ta)

(ii) If for all a € A the set Ay.4(Ty) is empty, then u € H*1(Q)%.

The proof uses exactly the same tools as for Theorem 2.3. But now, the Mellin trans-
form of w (localized) is defined for Re A\ < —1 and meromorphically extended up to
Re A < s. The regular part is still the inverse Mellin transform on the line Re A = s. The
residues belong to Y3 (I') and we obtain a singular part which is a priori a linear combi-
nation of the uNa forall A € Ay(Ty)N(—1,s). Butas divu belongsto H'(), only
admissible singularities subsist. |

3.d Different choices of regular and singular parts

Theorem 3.4 shows the existence of a splitting into singular functions and a regular
part that is as regular as desired. If the singular functions are not constructed according
to our explicit formulas in Lemma 3.1, then additional singular terms can be exchanged
between the “singular” and “regular” parts: we describe this phenomenon for the simple
but important case of the first singularity in Xy \ Hy .

Let us consider the expansion (3.8) for s = 1 only one singular function for each
reentrant corner does not belong to H': this is u) N o for A = m/w, — 1. If we put the
other terms of the expansion (3.8) into the regular part, we obtain an expansion of the type

w=um Y YaWa (3.9)

acA, a non—convex

with w, € Xy \ Hy and uy) € Hy .
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The question of the regularity of this pseudo regular part wz) is an important prob-
lem if one wants to use the splitting (3.9) for a numerical approximation of w by a singu-
lar function method, that is, by trial functions that are composed of the singular functions
w, and regular functions (e.g. piecewise polynomials), see [20]. The convergence rate of
the whole method is then determined by the regularity of w g .

We compare five constructions for w, and wz). In each case, u(y) will have a
decomposition itself, and its regularity is determined by its first singular function. For
simplicity, we assume that there is just one reentrant corner of opening w > 7 situated
at the origin 0 and x denotes a smooth cut-off function equal to 1 in a neighborhood of
0.

In this case, uiy € H otl with ¢ < A*, where \* is the exponent of the first
singular function in w) . Thus A\* will directly yield the convergence rate of a singular
function method for the approximation of w .

(i) According to Lemma 3.1, the natural choice for w is grad(y r™/* sin %9) . In this
case, the next exponentin Ay, (I') is A* =25 — 1 if w # 27, and \* =3 —1 =1 if
w = 2m . Thus varying w € [, 27|, the function A* covers the whole interval (0,1).

(ii) We can choose a divergence free form of w: curl(y r™/* cos Z%) . This expansion
is, in fact, identical to (i), so \* is the same.

1 T T T T

0.9t ©—6 (i) - (ii) .
;\DT X% (iii) - (v)

0.8} .

0.7+ i
0.6 -
0.5t A
0.4F o ' i
0.3F % i
0.2} X = .

0.1t e -
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(iii) A more abstract construction for w is described in [23] and [6]. Let ¢ be the
solution of the Dirichlet problem

ADHQD - SDir 3

where Sp;, is the first dual singular function of the Dirichlet problem, i.e. a generator of
the one-dimensional space K7, see Theorem 1.3 and expression (2.8). Then the choice
of w = grad ¢ provides a splitting of © where w is orthogonal in X to the curl-free
fields in Hy . Thusif curl f = 0, this is an orthogonal decomposition within the spaces
of curl-free fields.

It is well known that Sp;, has a singular part P/ sin 7=, see (2.8). Therefore, besides
the main part cqr™/* sin ™ ”9 with non-zero ¢y, ¢ contalns a singularity of exponent
2—Z . Thus w contains a term of exponent 1— = . For w 37”, 27 , this exponent does
not belong to Ay, . Thus wg) must contain this singularity, too, and we have

N =min{Z-1,1-2}¢€(0,4
This is less regular than the choice (i) if w < 3%

(iv) A similar construction in [23] and [3] is w = curly with ¢ a solution of the
Neumann problem
ANeu()O = SNeu 5

where Sney 1s the first dual singularity of the Neumann problem. This gives a splitting
with w orthogonal in X to the divergence-free fields in Hy . Thus if div f = 0, this
is an orthogonal decomposition within the spaces of divergence-free fields. This singular
function w is linearly independent of the one in (iii). But modulo H'(2), these two
functions are proportional, and their \* are also the same.

(v) Another natural construction is the orthogonal decomposition of u with respect to the
inner product in Xy, with the part wy) in Hy and the residual yyw in H ]%, Thus
w gy is the solution = of the variational problem in Hy and 7w is the difference
between the solutions of the Maxwell and pseudo-Maxwell problems with the same data,
¢f Theorem 1.3. In this case, wy) contains a singularity of exponent 1 — =, see (3.13)
just below. Thus A\* is the same as in (iii) and (iv). Note that even if curl f = 0 or
div f = 0, this decomposition is in general, not the same as the one in (iii) or (iv),
respectively.

3.e Singularities in . Comparison

If instead of (3.1), we consider the variational pseudo-Maxwell problem in Hy , the
corresponding boundary value problem is the same as (3.2) except the regularity require-
ments: we have now u € H'(Q2)? and no special regularity on divw , which is only
L?(92) . The associated spaces of homogeneous functions are

SX(T) ={U € HY(T*) | U(z) = r’\ZIOg AC (3.10)
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and

YA(T)={UeSy(T)| divU=0 on 0T,

R : (3.11)
curlcurlU — grad divU is polynomlal}.

Then Z;\,(F) and A ~(T) are defined similarly as their counterpart for X . As we are
in dimension 2 with no other singularity than 0 in I', there holds

An(T) = Ay (D). (3.12)

But the set of admissible exponents is different. This is the set /N\N;S(Fa) of the \ €
An(T) such that u}\\;f’a € Hy \ H¥"1(Q)?. Then instead of (3.7), there holds

An.s(T) = An(T) N (0, s]. (3.13)

Thus we see that both sets Ay, (') and Ay, ,(I') are different if and only if Ap;(I') has
elements in the interval [—1,+1],i.e. if w > 7 (non-convex corner). Then

AN;s = {g - 1} U (AN;sﬂKN;s) and KN;S = {1 - g} U (AN;S QKN;S).

4 Singularities of Maxwell operators on polyhedral domains

We continue the investigation of the Maxwell and pseudo-Maxwell problems, now
on polyhedral domains in R? . Like for polygonal domains, we describe how the general
theory of corner and edge singularities applies to the Maxwell problems and we present
our main results. The detailed constructions follow in section 6.

If we assume that the right-hand side f belongs to H* '(Q)*, with s > 1, the
solutions of problems (1.1), (1.2), (1.3) or (1.4) are regular in any neighborhood which
does not meet any corner or edge of (2. The singular behavior of the solutions is attached
to corners and edges.

4.a Corner singularities

Let us recall that C is the set of the corners of (2 and that in a neighborhood of each
c € C,  coincides locally with a polyhedral cone I'., to which correspond spherical
coordinates (p, V) -

As in dimension 2, we have to introduce the spaces of homogeneous fields S3,, Y3
and Z) corresponding to the “electric” boundary conditions, on the cones I'. for any
corner c¢ € C. The procedure for the “magnetic” conditions is strictly similar.
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Let us fix a corner ¢ and drop the subscript ¢. The space Sy(I") is defined as

Q
Sy(D)={Ue X" | U= pAZIOg pue(9)}. 4.1)

q=0
We now define Y% (I") as the subspace of S (T'):

YAD) ={UeSy{I)| divUe Sy, (T),

: . : 4.2)
curlcurlU — grad divU is polynomlal}.

Then the singularity space Zf‘v (T") is defined as in dimension 2, ¢f (3.5)-(3.6), and the
set of electric Maxwell exponents Ay () is the set of A € C such that Z3(T") # {0} .
We prove in section 6:

Lemma 4.1 Let T’ be a polyhedral cone in R? with vertex in 0 and characterized in
spherical coordinates by 9 € G C S*. Let  denote the vector of coordinates (z,, 2).

a) The set of non-integer electric Maxwell singular exponents is given by
ANINZ={NeR\Z | A+1€Api(T) or A€ Axeu(T) or A—1€ Ap(I)}.
The spaces Z(T) have correspondingly the three types of generators:

Typel. If\+1¢€ Apy(I) : Uy' = grad ®}H

Type 2. If ) € Aneu(D) - U}:,Q =grad ®}, X =,

Type3. IfA—1¢Ap(D) : U’ =2\ — 1)@}l — p? grad O},

with ®f. € ZE. ('), cf Lemma 2.4, and its Neumann analogue ®3., € Z{.,(T') .

b) If G is simply connected, the values A\ = —1 or 0 do not belong to An(T').

c) If G is not simply connected, the values \ = —1 and 0 belong to An(T") and the
corresponding U?{,’p have zero curl and divergence.

Here are now the analogues of Definition 3.2 and Lemma 3.3. With a basis U}\V’f’c of
An(T,), we set for each ¢ € C

uN” (2,9, 2) = X(pe) U pe, Ve).-

Deﬁnition 4.2 Let s > 0 and ¢ € C. We call admissible singular functions the func-
tions uy”, € Xy \ H5+1(R+,pc dpe; L*(G.. ))3 such that divuy?, € H(Q). The set
of corresponding exponents A is called the set of admissible exponents and denoted by

AN;S(FC> . | |
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Lemma 4.3 Forany s > 0 and c € C there holds

An;s(Te) = {xe(=2,s =14 M+1€ Apu(le)} (4.3a)
Ure(=55—3]1 A€ Axeu(le)} (4.3b)
U{re@G,s—3| A—1¢€Apu(le)} (4.3¢c)

U {—1, 0} N (—%, 5 — %] if G is not simply connected. (4.3d)

PROOF. Letus fix ¢ € C and drop the subscript c¢. If U is a non-zero homogeneous
function of degree )\ of the form p*v(¥) with v € L*(G), there holds

xX(p)U € L*(I) <= A>3 (4.4a)
X(p)U & H*HH(RY, p*dp; L*(G)) <= A <s—1. (4.4b)

2

The fields U}\V’I have zero curl and divergence, like the Uj\\,’p for A = —1,0. Thus the
corresponding x(p) Ux” belong to Xy if and only if they are in L?(T'), whence (4.3a)
and (4.3d).

The fields U}\V’2 have zero divergence but non-zero curl, ¢f formulas (6.6). As their curl
has the homogeneity A — 1, x(p) U]A\,’2 belongs to Xy if and only if A — 1 > —3,
whence (4.3b).

The fields UX® have non-zero curl and divUY® = (202 + \)®)-!. Thus div(xUR")
belongs to H'(Q) if and only if A — 1 > —1, whence (4.3¢). n

Similarly to the expansion (2.10) for solutions of AP, we can prove by Mellin
transform that the solution w of problem (1.1) with f € H*71(£2)? can be expanded in
a neighborhood of each corner ¢ € C so that there holds

X(pe) u — Z Z P u?‘\}f’c € H*™' (R, p2dpe; L*(Ge)). 4.5)

AGAN;S(FE) p

4.b Edge singularities

Let us recall that £ is the set of the edges of {2 and that in a neighborhood of each
e € &£, () coincides locally with a wedge W, = I'. xR, to which correspond cylindrical
coordinates (7,0, z¢) . Let us fix e € £ and drop the subscript e .

We have seen, see (2.13), that the edge singularities for AP have a sort of tensor
product structure whose polar parts (i.e. in (r,6)) are the singularities at the corner of
the sector I' of the problems obtained by partial Fourier transform with respect to the
tangential variable z. Moreover, the leading part of these singularities does not depend
on the dual variable ¢ of z. In other words, the leading singularities can be determined
by the consideration of functions defined on the wedge W = I' x R, but not depending
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on the variable 2. This feature is common to any strongly elliptic problem. That is the
reason for the introduction of the spaces

Q
SNW) ={U e Xy*T" xR) | U=r*> logiru,()} (4.6)

q=0
and
YA(W)={Uesy(W)| divUe Sy (W),

R . 4.7
curlcurlU — grad divU is polynomlal}.

Then the space of singular functions Z3 (W) is defined along the same lines as for cor-
ners:

e If ) is a positive integer, Y2 (W) contains the space Py (W) of homogeneous
polynomial fields U of degree )\ independent of z satisfying the boundary condi-
tions U x n =0 and divU =0 on OW . Let Z3,(W) be such that

YN (W) = Zy(W) @ Py (W). (4.8)
e If ) is not a positive integer, Z*(W) is simply defined as
{UesSy(W)| divU € Sp, (W), curlcurlU — graddivU =0}.  (4.9)

We denote by A (W) the set of A € C such that Z3 (W) is not reduced to {0} . We
prove in section 5:

Lemma 4.4 The set of the exponents A (W) attached to the wedge W =T x R is
AvW)={XxeR\ {1} | A=1, X or A+ 1 belongs to AP™(I')}.

The spaces Z(T) have correspondingly the three types of generators:

Typel. IfA+1¢€App(T) : UN' = (U}\V’Jr, 0) = (grad pt', 0),

Type 2. If ) € Api(T) : Uy’ = (0, @),

Type3. IfA—1¢€ Api() : UV = (Uy, 0),

where @, € ZE. (T') are the Laplace Dirichlet plane singularities, cf Lemma 2.4 and
U;\\,’i the electric Maxwell plane singularities, cf Lemma 3.1.

Here are now the analogues of Definition 3.2 and Lemma 3.3.

Definition 4.5 Let s > 0 and e € £. Let 3. be a smooth cut-off function with support
away from the corners and the other edges of () and (3. = 1 in a neighborhood of a point
in e. We call admissible singular functions the functions U])‘\;fpe such that

ﬁeUfo; € Xy \HH(Q)® and div (ﬁevxg) e HY(Q).
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The set of corresponding exponents A is called the set of admissible exponents and de-
noted by An.s(We). n

Lemma 4.6 Forany s > 0 and e € £ there holds

An;s(We) = {de(-1,s]| A+1¢€ Apu(Te)} (4.10a)
U {2 e(0,s]| A€ Apu(Te)} (4.10b)
U{re@s]| A=1€Apu(Te)}. (4.100)

PROOF. Letus fix e € £ and drop the subscript e. If U is a non-zero homogeneous
function of degree A of the form r*v(6) with v € C>(]0,w]), there holds
B(r,z)U(r,0) € L* (W) <= > -1 (4.11a)
B(r,2)U(r,0) ¢ H"Y(W) <= X\ <s. (4.11b)
The fields Uy N ' have zero curl and divergence. Thus puNt v belongs to X if and only
ifitisin L?(T"), whence (4.10a).

The fields U }\\,’2 have zero divergence but non-zero curl. As their curl has the homogeneity
A—1, ﬂU}\\,’2 belongs to Xy if and only if A —1 > —1, whence (4.10b).

The fields Ux® have non-zero curl and div Uy = (20)®3-L. Then div(3Uy") belongs
to H'(Q) if and only if A — 1 > —1, whence (4.10b). [

4.c Regularity and combined corner and edge singularities

We are now ready to give the main statement of splitting in regular and singular parts.

Theorem 4.7 Let u be the solution of problem (1.1) with data f € H* 1(Q)® with
s > 1. We assume that:

e forall ceC, s— % does not belong to Ay.4(T';) ,
e Forall e € £, s does not belongto Ay, ;(We),
Then there exist:
e Coefficients v} foreach \ € Ay.4(T.) and p,
e Functions v)? € V= Me) foreach \ € Ay, (W,) and p

such that
=y 3 Ywrwr=d Y D&Y € BT(Q). @41
ceC XeAn;s(Te) P ecf XeAn,s(We) p
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In (4.12) the block of singularities ﬁ}\\,’«f; : [72P] has a structure similar to the blocks
appearing for the Laplace operator AP™ in (2.17), namely

ﬁ?\/"ﬁ;s[%\’p](%yaz) = K€[72\7p](p6726) U?‘\;i(pe,ee) (4133)
+ Y K2 (pes ze) UNE(pe, be). (4.13b)
1<]g] <s=A

In the leading term (4.13a), U}\V’f?e is the function defined in Lemma 4.4 and in (4.13b)
q is a multi-index, v>? is a derivative of v, of order < |q| and U}\V’fﬁq belongs to

S])\\,Hq'(We) )

As a consequence, the corresponding regularity statement is

Theorem 4.8 Let s > 1. If

o forall ceC, Ay, (L) is empty,

o forall e c &, An.s(We) is empty,

then for any data f € H*"*(Q)3 the solution w of problem (1.1) belongs to H*T(Q)3.

Remark 4.9
(i)Let o € (—1,s] suchthatforall e € £ andall A € Ay.,(IV,) thereholds o—\ < 1.
Then we have the expansion of u

w =Y D > Rrwr=> Y Y K UNL € HTH(Q),

ceC XeAn,s(Te) P e€€ NeAn,,(We) P

where the edge contributions are limited to the leading terms, without the complicated
“shadow” terms (4.13b).

(ii) If moreover the sum over the corner singularities is restricted to A € Ay.,(I'c), then
the coefficients 27 along the edges are not the same as in (4.12), and only belong to
Ve e).

(iii) If, with s > 1 and o € (—1,s) there holds

e forall ceC, Ay ,(I'c) is empty,

o forall ec &, Ay, ,(We) is empty,

then for any f € H**(Q)? the solution w of problem (1.1) belongs to H°t1(Q2)%. m

4.d Regularity of solutions

Taking advantage of the knowledge of the sets Ay.(I'c) and Ayn.,(We), ¢f Lem-
mas 4.1 and 4.4, we can give more explicit regularity statements than Theorem 4.8. Re-
lying on this theorem, we only have to determine the minimal elements of the admissible
sets of exponents for each corner and each edge.
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(i) SCREENS AND OTHER NON-LIPSCHITZ DOMAINS. If {2 has screen parts, then it

has edges e where w, = 27 . Then the least value in Ay, oo (We) is —% .

As Api(T'e) and Aney(I'c) have no element in [—1,0], ¢f Lemma 2.4, the least
value in Ay, o(I'c) is —1 if Q is not locally simply connected.

In both situations, the solution w of (1.1) satisfies

ue H(Q)?, Vvr<i, and  generically u & H2(Q)3.

(i1) LOCALLY SIMPLY CONNECTED DOMAINS WITHOUT SCREENS. The least value in
all the sets Ay.oo(We) for e € € is givenby A\¢ — 1 where

)\g:min{ o fwe 73 } (4.14)

P 3 ifwe=12
The least value in all the sets Ay, o(T.) for ¢ € C is given by min{\Z"" —1, A\¥*"} with

Dir __ : . Neu — :
Al = min Apir(Te) and  A; min ANeu(Te), (4.15)

where Ap;;(I':) and Aneu(Te) are the least positive elements of Ap;,(I'c) and Ane(Te) :
with upi(G.) and pnen(Ge) the least non-zero eigenvalue of the Laplace-Beltrami op-
erators AQ" and A, there holds

)\Dir(rc) == _% + ,uDir(Gc) + i and )\Neu(rc) == _% + ,uNeu(Gc) + i .
The solution w of (1.1) satisfies
ue H'(Q)?, Vo, (0 <s and o <min{Xe¢ —1, A\g" =1, Av+11). (4.16)

Here are a few particular interesting situations

(a) If Q is not convex, then w € H™(Q)* forall 7 < min{Ae, AP™ + 1}. Thus u
belongs to Hz(€2)® but notto H'(€)?.

(b) If 2 is convex, the monotonicity of Dirichlet eigenvalues allows then to prove that
Ae < AP thus w € H*(Q)3 forall o, 0 < s and o < min{\g—1, A¥"+1}.

(c) If Q is a parallelepiped, uw € H'*7(Q)3 forall o, 0 < s and 0 < 2.

4.e Singularities of solutions

In the spirit of Remark 4.9, we are going to give simplified expressions for the singular
part of u for o small enough. We assume now that € is locally simply connected.

If we take, compare with (4.16),
o <min{le, AZT + 1, ANev 21 (4.17)
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then the singularities in the splitting (4.12) only involve gradients and we have

w — > > x(pe) grad B (pe, Vo) (4.18a)

ceC >\+1€ADir(FC)

= > Y Ke[Ix(pe) grad, @3 (pe,0e) € HTT(Q),  (4.18b)

ecé >‘+1€ADir(Fe)

where in (4.18a) A + 1 belongs to (0,0 + 3), in (4.18b) A+ 1 belongs to (0,0 + 1)
and grad, is the gradient associated with the cartesian variables x, = pe cosf, Y. =
pesinf, and z. .

For ¢ = 0, we only have one contribution per non convex edge and at most one per
corner: Denoting like in Corollary 2.8 Cy = {c € C, App(I'e) < 3} and & = {e €
E, we > 7}, the splitting (4.18) takes the simplified form

u - Z ’YCX(pc> gradq)Dir,c(pcﬂ?c) (4.19a)
ceCo

— 3" Kelve x(pe) grad, Poielpe,0e) € H'(Q), (4.19b)
e€e&y

where ®p;, . and Pp;, . are the singularities of AP agsociated with the smallest eigen-
value of the Dirichlet Laplace-Beltrami on G, and (0,w.) respectively.

Remark 4.10 In the splittings (4.18) and (4.19), the singular generators can also be ex-
pressed as curls since for any harmonic and homogeneous function ¢ of degree p, cf
(6.6b):

(u+1)grad ® = curl(grad ® x x)

and
grad, (pL sin pbf,) = curle(pf cos pbe),

where curl, denotes the two-dimensional vectorial curl in the (z.,y.) plane, completed
by a zero tangential component along the edge. [ |

Another interesting question in the framework of the splittings (4.18) and (4.19), is to
know whether it is possible to write the singular parts as gradients in a global way.

Lemmad.11 Let 0 € [0,)\¢) and c € C. Let ® = @ . be a singularity of the
Laplace Dirichlet problem on T'.. Then

x(pe) grad ® — grad (x(p.)®) € H* () (4.20)

and ¢ := x(pe)® belongs to I-(jfl(Q) and is such that Ay isin H?(S2).
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Remark 4.12 The limitation of the regularity in (4.20) and for A® comes only from
the brutal cut-off of the edge asymptotics of ¢ away from the corner. A refined cut-off
procedure [12, §16.C], would yield a similar statement without any limitationon o. =

Lemma4.13 Let 0 € [0,)\¢) and e € £. Let & = ®N be a singularity of the

Dir,e

Laplace Dirichlet problem on T, with A < o. Letfor s > o, v € V¥ *(e). Then,
Kelv] x(pe) grad, ®(pe, 0c) — gradUCe [de ] x(pe) P(pe, ‘98)) S HU—H(Q) (4.21)

and ¢ = K[de 7] X(pe)® belongs to ]fll(Q) and is such that Ay isin H°(2).

Remark 4.14 Beyond what could be done by the introduction of correct “shadow” terms,
it is impossible to avoid the limitation of the regularity by the weight —o in the space
containing the edge coefficient . This implies that, if we apply such a refined statement
to the edge terms in (4.18b), we have a sharp limitation by the smallest corner exponents
which does not correspond to gradients (AY®" + 3 and g™ + 2). n

As a consequence of the expansion (4.18) and of the two previous lemmas, we obtain

Theorem 4.15 Let ) be locally simply connected, o < min {)\g, ANew + %, AP 4 %}
and s > o. Then for any data f € H*"'(Q)3 the solution u of problem (1.1) can be
split in the following way

U = Upeg » + grad ¢ 4.22)

where Uyeg . € HPH(Q)? and ¢ can be written as

po= > D x(pe) Ohyelpes V) (4.23a)
c€C XeApir(Te)
+ Z Z ICE [de’}/é\] X(pe) q)l)sir,e(p& 06)' (423b)

ec& )\EADir(Fe)
Here ¢ € IOJI(Q) satisfies A € H7(S2).

When applied with ¢ = 0, the above statement can be compared with Theorem 1.1
which gives the splitting of any element of X in the sum of an element of Hy and of

aterm grad ¢ with o € H'(Q) suchthat Ap € L2(Q), ¢f[4, 5, 13].

4.f Singularities in Hy

We conclude this section by some remarks on the regularity of the variational problem
(1.3) posed in Hy C H'(Q2)?. In section 3.e, this question was discussed for polygons.

We saw that the set of exponents Ay. (') associated with the pseudo-Maxwell problem
was, in general, different from Ay 4(I'g) associated with the Maxwell problem. Still
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these exponents were related to those of the Dirichlet problem for the Laplace operator in
a simple way.

Consider now the case of a three-dimensional polyhedral corner c. If the cone I,
is convex, then the Xy -singular functions belong to H', and for the Hy -singular func-
tions, the divergence has H' regularity. Thus the two problems have the same singulari-
ties near the corner c.

We suppose therefore that the cone I'. is not convex. The set of admissible expo-
nents Ay.¢(I'c) associated with problem (1.3) is defined by the usual procedure like in
dimension 2, by setting instead of (4.1) and (4.2):

Q
SN (T ={UeHy{T,)| U= pAZIOg pug(9)} (4.24)

q=0

Yx(Te)={UeSN(T.)| divU=0 ondl,,

o . (4.25)
curlcurlU — grad divU is polynomlal},

and defining the singularity space Zj\V(F) and the set of exponents A ~(T¢) correspond-
ingly.

The set of admissible exponents for a right hand side in H*~1(Q2)? is then simply
(compare with Lemma 4.3)

An.o(T ={ eC| A€ Ay(l,) and ReX € (—3,s — 1]}

There exist general results on the exponents of the singular functions for this problem
in the case of a Lipschitz cone (KOZLOV - MAZYA - ROSSMANN [18]). For instance,
there is a strip —1 < Re A < 0 that does not contain such exponents. Note that this does
not imply H3/2(Q) regularity, as it would for a cone with a regular base, because we have
strong edge singularities here. The lowest edge exponent is A* < 1/3, see section 3.d
(iii), and this corresponds to H'*? regularity for v and H° regularity for divw for all
o< A",

5 Maxwell edge singularities

In this section, we are going to prove Lemmas 3.1 and 4.4 characterizing the singu-
larities attached to the corner of a plane sector I' and to the edge of a wedge I' X R.
5.a 3D Maxwell singularities in a wedge

The wedge is equal to I' x R with a plane sector I' of opening w € (0,27], w # 7;
the polar coordinates are denoted by (r, ), the cartesian coordinates in the plane of I'
are denoted by (z,y), and z is a perpendicular coordinate.

36



Let A € C. We look for non-polynomial solutions U of the system

curlcurlU — graddivU = F in I' xR, F polynomial,
Uxn=0, divU=0 on OI' x R, (5.1)
UcSy(I xR), divU e Sy '(T xR),

where S3(I' x R) is the space (4.6) of pseudo-homogeneous fields of degree \ with 3
components but not depending on z . Let us note that, when \ € N, the above problem
reduces to find the non-zero solutions U € Sy (I' x R) of curlcurlU — grad divU = 0
with the same boundary conditions.

Let now (V,W) be the decomposition of the field U in the system of cartesian
coordinates ((x,y),z). As U does not depend on the variable z, we obtain that system
(5.1) splits into 2 independent problems:

curlcurlV—graddivV = f in I', f polynomial,
Vxn=0 divV=0 on O, (5.2)
Vesy(I), divUe Sy '(T),

and
—AW = f in I', f polynomial,
W =0 on OI, (5.3)
W e S3.(T).

Indeed problem (5.2) is exactly the problem of finding the space Y (I") (3.4) associated
with two-dimensional Maxwell equations in the sector I' and problem (5.3) is the prob-
lem of finding the space Y7..(I') (2.2) associated with the two-dimensional Laplacian in
I'. For this latter problem, see Lemma 2.1.

Let us now consider the two-dimensional “Maxwell-type” problem (5.2). We intro-
duce two auxiliary scalar variables

U=curlV and ¢=divV. 5.4

Taking the divergence of the first line of (5.2) yields equation (5.5a) below. Equations
(5.5b) and (5.5c¢) are straightforward ( Sgir and Sf\\Ieu are defined in §2.a)

—Ag=divf inT, g=0 ondl, with ¢ e Sp'(I').  (5.5a)
curl U =gradg+ f inT, with ¥ e Sy 1(T). (5.5b)
curl V=", divV=¢q in[, Vxn=0ondl, with VeSyT). (5.5¢)

We easily see that the system of equations (5.5) is equivalent to (5.2).
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5.b Non-integral exponents

In order to solve system (5.5), we begin with the simpler situation when \ is not a
positive integer. Then the above system of equations reduces to

—Ag=0 inT, qg=20 ondl, with ¢ € Sy H(D). (5.6a)
curl U = gradq inT, with ¥ € S3.1(T). (5.6b)
curlV=V divV=¢q inl',), Vxn=0on0l',/ with Ve S?V(F). (5.6¢)

We can split the solutions of system (5.6) into three natural types:

1. ¢q=0, ¥ =0 and V general non-zero solution of (5.6¢).
2. q =0, ¥ general non-zero solution of (5.6b) and V particular solution of (5.6¢).

3. ¢ general non-zero solution of (5.6a), ¥ particular solution of (5.6b) and V par-
ticular solution of (5.6¢).

Let us study successively these three types.

Type 1.
Since curl V = 0 on the simply connected domain I', V = (V;, V3) is the gradient of a
function @ . Thus we have:

V,:=cosO Vi +sinfV, = 0,9
Vo= —sinf V] 4+ cosf Vy = %(%CI),

whence (we denote by V' the function V(r, 0)=V(z,y))
r 6
d(r,0) — d(1,0) :/ V.(r',0) dr’ + 7"/ Vo(r,0') do’, (5.7)
1 0

which proves that since V belongs to S3(I'), @ is the sum of a function in SxH(T)
and a constant. Therefore, ® can be found in S3*(T") . Then (5.5¢) is equivalent to

A® =0 inT and ®=0 ondl, with @ SHT). (5.8)

Hence, A + 1 belongs to AP™(T") and ® belongs to the space Zpt ('), ¢f Lemma 2.1:

with the complex writing ¢ = 7¢? of the coordinates, a generator of Zp!(T') is given
by Im (M1,

Type 2.

We easily see that W is zero and a particular solution of (5.6¢)is V = 0.

Type 3.

From equation (5.6a), we obtain that A — 1 belongs to AP™(T") and that ¢ belongs to
ZS;I(F) : thus ¢ is proportional to Im (*~!. Then it is easy to see that ¥ = — Re (!

is a particular solution of (5.6b), and that V = -(Im ¢*, — Re(?) is a particular solution
of (5.6¢).
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S.c Integral exponents

When A is a positive integer, we are searching for non-polynomial solutions of sys-
tem (5.5). Similarly to the case when A is not an integer, we split the solutions of the
system (5.5) into the three types:

1. g and ¥ are polynomial and V is a non-polynomial solution of (5.5c¢).

2. ¢ is polynomial, ¥ is a non-polynomial solution of (5.5b) and V a particular
solution of (5.5¢).

3. ¢ is a non-polynomial solution of (5.5a), W a particular solution of (5.5b) and V
a particular solution of (5.5¢).

Now the arguments are based on the evaluation of dimensions of polynomial spaces.
Let Q* be the space of homogeneous polynomials of degree . We recall that P); (T")
the subspace of ¢ € Q* with zero traces on OI'. We divide our study into three subcases:

(i) w # 27 and )\ — 1 does not belong to AP"(T) : In equation (5.5a) the r.h.s. div f is
any polynomial in Q*~3, thus the dimension of the range is (A —2),. . The dimension of
PAM(T) is (A — 2), too. Moreover equation (5.5a) defines an operator from P} *(T")
into Q*~3 which is one to one due to the assumption that A — 1 does not belong to
API(T') . Therefore this operator is onto.

e The rh.s. of equation (5.5b) is any field in Q=2 x Q*~2 which is divergence free.
Thus the dimension of its range is 2(A — 1) — (A — 2), which is equal to A if A > 2
and 0 if A\ = 1. The dimension of Q*~! is equal to A\ and equation (5.5b) defines an
operator from Q! into {g € Q* 2 x Q*2, divg = 0}, which is one to one for any
A > 2, thus onto.

e Therhs. (¥, q) of (5.5¢) is any element of Q! x P)*(T"). Thus the dimension of
itsrangeis A+ (A—2); =2(A—1) if A>2 and 1 if A = 1. The space of polynomial
solutions of (5.6¢) is

{(ve@Q*xQ"| Vxn=0 and divV=0 on JI}. (5.9)

Its dimension is 2(A + 1) —4 = 2(A — 1) if A > 2;if A\ = 1, its dimension is either
2 if cosw = 0 or 1 if not. If A\ + 1 does not belong to AP™™(T"), we check that in any
case the operator of equation (5.5¢) is one to one, thus it is onto: the system (5.5) has
only polynomial solutions. If A\ + 1 € AP¥(T), its kernel is one-dimensional, and for
A > 2 we add to the above polynomial space (5.9) a singular function equal to the sum of
grad(Im ¢(*'log () and of a polynomial: we have found now a solution of type 1. For
A =1 finally, A + 1 € AP*(T") only if cosw = 0 and the operator of equation (5.5¢) is
onto and there is no singularity.

(ii) w = 2m: The arguments are similar. Here A\ — 1 and A + 1 never belong to
APT(T"). The dimensions of the polynomial spaces involving boundary conditions are
slightly different: dim P} '(I') = A — 1 and the operator of equation (5.5a) has a one-
dimensional kernel generated by Im ¢*~!. Thus it is still onto from Pﬁ\i’r ) — Q3.
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e The situation for equation (5.5b) is unchanged.

e The dimension of the space Q*~! x P)_*(I") is 2\ —1 and the dimension of the space
(5.9)is 2(A+2) — 2 = 2\. The kernel of the operator of equation (5.5¢) is generated by
grad Im ¢(*~! . Thus we have only polynomial solutions.

(iii) w # 2w and \ — 1 belongs to AP™(T") : Then the operator of equation (5.5a) has a
one-dimensional kernel generated by Im (*~! and it is onto from the space generated by
the sum of P *(T") and of ®;.' which is the sum of Im (*~!log ¢ and of a polynomial.

e Corresponding to this new solution ¢, we find a new solution of equation (5.5b)
U =Re(M1tlog(.

e Accordingly, we find a new solution V of equation (5.5¢) in the form

V= %(Im (*og ¢, —Re(*log (), which is a non-polynomial solution of type 3.

The proofs of Lemmas 3.1 and 4.4 are complete.

6 Maxwell corner singularities

In this section we prove Lemma 4.1 for “electric” boundary conditions and its ana-
logue for “magnetic” boundary conditions. Let I' be a three-dimensional polyhedral
cone. We recall that the polar coordinates are denoted by (p, ) and I' = {(p,?) | p >
0, ¥ € G C S*}. Let us recall the definition (4.1)

Q
SN(I) ={U e XR°(T) | U=p*> log?pu,(v)}

q=0
and let us introduce its analogue for magnetic boundary conditions:

Q
SHI) ={U € Xp(T") | U=p*> log'pu,(9)}.
q=0
6.a Splitting of the problem

Here we concentrate on the case when \ is not a positive integer. Thus, in the electric
case, the problem reduces to finding non-zero solutions to

curlcurlU — graddivU =0 in T,
Uxn=0 divU=0 on 0TI, 6.1)
Uc Sy, divUe Sy H(T)

and concerning the magnetic case:

curlcurlU — graddivU =0 in I,
U n=0, curlUxn=0 on O, (6.2)
UcS)T), divUe Sy.1(T)
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Like in the case of plane sectors, we introduce the auxiliary unknowns
¥ =curlU and ¢g=divU.

Thus ¢ belongs to Sp. (") orto S, (T") . Concerning ¥ in problem (6.1), we remark
that the definition of ¥ implies that div = 0 and since U x n = 0 on OI', then
¥ . n = 0 on 0. Moreover, from the equality curl¥ = graddivU and from the
H* regularity of divU, we obtain that curl® belongs to L? _(T*). Thus the natural
space for ¥ is $7(T') and it is now clear that problem (6.1) is equivalent to find non-zero

solutions to the system

—Ag=0 in T, with ¢ € Sy, (D). (6.32)
curl# =gradg and div® =0 in T, with W € §374(T). (6.3b)
curlU =% and divU=gq in T, with U € Sy (D). (6.3¢)

Now we see that the “electric” and “magnetic” boundary conditions appear simultane-
ously inside (6.3). Thus we have better to treat both conditions together. The “magnetic”
problem (6.2) is equivalent to find non-zero solutions to the system of three problems

—A¢=0in T, 9,q =0 ondl', with ¢ € Sy HT). (6.4a)
curl¥ =gradg and div¥ =0 in T, with W € S H(T). (6.4b)
curlU =¥ and divU=¢q in T, with U € S3(I'). (6.4c)

Like for the plane sectors, the solutions of systems (6.3) and (6.4) belong to one of
three types:

I. ¢q=0,¥ =0 and U general non-zero solution of (6.3c), resp. (6.4c).
2. ¢ =0, ¥ general non-zero solution of (6.3b), resp. (6.4b) and U particular solu-
tion of (6.3c), resp. (6.4c¢).

3. ¢ general non-zero solution of (6.3a), resp. (6.4a), ¥ particular solution of (6.3b),
resp. (6.4b) and U particular solution of (6.3c), resp. (6.4¢).

6.b Explicit solutions of first order problems

The Laplace singularities on polyhedral cones were described in Lemma 2.4. They
contain Laplace-Beltrami eigenfunctions and have therefore, in contrast to the two-dimen-
sional case, no analytically known form, in general. But once these Laplace singularities
are known, we are able to provide completely explicit formulas for the three types of
Maxwell singularities.

This section is devoted to the description of solution formulas for the first order prob-
lems (6.3) and (6.4). All these formulas are based on the scalar product or the vector
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product with the vector x , with & denoting the vector of cartesian coordinates (z,y, ),
and p = |x|.

We begin with three series of formulas. First we give product laws: a and b denot-
ing vector fields and ~ being a scalar function on R?, we have

grad(a-b) = (a-grad)b+ (b-grad)a + a x curlb+ b x curla, (6.5a)

curl(a xb) = (b-grad)a— (a-grad)b+ a divb— b diva, (6.5b)
divia xb) = b-curla —a-curlb, (6.5¢)
curl(va) = ~vcurla+ grad~y x a, (6.5d)
div(ya) = ~vdiva + grad~ - a. (6.5¢)

Now, using the above formulas for the field « which satisfies
dive =3, curlzr=0, x-grad=pJd, and gradz =1,

we obtain for any field a and scalar ¢

grad(a-x) = (pd,+ 1)a+ x x curla, (6.6a)
curlla xx) = (p0,+2)a—z diva, (6.6b)
div(a x ) = x-curla, (6.6¢)
curl(¢gz) = gradg x x, (6.6d)
div(gz) = (pd,+ 3)q. (6.6¢)
Finally, with v = p? and a = grad ¢, (6.5d) and (6.5¢) yield
curl(p’gradq) = —2gradqx =, (6.6f)
div(p*gradq) = 2pd,q+ p*Aq. (6.62)

We need the following spaces of pseudo-homogeneous functions

o) ={® € L.(T") | ®=1") log'r ¢4(6)} and S}I) = SH(T) N Hypo(T).

loc

The above formulas allow us to solve first order problems in the subspaces of homoge-
neous elements of our pseudo-homogeneous spaces S7, S} and S7-:

SND) = {@ e SND) | @ =pow)},
SV ={UeSyD)| U=pv@)} and S}T)={UeSHD)| U=pv)}

As an easy consequence of formula (6.6a), we can solve the equation grad ® = U
with Dirichlet or Neumann boundary conditions:
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Lemma 6.1 Let U belong to Sx(T') or S3(T).

() Then U - x belongs to S; ().

(i1) We assume that \ # —1 and that curlU = 0. If moreover U is homogeneous, i.e.
Ue §f‘V(F), resp. §%(F), then ® defined as

Uz §v>\+1

R € (), (6.7)

solves the equation grad ® = U, with zero Dirichlet, resp. Neumann boundary condi-
tions on OI.

PROOF. (i) A first consequence of formula (6.6a) is that grad(U-zx) belongs to S3(T')?,
thus U - = has the correct regularity outside the corner of I'.

(ii) As an obvious consequence of the fact that if U belongs to g‘*(F) ,then po,U = \U ,
we obtain that grad ® = U . Moreover, if U xn =0 on OI',then U-2x = 0 on OI'
as a simple consequence of the fact that x is a tangential field. As for the Neumann

boundary condition in the case when U - n = 0, it is only a consequence of the formula
0,o=n-U. ]

Similarly formulas (6.6b) and (6.6¢) yield a solution of the equation curlU =WV :

Lemma 6.2 Let U belong to S5 (T"), resp. Sy (T).
(i) Then ¥ x x belongs to Sx(T), resp. S3(T).
(i) We assume that A # —1 and that div¥® = 0. If moreover ¥ is homogeneous, i.e.
U c 31T, resp. Sy H(T), then U defined as
 Uxex °\ o

=537 € Sn(I)  resp.  SH(T), (6.8)

solves the equation curlU =W . Moreover divU = ,\%1 x - curlv.

PROOF. The regularity of U is a direct consequence of formulas (6.6b) and (6.6c). The
boundary condition n x (¥ x &) = 0 is satisfied if n-¥ =0 on OI' due to the equality
nx @ xx)=¥Y(n- x)—x(n- -¥). And the boundary condition n - (@ x x) =0 is
satisfied if 7 x ¥ =0 on OI' due to the equality n - (¥ x &) = - (n x¥). Part (i) is
proved and part (ii) is now obvious. |

The third step is the solution of the equations curlU = 0, divU = ¢, which is done
with the help of formulas (6.6d)-(6.6g):

Lemma 6.3 Let q belong to S;'(T), such that Aq € S;7*(T') and satisfying Dirich-
let, resp. Neumann boundary conditions on OT .

(i) Then 2qx + p* grad q belongs to SN(T), resp. $7(T).

(i) We assume that \ # —% and that Aq = 0. If moreover q is homogeneous, i.e.
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q€ 5’{\_1@), then U defined as

_ 2qx + p’gradgq e & o\

U D2 Sy(T) resp.  Sp(D), (6.9)

solves the equations curlU = 0 and divU = q.

6.c The three types of Maxwell singularities generated by the Laplacian

In the case of plane sectors, we have seen that only two types of Maxwell singularities
do exist and that they are generated by the Laplace operator: type 1, corresponding to the
exponents ’L—” — 1 and the singular functions of the form grad & with ¢ Dirichlet
singularity for the Laplace operator, and type 3, corresponding to the exponents ’L—” +
1. Now for three-dimensional cones, relying on the solution formulas (6.7)-(6.9) we
are going to exhibit the three types which are generated by the Laplacian (Dirichlet or
Neumann). In the next subsection, we will describe the remaining singularities which are

generated by the topology of T'.

In the following lemmas, we show the link between the sets of Maxwell singularity
exponents Ax(I") and Ar(I") and those of the Laplacian, see Ap;(I') and Aneu(T)
in Lemmas 2.1 and 2.2. We also prove that the singularities of type 1, 2 and 3 can be
expressed with the help of the corresponding spaces of Laplace singular functions Z}, (T")
and Z3_(T) , except in particular geometrical situations when \ = —1 .

Lemma 6.4 We assume that A\ # —1. Then (i) is equivalent to (ii):

() U € SN (1) is a solution of (6.3) of type 1,

(ii) A+ 1 belongs to Api(T') and U = grad ® where ® belongs to Zx(T).
Similarly, (iii) is equivalent to (iv):

(iii) U € $3.(T') is a solution of (6.4) of type 1,

(iv) A+ 1 belongs to Axey(T') and U = grad ® where ® belongs to Z{1H(T).

PROOF. 1. In a first step, we investigate the non-zero homogeneous solutions of (6.3) of
type 1, i.e. solutions of

curlU=0 and divU=0in T with U € 52}\\,(1”)

Using Lemma 6.1, we immediately obtain that U = grad ® with ¢ = /\%1 U-x. Thus

dec S and ®=0 on OI.

Moreover the condition divU = 0 yields that A® = (. In other words, ® is a Dirichlet
singularity for A, thus A\+1 belongs to Ap; (') and ® € Z)F!(T") . The converse state-
ment is straightforward: for any ® € Z3(T'), U defined as grad @ is a singularity of

type 1.
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Concerning the magnetic boundary condition, the same arguments lead to grad ® = U,
where @ is still defined by (6.7) and satisfies

de S and 9,6=0 on OT,
and A® = 0. Thus A+ 1 belongs to Aneu(I) .

2. In a second step, we prove that there is no logarithmic term in any solution of type 1.
It suffices to study a solution of type 1 with one logarithmic term, i.e. of the form

U=U"+U'logp, with U° U' € Sy(D).

Since curlU is the sum of curlU'logp and of a field with each component in
S*1(T), we deduce that curlU' = 0. Thus we obtain that U is itself a solution

of type 1 of the same problem. Then instead of (6.7), we set
Uz U=z
AL (A1)

(6.10)

and we deduce from the previous remark that grad ® = U, and & satisfies the Dirichlet
(or Neumann) conditions on ' and A® = 0. Therefore ® belongs to Z**1(T'), but
since we do not consider polynomial right hand sides here, there is no logarithmic term in
® , hence U' = 0. [

If U is a singularity of type 2, then ¥ is a singularity of type 1 with a permutation
of the roles of electric and magnetic boundary conditions. Moreover, when ¥ is known,
Lemma 6.2 provides a formula for U (note that here div¥ = 0, thus formula (6.8) yields
a divergence free U ). Thus we obtain:

Lemma 6.5 We assume that X ¢ {—1,0}. Then (i) is equivalent to (ii):

(i) U € SN () is a solution of (6.3) of type 2,

(i) A belongs to Axeu(T') and curlU = grad ® where ® belongs to Z{,,(T).
Similarly (ii1) is equivalent to (1v):

(iii) U € $7(T) is a solution of (6.4) of type 2,

(iv) A belongs to Api(T') and curlU = grad ® where ® belongs to Z3, (T').

In each case, representatives of type 2 are given by U = )\%1 grad® x x.

Finally we have directly from equations (6.3a) and (6.4a) the necessary conditions for
the existence of a non-zero ¢ and we combine lemmas 6.2 and 6.3 to obtain formulas for
V¥ and U:

Lemma 6.6 We assume that \ & {—%, 0} . Then (i) is equivalent to (ii):

() U € SN(T) is a solution of (6.3) of type 3,

(i) A — 1 belongs to Ap;(I') and divU = q where q belongsto Zy*(T').
Similarly (iii) is equivalent to (iv):

(iii) U € $3(T') is a solution of (6.4) of type 3,
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(iv) A belongs to Axeu(T') and divU = q where q belongs to Zy, (T).
In each case, representatives of type 3 are given by ¥ = % grad g X x and by
U=z (22— 1)gz — p*gradq) .

Remark 6.7 For the sake of comparison, let us consider the case when I is a dihedron
of opening w. Then Api(l) = Anea(l) = {22 + ¢, k.0 € Z, k # 0}, ¢f [12,
Ch.18.C]. In this case, for finding explicit expressions for the singular functions, one can
choose between the formulas given in Lemma 4.4 and those of Lemma 6.6. They do,
however, not give the same results because of the non-trivial influence of homogeneous
polynomials in the tangential variable z along the edge. |

6.d The Maxwell singularities generated by the topology

It essentially remains to investigate the solutions of type 1 for A = —1, i.e. the
elements U in S, (T'), resp. S;'(I') with zero curl and divergence. The existence of
such solutions depends on the topology of the spherical domain G' which generates the
cone ['. We are going to prove that we have singularity spaces in A = —1, Z]_VI(F) and
Z;'(T"), if and only if G is not simply connected, and that their dimensions are equal to
the dimension of the homology space of G .

Lemma 6.8 Let us assume that G is simply connected. If U belongs to S]_VI(F), resp.
S7'(T) and satisfies curlU = 0 and divU = 0, then U = 0.

PROOF. Since I' is simply connected, we derive from the condition curlU = 0 that
U is the gradient of some function ¢ . Then we use a formula of integration of U along
paths like (5.7): we fix @y € I' and write in polar coordinates (p,v) = (|x|, z/|z|) and

(po, Vo) = (|ol, To/|o|) :

P
B(p, 9) — B(po, Uo) = / T Yl o) dpf + p / Up. ) - a9, 6.11)
PO po 7(190779)

where the second integral is a path integral along a curve (g, d) from ¥y to ¥ in G.
From (6.11), we find that ® belongs to SY(T"). The condition divU = 0 yields that
A® = 0 and the boundary conditions on U give either the Dirichlet conditions on &, or
the Neumann condition. In the first case, we find that ® = 0 since the eigenvalues ,u})ir
are all > 0, and in the second case, we find that ® is a constant, thus in any case U = 0.

If the spherical domain G is not simply connected, its boundary OG is not con-
nected. Let 0;G, j =1,...,J + 1 be its connected components (J > 1). We assume
that GG itself is connected (if not, the cones corresponding to each of its connected com-
ponents can be considered separately). Then there exist J regular and non-intersecting
cuts 0, j=1,...,J suchthat G° := G\ UJ_,0; is simply connected.
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The singularities of degree —1 that we are investigating are closely linked with the
kernels (6.12) and (6.13) of the tangential curl and divergence, curl; and div,. These
operators are tangential to the sphere S? and can be defined with the help of the usual
curl and div on three-dimensional fields: we first introduce L?r (G) as the subspace of
L?*(G)? spanned by the fields v tangential to the sphere, i.e. satisfying v-x = 0. If v
belongs to L2T (G), we can introduce v as any homogeneous extension of v to the cone
[': we fix any p and v(p, ) is defined as p'v(d) . Then
e div v is the restrictionon p =1 of div v,

e curl v is the restrictionon p =1 of x - curlv.

Then the two kernels are defined in a classical way:
Ky(G)={ve L% (G)| curlyv =0, divio =0 in G,vxn=0 on IG } (6.12)
and

Kp(G)={ve L’ (G)| curlyv =0, divio =0 in G,v-n=0 on 9G }. (6.13)

Their description involves the tangential gradient grad ., and also (alternatively) the
tangential vectorial curl curl,, which are defined for any scalar function ¢ in L?(G)

with the help of any homogeneous extension gg of ¢ to I' as follows:
e grad ¢ is the restrictionon p =1 of grad q/g — (grad q/g x)x,
e curl,¢ isthe restrictionon p =1 of curl(dx).

There holds the following description of the spaces Ky (G) and Kr(G) (see [7] for
a classical presentation and [2] for the case of less regular domains). In the definitions
(6.14) and (6.15) below, the ¢; denote arbitrary constant functions, n; is a unitary normal
to o; in S and [-],. the jump across o, along n; :

93

Lemma 6.9

1) YEhe)space Kn(G) is generated by the tangential gradients grad-.¢ where ¢ €
PDiI‘ G b

PDir(G) = {¢ ~ HI(G) ‘ Ag¢ = O in G,

O =cj onﬁjG,1§j§J+1}. (6.14)

The dimension of Pp;.(G) is J + 1 and the dimension of Ky(G) is J.

(ii) The space K1(G) is generated by the L extensions grad ¢ to G of the tangential
gradients grad ¢ on G° where ¢ € Pey(G),

Pyeu(G) ={0 € HY(G") | Acp=0 inG, 0,6 =0 ondG,
[¢]0’j =Gy, [anj¢]aj =0,1 S] < J}

The dimension of Pxey(G) is J and the dimension of Kr(G) is J, too.

(6.15)
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Relying on the definitions of the “tangential” operators curl-, grad ., curl,, divy
and on the relations (6.6b)-(6.6d), it is easy to show that for any ¢ € L?(G) and any
vel(G)

curl+¢ = (grad ¢) x x, diviv=—curl(v x x), curlyv=divy(v x x).

Then we can prove the following

Corollary 6.10 The space Ky (G) is generated by the extended tangential curls curl¢
where ¢ spans the space Pxeo(G) and the space K1 (G) is generated by curl,¢ where
¢ spans the space Pp;(G). Moreover, we have the relations

KTZCL‘XKN and KNZCL‘XKT.

Thus, the kernels K (G) and K7 (G) are gradients (or curls) of harmonic functions
belonging to the spaces Pp;,(G) and Pyeo(G) . We extend the elements of these spaces
to homogeneous functions of degree 0 on the cone I' as ®(p, ) = ¢(¢)) and thus define
the spaces Pp;(I") and Pye,(I') . We note that any & € Pp;(I") has its traces constant
on each connected component of OI' and similarly that the jumps of any ® € Pyeu(I)
across the cuts >J; of I' corresponding to o; are constant too.

For any ® € Pp;(I"), the gradient grad ¢ is a homogeneous function of degree —1
whose radial component is 0 : we have

1
grad ®(p,J) = — grad_¢(V).
p

The field U = grad ® belongs to S'(I") and satisfies curlU = 0 like all gradi-
ents, and divU = A® = p~2Ag¢ = 0 by construction. Similarly for ® € Pyeu(T),
the extended gradient U = grad ® belongs to S;'(T") and satisfies curlU = 0 and
divU =0.

Lemma 6.11 Let us assume that G is not simply connected. Then Z ' (T) is the space
of the fields of the form U = grad ®, where ® € Pp;,(T'). Correspondingly, Z;*(T') is
the space of the fields of the form U = grad ®, where ® € Pyeu(T).

PROOF. We have just proved that any field of the form U = grad ¢, where ¢ is a non-
zero element of Pp;, (') is a non-trivial element of Z'(I") . Conversely let U belong to
Z;,l(F) . Then, for a non-zero field Up, P > 0, we have

U=p'(Us+- +log"p Up).

Since curlU = 0, U is a gradient grad ® in the simply connected domain T'° gener-
ated by the spherical domain G . Using formula (6.11) with paths (1, ) contained in
G", we obtain that ® belongs to S?(I'Y) and can be expanded into

®=Py+---+1log¥ &gy, with P<Q<PH+1.
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Since U x n is zero on 01", the traces of ® on JI' are constant on each of its connected
components O;I". Thus the traces of ®, are constant on each 0;G and the traces of @,
for ¢ > 1 are zero. Since curlU and divU are zero in [', the jumps of U across the
cuts X, generated by o; are zero. Thus [<I>]Ej is constant and [0, <I>]Ej is zero. With
the conditions on the traces on 0,1, this yields that [(IJ]ZJ_ is zero. Moreover divU = 0
in I' gives APy =0.

Therefore @ belongs to Pp;,(G), and if () > 1 we have moreover that the traces of
®y on OG are all zero, thus & = 0. Whence () = 0 and @ belongs to Pp;,(G), so

U has the desired form.
The proof for Z;.'(T') is similar. n

6.e Corner singularities: a synthesis

We summarize all the results in the following table, where we omit the reference to
the cone I' in the notation of spaces:

Type A > | Generator U ¥ =curlU |¢q=divU

la | A+1€APT| 1| dp,ez)i! grad ®p;; 0 0

grad Oney X @

2A A\ € ANeu 0 | PNeu€ Zﬁ}eu 1

grad Pyey 0

(2\ —1)qx — p*gradq | gradq x x

30 | A—1eAbPir| 1 g€zt A2 ET) 3 q
Iop -1 ®pir € Ppir grad ®p;, 0 0
2Top 0 PNew€ Phien | gradPyey x @ grad®yey 0
Alternative formulation
2Top 0 Ppir € Ppir pgrad ®p;, % x grad ®p;, 0

Table 1
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The alternative formulation is obtained with the help of Corollary 6.10. The adapta-
tion of this table to magnetic boundary conditions is left to the reader.

6.f Corner singularities for non-zero frequency w

Going back to the primitive Maxwell equations (0.5), we see that for a regular current
density J, the divergences of the electric and magnetic fields E and H are regular
too, thus only the singularities of types 1 and 2 can occur and they exchange each other
between the electric and magnetic fields (here A denotes the degree of homogeneity of
the generator and is either the degree of E or H ):

Type Generator A E H
A (electric) Ppiy € 73, | A € AP grad ®p;, —iw grad)\CI:]_gi{ X
A (magnetic) | Pney € Ly | A € AN | dw grad}\@ief X grad Oy,
Top (electric) ®pir € Ppir 0 grad $p;, —iw grad Op;, X x
Top (magnetic) | Pnew € Preu 0 1w grad®Pne, X @ grad Py,

Table 2

This table gives the principal parts of the singularities (as can be seen from (0.9) or
(0.10) the operators are not homogeneous and according to the general theory [17, 12] the
singularities themselves have an asymptotic expansion).

6.g Pseudo-Maxwell corner singularities

There is, in general, no simple relation between the singular functions of the pseudo-
Maxwell problems (see in §4.f the singularity spaces Z}(I")) and those of the Dirichlet
or Neumann problems for the Laplace operator. In particular, our previous explicit con-
structions do not work here, and the classification into types 1, 2, 3 does not make sense.
Let us explain two reasons for this.

First, the solutions of the first-order systems (6.3b) and (6.3¢) do not belong to H'!
near a non-convex edge. Thus, independently of the corner exponent A, the X -singular
functions of all 3 types will not belong to H*!.
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Second, the Laplace-Dirichlet problem (6.3a) for ¢ is now posed with only L? reg-
ularity required. This problem (with S)(T") defined in §6.b)

—A¢g=0in I" and ¢=0 ondl' with ¢ € Sy~ H(T) (6.16)
does now not select a discrete set of exponents A .

Proposition 6.12 Let I be a non-convex polyhedral cone. Then the Dirichlet problem
(6.16) has non-trivial solutions for any \ € C.

PROOF. This is a Laplace-Beltrami eigenvalue problem on G = I' N'S?*. We look for
eigenfunctions in L?*(G). By duality (and the “very weak™ definition of the Dirichlet
problem (6.16), see (1.7)), we see that such eigenfunctions span the orthogonal comple-
ment of the image of Jii (@) N H?(G) under the adjoint operator. Now we know that in
the presence of non-convex corners of G, one never has H? regularity for this Laplace-
Beltrami Dirichlet eigenvalue problem. Thus, in addition to the il (@) eigenfunctions
that may existif A — 1 € AP™(T"), we find as many L?(G) eigenfunctions and therefore
solutions to (6.16) as there are non-convex edges meeting at c. [ |

7 Variational formulations of Maxwell’s equations

In this section, we discuss some commonly used variational formulations of the time-
harmonic Maxwell equations. We give a proof of Theorem 0.1. Since the proof works
in a more general setting, we consider general inhomogeneous materials here. We also
prove a generalization of the regularity Theorem 1.2 for the divergence. The domain ¢
is a 3D corner domain as defined in the preliminaries (§0).

7.a Time harmonic Maxwell’s equations

The following assumptions correspond to the modelling of general linear, anisotropic
inhomogeneous materials that can have a nonvanishing conductivity.

Let ¢ and p two complex 3 x 3 matrices with L>° elements on () such that their
symmetric part is positive in the sense that there exist py > 0 such that for all x € €}
and for all £ € C?:

Re(e()§ - €) = pol¢|* and  Re(u(2)§ - €) = pol¢[”.

The classical time harmonic Maxwell equations describing electromagnetic radiation
of frequency w in a body occupying 2, with permeability p and permittivity ¢ are

curlE —iwpuH =0 and curlH +iweE =] in (. (7.1a)

Here E is the electric part and H the magnetic part of the electromagnetic field. The right
hand side J is the current density, where a current obeying Ohm’s law can be subtracted
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giving a nonzero imaginary part of £. As boundary conditions on 92 we consider only
those of the perfect conductor (. denotes the unit outer normal on 052 ):

Exn=0 and puH-n=0 on 0. (7.1b)

If the body is formed by several different homogeneous media, ¢ and p are piecewise
constant and there are internal transmission conditions at the interfaces contained in the
functional formulation. Equations (7.1a) hide equations on the divergence of the fields,
as soon as w is not O : taking the divergence of (7.1a) leads to

1
div(cE) = —divJ and div(uH) =0, (7.1¢)

In pure radiation problems, the charge density is zero, hence divJ = 0.

Let us assume that J € H(div;Q), i.e. J belongs to L*(Q2)* and its divergence
divJ belongs to L?(Q2). The equations (7.1a) and (7.1¢) yield immediately that if E
and H are in L?(Q)3, then they belong respectively to the following spaces

E € H(curl; Q)N H(div;e;Q) and H € H(curl; Q)N H(div; u;Q),

where H(div;p;Q) is the space {u € L*(Q) | div(pu) € L*()}. Taking into
account the boundary conditions (7.1b), we obtain that

E c Xy and HEAXVT7
where we define now
Xy={ue€ H(curl; Q)N H(div;e;2)| uxnm=0 on 00}

and
Xr={ue H(curl; Q)N H(div; ;)| (pu)-n=0 on 0Q}.

These are our variational spaces.

7.b Variational formulation for the electric field

We construct first a commonly used coercive variational formulation containing a
“regularization” or “penalization” parameter s (see [16]). Choose a test field E' € X .
As a consequence of the assumptions, p is invertible. Let us integrate the first equation
of (7.1a) versus (u?)~'E’, and the second versus iw E’. Since for E' € Xy and H €
H(curl; ), there holds:

/H~curlE/ dr = / curlH - E' dz,
Q Q
we obtain

Ec Xy, VE € Xy, / p teurlE - curlE — w?c¢E - E = iw/J-E/. (7.2)
Q Q

52



Taking into account the equation (7.1c) on the divergence of E, we introduce a pa-
rameter s > 0 and the new right hand sides

1
fliJ,sl(v) = iw/] v+ = | divJ divew and glJ] = —divJ. (7.3)
Q w Jo 1w
Then we define the following variational problem ( £ is the complex conjugate of <)
uce Xy, Yve Xy, / pteurlu - curlv + sdiveu divév — w?eu - v = f(v), (7.4)

Q

and its saddle-point version, which involves a Lagrange multiplier p (a pseudo-pressure):
(u,p) € Xy x L*(Q), V(v,q) € Xy x L*(Q),

/u‘lcurlu-curlv+sdiveu divev + pdivev — w?eu-v = f(v), (7.5)
Q

/diveuq = /gq.
Q Q

The following statement describes the equivalence between problems (7.1), (7.4) and
(7.5) if f and ¢ are defined in (7.3). The essential argument relies on the properties of
the operator

AgDir . HI(Q) — ) H_I(Q) (76)
© — divegrad .

The assumption about & implies that the sesquilinear form associated with —ADPT is
[¢]
coercive on H'():

- 2
Re/ﬂegradgo -grad ¢ > ,00|90|H1(Q) -
Thus the operator —AP™ is invertible from its Dirichlet domain
DAY = {p e H'Q)| AP € L(@)}

onto L?(€)) and has a discrete spectrum.

Theorem 7.1 We assume w # 0. Let J € H(div;Q); for a fixed s > 0, f = f[J,s]
and g = g[J]| as defined in (7.3).
() If (E,H) solves (7.1), then u = E solves (1.4) and (u,p) = (E,0) solves (7.5).

(i) If u solves (7.4) and w?*/s is not an eigenvalue of the Dirichlet operator —AP™ on
Q, then (E,H) = (u, (iwp) ! curlu) solves (7.1).

(i) If (u,p) solves (1.5), then p=0 and (E,H) = (u, (iwu) "' curlu) solves (7.1).
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PROOF. (i) was proved while stating problems (7.4) and (7.5).

(ii) In (7.4) let us take as test functions all fields v = gradp with ¢ € D(AP™) | which
ensures that gradp € Xy . Let us denote by (a,b),, := [,ab the hermitian scalar
product on L?(2) . Using the expression (7.3) of the right hand side, and the identities,

valid for ¢ € ﬁl(Q)
<5’u,,grad g0>Q = — <div5u , <p>Q and <J,grad <p>Q =— <divJ,g0>Q,

we easily arrive at
<div cu — g, sAeDlrcp + w2<p>ﬂ =0

forall ¢ € D(ADPY) . Thusif w?/s is not an eigenvalue of —AP™ | we find that diveu =
g . We deduce that w solves problem (7.2). Thus:

curl y ' curlE — w?<¢E = iw].
Setting H = (iwu) ™! curl u, we arrive at (7.1).
(iii) We obtain similarly that
Vi € D(AP™), <p,A?irg0>Q =0,

whence p = 0, since AP" is invertible. Thus w solves (7.2), and (u, (iwp) ! curlu)
solves (7.1). ]

Both formulations (7.4) and (7.5) are strongly elliptic in the following sense. The
norm || - HXN of Xy is given by

ful?, = / | curluf? + | diveu|? + [uf2.
Q
The principal part of the sesquilinear form associated with problem (7.4)
a(u,v) = / pteurlu - curlv + sdiveu divev
Q

is coercive on Xy . Moreover, concerning the saddle-point formulation (7.5), we intro-
duce

b(p,v) = /pdivsv
Q

and, as an easy consequence of the invertibility of AP¥, we have the Babuska—Brezzi
inf-sup condition, for a constant 3 > 0:

[~

Vp € L*(Q), sup (P, v)

> BIpll L2
Thus both variational formulations (7.4) and (7.5) are suitable for theoretical and
numerical solution methods of the Maxwell boundary value problem. For almost all s >

0, in particular for sufficiently large s, one has equivalence with the original problem.
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7.c Variational formulation for the magnetic field

We describe the situation for the magnetic field H with less details, since there are
numerous symmetries and Theorem 7.1 yields already information for H .

We have already seen that a suitable variational space for H is Xp. The first
variational formulation is obtained by integrating the second equation of (7.1a) versus
(eT)~'H’, and the first one versus iw H’, forany H' € X7 :

/ e lcurlH -curlH' — v’ yH -H' = / e 'J -curlH =: h(H). (7.7)
Q Q

Taking account of the equation (7.1c) div uH = 0, we obtain the following varia-
tional problem

uec Xy, VoeXr, / e 'curlu - curlv + sdiv pu div jiv — w? pu - v = h(v), (7.8)
Q

and its saddle-point version:
(u,p) € Xp x L*(Q)/C, V(v,q) € Xr x L*(Q2)/C,

/ e 'curlu - curlv + sdiv pu div v + p div jiv —w? pu-v = h(v), (7.9)
Q

/div,uuq = 0.
Q

The Laplace-like operator which plays a similar role as AP™ is the Neumann operator
A" defined from its domain

D(AY™) ={p e H'(Q)| divpgrady € L*(Q) and 0,9 = 0 on 00}

by Ao = divugrad . The operator —AJ" is invertible from D(AT")/C onto
L2(92) (the subspace orthogonal to constants) and has a discrete spectrum.

Theorem 7.2 We assume w # 0. Let J € H(div;Q); h is defined from J in (7.7).
For a fixed s > 0:

() If (E,H) solves (7.1), then uw = H solves (7.8) and (u,p) = (H,c) solves (7.9) for
any c € C.

(i) If u solves (7.8) and w?/s is not an eigenvalue of —Aﬁeu on ), then (E,H) =
(LeHcurlu — J), u) solves (7.1).

(i) If (u,p) solves(1.9), then p is a constant and (£ e~ (curlu —J),u) solves (7.1).
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7.d Symmetric roles of divergences and pressures. Regularity

Under a weak assumption of regularity on the right hand sides, we obtain the H'!
regularity for the divergence divew in (7.4) and the pressure p in (7.5). This comes
from the fact that divew and p are solutions of independent boundary value problems.

Let ¢* = &7 be the hermitian adjoint of ¢ .

Theorem 7.3 Ler s >0, f € L*(Q)® and g € L*(Q). We assume that w?/s is not an
eigenvalue of the Dirichlet operator —AP™ on ).

(1) If u solves (7.4), then divewu is the solution q of the Dirichlet problem

71
sADIrg 4+ w2q = — div f.

(ii) If (u,p) solves (1.5), then p + sg is the solution q of the Dirichlet problem

71
APrg = —div f — w?g.

Thus, if moreover g belongs to H'(2), the pseudo-pressure p belongs to H'()
too. As a straightforward consequence of Theorem 7.3, we rediscover the compatibility
condition between f and g (compare (7.3)), which ensures that diveuw = ¢ and p =0
respectively:

Corollary 7.4 Under the assumptions of Theorem 1.3, the three following conditions are
equivalent:

(1) g is solution of the Dirichlet problem (7.10);

(1) If w solves (7.4), then diveu = g,

(iii) If (u,p) solves (1.5), then p = 0.

In particular, if we search for divergence- € free solutions of (7.4), the necessary and
sufficient condition on f isthat f is divergence free.

PROOF OF THEOREM 7.3. (i) If u solves (7.4), then taking as test functions v =
gradp with p € D(APT) we obtain

Vo € D(AP™), (divew, sAP"o +w?p), = (f, grad ), . (7.12)
But the solution of (7.10) satisfies
v € HY(Q), —(se*gradq, grad ¢), + (w’q ), = (f, grad¥),,,
whence

Ve D(APY), (g, sAP"p+w?p), = (f, grad ), .
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Thus divew — ¢ is orthogonal to the range of sAP™™ 4 w? | which is the whole L*((2).
(ii) If (u,p) solves (7.5), we obtain similarly that

Vo e D(AYY),  (sg+p, AP"p) = (f . gradp), — (w’g,¢),,

and that the solution of (7.11) satisfies

Vo € D(APY),  (q,AP"p), = (f, gradp), — (v’g,¢),,.
Whence sg + p — ¢ is orthogonal to the range of AP which is the whole L?(2). m

We have similar statements concerning the “magnetic” problems (7.8) and (7.9): if u
solves (7.8), then div pu is the solution in H*(§2) (with zero mean value if w = 0) of a
Neumann problem. If (u,p) solves (7.9), then p+ sg is similarly solution of a Neumann
problem.

Remark 7.5 There is another equivalent variational formulation of Maxwell equation. It
satisfies an inf-sup condition and is used in finite-element approximations, see NEDELEC
[24], GIRAULT - RAVIART [14] and also [2].

Let ﬁ[(curl; 2) be the space of the fields w € H(curl;{2) such that w x n = 0 on
0L) . With this definition, we can introduce the alternative saddle-point version, which is
a replacement for (7.5) when s =0:

(u,p) € H(cur; Q) x HY(Q), Y(v,q) € H(curl; Q) x HY(Q),

/ pteurlu-curlv —gradp-&v —weu-v = fy(v), (7.13)
Q

—/5’u,gradq = /gq.
Q Q

Forany s > 0 and v € Xy, we define, c¢f (7.3)

fs(v) = fo(v) + S/ g div éw.
Q
Then, if fy € L*(Q)% and g € H 1(Q), we can prove, as a consequence of Theorem 7.3

and of the density of D()? in ﬁ[(curl; ) that (u,p) solves(7.13) if and only if (u,p)
solves (7.5) with f = f,. [ |
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