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Abstract. In this paper, we investigate the singular solutions of time harmonic Maxwell

equations in a domain which has edges and polyhedral corners. It is now well known

that in the presence of non-convex edges, the solution fields have no square integrable

gradients in general and that the main singularities are the gradients of singular functions

of the Laplace operator [4, 5]. We show how this type of result can be derived from the

classical Mellin analysis, and how this analysis leads to sharper results concerning the

singular parts which belong to H1 : For the generating singular functions, we exhibit

simple and explicit formulas based on (generalized) Dirichlet and Neumann singularities

for the Laplace operator. These formulas are more explicit than the results announced in

our note [10].

Introduction

Solutions of time-harmonic three-dimensional Maxwell equations

curl E − iω µH = 0 and curl H + iω εE = J

with electric or magnetic boundary conditions have singularities near corners and edges

of the boundary of the domain. This well-known fact has, for example, important conse-

quences for the construction of numerical approximation of the solution. Just as for other

elliptic boundary value problems, the singularities can be analyzed by standard techniques

[17, 21, 15, 12] that go back to Kondratev’s technique of Mellin transformation.

The special form of Maxwell equations allows us to go further in the analysis of the

regularity and the singularities. Some known results are:

• the H1 regularity for convex domains, SARANEN [26],

• the H1/2 regularity for Lipschitz domains, COSTABEL [8],

• a description of singular functions for cones with a smooth basis, SARANEN [25],

• corner singularities for the corresponding two-dimensional problem, MOUSSAOUI

[23], see also section 3.



Further regularity results can be found in KŘIČEK - NEITTAANMÄKI [19], HAZARD -

LENOIR [16], AMROUCHE - BERNARDI - DAUGE - GIRAULT [2]. In all these cases,

the main singularity is the gradient of a singular function of the Dirichlet or Neumann

problem for the Laplace operator, thus is reduced to a problem that can be considered

as well known [15, 12]. This relation can be extended to a more general class of piece-

wise smooth domains that have “screen” or “crack” parts, BIRMAN - SOLOMYAK and

FILONOV [4, 5, 13].

We will show that, in such a class of domains, not only the first, but all singular

functions for the Maxwell boundary value problems can be obtained in simple ways from

Dirichlet or Neumann singular functions of the Laplace operator.

More generally, we will assume that the domain Ω is polyhedral, that is, its boundary

consists of plane faces, straight edges, and corner points: such a polyhedron needs not to

be Lipschitz nor simply connected. Thus Ω can have screen parts, in which case there is

only Hs regularity with s < 1/2 . We find another type of non-Lipschitz domains with

the same bad regularity: These domains are, as exemplified by a domain between two

cones with the same vertex, not locally simply connected. Here the simple equation

“Maxwell regularity = Dirichlet regularity −1 ”

is violated: The Dirichlet problem can even have H2 regularity in such a case. The

singular functions at such a corner are generated by topological objects: the elements of

the cohomology space of the base of the cone, see section 6.

For a better understanding of this new phenomenon, consider the case of a domain be-

tween two circular cones with the same vertex and the same axis. In spherical coordinates

we have with 0 < θ0 < θ1 < π in a ball B(0, ρ0) :

Ω ∩B(0, ρ0) = {(ρ, θ, ϕ) | ρ ∈ (0, ρ0), θ0 < θ < θ1, ϕ ∈ [0, 2π)}.

We consider the functions

Φ(ρ, θ, ϕ) = log tan
θ

2
and Ψ(ρ, θ, ϕ) = ϕ.

Both functions are harmonic, and with the cylindrical and cartesian variables

r =
√
x2 + y2 = ρ sin θ and (x, y, z) = (ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ)

we have

u := gradΦ =
1

ρ

(xz
r2
,
yz

r2
, −1

)T

and v := grad Ψ =
(
−
y

r2
,
x

r2
, 0

)T

.

Both u and v are harmonic vector fields:

curlu = curlv = 0, div u = div v = 0.
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On ∂Ω near the vertex, u is normal and v is tangential. Thus u satisfies “electric”

and v “magnetic” boundary conditions. Both functions are in Hs near the vertex for

s < 1/2 . They correspond to electrostatic and magnetostatic singularities, respectively.

Maxwell’s equations are not an elliptic system. But the elimination of one of the

two fields E or H yields a variational formulation in a special “physical” energy space

which is X := H(div)∩H(curl) , the space of square integrable vector fields with square

integrable curl and divergence. The underlying boundary value problem is then a second

order elliptic system, but set in a non-standard space. Instead of this space X , also the

Sobolev space H1 could be used in a similar variational formulation. Both variational

formulations are based on the same bilinear form and both have unique solutions which,

for non-convex domains, will not coincide in general. The second one is the projection in

X of the first one onto H1 . But the most important fact is that only the formulation in

the space X gives back a solution of the original Maxwell equations.

This situation is important for numerical approximations: If one uses standard finite

elements that are contained in H1 , then the “true” solution in X cannot be approximated,

and mesh refinement at the corners and edges does not help. A possible solution is to

augment the finite element space by the explicitly known singular functions, ASSOUS -

CIARLET - SONNENDRÜCKER [3] and BONNET - HAZARD - LOHRENGEL [6]. In such

a method, the approximation is determined by the regularity of the regular part, i.e. the

solution minus the singular function. This regularity can be quite different for different

choices of the singular function. In particular, if the singular function is not constructed

by our explicit formulas, but from abstract principles, then this regularity can be quite

low, typically Hs with s < 4/3 , see sections 3 and 4.

Plan. The outline of our paper is as follows:

We begin with preliminaries where we define the class of polygonal and polyhedral

domains in which we will work, and the basic functional spaces with L2 curl and diver-

gence. Then starting from the classical Maxwell equations for a homogeneous material

we give equivalent variational formulations involving the form 〈curl, curl〉 + 〈div, div〉
in spaces of X -type. The question of equivalent formulations will be discussed in more

details and generality in section 7.

In section 1, we start with the principal part of the equations obtained in the prelimi-

naries: these are our Maxwell problems; we discuss the alternative formulation in the H1

subspaces, which we call pseudo-Maxwell problems, and the link with the singular solu-

tion spaces of the Laplace operator; we conclude this section by a result (Theorem 1.4)

on the characterization of these problems by the regularity of the divergence.

In section 2, as a preparation for the description of all singularities of the solutions

of the Maxwell and pseudo-Maxwell problems, we formulate some results from [12] on

the edge and corner singularities of the Dirichlet and Neumann Laplace operator on a

polyhedral domain. We present the main arguments of the proofs. We also obtain a

precise description of complementary spaces in the X -spaces of the H1 subspaces.
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In section 3, we give a complete description of the Maxwell and pseudo-Maxwell

singularities in plane polygonal domains, using the results of Lemma 3.1 whose proof is

postponed to section 5. It turns out that, at each non-convex corner, one singular function

is interchanged between the solutions of the Maxwell and pseudo-Maxwell problems.

In section 4, we state all our results about polyhedral domains, relying on Lemmas 4.1

and 4.4 which give explicit formulas for all the Maxwell corner and edge singularities

respectively. We have got a classification of these singularities in three main types, for

example concerning the electric field,

1. Gradients of Laplace Dirichlet singularities,

2. Divergence-free fields whose curls are gradients of Laplace Neumann singularities,

3. Fields whose divergences are Laplace Dirichlet singularities.

When the domain is not locally simply connected in the neighborhood of the corner, the

first two types are enriched by topological singularities of similar structure (the notion

of Dirichlet and Neumann Laplace singularities has to be extended in a suitable way),

but this concerns only the singularity exponents −1 and 0 , respectively. The other sin-

gularity exponents are those of the Laplace Neumann problem and those of the Laplace

Dirichlet problem −+1 . Concerning the magnetic field, the roles of Neumann and Dirich-

let conditions are interchanged. We conclude this section by results about the pseudo-

Maxwell problems. While for the Maxwell problems the main singularities are gradients

of Laplace singularities, for the pseudo-Maxwell problems they can only be described as

sorts of Stokes singularities.

Lemma 4.4 is proved in section 5 devoted to singularities in plane sectors or wedges

whereas Lemma 4.1 is proved in section 6 in which singularities in polyhedral cones are

investigated. The results concerning polyhedral cones are summarized in Table 1. For

solutions of the original time-harmonic Maxwell equations, the singularities of type 3 are

absent, and there is a symmetry between the singularities of the electric and the magnetic

field. The results are summarized in Table 2.

In section 7, we compare several different commonly used variational formulations

for the time harmonic Maxwell equations. For this comparison, we can admit rather gen-

eral conditions corresponding to anisotropic inhomogeneous materials. When the mate-

rial coefficients are smooth, the principal singularities are those of problems with constant

coefficients. This corresponds to the choice made in the first six sections.

Preliminaries

0.a Domains and Sobolev spaces

Here are first a few definitions about domains and spaces. We want to consider rather

general piecewise smooth domains which need not to be Lipschitz, in general: such do-

mains can easily appear in applications and some of them have already been studied as
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mentioned above. We denote by x = (x, y, z) the cartesian coordinates in R3 and by

x = (x, y) the cartesian coordinates in R2 .

As in [12], the definition of the classes of domains is recursive. Let B(x, r) denote the

ball of center x and radius r . In R2 we define:

• The 2D corner domains as bounded domains Ω in R2 or S2 such that in each point

x of the boundary there exists rx > 0 small enough such that to each connected

component Ωx,i , of Ω ∩ B(x, rx) belongs a diffeomorphism χx,i transforming

Ωx,i into a neighborhood of the corner 0 of a plane sector of opening in (0, 2π] ,

x being sent into 0 .

• The polygonal domains as the 2D corner domains with straight sides (indeed any

bounded domain whose boundary is a finite union of segments).

In R3 we define:

• The 3D corner domains as bounded domains Ω in R3 such that in each point x of

the boundary there exists rx > 0 small enough such that to each connected compo-

nent Ωx,i of Ω∩B(x, rx) belongs a diffeomorphism χx,i transforming Ωx,i into a

neighborhood of the corner 0 of a cone Γx,i of the form {x ∈ R3, x/|x| ∈ Gx,i}
with Gx,i a 2D corner domain of S2 , x being sent into 0 .

• The polyhedral domains as the 3D corner domains with straight faces (indeed any

bounded domain whose boundary is a finite union of polygons).

We say that Ω in one of these classes is locally simply connected if for any x in its

boundary, Ω ∩ B(x, rx) is simply connected.

The space H1(Ω) is the space of complex-valued distributions u ∈ D′(Ω) which

belong to L2(Ω) and such that each component of their gradients belongs to L2(Ω) . The

space H1/2(∂Ω) is the space of traces of H1(Ω) where it is understood that ∂Ω is the

“unfolded” boundary of Ω , that is, in the neighborhood of each point x ∈ Ω \ Ω in the

topological boundary of Ω , ∂Ω is the disjoint union of the parts of the boundaries of Ωx,i

which are contained in Ω \ Ω . The space H−1/2(∂Ω) is the dual space of H1/2(∂Ω) .

Moreover, we introduce the spaces H(curl ; Ω) and H(div ; Ω) :

H(curl ; Ω) =
{
u ∈ D′(Ω)3 | u ∈ L2(Ω)3, curlu ∈ L2(Ω)3

}
(0.1)

H(div ; Ω) =
{
u ∈ D′(Ω)3 | u ∈ L2(Ω)3, div u ∈ L2(Ω)

}
. (0.2)

For any u ∈ H(curl ; Ω) , the tangential trace u×n is well defined in H−1/2(∂Ω)3

due to the Green formula:

∀v ∈ H1(Ω)3 :

∫

Ω

u · curlv − curlu · v = 〈u × n,v〉∂Ω. (0.3)

Similarly, for any u ∈ H(div ; Ω) , the normal trace u ·n is well defined in H−1/2(∂Ω)
by the Green formula:

∀ϕ ∈ H1(Ω) :

∫

Ω

div u ϕ+ u · gradϕ = 〈u · n, ϕ〉∂Ω. (0.4)
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0.b Time harmonic Maxwell equations

The classical time harmonic Maxwell equations at the frequency ω in a homogeneous

isotropic body occupying Ω , with permeability µ > 0 and permittivity ε > 0 are

curl E − iω µH = 0 and curl H + iω εE = J in Ω. (0.5a)

Here E is the electric part and H the magnetic part of the electromagnetic field. They

are supposed to be square integrable fields. By a change of unknowns µ and ε can be

set to 1 . The right hand side J is the current density. The exterior boundary conditions

on ∂Ω are those of the perfect conductor ( n denotes the unit outer normal on ∂Ω ):

E × n = 0 and H · n = 0 on ∂Ω. (0.5b)

We see that if ω is not zero, and if J belongs to H(div ; Ω) we deduce from the above

first order system (0.5a) that E and H belong to H(curl ; Ω) ∩ H(div ; Ω) and that,

according to (0.3) and (0.4) the boundary conditions (0.5b) make sense. Thus there holds

E ∈ XN and H ∈ XT (0.6)

where XN and XT are the two closed subspaces of H(curl ; Ω) ∩ H(div ; Ω) defined

respectively as

XN =
{
u ∈ H(curl ; Ω) ∩H(div ; Ω) | u × n = 0 on ∂Ω

}
(0.7)

XT =
{
u ∈ H(curl ; Ω) ∩H(div ; Ω) | u · n = 0 on ∂Ω

}
. (0.8)

Integrating by parts with test functions in XN or in XT and taking into account the equa-

tions which can be obtained by calculating the divergence of both equations in (0.5a), we

prove in section 7 (in a wider generality concerning the permeability µ and the permit-

tivity ε ) that there holds the following result.

Theorem 0.1 We assume ω 6= 0 . Let J ∈ H(div ; Ω) and define the functionals on

H(curl ; Ω) ∩H(div ; Ω)

f (v) := iω

∫

Ω

J · v +
1

iω

∫

Ω

div J div v and h(v) :=

∫

Ω

J · curlv.

(1) If (E,H) solves (0.5), then u = E solves (0.9)

u ∈ XN , ∀v ∈ XN ,

∫

Ω

curlu · curlv + div u div v − ω2 u · v = f (v), (0.9)

and u = H solves (0.10)

u ∈ XT , ∀v ∈ XT ,

∫

Ω

curlu · curlv + div u div v − ω2 u · v = h(v), (0.10)

(2a) If u solves (0.9) and ω2 is not an eigenvalue of the Laplace Dirichlet operator on

Ω , then (E,H) =
(
u, (iω)−1 curlu

)
solves (0.5).

(2b) If u solves (0.10) and ω2 is not an eigenvalue of the Laplace Neumann operator

on Ω , then (E,H) =
(
iω−1 (curlu − J),u

)
solves (0.5).
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1 The Maxwell and pseudo-Maxwell problems

In this section, we assume that Ω is a simply connected polyhedral domain in R3 .

1.a Variational formulations

We call Maxwell problems the principal parts of problems (0.9) and (0.10), i.e.

u ∈ XN , ∀v ∈ XN ,

∫

Ω

curlu · curlv + div u div v =

∫

Ω

f · v, (1.1)

and

u ∈ XT , ∀v ∈ XT ,

∫

Ω

curlu · curlv + div u div v =

∫

Ω

f · v, (1.2)

with a right-hand side f ∈ L2(Ω)3 . Both problems are uniquely solvable since, as we

assumed that Ω is simply connected, the form

a(u,v) :=

∫

Ω

curlu · curlv + div u div v

is strongly coercive on XN and XT , i.e. satisfies

∃c > 0, ∀u ∈ XN , a(u,u) ≥ c
(
‖u‖

2

L2(Ω)
+ ‖ curlu‖

2

L2(Ω)
+ ‖ div u‖

2

L2(Ω)

)
,

and the same in XT , see [2] for example.

We will consider these problems rather than problems (0.9) and (0.10) in the major

part of our paper because they are simpler and their edge and corner singularities have the

same principal parts as problems (0.9) and (0.10).

The non-standard feature of these problems is the nature of the variational spaces.

Both spaces are embedded in H1
loc(Ω)3 but not in H1(Ω)3 in general: for a polyhedral

domain Ω , it is known [9] that XN is embedded in H1(Ω)3 if and only if Ω is convex,

and the same holds for XT .

However, it turns out that the form a is also coercive on the subspaces of H1(Ω)3

HN = XN ∩H1(Ω)3, HT = XT ∩H1(Ω)3

which means that

∃c > 0, ∀u ∈ HN , a(u,u) ≥ c ‖u‖
2

H1(Ω)
,

and the same in HT , see [9]. Therefore the variational pseudo-Maxwell problems

ũ ∈ HN , ∀v ∈ HN ,

∫

Ω

curl ũ · curlv + div ũ div v =

∫

Ω

f · v, (1.3)
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and

ũ ∈ HT , ∀v ∈ HT ,

∫

Ω

curl ũ · curlv + div ũ div v =

∫

Ω

f · v, (1.4)

are uniquely solvable for any f ∈ L2(Ω)3 .

In order to understand the nature of the non-H1 solutions of the Maxwell problems

(1.1) and (1.2), one first has to study complementary subspaces of the closed subspaces

HN of XN and HT of XT . These complements are related to edge and corner singu-

larities of the Dirichlet and Neumann problems for the Laplace operator, as we shall see.

The Laplacian appears if we consider conservative fields, that is, gradients of potentials.

The question is then the H2 regularity of the potentials. Conversely, it has been known

for some time that for the non-H1 singularities, it is also sufficient to study gradients.

To describe this result more precisely, we introduce the domains of the Laplace Dirichlet

∆Dir and Neumann ∆Neu operators as follows

D(∆Dir) =
{
ϕ ∈

◦
H1(Ω) | ∆ϕ ∈ L2(Ω)

}

D(∆Neu) =
{
ϕ ∈ H1(Ω) | ∆ϕ ∈ L2(Ω) and ∂nϕ = 0 on ∂Ω

}
.

Let us recall from [15, 12] that for any polyhedron the space H2(Ω)∩
◦
H1(Ω) is closed in

the domain D(∆Dir) , but that for non-convex polyhedra, the elliptic regularity theorem

does not hold between L2(Ω) and H2(Ω) , and similarly for the Neumann problem. We

can immediately see that for any function ϕ belonging to D(∆Dir) but not to H2(Ω) ,

the vector function gradϕ belongs to XN but not to HN , and similarly with D(∆Neu)
in relation with the spaces XT and HT . That the converse also holds has been shown by

BIRMAN - SOLOMYAK [4, 5], cf also [6].

Theorem 1.1 Let Ω be a locally simply connected polyhedral domain.

(i) For any closed complement KDir of H2(Ω) ∩
◦
H1(Ω) in D(∆Dir) , we have

XN = HN ⊕ gradKDir.

(ii) For any closed complement KNeu of H2(Ω) ∩D(∆Neu) in D(∆Neu) , we have

XT = HT ⊕ gradKNeu.

Precise descriptions of the spaces KDir and KNeu will be given below in section 2.

Our result is that in the presence of nonconvex edges, these spaces are infinite-dimensional

(see Corollary 2.8), whereas for the corresponding two-dimensional problems, their di-

mension is equal to the number of nonconvex corners, see (2.7).
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1.b The regularity of the divergence

The solutions of problems (1.1) and (1.2) have a divergence with optimal elliptic reg-

ularity, i.e. div u ∈ H1(Ω) , whereas nothing similar holds for the solutions of problems

(1.3) and (1.4).

Theorem 1.2

(i) The divergence q = div u of the solution of problem (1.1) belongs to
◦
H1(Ω) and is

the solution of the Dirichlet problem

q ∈
◦
H1(Ω), ∆q = − div f . (1.5)

(ii) The divergence q = div u of the solution of problem (1.2) belongs to H1(Ω) and is

the solution with zero mean value on Ω of the Neumann problem

q ∈ H1(Ω), ∀p ∈ H1(Ω),

∫

Ω

grad q · grad p = −

∫

Ω

f · grad p.

(iii) If div f = 0 , then the solutions of both Maxwell problems (1.1) and (1.2) satisfy

div u = 0 .

PROOF. (i) If u solves (1.1), then taking as test functions v = gradϕ with ϕ ∈
D(∆Dir) we obtain

∀ϕ ∈ D(∆Dir),
〈
div u , ∆Dirϕ

〉
Ω

=
〈
f , gradϕ

〉
Ω
, (1.6)

with 〈 , 〉Ω the duality product in Ω . But the solution of (1.5) satisfies

∀p ∈
◦
H1(Ω),

〈
grad q , grad p

〉
Ω

= −
〈
f , grad p

〉
Ω
,

whence

∀ϕ ∈ D(∆Dir),
〈
q , ∆Dirϕ

〉
Ω

=
〈
f , gradϕ

〉
Ω
.

Thus div u − q is orthogonal to the range of ∆Dir , which is the whole L2(Ω) .

The proof of (ii) is similar and (iii) follows from uniqueness for the Dirichlet and Neu-

mann problems.

For the divergence q̃ of the pseudo-Maxwell solution ũ of problem (1.3), there

holds, instead of (1.6):

∀ϕ ∈ H2(Ω) ∩
◦
H1(Ω),

〈
q̃ , ∆Dirϕ

〉
Ω

=
〈
f , gradϕ

〉
Ω
. (1.7)

Now for this “very weak” Dirichlet problem, there is no uniqueness in general. We define

K∗
Dir : orthogonal complement in L2(Ω) of ∆Dir

(
H2 ∩

◦
H1(Ω)

)
. (1.8)

9



This space is isomorphic to KDir . Its elements are often called dual singular functions

because of their duality with singularities. They are the solutions of the totally homo-

geneous problem in its “very weak” form (1.7), see [22, 15]. We obtain the following

result.

Theorem 1.3 For f ∈ L2(Ω)3 , let u and ũ be the solutions of problems (1.1) and

(1.3) respectively. Then div u − div ũ ∈ K∗
Dir . A similar result holds for problems (1.2)

and (1.4).

1.c Boundary value formulations

Maxwell and pseudo-Maxwell solutions differ by their regularity, but they are, in fact,

solutions of one and the same boundary value problem. To understand this somewhat

unusual situation, we introduce the following non-symmetric weak formulations:

u ∈ XN , ∀v ∈ HN ,

∫

Ω

curlu · curlv + div u div v =

∫

Ω

f · v, (1.9)

u ∈ XT , ∀v ∈ HT ,

∫

Ω

curlu · curlv + div u div v =

∫

Ω

f · v. (1.10)

Both Maxwell and pseudo-Maxwell solutions satisfy these problems. By using C∞ func-

tions in HN or HT as test functions, we see in the standard way that the “electric”

problem (1.9) has the following strong form

curl curlu − grad div u = f in Ω, (1.11a)

u × n = 0 on ∂Ω, (1.11b)

div u = 0 on ∂Ω, (1.11c)

whereas the “magnetic” problems corresponds to the boundary value problem

curl curlu − grad div u = f in Ω, (1.12a)

u · n = 0 on ∂Ω, (1.12b)

curlu × n = 0 on ∂Ω. (1.12c)

Here the partial differential (vector Laplace) equation is understood in the distributional

sense. The “stable” boundary conditions (1.11b) and (1.12b) correspond to the definition

of the variational spaces. The “natural” boundary conditions (1.11c) and (1.12c) are ob-

tained after integration by parts and have to be understood in a weak sense, (1.11c) for

example in the sense of the “very weak” Dirichlet problem (1.7).

If one takes into account that C∞ functions in HN or HT that vanish in a neighbor-

hood of the singular parts of the boundary, are dense in HN or HT , see [11], it is easy to

see that for f ∈ L2(Ω)3 and u ∈ XN or u ∈ XT respectively, the weak formulations

(1.9), (1.10) and the boundary formulations (1.11), (1.12) are completely equivalent. For

the rest of this section, we concentrate on the “electric” problem (1.9). The results for

(1.10) are analogous.
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Theorem 1.4

(i) To any q ∈ K∗
Dir there exists a unique u ∈ XN , solution of (1.9) with f = 0 such

that

div u = q.

(ii) Let f ∈ L2(Ω)3 and u be a solution of (1.9). Then

α) u is a solution of the pseudo-Maxwell problem (1.3) if and only if u ∈ H1(Ω)3 .

β) u is a solution of the Maxwell problem (1.1) if and only if div u ∈ H1(Ω) .

(iii) If div f = 0 then u is a solution of the Maxwell problem (1.1) if and only if

div u = 0.

PROOF. (i) Let q ∈ K∗
Dir . The splitting XN = HN ⊕ gradKDir (Theorem 1.1) defines

the bounded operator S

S : XN −→ KDir

u 7−→ Su, such that u − gradSu ∈ HN .

Let u be the solution of the problem

u ∈ XN , ∀v ∈ XN ,

∫

Ω

curlu · curlv + div u div v =

∫

Ω

q ∆(Sv).

As S|HN
= 0 , u satisfies (1.9) with f = 0 . With test functions v = gradψ for any

ψ ∈ H2 ∩ H1
0 (Ω) , we obtain that div u is orthogonal to ∆Dir(H2 ∩ H1

0(Ω)) whereas

with test functions v = gradψ , ψ ∈ KDir , we have S(gradψ) = ψ whence

∀ψ ∈ KDir,

∫

Ω

div u ∆ψ =

∫

Ω

q ∆ψ.

As q is also orthogonal to ∆Dir(H2 ∩H1
0 (Ω)) , we deduce that div u − q is orthogonal

to ∆ψ for all ψ ∈ D(∆Dir) , therefore div u = q .

If f = 0 and div u = 0 , (1.9) combined with the splitting XN = HN ⊕ gradKDir

yields that

∀v ∈ XN ,

∫

Ω

curlu · curlv + div u div v = 0.

Hence u = 0 , which proves the uniqueness.

(ii) α) was explained above.

(ii) β) One direction is given by Theorem 1.2: if u solves (1.1), then div u ∈ H1(Ω) .

Let conversely u ∈ XN be a solution of (1.11) with div u ∈ H1(Ω) . By subtracting the

solution of problem (1.1) with the same f , we reduce to the case when f = 0 . Then

11



(1.11a) yields ∆ div u = 0 , and (1.11c) with the assumption gives div u ∈
◦
H1(Ω) .

Therefore div u = 0 . Whence curl curlu = 0 and
∫

Ω

curlu · curlw = 0, ∀w ∈ C∞(Ω)3.

As C∞(Ω)3 is dense in H(curl ; Ω) , we find that curlu = 0 . As Ω is simply con-

nected, we can conclude that u = 0 .

2 Singularities of the Laplace operator

In this section we recall and reformulate results from [15] and [12] relating to corner

singularities in a polygonal domain and to edge and vertex singularities in a polyhedral

domain. For the reader’s convenience, we will sketch the main arguments of the proofs.

2.a Polygonal domains

The results of this paragraph are proved by GRISVARD, see for example [15], but

we present them with the method of [12] which is inspired by the classical paper by

KONDRAT’EV [17]. The presentation of [12] is based on the introduction for each corner

of several spaces of pseudo-homogeneous functions, which allows an optimal treatment

of the polynomial part in the data and the solution.

The notion of corner is obvious if Ω is a Lipschitz polygon. If Ω has crack part in

its boundary, we have to use the notations introduced with the definition of a polygonal

domain in the Introduction.

Let a be an element of the unfolded boundary of Ω , corresponding to a point x ∈
Ω \Ω . Thus a belongs to the boundary of one of the Ωx,i and we say that a is a corner

of Ω if the corresponding sector Γx,i is non-trivial (opening 6= π ) and we denote Γx,i

by Γa and Ωx,i by Va . Let A be the set of the corners a of Ω . With each corner a ,

we associate local polar coordinates such that

Γa =
{
(ra, θa) | ra > 0, 0 < θa < ωa

}
where ωa is the opening of Γa .

Let ϕ be the solution of the problem ∆Dirϕ = f with f ∈ Hs−1(Ω) , s > 0 .

Away from any neighborhood of the corners of Ω , the solution ϕ has the optimal Hs+1

regularity. Near each corner a , ϕ has an asymptotics as ra → 0 , which contains in

general other functions (the singularities) than the polynomials (the Taylor expansion).

Let us fix a ∈ A . The asymptotics and the regularity of the solution ϕ in a neighbor-

hood of a only depend on special spaces of (pseudo) homogeneous functions Y λ
Dir(Γa)

and Zλ
Dir(Γa) defined below. We drop the subscript a in the notations when no confusion

is possible.

12



For any λ ∈ C , let Sλ
Dir(Γ) be the space

Sλ
Dir(Γ) =

{
Φ(r, θ) = rλ

Q∑

q=0

logqr φq(θ) | φq ∈
◦
H1(0, ω)

}
. (2.1)

Only certain subspaces Y λ
Dir(Γ) contribute to the asymptotics of ϕ : For λ ∈ C , Y λ

Dir(Γ)
is defined as the subspace of Sλ

Dir(Γ) :

Y λ
Dir(Γ) =

{
Φ ∈ Sλ

Dir(Γ) | ∆Φ is polynomial in (x, y)
}
. (2.2)

• If λ is a positive integer, Y λ
Dir(Γ) contains the space P λ

Dir(Γ) of homogeneous

polynomial (thus non-singular) functions Φ of degree λ satisfying the Dirichlet

boundary conditions. The space of singularities Zλ
Dir(Γ) is defined as a comple-

ment of P λ
Dir(Γ) in Y λ

Dir(Γ)

Y λ
Dir(Γ) = Zλ

Dir(Γ) ⊕ P λ
Dir(Γ). (2.3)

• If λ is not a positive integer, Zλ
Dir(Γ) is simply defined as

Zλ
Dir(Γ) =

{
Φ ∈ Sλ

Dir(Γ) | ∆Φ = 0
}
. (2.4)

We denote by ΛDir(Γ) the set of λ ∈ C such that Zλ
Dir(Γ) is not reduced to {0} . This

is a discrete set: this fact is a consequence of the ellipticity of the boundary value problem

to which it corresponds, see AGRANOVICH - VISHIK [1]. We can refer to ΛDir(Γ) as the

set of singular exponents because only its elements λ produce singularities, which are in

general of the form rλφ(θ) .

In the case of ∆Dir , ΛDir(Γ) is closely related to the spectrum of the one-dimensional

Dirichlet problem on (0, ω)

◦
H1(0, ω) ∋ φ 7−→ −∂2

θφ ∈ H−1(0, ω). (2.5)

Its eigenvalues are (kπ
ω

)2 with eigenvectors sin kπ
ω
θ and for each k ∈ Z∗ (set of non-zero

integers) the functions rkπ/ω sin kπ
ω
θ are non-zero elements of Y

kπ/ω
Dir (Γ) . There holds

Lemma 2.1 Let Γ be a plane sector of opening ω 6= π . Then

ΛDir(Γ) =

{
{kπ

ω
, k ∈ Z∗} if ω 6= 2π

{k
2
, k < 0 or k odd } if ω = 2π.

For any λ ∈ ΛDir(Γ) , the singularity space Zλ
Dir(Γ) is generated by

Φλ
Dir :=

{
rλ sin λθ if λ 6∈ N

rλ(log r sinλθ + θ cosλθ) − 1
ω
(− y

sin ω
)λ if λ ∈ N,

where (x, y) = (r cos θ, r sin θ) are Cartesian coordinates.
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Concerning the Neumann problem, definitions are similar: we set

Sλ
Neu(Γ) =

{
Φ(x) = rλ

∑Q
q=0 logqr φq(θ) | φq ∈ H1(0, ω)

}
,

Y λ
Neu(Γ) =

{
Φ ∈ Sλ

Neu(Γ) | ∆Φ is polynomial and ∂nΦ
∣∣
∂Γ

= 0
}
,

then the singularity spaces Zλ
Neu(Γ) and the set of exponents ΛNeu(Γ) are defined along

the same lines as above. There holds

Lemma 2.2 Let Γ be a plane sector of opening ω 6= π . Then ΛNeu(Γ) = ΛDir(Γ) and

for any λ ∈ ΛNeu(Γ) , the singularity space Zλ
Dir(Γ) is generated by

Φλ
Neu :=

{
rλ cosλθ if λ 6∈ N

rλ(log r cosλθ − θ sinλθ) + 1
ω
(− y

sin ω
)λ if λ ∈ N.

Coming back to the polygonal domain Ω , we use a smooth cut-off function χ such

that χ(ra) is 1 in a neighborhood of a and is zero outside Va , and we set

ϕλ
Dir,a(x, y) = χ(ra) Φλ

Dir,a(ra, θa),

where Φλ
Dir,a is the generating function in Lemma 2.1 corresponding to the sector Γa .

Then one has the following theorem of splitting in regular and singular parts.

Theorem 2.3 Let ϕ be such that f = ∆Dirϕ belongs to Hs−1(Ω) . If for all a ∈ A
the exponent s does not belong to ΛDir(Γa) , then there exist coefficients γλ

a for each

λ ∈ ΛDir(Γa) ∩ (0, s) such that

ϕ−
∑

a∈A

∑

0 < λ < s

γλ
a ϕ

λ
Dir,a ∈ Hs+1(Ω). (2.6)

A similar statement holds for the Neumann problem.

After localization near a corner a , the key of the proof is the Mellin transform

M[ϕ](λ) =
1

2π

∫ ∞

0

r−λϕ(r cos θ, r sin θ)
dr

r
.

M[ϕ] is defined for Reλ ≤ 0 and holomorphic. Moreover, the inverse Mellin transform

on the line Reλ = 0 gives back ϕ :

ϕ =

∫

Re λ=0

rλM[ϕ](λ) dλ.

Let h := r2f = r2∆ϕ . Then M[h] is defined for Reλ ≤ s , meromorphic with poles

on λ ∈ N corresponding to the Taylor expansion of h in a . Moreover, with

L(λ) :
◦
H1(0, ω) ∋ φ 7−→ ∂2

θφ+ λ2φ ∈ H−1(0, ω),

14



for any λ ∈ C and φ ∈
◦
H1(0, ω) there holds r2∆(rλφ) = rλL(λ)φ , whence

∀λ ∈ C, Reλ ≤ 0, L(λ)M[ϕ](λ) = M[h](λ).

As L(λ)−1 is meromorphic in C , the function L(λ)−1M[h](λ) is a meromorphic ex-

tension of M[ϕ] for 0 < Reλ ≤ s . The poles of L(λ)−1 are the square roots of

the eigenvalues of the operator (2.5), i.e. the kπ
ω

, k ∈ Z∗ . With ϕ0 the inverse Mellin

transform on the line Reλ = s

ϕ0 =

∫

Re λ=s

rλL(λ)−1M[h](λ) dλ

there holds by Cauchy’s residue formula

ϕ0 − ϕ =
∑

0<Re λ0<s

Res
λ=λ0

rλL(λ)−1M[h](λ).

Moreover χϕ0 is regular: it belongs to the subspace of Hs+1(Γ) with zero Taylor part

at the corner a of Γ . The residue in λ0 belongs to the space Sλ0

Dir(Γ) and satisfies

r2∆
(

Res
λ=λ0

rλL(λ)−1M[h](λ)
)

= Res
λ=λ0

rλM[h](λ)

=
∑

|α|=λ0

xα1yα2

α1!α2!
∂αh(a) = r2

∑

|α|=λ0−2

xα1yα2

α1!α2!
∂αf(a).

Thus the residue in λ0 of rλL(λ)−1M[h](λ) belongs to Y λ0

Dir(Γ) . The separation from

the polynomial part in P λ
Dir(Γ) , cf (2.3), yields the splitting of ϕ in the Theorem.

For s = 1 the only contribution to the singular part comes from non-convex angles

with the first exponent π
ω
< 1 . Thus spaces KDir and KNeu as introduced in Theo-

rem 1.1 can be defined as

KDir = Span
〈
ϕ

π/ωa

Dir,a | ωa > π
〉

and KNeu = Span
〈
ϕ

π/ωa

Neu,a | ωa > π
〉
. (2.7)

Moreover

K∗
Dir = Span

〈
ϕ
−π/ωa

Dir,a − ψDir,a | ωa > π
〉

(2.8)

where ψDir,a is the solution of the problem ∆Dirψ = ∆(ϕ
−π/ωa

Dir,a ) and similarly for the

Neumann problem.

2.b Corner singularities in polyhedral domains

The results of this paragraph can be found in [15] and again we adopt the presentation

of [12].

Let C be the set of the corners c of the polyhedral domain Ω ⊂ R3 , that we define

similarly to the corners of a polygon, with the requirement that for any c ∈ C the corre-

sponding cone Γx,i , denoted by Γc , is a non-trivial cone (i.e. it is neither a half space nor
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a dihedron). The corresponding neighborhood Ωx,i is denoted by Vc . In local spherical

coordinates ρc ∈ R+ , ϑc ∈ S2 , the cone Γc is:

Γc =
{
(ρc, ϑc) | ρc > 0, ϑc ∈ Gc ⊂ S2

}
with a spherical polygonal domain Gc .

Let us fix c ∈ C . The asymptotics at c of the solution ϕ of a Dirichlet problem

on Ω depends on the spaces Y λ
Dir(Γc) and Zλ

Dir(Γc) defined similarly to the case of

dimension 2. We drop the subscript c in the notations when no confusion is possible.

Analogously to (2.1), we introduce

Sλ
Dir(Γ) =

{
Φ(ρ, ϑ) = ρλ

Q∑

q=0

logqρ φq(ϑ) | φq ∈
◦
H1(G)

}
. (2.9)

Then the spaces Y λ
Dir(Γ) and Zλ

Dir(Γ) are still defined by (2.2) (where ∆ is now the

three-dimensional Laplacian) and (2.3) respectively. Moreover ΛDir(Γ) is still the set of

λ ∈ C such that Zλ
Dir(Γ) is not reduced to {0} .

Let ∆Dir
G be the positive Laplace-Beltrami operator with Dirichlet conditions on G .

The operator ∆Dir
G is self-adjoint with a compact inverse. Let S(∆Dir

G ) be its spectrum.

From the expression of ∆ in polar coordinates

ρ2∆ = (ρ∂ρ)
2 + ρ∂ρ − ∆G

we obtain that the set of exponents ΛDir(Γ) contains the roots of the equations λ(λ+1) =
µ with µ ∈ S(∆Dir

G ) :

Lemma 2.4 Let Γ be a polyhedral cone and let nΓ be the number of its faces. Then

ΛDir(Γ) =





{
−1

2 −+
√
µ+ 1

4
, µ ∈ S(∆Dir

G )
}
\ N if nΓ = 1

{
−1

2 −+
√
µ+ 1

4
, µ ∈ S(∆Dir

G )
}

if nΓ = 2

{
−1

2 −+
√
µ+ 1

4
, µ ∈ S(∆Dir

G )
}
∪ N2 if nΓ ≥ 3,

where N2 is the set of integers ≥ 2 . For any non integer λ ∈ ΛDir(Γ) , the singu-

larity space Zλ
Dir(Γ) is the space of the functions Φλ

Dir = ρλφ(ϑ) where φ spans the

eigenspace of ∆Dir
G corresponding to the eigenvalue µ = λ(λ+ 1) .

Coming back to the polyhedral domain Ω we set

ϕλ,p
Dir,c(x, y, z) = χ(ρc) Φλ,p

Dir,c(ρc, ϑc),

where Φλ,p
Dir,c , p = 1, . . . , P λ , is a basis of Zλ

Dir(Γc) . Then there holds
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Theorem 2.5 Let ϕ ∈
◦
H1(Ω) such that ∆Dirϕ belongs to Hs−1(Ω) and let c ∈ C .

If s − 1
2

does not belong to ΛDir(Γc) then there exist coefficients γλ,p
c for each λ ∈

ΛDir(Γc) ∩ (−1
2
, s− 1

2
) and each p = 1, . . . , P λ , such that

χ(ρc)ϕ−
∑

− 1
2

< λ < s− 1
2

∑

p

γλ,p
c ϕλ,p

Dir,c ∈ Hs+1
(
R+, ρ2

c dρc;L
2(Gc)

)
, (2.10)

where Hs+1
(
R+, ρ2 dρ;L2(G)

)
denotes the Hs+1 space on R+ with measure ρ2 dρ

and values in L2(G) .

The proof follows the same lines as that of Theorem 2.3 and is based on the Mellin

transform of χ(ρc)ϕ with respect to the corner c , i.e. (we drop the subscript c )

M[ϕ](λ) =
1

2π

∫ ∞

0

ρ−λϕ(ρϑ)
dρ

ρ
,

where ϑ ∈ G . The “operator pencil” is now

L(λ) :
◦
H1(G) ∋ φ 7−→ λ(λ+ 1)φ− ∆Gφ ∈ H−1(G),

and the “regular part” ϕ0 is provided by the inverse Mellin transform on the line Reλ =
s − 1

2
of L(λ)−1M[h](λ) with h = ρ2∆(χϕ) . But, due to the presence of the edges

of Γ , corresponding to the corners of G , with ϕ0 we obtain no improvement in angular

regularity, but only in the radial direction. That is why the regular part in Theorem 2.5

belongs to Hs+1
(
R+, ρ2 dρ;L2(G)

)
.

Similar definitions and results hold for the Neumann boundary condition if we define

the spectrum S(∆Neu
G ) of ∆Neu

G as the set of non-zero eigenvalues of ∆Neu
G .

2.c Edge singularities in polyhedral domains

For the sake of brevity, we describe the following results only for Dirichlet boundary

conditions. The results and the method are those of [12, §16]: see Theorem 16.9.

Let E be the set of the (open) edges e of Ω : for each point x ∈ e , there exists a

neighborhood Ωx,i in which Ω coincides with the wedge We = Γe ×R , where Γe is a

plane sector given in local polar coordinates by

Γe =
{
(re, θe) | re > 0, 0 < θe < ωe

}
with ωe the opening of Γe .

We obtain local cylindrical coordinates by the adjunction of a coordinate ze along the

edge e . Let ϕ ∈
◦
H1(Ω) such that ∆Dirϕ ∈ Hs−1(Ω) . Before giving in the next

paragraph a description of the singularities of ϕ along the whole edge e , we are going

to discuss briefly the structure of its singularities along e away from the corners of Ω .

So, let us fix e ∈ E and drop the subscript e . We investigate ϕ ∈
◦
H1(Γ × R) with

compact support, solution of the Dirichlet problem on the wedge ∆Dirϕ ∈ Hs−1(Γ×R) .
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Let ω be the opening of the sector Γ and
(
(x, y), z

)
be the coordinates in Γ × R .

The partial Fourier transform with respect to the variable z , ϕ(x, y, z) 7→ ϕ̂(x, y, ξ) ,

transforms the equation ∆ϕ = f into

∀ξ ∈ R, ∀(x, y) ∈ Γ, (∂2
x + ∂2

y − ξ2)ϕ̂(x, y, ξ) = f̂(x, y, ξ).

The change of variables (x, y, ξ) 7→ (x̃, ỹ, ξ) = (|ξ|x, |ξ|y, ξ) transforms the above prob-

lem for each non-zero ξ into

∀(x̃, ỹ) ∈ Γ, (∂2
x̃ + ∂2

ỹ − 1)ϕ̃(x̃, ỹ, ξ) = ξ2f̃(x̃, ỹ, ξ). (2.11)

Thus for each ξ , we have an equation on Γ involving the two-dimensional Laplacian as

principal part. Writing the above equation (2.11) in the form

∆ψ = g + ψ in Γ,

we derive from Theorem 2.3 by a bootstrap argument that the singularities of ψ have

themselves expansions as r → 0 , starting with the singularities of ∆Dir in Γ :

ψ(x̃, ỹ) − χ(r̃)
∑

0< λ < s

γ̃λ
(
Φλ

Dir(r̃, θ) +
∑

1≤ q < s−λ

Φλ;q
Dir(r̃, θ)

)
∈ Hs+1(Γ), (2.12)

where the sum extends over λ ∈ ΛDir(Γ) and integer q , and r̃ =
√
x̃2 + ỹ2 . The

singular functions Φλ
Dir are those defined in Lemma 2.1, while the supplementary ones:

Φλ;q
Dir ∈ Sλ+q

Dir (Γ),

depend only on ω , λ and q (∗). Coming back to the original variables (x, y, ξ) and

using the homogeneity of the functions Φ , we obtain (if no λ belongs to N )

ϕ̂(x, y, ξ) −
∑

0 < λ < s

|ξ|λ γ̌λ(ξ)
(
χ(r|ξ|) Φλ

Dir(r, θ)

+
∑

1≤ q ≤ s−λ

|ξ|qχ(r|ξ|) Φλ;q
Dir(r, θ)

)
∈ Hs+1(Γ).

The inverse partial Fourier transform yields the splitting of ϕ into regular and singular

parts

ϕ(x, y, z) −
∑

0 < λ < s

(
KΓ[γλ](r, z) Φλ

Dir(r, θ) (2.13)

+
∑

1≤ q ≤ s−λ

KΓ[∂q
zγ

λ](r, z) Φλ;q
Dir(r, θ)

)
∈ Hs+1(Γ × R),

∗ The Φλ;q

Dir are solutions of the recursive equations ∆DirΦλ;q

Dir = Φλ;q−2

Dir . If λ 6∈ N , Φλ;q

Dir is zero for

odd q and of the form c rqΦλ
Dir for even q , with c ∈ R depending on ω , λ and q .
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where the edge coefficient γλ is the inverse Fourier transform of |ξ|λ γ̌λ(ξ) . Thanks to

the uniformity of the first splitting (2.12), we obtain that |ξ|sγ̌λ(ξ) belongs to L2(R) ,

and hence γλ ∈ Hs−λ(R) (†). The operator KΓ acts as a lifting of trace and is defined as

K̂Γ[δ](r, ξ) = χ(r|ξ|) δ̂(ξ).

Finally, setting

K
λ
Dir,Γ ; s[γ

λ](x, y, z) = KΓ[γλ](r, z) Φλ
Dir(r, θ) (2.14a)

+
∑

1≤ q ≤ s−λ

KΓ[∂q
zγ

λ](r, z) Φλ;q
Dir(r, θ), (2.14b)

we can write the expansion (2.13) in a synthetic way as

ϕ−
∑

0 < λ < s

K
λ
Dir,Γ ; s[γ

λ] ∈ Hs+1(Γ × R) with γλ ∈ Hs−λ(R). (2.15)

In the block K
λ
Dir,Γ ; s[γ

λ] , the term KΓ[γλ] Φλ
Dir in (2.14a) is the leading term.

2.d Combined corner and edge singularities in polyhedral domains

The results and the method are those of [12, §17]: see Theorem 17.13. In [12] the

splitting of the solution in regular and singular parts is localized near each corner and in

the remaining interior parts of each edge. Here we give a new formulation of the results

which is global on the whole domain.

We are going to give a decomposition into regular and singular parts of the solution

ϕ of the Dirichlet problem ∆Dirϕ ∈ Hs−1(Ω) on the polyhedral domain Ω . The corner

contributions are already present in (2.10). As for the edge contributions, they have a

similar structure to those of (2.15) and involve for each edge e ∈ E , coefficients γλ
e

defined on e for λ in the set of exponents ΛDir(Γe) , cf Lemma 2.1, associated with the

bi-dimensional Laplace operator on the sector Γe generating the wedge which coincides

with Ω in a neighborhood of e .

In order to state the regularity of the coefficients γλ
e along the edge e ∈ E , we use a

smooth function de on the closed edge e , which is equivalent to the distance to the ends

of e : if for example e = {x | re = 0, ze ∈ (−1,+1)} , we can take de(ze) = 1 − z2
e .

The weighted Sobolev spaces Vm
η (e) which are the correct spaces for the coefficients γλ

e

are defined for m ∈ N and η ∈ R by

Vm
η (e) =

{
γ ∈ L2(e) | (de)

η+k ∂k
ze
γ ∈ L2(e), k = 0, 1, . . . , m

}

and by complex interpolation for non-integers m .

Combining the corner expansions (2.10) for each corner c ∈ C , with a blow up of

each edge e ∈ E at its ends (which are two corners of Ω ) and an edge expansion like

(2.15), we can prove

† Essential for the estimates is the invertibility of the operator ∆ − 1 from
◦

H1(Γ) onto H−1(Γ) .
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Theorem 2.6 (i) Let ϕ ∈
◦
H1(Ω) such that ∆Dirϕ belongs to Hs−1(Ω) . If for all

c ∈ C , s − 1
2

does not belong to ΛDir(Γc) and if for all e ∈ E , s does not belong to

ΛDir(Γe) , then there exist:

• Coefficients γλ,p
c for each λ ∈ ΛDir(Γc) ∩ (−1

2
, s− 1

2
) and p = 1, . . . , P λ ,

• Functions γλ
e ∈ Vs−λ

−s (e) for each λ ∈ ΛDir(Γe) ∩ (0, s)

such that

ϕ−
∑

c∈C

∑

− 1
2

< λ < s− 1
2

∑

p

γλ,p
c ϕλ,p

Dir,c −
∑

e∈E

∑

0 < λ < s

K
λ
Dir,e ; s[γ

λ
e ] ∈ Hs+1(Ω). (2.16)

(ii) Conversely, for any coefficients γλ,p
c ∈ R and any functions γλ

e ∈ Vs−λ
−s (e) there

exists a function ϕ admitting the expansion (2.16) and such that ∆Dirϕ ∈ Hs−1(Ω) .

To describe the operators K
λ
Dir,e ; s , we need to define the smoothing operator Ke[·]

adapted to the edge e , cf (2.14), and for this we introduce the stretched variable

z̃e =

∫ ze

0

1

de(z)
dz,

where z = 0 corresponds to an interior point of e . The change of variable ze 7→ z̃e is

one to one e → R and for any function γ defined on e , we set γ̃(z̃e) = γ(ze) . Then

Ke[γ](ρe, ze) is the convolution operator with respect to z̃e :

Ke[γ](ρe, ze) =

∫

R

1

ρe

α
( t

ρe

)
γ̃(t− z̃e) dt with ρe =

re

de

,

where α is a smooth function in S(R) such that
∫

R
α = 1 . Then the block K

λ
Dir,e ; s[γ

λ
e ]

has the following structure

K
λ
Dir,e ; s[γ

λ
e ](x, y, z) = Ke[γ

λ
e ](ρe, ze) Φλ

Dir,e(ρe, θe) (2.17a)

+
∑

1≤ |q| ≤ s−λ

Ke[γ
λ;q
e ](ρe, ze) Φλ;q

Dir,e(ρe, θe). (2.17b)

In the leading term (2.17a), Φλ
Dir,e is the function defined in Lemma 2.1 for ω = ωe

and in (2.17b) q is a multi-index, γλ;q
e is a derivative of γλ

e of order ≤ |q| and Φλ;q
Dir,e

belongs to S
λ+|q|
Dir (Γe) .

The theorem of regularity is an obvious particular case of the previous one:

Theorem 2.7 Let ϕ be such that ∆Dirϕ belongs to Hs−1(Ω) . If for all c ∈ C , the

intersection ΛDir(Γc) ∩ (−1
2
, s − 1

2
) is empty and if for all e ∈ E , the intersection

ΛDir(Γe) ∩ (0, s) is empty, then ϕ ∈ Hs+1(Ω) .
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As a particular case of Theorem 2.6 for s = 1 we obtain a characterization of the

space KDir , cf Theorem 1.1, namely that KDir is parametrized by certain discrete co-

efficients corresponding to corners and by edge coefficients from the weighted Sobolev

spaces Vm
η (e) associated with nonconvex edges.

Corollary 2.8 Let C0 = {c ∈ C, ΛDir(Γc) ∩ (−1
2
, 1

2
) 6= ∅} and E0 = {e ∈ E , ωe > π} .

For any c ∈ C0 there is only one λ in ΛDir(Γc) ∩ (−1
2
, 1

2
) and we denote by ΦDir,c

the corresponding singularity. For any e ∈ E0 there is only one λ in ΛDir(Γe) ∩ (0, 1)

and we denote by ΦDir,e := r
π/ωe
e sin πθ/ωe the corresponding singularity. Then for any

complementary space KDir of H2 ∩
◦
H1(Ω) in D(∆Dir) the following mapping is one

to one:
KDir −→

∏
c∈C0

R ×
∏

e∈E0
V

1−π/ωe

−1 (e)
ϕ 7−→ (γc, γe),

where γc and γe are the coefficients such that

ϕ−
∑

c∈C0

γc χ(ρc) ΦDir,c(ρc, ϑc) −
∑

e∈E0

Ke[γe](ρe, ze) ΦDir,e(ρe, θe) ∈ H2(Ω).

Remark 2.9 The only information which is not a straightforward consequence of Theo-

rem 2.6 is the fact that for any c ∈ C0 there is a single element λ in ΛDir(Γc)∩ (−1
2
, 1

2
) .

This is a consequence of the monotonicity of Dirichlet eigenvalues. The first eigenvalue

µ1 of the Laplace-Beltrami operator on the unit sphere is simple and is 0 . The second

one µ2 is triple and is equal to 2 . Thus the first λ ≥ 0 in ΛDir(Γc) is > 0 and the

second one is > −1
2

+
√
µ2 + 1

4
= 1 .

3 Singularities of Maxwell operators on polygonal domains

The previous analysis for the Laplace operator can be extended to any strongly elliptic

boundary value problem, see [12]. We explain now how this analysis can be adapted to the

Maxwell problems on polygonal domains in two dimensions. In this section, we describe

the singular functions and the sets of singular exponents, and state our main results. The

constructions leading to these results will be presented in section 5.

3.a Bi-dimensional Maxwell equations

Maxwell equations in R2 are obtained from the three-dimensional ones by the elim-

ination of one coordinate (say z ) and of the corresponding component in the fields. The

curl has now two (dual) forms, one scalar when applied to 2D fields curl v = ∂1v2−∂2v1 ,

and one vectorial when applied to scalar functions curlw = (∂2w,−∂1w) . The defini-

tions of the divergence and gradient are obvious: div v = ∂1v1 + ∂2v2 , and gradw =
(∂1w, ∂2w) . The space XN is then the space of v ∈ L2(Ω)2 such that curl v and div v

are L2(Ω) , and with tangential boundary conditions.
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Thus the Maxwell “electric” problem under consideration is:

u ∈ XN , ∀v ∈ XN ,

∫

Ω

curl u curl v + div u div v =

∫

Ω

f · v, (3.1)

and the corresponding boundary value problem is for f ∈ L2(Ω)2 :




curl curl u − grad div u = f in Ω,

u × n = 0 and div u = 0 on ∂Ω,

u ∈ L2(Ω)2, curl u ∈ L2(Ω) and div u ∈ H1(Ω).

(3.2)

Of course we have also the pseudo-Maxwell version of problem (3.1) by replacing

the variational space XN by HN = XN ∩H1(Ω)2 .

We are going to investigate the solutions u when the data f belong to the Sobolev

space Hs−1(Ω)2 , with s ≥ 1 . Since the boundary value problem (3.2) is an elliptic

system, the solution u belongs to Hs+1(V ∩ Ω)2 for any open set V such that V does

not meet any corner of Ω . The singular behavior of u is attached to the corners a of

Ω .

3.b Homogeneous function spaces

Like for ∆Dir , we start with the introduction of the corresponding spaces of homo-

geneous fields Sλ
N , Yλ

N and Zλ
N on a plane sector Γ .

Let us denote by Γ∗ = Γ \ {0} the closure of Γ without its vertex. Then C∞
0 (Γ∗)

denotes the space of smooth functions with compact support contained in Γ∗ . We note

that the space Sλ
Dir(Γ) introduced in (2.1) can be equivalently defined as

Sλ
Dir(Γ) =

{
Φ ∈

◦
H1

loc(Γ
∗) | Φ = rλ

Q∑

q=0

logqr φq(θ)
}
,

where
◦
H1

loc(Γ
∗) is the space of Φ such that for all χ ∈ C∞

0 (Γ∗) , the truncated function

χΦ belongs to
◦
H1(Γ) . We define similarly

S
λ
N (Γ) =

{
U ∈ X loc

N (Γ∗) | U = rλ

Q∑

q=0

logqr Uq(θ)
}
, (3.3)

where U ∈ X loc
N (Γ∗) means that for all χ ∈ C∞

0 (Γ∗) , the truncated field χU belongs to

XN . Thus U × n is zero on ∂Γ . The space Yλ
N(Γ) corresponding to Y λ

Dir(Γ) in (2.2)

is defined as:

Yλ
N(Γ) =

{
U ∈ Sλ

N (Γ) | div U ∈ Sλ−1
Dir (Γ),

curl curl U − grad div U is polynomial
}
.

(3.4)

Note that the natural boundary condition div u = 0 on ∂Ω is present in the condition

div U ∈ Sλ−1
Dir (Γ) which also takes into account the regularity condition div u ∈ H1(Ω) .
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• If λ is a positive integer, Yλ
N(Γ) contains the space Pλ

N (Γ) of homogeneous poly-

nomial fields U of degree λ satisfying the boundary conditions U × n = 0 and

div U = 0 on ∂Γ . Like in (2.3), let Zλ
N(Γ) be a complement of Pλ

N(Γ) in Yλ
N(Γ)

Y
λ
N(Γ) = Z

λ
N (Γ) ⊕ P

λ
N(Γ). (3.5)

• If λ is not a positive integer, Zλ(Γ) is simply defined as

{
U ∈ S

λ
N (Γ) | div U ∈ Sλ−1

Dir (Γ), curl curl U − grad div U = 0
}
. (3.6)

We denote by ΛN(Γ) the set of λ ∈ C such that Zλ
N(Γ) is not reduced to {0} . We

prove in section 5:

Lemma 3.1 Let Γ be a plane sector of opening ω 6= π . Then the set of electric Maxwell

singular exponents is

ΛN(Γ) =
{
λ ∈ R \ {1} | λ+ 1 or λ− 1 belongs to ΛDir(Γ)

}
.

The corresponding spaces Zλ
N(Γ) of singular functions are generated:

(i) If λ+ 1 ∈ ΛDir(Γ) by

U
λ,+
N :=

{ (
rλ sin λθ, rλ cosλθ

)
if λ 6∈ N

(
rλ(log r sinλθ + θ cos θ), rλ(log r cos λθ − θ sin θ)

)
if λ ∈ N,

These functions are the gradients of the Dirichlet singular functions of the Laplace

operator ∆Dir , thus have zero curls and regular divergences.

(ii) If λ− 1 ∈ ΛDir(Γ) by

U
λ,−
N :=

{ (
rλ sin λθ, −rλ cos λθ) if λ 6∈ N

(rλ(log r sinλθ + θ cos θ), −rλ(log r cosλθ − θ sin θ)
)

if λ ∈ N,

The divergences of these functions are the singular functions of ∆Dir .

3.c Regularity and singularities in XN

With U
λ,p
N,a for p = −+ the generating functions in Lemma 3.1 corresponding to the

sector Γa , we set for each a ∈ A

u
λ,p
N,a(x, y) = χ(ra) U

λ,p
N,a(ra, θa).

Definition 3.2 Let s ≥ 0 and a ∈ A . We call admissible singular functions the func-

tions u
λ,p
N,a ∈ XN \ Hs+1(Ω)2 such that div u

λ,p
N,a ∈ H1(Ω) . The set of corresponding

exponents λ is called the set of admissible exponents and denoted by ΛN ; s(Γa) .
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Lemma 3.3 For any s ≥ 0 and a ∈ A there holds

ΛN ; s(Γa) =
{
λ ∈ (−1, s] | λ+ 1 ∈ ΛDir(Γa)

}
(3.7a)⋃ {

λ ∈ (1, s] | λ− 1 ∈ ΛDir(Γa)
}
. (3.7b)

Indeed we deduce from Lemma 3.1 that u
λ,+
N,a belongs to XN if and only if λ > −1 .

The divergence of u
λ,+
N,a is zero near a , thus always belongs to H1(Ω) . However the

divergence of u
λ,−
N,a is non-zero and singular near a and belongs to H1(Ω) if and only

if λ− 1 > 0 . Finally u
λ,

−
+

N,a belongs to Hs+1(Ω)2 if and only if λ > s .

Here follows the statement of regularity and singularity for problem (3.1).

Theorem 3.4 Let u be the solution of problem (3.1) with f ∈ Hs−1(Ω)2 .

(i) If for all a ∈ A , the exponent s does not belong to ΛN ; s(Γa) , then for each λ in

ΛN ; s(Γa) there exist coefficients γλ,+
a if λ+1 ∈ ΛDir(Γa) and γλ,−

a if λ−1 ∈ ΛDir(Γa)
such that

u −
∑

a∈A

∑

λ∈ΛN; s(Γa)

γ
λ,

−
+

a u
λ,

−
+

N,a ∈ Hs+1(Ω)2. (3.8)

(ii) If for all a ∈ A the set ΛN ; s(Γa) is empty, then u ∈ Hs+1(Ω)2 .

The proof uses exactly the same tools as for Theorem 2.3. But now, the Mellin trans-

form of u (localized) is defined for Reλ ≤ −1 and meromorphically extended up to

Reλ ≤ s . The regular part is still the inverse Mellin transform on the line Reλ = s . The

residues belong to Yλ
N(Γ) and we obtain a singular part which is a priori a linear combi-

nation of the u
λ,p
N,a for all λ ∈ ΛN(Γa)∩ (−1, s) . But as div u belongs to H1(Ω) , only

admissible singularities subsist.

3.d Different choices of regular and singular parts

Theorem 3.4 shows the existence of a splitting into singular functions and a regular

part that is as regular as desired. If the singular functions are not constructed according

to our explicit formulas in Lemma 3.1, then additional singular terms can be exchanged

between the “singular” and “regular” parts: we describe this phenomenon for the simple

but important case of the first singularity in XN \HN .

Let us consider the expansion (3.8) for s = 1 : only one singular function for each

reentrant corner does not belong to H1 : this is u
λ,+
N,a for λ = π/ωa − 1 . If we put the

other terms of the expansion (3.8) into the regular part, we obtain an expansion of the type

u = u(H) +
∑

a∈A, a non−convex

γa wa, (3.9)

with wa ∈ XN \HN and u(H) ∈ HN .
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The question of the regularity of this pseudo regular part u(H) is an important prob-

lem if one wants to use the splitting (3.9) for a numerical approximation of u by a singu-

lar function method, that is, by trial functions that are composed of the singular functions

wa and regular functions (e.g. piecewise polynomials), see [20]. The convergence rate of

the whole method is then determined by the regularity of u(H) .

We compare five constructions for wa and u(H) . In each case, u(H) will have a

decomposition itself, and its regularity is determined by its first singular function. For

simplicity, we assume that there is just one reentrant corner of opening ω > π situated

at the origin 0 and χ denotes a smooth cut-off function equal to 1 in a neighborhood of

0 .

In this case, u(H) ∈ Hσ+1 with σ < λ∗ , where λ∗ is the exponent of the first

singular function in u(H) . Thus λ∗ will directly yield the convergence rate of a singular

function method for the approximation of u .

(i) According to Lemma 3.1, the natural choice for w is grad(χ rπ/ω sin πθ
ω

) . In this

case, the next exponent in ΛN ; s(Γ) is λ∗ = 2π
ω
− 1 if ω 6= 2π , and λ∗ = 3π

ω
− 1 = 1

2
if

ω = 2π . Thus varying ω ∈ [π, 2π] , the function λ∗ covers the whole interval (0, 1) .

(ii) We can choose a divergence free form of w : curl(χ rπ/ω cos πθ
ω

) . This expansion

is, in fact, identical to (i), so λ∗ is the same.
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(iii) A more abstract construction for w is described in [23] and [6]. Let ϕ be the

solution of the Dirichlet problem

∆Dirϕ = SDir ,

where SDir is the first dual singular function of the Dirichlet problem, i.e. a generator of

the one-dimensional space K∗
Dir , see Theorem 1.3 and expression (2.8). Then the choice

of w = gradϕ provides a splitting of u where w is orthogonal in XN to the curl-free

fields in HN . Thus if curlf = 0 , this is an orthogonal decomposition within the spaces

of curl-free fields.

It is well known that SDir has a singular part r−π/ω sin πθ
ω

, see (2.8). Therefore, besides

the main part c0 r
π/ω sin πθ

ω
with non-zero c0 , ϕ contains a singularity of exponent

2− π
ω

. Thus w contains a term of exponent 1− π
ω

. For ω 6= 3π
2
, 2π , this exponent does

not belong to ΛN ; s . Thus u(H) must contain this singularity, too, and we have

λ∗ = min
{

2π
ω
− 1, 1 − π

ω

}
∈ (0, 1

3
].

This is less regular than the choice (i) if ω < 3π
2

.

(iv) A similar construction in [23] and [3] is w = curlϕ with ϕ a solution of the

Neumann problem

∆Neuϕ = SNeu ,

where SNeu is the first dual singularity of the Neumann problem. This gives a splitting

with w orthogonal in XN to the divergence-free fields in HN . Thus if div f = 0 , this

is an orthogonal decomposition within the spaces of divergence-free fields. This singular

function w is linearly independent of the one in (iii). But modulo H1(Ω) , these two

functions are proportional, and their λ∗ are also the same.

(v) Another natural construction is the orthogonal decomposition of u with respect to the

inner product in XN , with the part u(H) in HN and the residual γ0w in H⊥
N . Thus

u(H) is the solution ũ of the variational problem in HN and γ0w is the difference

between the solutions of the Maxwell and pseudo-Maxwell problems with the same data,

cf Theorem 1.3. In this case, u(H) contains a singularity of exponent 1 − π
ω

, see (3.13)

just below. Thus λ∗ is the same as in (iii) and (iv). Note that even if curlf = 0 or

div f = 0 , this decomposition is in general, not the same as the one in (iii) or (iv),

respectively.

3.e Singularities in HN . Comparison

If instead of (3.1), we consider the variational pseudo-Maxwell problem in HN , the

corresponding boundary value problem is the same as (3.2) except the regularity require-

ments: we have now u ∈ H1(Ω)2 and no special regularity on div u , which is only

L2(Ω) . The associated spaces of homogeneous functions are

S̃
λ
N (Γ) =

{
U ∈ H loc

N (Γ∗) | U(x) = rλ

Q∑

q=0

logqr Uq(θ)
}
, (3.10)
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and

Ỹλ
N(Γ) =

{
U ∈ S̃λ

N (Γ) | div U = 0 on ∂Γ,

curl curl U − grad div U is polynomial
}
.

(3.11)

Then Z̃λ
N(Γ) and Λ̃N(Γ) are defined similarly as their counterpart for XN . As we are

in dimension 2 with no other singularity than 0 in Γ , there holds

Λ̃N(Γ) = ΛN(Γ). (3.12)

But the set of admissible exponents is different. This is the set Λ̃N ; s(Γa) of the λ ∈

ΛN(Γ) such that u
λ,p
N,a ∈ HN \Hs+1(Ω)2 . Then instead of (3.7), there holds

Λ̃N ; s(Γ) = ΛN(Γ) ∩ (0, s]. (3.13)

Thus we see that both sets ΛN ; s(Γ) and Λ̃N ; s(Γ) are different if and only if ΛDir(Γ) has

elements in the interval [−1,+1] , i.e. if ω > π (non-convex corner). Then

ΛN ; s =
{

π
ω
− 1

} ⋃
(ΛN ; s ∩ Λ̃N ; s) and Λ̃N ; s =

{
1 − π

ω

} ⋃
(ΛN ; s ∩ Λ̃N ; s).

4 Singularities of Maxwell operators on polyhedral domains

We continue the investigation of the Maxwell and pseudo-Maxwell problems, now

on polyhedral domains in R3 . Like for polygonal domains, we describe how the general

theory of corner and edge singularities applies to the Maxwell problems and we present

our main results. The detailed constructions follow in section 6.

If we assume that the right-hand side f belongs to Hs−1(Ω)3 , with s ≥ 1 , the

solutions of problems (1.1), (1.2), (1.3) or (1.4) are regular in any neighborhood which

does not meet any corner or edge of Ω . The singular behavior of the solutions is attached

to corners and edges.

4.a Corner singularities

Let us recall that C is the set of the corners of Ω and that in a neighborhood of each

c ∈ C , Ω coincides locally with a polyhedral cone Γc , to which correspond spherical

coordinates (ρc, ϑc) .

As in dimension 2 , we have to introduce the spaces of homogeneous fields Sλ
N , Yλ

N

and Zλ
N corresponding to the “electric” boundary conditions, on the cones Γc for any

corner c ∈ C . The procedure for the “magnetic” conditions is strictly similar.
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Let us fix a corner c and drop the subscript c . The space Sλ
N (Γ) is defined as

S
λ
N(Γ) =

{
U ∈ X loc

N (Γ∗) | U = ρλ

Q∑

q=0

logqρ Uq(ϑ)
}
. (4.1)

We now define Yλ
N(Γ) as the subspace of Sλ

N (Γ) :

Yλ
N(Γ) =

{
U ∈ Sλ

N(Γ) | div U ∈ Sλ−1
Dir (Γ),

curl curl U − grad div U is polynomial
}
.

(4.2)

Then the singularity space Zλ
N (Γ) is defined as in dimension 2 , cf (3.5)-(3.6), and the

set of electric Maxwell exponents ΛN(Γ) is the set of λ ∈ C such that Zλ
N(Γ) 6= {0} .

We prove in section 6:

Lemma 4.1 Let Γ be a polyhedral cone in R3 with vertex in 0 and characterized in

spherical coordinates by ϑ ∈ G ⊂ S2 . Let x denote the vector of coordinates (x, y, z).

a) The set of non-integer electric Maxwell singular exponents is given by

ΛN(Γ) \ Z =
{
λ ∈ R \ Z | λ+ 1 ∈ ΛDir(Γ) or λ ∈ ΛNeu(Γ) or λ− 1 ∈ ΛDir(Γ)

}
.

The spaces Zλ
N(Γ) have correspondingly the three types of generators:

Type 1. If λ+ 1 ∈ ΛDir(Γ) : U
λ,1
N = gradΦλ+1

Dir ,

Type 2. If λ ∈ ΛNeu(Γ) : U
λ,2
N = gradΦλ

Neu × x,

Type 3. If λ− 1 ∈ ΛDir(Γ) : U
λ,3
N = (2λ− 1)Φλ−1

Dir x − ρ2 gradΦλ−1
Dir ,

with Φµ
Dir ∈ Zµ

Dir(Γ) , cf Lemma 2.4, and its Neumann analogue Φλ
Neu ∈ Zλ

Neu(Γ) .

b) If G is simply connected, the values λ = −1 or 0 do not belong to ΛN(Γ) .

c) If G is not simply connected, the values λ = −1 and 0 belong to ΛN(Γ) and the

corresponding U
λ,p
N have zero curl and divergence.

Here are now the analogues of Definition 3.2 and Lemma 3.3. With a basis U
λ,p
N,c of

ΛN(Γc) , we set for each c ∈ C

u
λ,p
N,c(x, y, z) = χ(ρc) U

λ,p
N,c(ρc, ϑc).

Definition 4.2 Let s ≥ 0 and c ∈ C . We call admissible singular functions the func-

tions u
λ,p
N,c ∈ XN \ Hs+1

(
R+, ρ2

c dρc;L
2(Gc)

)3
such that div u

λ,p
N,c ∈ H1(Ω) . The set

of corresponding exponents λ is called the set of admissible exponents and denoted by

ΛN ; s(Γc) .
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Lemma 4.3 For any s ≥ 0 and c ∈ C there holds

ΛN ; s(Γc) =
{
λ ∈ (−3

2
, s− 1

2
] | λ+ 1 ∈ ΛDir(Γc)

}
(4.3a)⋃ {

λ ∈ (−1
2
, s− 1

2
] | λ ∈ ΛNeu(Γc)

}
(4.3b)⋃ {

λ ∈ (1
2
, s− 1

2
] | λ− 1 ∈ ΛDir(Γc)

}
(4.3c)⋃ {

−1, 0
}
∩ (−3

2
, s− 1

2
] if Gc is not simply connected. (4.3d)

PROOF. Let us fix c ∈ C and drop the subscript c . If U is a non-zero homogeneous

function of degree λ of the form ρλ
U(ϑ) with U ∈ L2(G) , there holds

χ(ρ)U ∈ L2(Γ) ⇐⇒ λ > −3
2

(4.4a)

χ(ρ)U 6∈ Hs+1
(
R+, ρ2 dρ;L2(G)

)
⇐⇒ λ ≤ s− 1

2
. (4.4b)

The fields U
λ,1
N have zero curl and divergence, like the U

λ,p
N for λ = −1, 0 . Thus the

corresponding χ(ρ) U
λ,p
N belong to XN if and only if they are in L2(Γ) , whence (4.3a)

and (4.3d).

The fields U
λ,2
N have zero divergence but non-zero curl, cf formulas (6.6). As their curl

has the homogeneity λ − 1 , χ(ρ) U
λ,2
N belongs to XN if and only if λ − 1 > −3

2
,

whence (4.3b).

The fields U
λ,3
N have non-zero curl and div U

λ,3
N = (2λ2 + λ)Φλ−1

Dir . Thus div(χU
λ,3
N )

belongs to H1(Ω) if and only if λ− 1 > −1
2

, whence (4.3c).

Similarly to the expansion (2.10) for solutions of ∆Dir , we can prove by Mellin

transform that the solution u of problem (1.1) with f ∈ Hs−1(Ω)3 can be expanded in

a neighborhood of each corner c ∈ C so that there holds

χ(ρc) u −
∑

λ∈ΛN; s(Γc)

∑

p

γλ,p
c u

λ,p
N,c ∈ Hs+1

(
R+, ρ2

c dρc;L
2(Gc)

)
. (4.5)

4.b Edge singularities

Let us recall that E is the set of the edges of Ω and that in a neighborhood of each

e ∈ E , Ω coincides locally with a wedge We = Γe×R , to which correspond cylindrical

coordinates (re, θe, ze) . Let us fix e ∈ E and drop the subscript e .

We have seen, see (2.13), that the edge singularities for ∆Dir have a sort of tensor

product structure whose polar parts (i.e. in (r, θ) ) are the singularities at the corner of

the sector Γ of the problems obtained by partial Fourier transform with respect to the

tangential variable z . Moreover, the leading part of these singularities does not depend

on the dual variable ξ of z . In other words, the leading singularities can be determined

by the consideration of functions defined on the wedge W = Γ × R , but not depending
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on the variable z . This feature is common to any strongly elliptic problem. That is the

reason for the introduction of the spaces

S
λ
N (W ) =

{
U ∈ X loc

N (Γ∗ × R) | U = rλ

Q∑

q=0

logqr Uq(θ)
}

(4.6)

and

Yλ
N(W ) =

{
U ∈ Sλ

N(W ) | div U ∈ Sλ−1
Dir (W ),

curl curl U − grad div U is polynomial
}
.

(4.7)

Then the space of singular functions Zλ
N(W ) is defined along the same lines as for cor-

ners:

• If λ is a positive integer, Yλ
N(W ) contains the space Pλ

N(W ) of homogeneous

polynomial fields U of degree λ independent of z satisfying the boundary condi-

tions U × n = 0 and div U = 0 on ∂W . Let Zλ
N(W ) be such that

Y
λ
N(W ) = Z

λ
N(W ) ⊕ P

λ
N (W ). (4.8)

• If λ is not a positive integer, Zλ(W ) is simply defined as

{
U ∈ S

λ
N (W ) | div U ∈ Sλ−1

Dir (W ), curl curl U − grad div U = 0
}
. (4.9)

We denote by ΛN(W ) the set of λ ∈ C such that Zλ
N(W ) is not reduced to {0} . We

prove in section 5:

Lemma 4.4 The set of the exponents ΛN(W ) attached to the wedge W = Γ × R is

ΛN(W ) = {λ ∈ R \ {1} | λ− 1, λ or λ+ 1 belongs to ΛDir(Γ)}.

The spaces Zλ
N(Γ) have correspondingly the three types of generators:

Type 1. If λ+ 1 ∈ ΛDir(Γ) : U
λ,1
N =

(
U

λ,+
N , 0

)
=

(
gradΦλ+1

Dir , 0
)
,

Type 2. If λ ∈ ΛDir(Γ) : U
λ,2
N =

(
0, Φλ

Dir

)
,

Type 3. If λ− 1 ∈ ΛDir(Γ) : U
λ,3
N =

(
U

λ,−
N , 0

)
,

where Φµ
Dir ∈ Zµ

Dir(Γ) are the Laplace Dirichlet plane singularities, cf Lemma 2.4 and

U
λ,

−
+

N the electric Maxwell plane singularities, cf Lemma 3.1.

Here are now the analogues of Definition 3.2 and Lemma 3.3.

Definition 4.5 Let s ≥ 0 and e ∈ E . Let βe be a smooth cut-off function with support

away from the corners and the other edges of Ω and βe ≡ 1 in a neighborhood of a point

in e . We call admissible singular functions the functions U
λ,p
N,e such that

βeU
λ,p
N,e ∈ XN \Hs+1(Ω)3 and div

(
βeU

λ,p
N,e

)
∈ H1(Ω).
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The set of corresponding exponents λ is called the set of admissible exponents and de-

noted by ΛN ; s(We) .

Lemma 4.6 For any s ≥ 0 and e ∈ E there holds

ΛN ; s(We) =
{
λ ∈ (−1, s] | λ+ 1 ∈ ΛDir(Γe)

}
(4.10a)⋃ {

λ ∈ (0, s] | λ ∈ ΛDir(Γe)
}

(4.10b)⋃ {
λ ∈ (1, s] | λ− 1 ∈ ΛDir(Γe)

}
. (4.10c)

PROOF. Let us fix e ∈ E and drop the subscript e . If U is a non-zero homogeneous

function of degree λ of the form rλ
U(θ) with U ∈ C∞([0, ω]) , there holds

β(r, z)U(r, θ) ∈ L2(W ) ⇐⇒ λ > −1 (4.11a)

β(r, z)U(r, θ) 6∈ Hs+1(W ) ⇐⇒ λ ≤ s. (4.11b)

The fields U
λ,1
N have zero curl and divergence. Thus βU

λ,1
N belongs to XN if and only

if it is in L2(Γ) , whence (4.10a).

The fields U
λ,2
N have zero divergence but non-zero curl. As their curl has the homogeneity

λ− 1 , βU
λ,2
N belongs to XN if and only if λ− 1 > −1 , whence (4.10b).

The fields U
λ,3
N have non-zero curl and div U

λ,3
N = (2λ)Φλ−1

Dir . Then div(βU
λ,3
N ) belongs

to H1(Ω) if and only if λ− 1 > −1 , whence (4.10b).

4.c Regularity and combined corner and edge singularities

We are now ready to give the main statement of splitting in regular and singular parts.

Theorem 4.7 Let u be the solution of problem (1.1) with data f ∈ Hs−1(Ω)3 with

s ≥ 1 . We assume that:

• For all c ∈ C , s− 1
2

does not belong to ΛN ; s(Γc) ,

• For all e ∈ E , s does not belong to ΛN ; s(We) ,

Then there exist:

• Coefficients γλ,p
c for each λ ∈ ΛN ; s(Γc) and p ,

• Functions γλ,p
e ∈ Vs−λ

−s (e) for each λ ∈ ΛN ; s(We) and p

such that

u −
∑

c∈C

∑

λ∈ΛN; s(Γc)

∑

p

γλ,p
c uλ,p

c −
∑

e∈E

∑

λ∈ΛN; s(We)

∑

p

K
λ,p
N,e ; s[γ

λ,p
e ] ∈ Hs+1(Ω). (4.12)
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In (4.12) the block of singularities K
λ,p
N,e ; s[γ

λ,p
e ] has a structure similar to the blocks

appearing for the Laplace operator ∆Dir in (2.17), namely

K
λ,p
N,e ; s[γ

λ,p
e ](x, y, z) = Ke[γ

λ,p
e ](ρe, ze) U

λ,p
N,e(ρe, θe) (4.13a)

+
∑

1≤ |q| ≤ s−λ

Ke[γ
λ,p;q
e ](ρe, ze) U

λ,p;q
N,e (ρe, θe). (4.13b)

In the leading term (4.13a), U
λ,p
N,e is the function defined in Lemma 4.4 and in (4.13b)

q is a multi-index, γλ;q
e is a derivative of γλ

e of order ≤ |q| and U
λ,p;q
N,e belongs to

S
λ+|q|
N (We) .

As a consequence, the corresponding regularity statement is

Theorem 4.8 Let s ≥ 1 . If

• for all c ∈ C , ΛN ; s(Γc) is empty,

• for all e ∈ E , ΛN ; s(We) is empty,

then for any data f ∈ Hs−1(Ω)3 the solution u of problem (1.1) belongs to Hs+1(Ω)3 .

Remark 4.9

(i) Let σ ∈ (−1, s] such that for all e ∈ E and all λ ∈ ΛN ;σ(We) there holds σ−λ < 1 .

Then we have the expansion of u

u −
∑

c∈C

∑

λ∈ΛN; s(Γc)

∑

p

γλ,p
c uλ,p

c −
∑

e∈E

∑

λ∈ΛN; σ(We)

∑

p

Ke[γ
λ,p
e ] U

λ,p
N,e ∈ Hσ+1(Ω),

where the edge contributions are limited to the leading terms, without the complicated

“shadow” terms (4.13b).

(ii) If moreover the sum over the corner singularities is restricted to λ ∈ ΛN ;σ(Γc) , then

the coefficients γλ,p
e along the edges are not the same as in (4.12), and only belong to

Vs−λ
−σ (e) .

(iii) If, with s ≥ 1 and σ ∈ (−1, s) there holds

• for all c ∈ C , ΛN ;σ(Γc) is empty,

• for all e ∈ E , ΛN ;σ(We) is empty,

then for any f ∈ Hs−1(Ω)3 the solution u of problem (1.1) belongs to Hσ+1(Ω)3 .

4.d Regularity of solutions

Taking advantage of the knowledge of the sets ΛN ; s(Γc) and ΛN ;σ(We) , cf Lem-

mas 4.1 and 4.4, we can give more explicit regularity statements than Theorem 4.8. Re-

lying on this theorem, we only have to determine the minimal elements of the admissible

sets of exponents for each corner and each edge.
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(i) SCREENS AND OTHER NON-LIPSCHITZ DOMAINS. If Ω has screen parts, then it

has edges e where ωe = 2π . Then the least value in ΛN ;∞(We) is −1
2

.

As ΛDir(Γc) and ΛNeu(Γc) have no element in [−1, 0] , cf Lemma 2.4, the least

value in ΛN ;∞(Γc) is −1 if Ω is not locally simply connected.

In both situations, the solution u of (1.1) satisfies

u ∈ Hτ (Ω)3, ∀τ < 1
2
, and generically u 6∈ H

1
2 (Ω)3 .

(ii) LOCALLY SIMPLY CONNECTED DOMAINS WITHOUT SCREENS. The least value in

all the sets ΛN ;∞(We) for e ∈ E is given by λE − 1 where

λE = min
e∈E

{
π
ωe

if ωe 6= π
2

3 if ωe = π
2

}
. (4.14)

The least value in all the sets ΛN ;∞(Γc) for c ∈ C is given by min{λDir
C −1, λNeu

C } with

λDir
C = min

c∈C
λDir(Γc) and λNeu

C = min
c∈C

λNeu(Γc), (4.15)

where λDir(Γc) and λNeu(Γc) are the least positive elements of ΛDir(Γc) and ΛNeu(Γc) :

with µDir(Gc) and µNeu(Gc) the least non-zero eigenvalue of the Laplace-Beltrami op-

erators ∆Dir
Gc

and ∆Neu
Gc

, there holds

λDir(Γc) = −1
2

+
√
µDir(Gc) + 1

4
and λNeu(Γc) = −1

2
+

√
µNeu(Gc) + 1

4
.

The solution u of (1.1) satisfies

u ∈ H1+σ(Ω)3, ∀σ,
(
σ ≤ s and σ < min

{
λE − 1, λDir

C − 1
2
, λNeu

C + 1
2

})
. (4.16)

Here are a few particular interesting situations

(a) If Ω is not convex, then u ∈ Hτ (Ω)3 for all τ < min{λE , λ
Dir
C + 1

2
} . Thus u

belongs to H
1
2 (Ω)3 but not to H1(Ω)3 .

(b) If Ω is convex, the monotonicity of Dirichlet eigenvalues allows then to prove that

λE ≤ λDir
C , thus u ∈ H1+σ(Ω)3 for all σ , σ ≤ s and σ < min{λE−1, λNeu

C + 1
2
} .

(c) If Ω is a parallelepiped, u ∈ H1+σ(Ω)3 for all σ , σ ≤ s and σ < 2 .

4.e Singularities of solutions

In the spirit of Remark 4.9, we are going to give simplified expressions for the singular

part of u for σ small enough. We assume now that Ω is locally simply connected.

If we take, compare with (4.16),

σ < min
{
λE , λ

Dir
C + 1

2
, λNeu

C + 3
2

}
, (4.17)
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then the singularities in the splitting (4.12) only involve gradients and we have

u −
∑

c∈C

∑

λ+1∈ΛDir(Γc)

γλ
c χ(ρc) gradΦλ+1

Dir,c(ρc, ϑc) (4.18a)

−
∑

e∈E

∑

λ+1∈ΛDir(Γe)

Ke[γ
λ
e ]χ(ρe) grade Φλ+1

Dir,e(ρe, θe) ∈ Hσ+1(Ω), (4.18b)

where in (4.18a) λ + 1 belongs to (0, σ + 1
2
) , in (4.18b) λ + 1 belongs to (0, σ + 1)

and grade is the gradient associated with the cartesian variables xe = ρe cos θe , ye =
ρe sin θe and ze .

For σ = 0 , we only have one contribution per non convex edge and at most one per

corner: Denoting like in Corollary 2.8 C0 = {c ∈ C, λDir(Γc) <
1
2
} and E0 = {e ∈

E , ωe > π} , the splitting (4.18) takes the simplified form

u −
∑

c∈C0

γc χ(ρc) gradΦDir,c(ρc, ϑc) (4.19a)

−
∑

e∈E0

Ke[γe]χ(ρe) grade ΦDir,e(ρe, θe) ∈ H1(Ω), (4.19b)

where ΦDir,c and ΦDir,e are the singularities of ∆Dir associated with the smallest eigen-

value of the Dirichlet Laplace-Beltrami on Gc and (0, ωe) respectively.

Remark 4.10 In the splittings (4.18) and (4.19), the singular generators can also be ex-

pressed as curls since for any harmonic and homogeneous function Φ of degree µ , cf

(6.6b):

(µ+ 1) gradΦ = curl(gradΦ × x)

and

grade(ρ
µ
e sinµθe) = curle(ρ

µ
e cosµθe),

where curle denotes the two-dimensional vectorial curl in the (xe, ye) plane, completed

by a zero tangential component along the edge.

Another interesting question in the framework of the splittings (4.18) and (4.19), is to

know whether it is possible to write the singular parts as gradients in a global way.

Lemma 4.11 Let σ ∈ [0, λE) and c ∈ C . Let Φ = Φµ
Dir,c be a singularity of the

Laplace Dirichlet problem on Γc . Then

χ(ρc) grad Φ − grad
(
χ(ρc)Φ

)
∈ Hσ+1(Ω) (4.20)

and ϕ := χ(ρc)Φ belongs to
◦
H1(Ω) and is such that ∆ϕ is in Hσ(Ω) .
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Remark 4.12 The limitation of the regularity in (4.20) and for ∆Φ comes only from

the brutal cut-off of the edge asymptotics of ϕ away from the corner. A refined cut-off

procedure [12, §16.C], would yield a similar statement without any limitation on σ .

Lemma 4.13 Let σ ∈ [0, λE) and e ∈ E . Let Φ = Φλ+1
Dir,e be a singularity of the

Laplace Dirichlet problem on Γe , with λ < σ . Let for s ≥ σ , γ ∈ Vs−λ
−σ (e) . Then,

Ke[γ]χ(ρe) grade Φ(ρe, θe) − grad
(
Ke[de γ]χ(ρe) Φ(ρe, θe)

)
∈ Hσ+1(Ω) (4.21)

and ϕ := Ke[de γ]χ(ρe)Φ belongs to
◦
H1(Ω) and is such that ∆ϕ is in Hσ(Ω) .

Remark 4.14 Beyond what could be done by the introduction of correct “shadow” terms,

it is impossible to avoid the limitation of the regularity by the weight −σ in the space

containing the edge coefficient γ . This implies that, if we apply such a refined statement

to the edge terms in (4.18b), we have a sharp limitation by the smallest corner exponents

which does not correspond to gradients ( λNeu
C + 1

2
and λDir

C + 3
2

).

As a consequence of the expansion (4.18) and of the two previous lemmas, we obtain

Theorem 4.15 Let Ω be locally simply connected, σ < min
{
λE , λ

Neu
C + 1

2
, λDir

C + 3
2

}

and s ≥ σ . Then for any data f ∈ Hs−1(Ω)3 the solution u of problem (1.1) can be

split in the following way

u = ureg,σ + gradϕ (4.22)

where ureg,σ ∈ Hσ+1(Ω)3 and ϕ can be written as

ϕ =
∑

c∈C

∑

λ∈ΛDir(Γc)

γλ
c χ(ρc) Φλ

Dir,c(ρc, ϑc) (4.23a)

+
∑

e∈E

∑

λ∈ΛDir(Γe)

Ke[deγ
λ
e ]χ(ρe) Φλ

Dir,e(ρe, θe). (4.23b)

Here ϕ ∈
◦
H1(Ω) satisfies ∆ϕ ∈ Hσ(Ω) .

When applied with σ = 0 , the above statement can be compared with Theorem 1.1

which gives the splitting of any element of XN in the sum of an element of HN and of

a term gradϕ with ϕ ∈
◦
H1(Ω) such that ∆ϕ ∈ L2(Ω) , cf [4, 5, 13].

4.f Singularities in HN

We conclude this section by some remarks on the regularity of the variational problem

(1.3) posed in HN ⊂ H1(Ω)3 . In section 3.e, this question was discussed for polygons.

We saw that the set of exponents Λ̃N ; s(Γa) associated with the pseudo-Maxwell problem

was, in general, different from ΛN ; s(Γa) associated with the Maxwell problem. Still
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these exponents were related to those of the Dirichlet problem for the Laplace operator in

a simple way.

Consider now the case of a three-dimensional polyhedral corner c . If the cone Γc

is convex, then the XN -singular functions belong to H1 , and for the HN -singular func-

tions, the divergence has H1 regularity. Thus the two problems have the same singulari-

ties near the corner c .

We suppose therefore that the cone Γc is not convex. The set of admissible expo-

nents Λ̃N ; s(Γc) associated with problem (1.3) is defined by the usual procedure like in

dimension 2 , by setting instead of (4.1) and (4.2):

S̃
λ
N (Γc) =

{
U ∈ H loc

N (Γ∗
c) | U = ρλ

Q∑

q=0

logqρ Uq(ϑ)
}

(4.24)

Ỹλ
N (Γc) =

{
U ∈ S̃λ

N(Γc) | div U = 0 on ∂Γc,

curl curl U − grad div U is polynomial
}
,

(4.25)

and defining the singularity space Z̃λ
N(Γ) and the set of exponents Λ̃N(Γc) correspond-

ingly.

The set of admissible exponents for a right hand side in Hs−1(Ω)3 is then simply

(compare with Lemma 4.3)

Λ̃N ; s(Γc) =
{
λ ∈ C | λ ∈ Λ̃N(Γc) and Reλ ∈ (−1

2
, s− 1

2
]
}
.

There exist general results on the exponents of the singular functions for this problem

in the case of a Lipschitz cone (KOZLOV - MAZYA - ROSSMANN [18]). For instance,

there is a strip −1 ≤ Reλ ≤ 0 that does not contain such exponents. Note that this does

not imply H3/2(Ω) regularity, as it would for a cone with a regular base, because we have

strong edge singularities here. The lowest edge exponent is λ∗ ≤ 1/3 , see section 3.d

(iii), and this corresponds to H1+σ regularity for u and Hσ regularity for div u for all

σ < λ∗ .

5 Maxwell edge singularities

In this section, we are going to prove Lemmas 3.1 and 4.4 characterizing the singu-

larities attached to the corner of a plane sector Γ and to the edge of a wedge Γ × R .

5.a 3D Maxwell singularities in a wedge

The wedge is equal to Γ×R with a plane sector Γ of opening ω ∈ (0, 2π] , ω 6= π ;

the polar coordinates are denoted by (r, θ) , the cartesian coordinates in the plane of Γ
are denoted by (x, y) , and z is a perpendicular coordinate.
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Let λ ∈ C . We look for non-polynomial solutions U of the system





curl curl U − grad div U = F in Γ × R, F polynomial,
U × n = 0, div U = 0 on ∂Γ × R,
U ∈ Sλ

N (Γ × R), div U ∈ Sλ−1
Dir (Γ × R),

(5.1)

where Sλ
N(Γ × R) is the space (4.6) of pseudo-homogeneous fields of degree λ with 3

components but not depending on z . Let us note that, when λ 6∈ N , the above problem

reduces to find the non-zero solutions U ∈ Sλ
N (Γ×R) of curl curl U−grad div U = 0

with the same boundary conditions.

Let now (V,W ) be the decomposition of the field U in the system of cartesian

coordinates ((x, y), z) . As U does not depend on the variable z , we obtain that system

(5.1) splits into 2 independent problems:





curl curl V − grad div V = f in Γ, f polynomial,
V × n = 0, div V = 0 on ∂Γ,
V ∈ Sλ

N (Γ), div U ∈ Sλ−1
Dir (Γ),

(5.2)

and 



−∆W = f in Γ, f polynomial,
W = 0 on ∂Γ,
W ∈ Sλ

Dir(Γ).
(5.3)

Indeed problem (5.2) is exactly the problem of finding the space Yλ
N(Γ) (3.4) associated

with two-dimensional Maxwell equations in the sector Γ and problem (5.3) is the prob-

lem of finding the space Y λ
Dir(Γ) (2.2) associated with the two-dimensional Laplacian in

Γ . For this latter problem, see Lemma 2.1.

Let us now consider the two-dimensional “Maxwell-type” problem (5.2). We intro-

duce two auxiliary scalar variables

Ψ = curl V and q = div V. (5.4)

Taking the divergence of the first line of (5.2) yields equation (5.5a) below. Equations

(5.5b) and (5.5c) are straightforward ( Sλ
Dir and Sλ

Neu are defined in §2.a)

−∆q = div f in Γ, q = 0 on ∂Γ, with q ∈ Sλ−1
Dir (Γ). (5.5a)

curlΨ = grad q + f in Γ, with Ψ ∈ Sλ−1
Neu (Γ). (5.5b)

curl V = Ψ, div V = q in Γ, V × n = 0 on ∂Γ, with V ∈ S
λ
N (Γ). (5.5c)

We easily see that the system of equations (5.5) is equivalent to (5.2).
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5.b Non-integral exponents

In order to solve system (5.5), we begin with the simpler situation when λ is not a

positive integer. Then the above system of equations reduces to

−∆q = 0 in Γ, q = 0 on ∂Γ, with q ∈ Sλ−1
Dir (Γ). (5.6a)

curlΨ = grad q in Γ, with Ψ ∈ Sλ−1
Neu (Γ). (5.6b)

curl V = Ψ, div V = q in Γ, V × n = 0 on ∂Γ, with V ∈ S
λ
N(Γ). (5.6c)

We can split the solutions of system (5.6) into three natural types:

1. q = 0 , Ψ = 0 and V general non-zero solution of (5.6c).

2. q = 0 , Ψ general non-zero solution of (5.6b) and V particular solution of (5.6c).

3. q general non-zero solution of (5.6a), Ψ particular solution of (5.6b) and V par-

ticular solution of (5.6c).

Let us study successively these three types.

Type 1.

Since curl V = 0 on the simply connected domain Γ , V = (V1, V2) is the gradient of a

function Φ . Thus we have:
{
Vr := cos θ V1 + sin θ V2 = ∂rΦ
Vθ := − sin θ V1 + cos θ V2 = 1

r
∂θΦ,

whence (we denote by Ṽ the function Ṽ (r, θ) = V (x, y) )

Φ̃(r, θ) − Φ̃(1, 0) =

∫ r

1

Ṽr(r
′, 0) dr′ + r

∫ θ

0

Ṽθ(r, θ
′) dθ′, (5.7)

which proves that since V belongs to Sλ
N (Γ) , Φ is the sum of a function in Sλ+1

Dir (Γ)
and a constant. Therefore, Φ can be found in Sλ+1

Dir (Γ) . Then (5.5c) is equivalent to

∆Φ = 0 in Γ and Φ = 0 on ∂Γ, with Φ ∈ Sλ+1
Dir (Γ). (5.8)

Hence, λ+ 1 belongs to ΛDir(Γ) and Φ belongs to the space Zλ+1
Dir (Γ) , cf Lemma 2.1:

with the complex writing ζ = reiθ of the coordinates, a generator of Zλ+1
Dir (Γ) is given

by Im ζλ+1 .

Type 2.

We easily see that Ψ is zero and a particular solution of (5.6c) is V = 0 .

Type 3.

From equation (5.6a), we obtain that λ − 1 belongs to ΛDir(Γ) and that q belongs to

Zλ−1
Dir (Γ) : thus q is proportional to Im ζλ−1 . Then it is easy to see that Ψ = −Re ζλ−1

is a particular solution of (5.6b), and that V = 1
2λ

(Im ζλ,−Re ζλ) is a particular solution

of (5.6c).
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5.c Integral exponents

When λ is a positive integer, we are searching for non-polynomial solutions of sys-

tem (5.5). Similarly to the case when λ is not an integer, we split the solutions of the

system (5.5) into the three types:

1. q and Ψ are polynomial and V is a non-polynomial solution of (5.5c).

2. q is polynomial, Ψ is a non-polynomial solution of (5.5b) and V a particular

solution of (5.5c).

3. q is a non-polynomial solution of (5.5a), Ψ a particular solution of (5.5b) and V

a particular solution of (5.5c).

Now the arguments are based on the evaluation of dimensions of polynomial spaces.

Let Qλ be the space of homogeneous polynomials of degree λ . We recall that P λ
Dir(Γ)

the subspace of q ∈ Qλ with zero traces on ∂Γ . We divide our study into three subcases:

(i) ω 6= 2π and λ− 1 does not belong to ΛDir(Γ) : In equation (5.5a) the r.h.s. div f is

any polynomial in Qλ−3 , thus the dimension of the range is (λ− 2)+ . The dimension of

P λ−1
Dir (Γ) is (λ − 2)+ too. Moreover equation (5.5a) defines an operator from P λ−1

Dir (Γ)
into Qλ−3 which is one to one due to the assumption that λ − 1 does not belong to

ΛDir(Γ) . Therefore this operator is onto.

• The r.h.s. of equation (5.5b) is any field in Qλ−2 × Qλ−2 which is divergence free.

Thus the dimension of its range is 2(λ − 1) − (λ − 2)+ which is equal to λ if λ ≥ 2
and 0 if λ = 1 . The dimension of Qλ−1 is equal to λ and equation (5.5b) defines an

operator from Qλ−1 into {g ∈ Qλ−2 × Qλ−2, div g = 0} , which is one to one for any

λ ≥ 2 , thus onto.

• The r.h.s. (Ψ, q) of (5.5c) is any element of Qλ−1 ×P λ−1
Dir (Γ) . Thus the dimension of

its range is λ+(λ−2)+ = 2(λ−1) if λ ≥ 2 and 1 if λ = 1 . The space of polynomial

solutions of (5.6c) is

{V ∈ Qλ ×Qλ | V × n = 0 and div V = 0 on ∂Γ}. (5.9)

Its dimension is 2(λ + 1) − 4 = 2(λ − 1) if λ ≥ 2 ; if λ = 1 , its dimension is either

2 if cosω = 0 or 1 if not. If λ + 1 does not belong to ΛDir(Γ) , we check that in any

case the operator of equation (5.5c) is one to one, thus it is onto: the system (5.5) has

only polynomial solutions. If λ + 1 ∈ ΛDir(Γ) , its kernel is one-dimensional, and for

λ ≥ 2 we add to the above polynomial space (5.9) a singular function equal to the sum of

grad(Im ζλ+1 log ζ) and of a polynomial: we have found now a solution of type 1. For

λ = 1 finally, λ + 1 ∈ ΛDir(Γ) only if cosω = 0 and the operator of equation (5.5c) is

onto and there is no singularity.

(ii) ω = 2π : The arguments are similar. Here λ − 1 and λ + 1 never belong to

ΛDir(Γ) . The dimensions of the polynomial spaces involving boundary conditions are

slightly different: dimP λ−1
Dir (Γ) = λ − 1 and the operator of equation (5.5a) has a one-

dimensional kernel generated by Im ζλ−1 . Thus it is still onto from P λ−1
Dir (Γ) → Qλ−3 .
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• The situation for equation (5.5b) is unchanged.

• The dimension of the space Qλ−1×P λ−1
Dir (Γ) is 2λ−1 and the dimension of the space

(5.9) is 2(λ+ 2)− 2 = 2λ . The kernel of the operator of equation (5.5c) is generated by

grad Im ζλ−1 . Thus we have only polynomial solutions.

(iii) ω 6= 2π and λ− 1 belongs to ΛDir(Γ) : Then the operator of equation (5.5a) has a

one-dimensional kernel generated by Im ζλ−1 and it is onto from the space generated by

the sum of P λ−1
Dir (Γ) and of Φλ−1

Dir which is the sum of Im ζλ−1 log ζ and of a polynomial.

• Corresponding to this new solution q , we find a new solution of equation (5.5b)

Ψ = Re ζλ−1 log ζ .

• Accordingly, we find a new solution V of equation (5.5c) in the form

V = 1
2λ

(Im ζλ log ζ,−Re ζλ log ζ) , which is a non-polynomial solution of type 3.

The proofs of Lemmas 3.1 and 4.4 are complete.

6 Maxwell corner singularities

In this section we prove Lemma 4.1 for “electric” boundary conditions and its ana-

logue for “magnetic” boundary conditions. Let Γ be a three-dimensional polyhedral

cone. We recall that the polar coordinates are denoted by (ρ, ϑ) and Γ = {(ρ, ϑ) | ρ >
0, ϑ ∈ G ⊂ S2} . Let us recall the definition (4.1)

S
λ
N (Γ) =

{
U ∈ X loc

N (Γ∗) | U = ρλ

Q∑

q=0

logqρ Uq(ϑ)
}

and let us introduce its analogue for magnetic boundary conditions:

S
λ
T (Γ) =

{
U ∈ X loc

T (Γ∗) | U = ρλ

Q∑

q=0

logqρ Uq(ϑ)
}
.

6.a Splitting of the problem

Here we concentrate on the case when λ is not a positive integer. Thus, in the electric

case, the problem reduces to finding non-zero solutions to





curl curl U − grad div U = 0 in Γ,
U × n = 0, div U = 0 on ∂Γ,
U ∈ Sλ

N (Γ), div U ∈ Sλ−1
Dir (Γ)

(6.1)

and concerning the magnetic case:





curl curl U − grad div U = 0 in Γ,
U · n = 0, curl U × n = 0 on ∂Γ,
U ∈ Sλ

T (Γ), div U ∈ Sλ−1
Neu (Γ)

(6.2)
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Like in the case of plane sectors, we introduce the auxiliary unknowns

Ψ = curl U and q = div U.

Thus q belongs to Sλ−1
Dir (Γ) or to Sλ−1

Neu (Γ) . Concerning Ψ in problem (6.1), we remark

that the definition of Ψ implies that divΨ = 0 and since U × n = 0 on ∂Γ , then

Ψ · n = 0 on ∂Ω . Moreover, from the equality curlΨ = grad div U and from the

H1 regularity of div U , we obtain that curlΨ belongs to L2
loc(Γ

∗) . Thus the natural

space for Ψ is Sλ
T (Γ) and it is now clear that problem (6.1) is equivalent to find non-zero

solutions to the system

−∆q = 0 in Γ, with q ∈ Sλ−1
Dir (Γ). (6.3a)

curlΨ = grad q and divΨ = 0 in Γ, with Ψ ∈ S
λ−1
T (Γ). (6.3b)

curl U =Ψ and div U = q in Γ, with U ∈ S
λ
N (Γ). (6.3c)

Now we see that the “electric” and “magnetic” boundary conditions appear simultane-

ously inside (6.3). Thus we have better to treat both conditions together. The “magnetic”

problem (6.2) is equivalent to find non-zero solutions to the system of three problems

−∆q = 0 in Γ, ∂nq = 0 on ∂Γ, with q ∈ Sλ−1
Neu (Γ). (6.4a)

curlΨ = grad q and divΨ = 0 in Γ, with Ψ ∈ S
λ−1
N (Γ). (6.4b)

curl U =Ψ and div U = q in Γ, with U ∈ S
λ
T (Γ). (6.4c)

Like for the plane sectors, the solutions of systems (6.3) and (6.4) belong to one of

three types:

1. q = 0 , Ψ = 0 and U general non-zero solution of (6.3c), resp. (6.4c).

2. q = 0 , Ψ general non-zero solution of (6.3b), resp. (6.4b) and U particular solu-

tion of (6.3c), resp. (6.4c).

3. q general non-zero solution of (6.3a), resp. (6.4a), Ψ particular solution of (6.3b),

resp. (6.4b) and U particular solution of (6.3c), resp. (6.4c).

6.b Explicit solutions of first order problems

The Laplace singularities on polyhedral cones were described in Lemma 2.4. They

contain Laplace-Beltrami eigenfunctions and have therefore, in contrast to the two-dimen-

sional case, no analytically known form, in general. But once these Laplace singularities

are known, we are able to provide completely explicit formulas for the three types of

Maxwell singularities.

This section is devoted to the description of solution formulas for the first order prob-

lems (6.3) and (6.4). All these formulas are based on the scalar product or the vector
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product with the vector x , with x denoting the vector of cartesian coordinates (x, y, z) ,

and ρ = |x| .

We begin with three series of formulas. First we give product laws: a and b denot-

ing vector fields and γ being a scalar function on R3 , we have

grad(a · b) = (a · grad) b + (b · grad) a + a × curl b + b × curla, (6.5a)

curl(a × b) = (b · grad) a − (a · grad) b + a div b − b div a, (6.5b)

div(a × b) = b · curla − a · curl b, (6.5c)

curl(γa) = γ curla + grad γ × a, (6.5d)

div(γa) = γ div a + grad γ · a. (6.5e)

Now, using the above formulas for the field x which satisfies

div x = 3, curlx = 0, x · grad = ρ∂ρ and grad x = I,

we obtain for any field a and scalar q

grad(a · x) = (ρ∂ρ + 1)a + x × curla, (6.6a)

curl(a × x) = (ρ∂ρ + 2)a − x div a, (6.6b)

div(a × x) = x · curla, (6.6c)

curl(qx) = grad q × x, (6.6d)

div(qx) = (ρ∂ρ + 3)q. (6.6e)

Finally, with γ = ρ2 and a = grad q , (6.5d) and (6.5e) yield

curl(ρ2 grad q) = −2 grad q × x, (6.6f)

div(ρ2 grad q) = 2ρ∂ρq + ρ2∆q. (6.6g)

We need the following spaces of pseudo-homogeneous functions

Sλ
0 (Γ) =

{
Φ ∈ L2

loc(Γ
∗) | Φ = rλ

∑
logqr φq(θ)

}
and Sλ

1 (Γ) = Sλ
0 (Γ) ∩H1

loc(Γ
∗).

The above formulas allow us to solve first order problems in the subspaces of homoge-

neous elements of our pseudo-homogeneous spaces Sλ
1 , Sλ

N and Sλ
T :

◦
Sλ

1 (Γ) =
{
Φ ∈ Sλ

1 (Γ) | Φ = ρλφ(ϑ)
}
,

◦
S

λ
N(Γ) =

{
U ∈ S

λ
N(Γ) | U = ρλ

U(ϑ)
}

and
◦
S

λ
T (Γ) =

{
U ∈ S

λ
T (Γ) | U = ρλ

U(ϑ)
}
.

As an easy consequence of formula (6.6a), we can solve the equation gradΦ = U

with Dirichlet or Neumann boundary conditions:
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Lemma 6.1 Let U belong to Sλ
N (Γ) or Sλ

T (Γ) .

(i) Then U · x belongs to Sλ+1
1 (Γ) .

(ii) We assume that λ 6= −1 and that curl U = 0 . If moreover U is homogeneous, i.e.

U ∈
◦
Sλ

N (Γ) , resp.
◦
Sλ

T (Γ) , then Φ defined as

Φ =
U · x

λ+ 1
∈

◦
Sλ+1

1 (Γ), (6.7)

solves the equation gradΦ = U , with zero Dirichlet, resp. Neumann boundary condi-

tions on ∂Γ .

PROOF. (i) A first consequence of formula (6.6a) is that grad(U·x) belongs to Sλ
0 (Γ)3 ,

thus U · x has the correct regularity outside the corner of Γ .

(ii) As an obvious consequence of the fact that if U belongs to
◦
Sλ(Γ) , then ρ∂ρU = λU ,

we obtain that grad Φ = U . Moreover, if U × n = 0 on ∂Γ , then U · x = 0 on ∂Γ
as a simple consequence of the fact that x is a tangential field. As for the Neumann

boundary condition in the case when U · n = 0 , it is only a consequence of the formula

∂nΦ = n · U .

Similarly formulas (6.6b) and (6.6c) yield a solution of the equation curl U =Ψ :

Lemma 6.2 Let Ψ belong to S
λ−1
T (Γ) , resp. S

λ−1
N (Γ) .

(i) Then Ψ × x belongs to Sλ
N(Γ) , resp. Sλ

T (Γ) .

(ii) We assume that λ 6= −1 and that divΨ = 0 . If moreover Ψ is homogeneous, i.e.

Ψ ∈
◦
S

λ−1
T (Γ) , resp.

◦
S

λ−1
N (Γ) , then U defined as

U =
Ψ × x

λ+ 1
∈

◦
S

λ
N (Γ) resp.

◦
S

λ
T (Γ), (6.8)

solves the equation curl U =Ψ . Moreover div U = 1
λ+1

x · curlΨ .

PROOF. The regularity of U is a direct consequence of formulas (6.6b) and (6.6c). The

boundary condition n× (Ψ×x) = 0 is satisfied if n ·Ψ = 0 on ∂Γ due to the equality

n × (Ψ × x) =Ψ(n · x) − x(n ·Ψ) . And the boundary condition n · (Ψ × x) = 0 is

satisfied if n ×Ψ = 0 on ∂Γ due to the equality n · (Ψ × x) = x · (n ×Ψ) . Part (i) is

proved and part (ii) is now obvious.

The third step is the solution of the equations curl U = 0 , div U = q , which is done

with the help of formulas (6.6d)-(6.6g):

Lemma 6.3 Let q belong to Sλ−1
1 (Γ) , such that ∆q ∈ Sλ−3

0 (Γ) and satisfying Dirich-

let, resp. Neumann boundary conditions on ∂Γ .

(i) Then 2qx + ρ2 grad q belongs to Sλ
N(Γ) , resp. Sλ

T (Γ) .

(ii) We assume that λ 6= −1
2

and that ∆q = 0 . If moreover q is homogeneous, i.e.
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q ∈
◦
Sλ−1

1 (Γ) , then U defined as

U =
2qx + ρ2 grad q

4λ+ 2
∈

◦
S

λ
N(Γ) resp.

◦
S

λ
T (Γ), (6.9)

solves the equations curl U = 0 and div U = q .

6.c The three types of Maxwell singularities generated by the Laplacian

In the case of plane sectors, we have seen that only two types of Maxwell singularities

do exist and that they are generated by the Laplace operator: type 1, corresponding to the

exponents kπ
ω

− 1 and the singular functions of the form gradΦ with Φ Dirichlet

singularity for the Laplace operator, and type 3, corresponding to the exponents kπ
ω

+
1 . Now for three-dimensional cones, relying on the solution formulas (6.7)-(6.9) we

are going to exhibit the three types which are generated by the Laplacian (Dirichlet or

Neumann). In the next subsection, we will describe the remaining singularities which are

generated by the topology of Γ .

In the following lemmas, we show the link between the sets of Maxwell singularity

exponents ΛN(Γ) and ΛT (Γ) and those of the Laplacian, see ΛDir(Γ) and ΛNeu(Γ)
in Lemmas 2.1 and 2.2. We also prove that the singularities of type 1, 2 and 3 can be

expressed with the help of the corresponding spaces of Laplace singular functions Zλ
Dir(Γ)

and Zλ
Neu(Γ) , except in particular geometrical situations when λ = −1 .

Lemma 6.4 We assume that λ 6= −1 . Then (i) is equivalent to (ii):

(i) U ∈ Sλ
N(Γ) is a solution of (6.3) of type 1,

(ii) λ+ 1 belongs to ΛDir(Γ) and U = grad Φ where Φ belongs to Zλ+1
Dir (Γ) .

Similarly, (iii) is equivalent to (iv):

(iii) U ∈ Sλ
T (Γ) is a solution of (6.4) of type 1,

(iv) λ+ 1 belongs to ΛNeu(Γ) and U = gradΦ where Φ belongs to Zλ+1
Neu (Γ) .

PROOF. 1. In a first step, we investigate the non-zero homogeneous solutions of (6.3) of

type 1, i.e. solutions of

curl U = 0 and div U = 0 in Γ with U ∈
◦
S

λ
N (Γ).

Using Lemma 6.1, we immediately obtain that U = gradΦ with Φ = 1
λ+1

U · x . Thus

Φ ∈ Sλ+1
1 and Φ = 0 on ∂Γ.

Moreover the condition div U = 0 yields that ∆Φ = 0 . In other words, Φ is a Dirichlet

singularity for ∆ , thus λ+1 belongs to ΛDir(Γ) and Φ ∈ Zλ+1
Dir (Γ) . The converse state-

ment is straightforward: for any Φ ∈ Zλ+1
Dir (Γ) , U defined as gradΦ is a singularity of

type 1.
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Concerning the magnetic boundary condition, the same arguments lead to gradΦ = U ,

where Φ is still defined by (6.7) and satisfies

Φ ∈ Sλ+1
1 and ∂nΦ = 0 on ∂Γ,

and ∆Φ = 0 . Thus λ+ 1 belongs to ΛNeu(Γ) .

2. In a second step, we prove that there is no logarithmic term in any solution of type 1.

It suffices to study a solution of type 1 with one logarithmic term, i.e. of the form

U = U
0 + U

1 log ρ, with U
0, U

1 ∈
◦
S

λ
N (Γ).

Since curl U is the sum of curl U1 log ρ and of a field with each component in
◦
Sλ−1(Γ) , we deduce that curl U1 = 0 . Thus we obtain that U1 is itself a solution

of type 1 of the same problem. Then instead of (6.7), we set

Φ =
U · x

λ+ 1
−

U1 · x

(λ+ 1)2
, (6.10)

and we deduce from the previous remark that gradΦ = U , and Φ satisfies the Dirichlet

(or Neumann) conditions on ∂Γ and ∆Φ = 0 . Therefore Φ belongs to Zλ+1(Γ) , but

since we do not consider polynomial right hand sides here, there is no logarithmic term in

Φ , hence U1 = 0 .

If U is a singularity of type 2, then Ψ is a singularity of type 1 with a permutation

of the roles of electric and magnetic boundary conditions. Moreover, when Ψ is known,

Lemma 6.2 provides a formula for U (note that here divΨ = 0 , thus formula (6.8) yields

a divergence free U ). Thus we obtain:

Lemma 6.5 We assume that λ 6∈ {−1, 0} . Then (i) is equivalent to (ii):

(i) U ∈ Sλ
N(Γ) is a solution of (6.3) of type 2,

(ii) λ belongs to ΛNeu(Γ) and curl U = gradΦ where Φ belongs to Zλ
Neu(Γ) .

Similarly (iii) is equivalent to (iv):

(iii) U ∈ Sλ
T (Γ) is a solution of (6.4) of type 2,

(iv) λ belongs to ΛDir(Γ) and curl U = gradΦ where Φ belongs to Zλ
Dir(Γ) .

In each case, representatives of type 2 are given by U = 1
λ+1

gradΦ × x .

Finally we have directly from equations (6.3a) and (6.4a) the necessary conditions for

the existence of a non-zero q and we combine lemmas 6.2 and 6.3 to obtain formulas for

Ψ and U :

Lemma 6.6 We assume that λ 6∈ {−1
2
, 0} . Then (i) is equivalent to (ii):

(i) U ∈ Sλ
N(Γ) is a solution of (6.3) of type 3,

(ii) λ− 1 belongs to ΛDir(Γ) and div U = q where q belongs to Zλ−1
Dir (Γ) .

Similarly (iii) is equivalent to (iv):

(iii) U ∈ Sλ
T (Γ) is a solution of (6.4) of type 3,
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(iv) λ belongs to ΛNeu(Γ) and div U = q where q belongs to Zλ−1
Neu (Γ) .

In each case, representatives of type 3 are given by Ψ = 1
λ

grad q × x and by

U = 1
λ(2λ+1)

(
(2λ− 1)qx − ρ2 grad q

)
.

Remark 6.7 For the sake of comparison, let us consider the case when Γ is a dihedron

of opening ω . Then ΛDir(Γ) = ΛNeu(Γ) = {kπ
ω

+ ℓ, k, ℓ ∈ Z, k 6= 0} , cf [12,

Ch.18.C]. In this case, for finding explicit expressions for the singular functions, one can

choose between the formulas given in Lemma 4.4 and those of Lemma 6.6. They do,

however, not give the same results because of the non-trivial influence of homogeneous

polynomials in the tangential variable z along the edge.

6.d The Maxwell singularities generated by the topology

It essentially remains to investigate the solutions of type 1 for λ = −1 , i.e. the

elements U in S
−1
N (Γ) , resp. S

−1
T (Γ) with zero curl and divergence. The existence of

such solutions depends on the topology of the spherical domain G which generates the

cone Γ . We are going to prove that we have singularity spaces in λ = −1 , Z
−1
N (Γ) and

Z
−1
T (Γ) , if and only if G is not simply connected, and that their dimensions are equal to

the dimension of the homology space of G .

Lemma 6.8 Let us assume that G is simply connected. If U belongs to S
−1
N (Γ) , resp.

S
−1
T (Γ) and satisfies curl U = 0 and div U = 0 , then U = 0 .

PROOF. Since Γ is simply connected, we derive from the condition curl U = 0 that

U is the gradient of some function Φ . Then we use a formula of integration of U along

paths like (5.7): we fix x0 ∈ Γ and write in polar coordinates (ρ, ϑ) = (|x|,x/|x|) and

(ρ0, ϑ0) = (|x0|,x0/|x0|) :

Φ(ρ, ϑ) − Φ(ρ0, ϑ0) =

∫ ρ

ρ0

x0

ρ0

· U(ρ′, ϑ0) dρ
′ + ρ

∫

γ(ϑ0,ϑ)

U(ρ, ϑ′) · dϑ′, (6.11)

where the second integral is a path integral along a curve γ(ϑ0, ϑ) from ϑ0 to ϑ in G .

From (6.11), we find that Φ belongs to S0
1(Γ) . The condition div U = 0 yields that

∆Φ = 0 and the boundary conditions on U give either the Dirichlet conditions on Φ , or

the Neumann condition. In the first case, we find that Φ = 0 since the eigenvalues µDir
j

are all > 0 , and in the second case, we find that Φ is a constant, thus in any case U = 0 .

If the spherical domain G is not simply connected, its boundary ∂G is not con-

nected. Let ∂jG , j = 1, . . . , J + 1 be its connected components ( J ≥ 1 ). We assume

that G itself is connected (if not, the cones corresponding to each of its connected com-

ponents can be considered separately). Then there exist J regular and non-intersecting

cuts σj , j = 1, . . . , J such that G0 := G \ ∪J
j=1σj is simply connected.
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The singularities of degree −1 that we are investigating are closely linked with the

kernels (6.12) and (6.13) of the tangential curl and divergence, curl⊤ and div⊤. These

operators are tangential to the sphere S2 and can be defined with the help of the usual

curl and div on three-dimensional fields: we first introduce L2
⊤

(G) as the subspace of

L2(G)3 spanned by the fields v tangential to the sphere, i.e. satisfying v · x = 0 . If v

belongs to L2
⊤

(G) , we can introduce v̂ as any homogeneous extension of v to the cone

Γ : we fix any µ and v̂(ρ, ϑ) is defined as ρµv(ϑ) . Then

• div⊤v is the restriction on ρ = 1 of div v̂ ,

• curl⊤v is the restriction on ρ = 1 of x · curl v̂ .

Then the two kernels are defined in a classical way:

KN(G) =
{
v ∈ L2

⊤
(G) | curl⊤v = 0, div⊤v = 0 in G , v ×n = 0 on ∂G

}
(6.12)

and

KT (G) =
{
v ∈ L2

⊤
(G) | curl⊤v = 0, div⊤v = 0 in G , v · n = 0 on ∂G

}
. (6.13)

Their description involves the tangential gradient grad
⊤

, and also (alternatively) the

tangential vectorial curl curl⊤, which are defined for any scalar function φ in L2(G)

with the help of any homogeneous extension φ̂ of φ to Γ as follows:

• grad
⊤
φ is the restriction on ρ = 1 of grad φ̂− (grad φ̂ · x) x ,

• curl⊤φ is the restriction on ρ = 1 of curl(φ̂x) .

There holds the following description of the spaces KN (G) and KT (G) (see [7] for

a classical presentation and [2] for the case of less regular domains). In the definitions

(6.14) and (6.15) below, the cj denote arbitrary constant functions, nj is a unitary normal

to σj in S2 and [ · ]σj
the jump across σj along nj :

Lemma 6.9

(i) The space KN (G) is generated by the tangential gradients grad
⊤
φ where φ ∈

PDir(G) ,

PDir(G) =
{
φ ∈ H1(G) | ∆Gφ = 0 in G,

φ = cj on ∂jG, 1 ≤ j ≤ J + 1
}
.

(6.14)

The dimension of PDir(G) is J + 1 and the dimension of KN(G) is J .

(ii) The space KT (G) is generated by the L2 extensions g̃rad
⊤
φ to G of the tangential

gradients grad
⊤
φ on G0 where φ ∈ PNeu(G) ,

PNeu(G) =
{
φ ∈ H1(G0) | ∆Gφ = 0 in G, ∂nφ = 0 on ∂G,

[φ]σj
= cj, [∂nj

φ]σj
= 0, 1 ≤ j ≤ J

}
.

(6.15)

The dimension of PNeu(G) is J and the dimension of KT (G) is J , too.
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Relying on the definitions of the “tangential” operators curl⊤, grad
⊤

, curl⊤, div⊤

and on the relations (6.6b)-(6.6d), it is easy to show that for any φ ∈ L2(G) and any

v ∈ L2
⊤

(G)

curl⊤φ = (grad
⊤
φ) × x, div⊤v = − curl⊤(v × x), curl⊤v = div⊤(v × x).

Then we can prove the following

Corollary 6.10 The space KN(G) is generated by the extended tangential curls c̃url⊤φ
where φ spans the space PNeu(G) and the space KT (G) is generated by curl⊤φ where

φ spans the space PDir(G) . Moreover, we have the relations

KT = x ×KN and KN = x ×KT .

Thus, the kernels KN(G) and KT (G) are gradients (or curls) of harmonic functions

belonging to the spaces PDir(G) and PNeu(G) . We extend the elements of these spaces

to homogeneous functions of degree 0 on the cone Γ as Φ(ρ, ϑ) = φ(ϑ) and thus define

the spaces PDir(Γ) and PNeu(Γ) . We note that any Φ ∈ PDir(Γ) has its traces constant

on each connected component of ∂Γ and similarly that the jumps of any Φ ∈ PNeu(Γ)
across the cuts Σj of Γ corresponding to σj are constant too.

For any Φ ∈ PDir(Γ) , the gradient gradΦ is a homogeneous function of degree −1
whose radial component is 0 : we have

gradΦ(ρ, ϑ) =
1

ρ
grad

⊤
φ(ϑ).

The field U = gradΦ belongs to S
−1
N (Γ) and satisfies curl U = 0 like all gradi-

ents, and div U = ∆Φ = ρ−2∆Gφ = 0 by construction. Similarly for Φ ∈ PNeu(Γ) ,

the extended gradient U = g̃radΦ belongs to S
−1
T (Γ) and satisfies curl U = 0 and

div U = 0 .

Lemma 6.11 Let us assume that G is not simply connected. Then Z
−1
N (Γ) is the space

of the fields of the form U = gradΦ , where Φ ∈ PDir(Γ) . Correspondingly, Z
−1
T (Γ) is

the space of the fields of the form U = g̃radΦ , where Φ ∈ PNeu(Γ) .

PROOF. We have just proved that any field of the form U = gradΦ , where Φ is a non-

zero element of PDir(Γ) is a non-trivial element of Z
−1
N (Γ) . Conversely let U belong to

Z
−1
N (Γ) . Then, for a non-zero field UP , P ≥ 0 , we have

U = ρ−1
(
U0 + · · ·+ logPρ UP

)
.

Since curl U = 0 , U is a gradient gradΦ in the simply connected domain Γ0 gener-

ated by the spherical domain G0 . Using formula (6.11) with paths γ(ϑ0, ϑ) contained in

G0 , we obtain that Φ belongs to S0
1(Γ

0) and can be expanded into

Φ = Φ0 + · · ·+ logQρ ΦQ, with P ≤ Q ≤ P + 1.
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Since U×n is zero on ∂Γ , the traces of Φ on ∂Γ are constant on each of its connected

components ∂jΓ . Thus the traces of Φ0 are constant on each ∂jG and the traces of Φq

for q ≥ 1 are zero. Since curl U and div U are zero in Γ , the jumps of U across the

cuts Σj generated by σj are zero. Thus [Φ]
Σj

is constant and [∂nj
Φ]

Σj
is zero. With

the conditions on the traces on ∂jΓ , this yields that [Φ]
Σj

is zero. Moreover div U = 0

in Γ gives ∆GΦQ = 0 .

Therefore ΦQ belongs to PDir(G) , and if Q ≥ 1 we have moreover that the traces of

ΦQ on ∂G are all zero, thus ΦQ = 0 . Whence Q = 0 and Φ0 belongs to PDir(G) , so

U has the desired form.

The proof for Z
−1
T (Γ) is similar.

6.e Corner singularities: a synthesis

We summarize all the results in the following table, where we omit the reference to

the cone Γ in the notation of spaces:

Type λ > Generator U Ψ = curl U q = div U

1∆ λ + 1 ∈ ΛDir −1 ΦDir∈Zλ+1
Dir gradΦDir 0 0

2∆ λ ∈ ΛNeu 0 ΦNeu∈Zλ
Neu

gradΦNeu × x

λ + 1
gradΦNeu 0

3∆ λ − 1 ∈ ΛDir 1 q ∈ Zλ−1
Dir

(2λ − 1)qx − ρ2 grad q

λ(2λ + 1)

grad q × x

λ
q

1Top −1 ΦDir∈PDir gradΦDir 0 0

2Top 0 ΦNeu∈PNeu g̃radΦNeu × x g̃radΦNeu 0

Alternative formulation

2Top 0 ΦDir∈PDir ρgradΦDir
x

ρ
× gradΦDir 0

Table 1
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The alternative formulation is obtained with the help of Corollary 6.10. The adapta-

tion of this table to magnetic boundary conditions is left to the reader.

6.f Corner singularities for non-zero frequency ω

Going back to the primitive Maxwell equations (0.5), we see that for a regular current

density J , the divergences of the electric and magnetic fields E and H are regular

too, thus only the singularities of types 1 and 2 can occur and they exchange each other

between the electric and magnetic fields (here λ denotes the degree of homogeneity of

the generator and is either the degree of E or H ):

Type Generator λ E H

∆ (electric) ΦDir ∈ Zλ
Dir λ ∈ ΛDir gradΦDir −iω

gradΦDir × x

λ+ 1

∆ (magnetic) ΦNeu ∈ Zλ
Neu λ ∈ ΛNeu iω

gradΦNeu × x

λ+ 1
grad ΦNeu

Top (electric) ΦDir ∈ PDir 0 gradΦDir −iω gradΦDir × x

Top (magnetic) ΦNeu ∈ PNeu 0 iω g̃radΦNeu × x g̃radΦNeu

Table 2

This table gives the principal parts of the singularities (as can be seen from (0.9) or

(0.10) the operators are not homogeneous and according to the general theory [17, 12] the

singularities themselves have an asymptotic expansion).

6.g Pseudo-Maxwell corner singularities

There is, in general, no simple relation between the singular functions of the pseudo-

Maxwell problems (see in §4.f the singularity spaces Z̃λ
N(Γ) ) and those of the Dirichlet

or Neumann problems for the Laplace operator. In particular, our previous explicit con-

structions do not work here, and the classification into types 1, 2, 3 does not make sense.

Let us explain two reasons for this.

First, the solutions of the first-order systems (6.3b) and (6.3c) do not belong to H1

near a non-convex edge. Thus, independently of the corner exponent λ , the XN -singular

functions of all 3 types will not belong to H1 .
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Second, the Laplace-Dirichlet problem (6.3a) for q is now posed with only L2 reg-

ularity required. This problem (with Sλ
0 (Γ) defined in §6.b)

−∆q = 0 in Γ and q = 0 on ∂Γ with q ∈ Sλ−1
0 (Γ) (6.16)

does now not select a discrete set of exponents λ .

Proposition 6.12 Let Γ be a non-convex polyhedral cone. Then the Dirichlet problem

(6.16) has non-trivial solutions for any λ ∈ C .

PROOF. This is a Laplace-Beltrami eigenvalue problem on G = Γ ∩ S2 . We look for

eigenfunctions in L2(G) . By duality (and the “very weak” definition of the Dirichlet

problem (6.16), see (1.7)), we see that such eigenfunctions span the orthogonal comple-

ment of the image of
◦
H1(G) ∩H2(G) under the adjoint operator. Now we know that in

the presence of non-convex corners of G , one never has H2 regularity for this Laplace-

Beltrami Dirichlet eigenvalue problem. Thus, in addition to the
◦
H1(G) eigenfunctions

that may exist if λ− 1 ∈ ΛDir(Γ) , we find as many L2(G) eigenfunctions and therefore

solutions to (6.16) as there are non-convex edges meeting at c .

7 Variational formulations of Maxwell’s equations

In this section, we discuss some commonly used variational formulations of the time-

harmonic Maxwell equations. We give a proof of Theorem 0.1. Since the proof works

in a more general setting, we consider general inhomogeneous materials here. We also

prove a generalization of the regularity Theorem 1.2 for the divergence. The domain Ω
is a 3D corner domain as defined in the preliminaries (§0).

7.a Time harmonic Maxwell’s equations

The following assumptions correspond to the modelling of general linear, anisotropic

inhomogeneous materials that can have a nonvanishing conductivity.

Let ε and µ two complex 3 × 3 matrices with L∞ elements on Ω such that their

symmetric part is positive in the sense that there exist ρ0 > 0 such that for all x ∈ Ω
and for all ξ ∈ C3 :

Re(ε(x)ξ · ξ̄) ≥ ρ0|ξ|
2 and Re(µ(x)ξ · ξ̄) ≥ ρ0|ξ|

2.

The classical time harmonic Maxwell equations describing electromagnetic radiation

of frequency ω in a body occupying Ω , with permeability µ and permittivity ε are

curl E − iω µH = 0 and curl H + iω εE = J in Ω. (7.1a)

Here E is the electric part and H the magnetic part of the electromagnetic field. The right

hand side J is the current density, where a current obeying Ohm’s law can be subtracted
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giving a nonzero imaginary part of ε . As boundary conditions on ∂Ω we consider only

those of the perfect conductor ( n denotes the unit outer normal on ∂Ω ):

E × n = 0 and µH · n = 0 on ∂Ω. (7.1b)

If the body is formed by several different homogeneous media, ε and µ are piecewise

constant and there are internal transmission conditions at the interfaces contained in the

functional formulation. Equations (7.1a) hide equations on the divergence of the fields,

as soon as ω is not 0 : taking the divergence of (7.1a) leads to

div(εE) =
1

iω
div J and div(µH) = 0. (7.1c)

In pure radiation problems, the charge density is zero, hence div J = 0 .

Let us assume that J ∈ H(div ; Ω) , i.e. J belongs to L2(Ω)3 and its divergence

div J belongs to L2(Ω) . The equations (7.1a) and (7.1c) yield immediately that if E

and H are in L2(Ω)3 , then they belong respectively to the following spaces

E ∈ H(curl ; Ω) ∩H(div ; ε ; Ω) and H ∈ H(curl ; Ω) ∩H(div ;µ ; Ω),

where H(div ; ρ ; Ω) is the space {u ∈ L2(Ω)3 | div(ρu) ∈ L2(Ω)} . Taking into

account the boundary conditions (7.1b), we obtain that

E ∈ XN and H ∈ XT ,

where we define now

XN = {u ∈ H(curl ; Ω) ∩H(div ; ε ; Ω) | u × n = 0 on ∂Ω}

and

XT = {u ∈ H(curl ; Ω) ∩H(div ;µ ; Ω) | (µu) · n = 0 on ∂Ω}.

These are our variational spaces.

7.b Variational formulation for the electric field

We construct first a commonly used coercive variational formulation containing a

“regularization” or “penalization” parameter s (see [16]). Choose a test field E′ ∈ XN .

As a consequence of the assumptions, µ is invertible. Let us integrate the first equation

of (7.1a) versus (µT )−1E′ , and the second versus iω E′ . Since for E′ ∈ XN and H ∈
H(curl ; Ω) , there holds:

∫

Ω

H · curl E
′ dx =

∫

Ω

curl H · E
′ dx,

we obtain

E ∈ XN , ∀E
′ ∈ XN ,

∫

Ω

µ−1 curl E · curl E
′ − ω2 εE · E

′ = iω

∫

Ω

J · E
′. (7.2)

52



Taking into account the equation (7.1c) on the divergence of E , we introduce a pa-

rameter s > 0 and the new right hand sides

f [J, s](v) = iω

∫

Ω

J · v +
s

iω

∫

Ω

div J div ε̄v and g[J] =
1

iω
div J. (7.3)

Then we define the following variational problem ( ε̄ is the complex conjugate of ε )

u∈XN , ∀v∈XN ,

∫

Ω

µ−1 curlu · curlv + s div εu div ε̄v − ω2 εu · v = f (v), (7.4)

and its saddle-point version, which involves a Lagrange multiplier p (a pseudo-pressure):

(u, p) ∈ XN × L2(Ω), ∀(v, q) ∈ XN × L2(Ω),




∫

Ω

µ−1 curlu · curlv + s div εu div ε̄v + p div ε̄v − ω2 εu · v = f (v),
∫

Ω

div εu q =

∫

Ω

g q.

(7.5)

The following statement describes the equivalence between problems (7.1), (7.4) and

(7.5) if f and g are defined in (7.3). The essential argument relies on the properties of

the operator

∆Dir
ε :

◦
H1(Ω) −→ H−1(Ω)
ϕ 7−→ div ε gradϕ.

(7.6)

The assumption about ε implies that the sesquilinear form associated with −∆Dir
ε is

coercive on
◦
H1(Ω) :

Re

∫

Ω

ε gradϕ · gradϕ ≥ ρ0|ϕ|
2

H1(Ω)
.

Thus the operator −∆Dir
ε is invertible from its Dirichlet domain

D(∆Dir
ε ) = {ϕ ∈

◦
H1(Ω) | ∆Dir

ε ϕ ∈ L2(Ω)}

onto L2(Ω) and has a discrete spectrum.

Theorem 7.1 We assume ω 6= 0 . Let J ∈ H(div ; Ω) ; for a fixed s > 0 , f = f [J, s]
and g = g[J] as defined in (7.3).

(i) If (E,H) solves (7.1), then u = E solves (7.4) and (u, p) = (E, 0) solves (7.5).

(ii) If u solves (7.4) and ω2/s is not an eigenvalue of the Dirichlet operator −∆Dir
ε on

Ω , then (E,H) = (u, (iωµ)−1 curlu) solves (7.1).

(iii) If (u, p) solves (7.5), then p = 0 and (E,H) = (u, (iωµ)−1 curlu) solves (7.1).
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PROOF. (i) was proved while stating problems (7.4) and (7.5).

(ii) In (7.4) let us take as test functions all fields v = gradϕ with ϕ ∈ D(∆Dir
ε ) , which

ensures that gradϕ ∈ XN . Let us denote by 〈a, b〉Ω :=
∫
Ω
a b̄ the hermitian scalar

product on L2(Ω) . Using the expression (7.3) of the right hand side, and the identities,

valid for ϕ ∈
◦
H1(Ω)

〈
εu , gradϕ

〉
Ω

= −
〈
div εu , ϕ

〉
Ω

and
〈
J , gradϕ

〉
Ω

= −
〈
div J , ϕ

〉
Ω
,

we easily arrive at 〈
div εu − g , s∆Dir

ε ϕ+ ω2ϕ
〉
Ω

= 0

for all ϕ ∈ D(∆Dir
ε ) . Thus if ω2/s is not an eigenvalue of −∆Dir

ε , we find that div εu =
g . We deduce that u solves problem (7.2). Thus:

curlµ−1 curl E − ω2 εE = iωJ.

Setting H = (iωµ)−1 curlu , we arrive at (7.1).

(iii) We obtain similarly that

∀ϕ ∈ D(∆Dir
ε ),

〈
p ,∆Dir

ε ϕ
〉
Ω

= 0,

whence p = 0 , since ∆Dir
ε is invertible. Thus u solves (7.2), and (u, (iωµ)−1 curlu)

solves (7.1).

Both formulations (7.4) and (7.5) are strongly elliptic in the following sense. The

norm ‖ · ‖
XN

of XN is given by

‖u‖
2

XN
=

∫

Ω

| curlu|2 + | div εu|2 + |u|2.

The principal part of the sesquilinear form associated with problem (7.4)

a(u,v) =

∫

Ω

µ−1 curlu · curlv + s div εu div εv

is coercive on XN . Moreover, concerning the saddle-point formulation (7.5), we intro-

duce

b(p,v) =

∫

Ω

p div εv

and, as an easy consequence of the invertibility of ∆Dir
ε , we have the Babuška–Brezzi

inf-sup condition, for a constant β > 0 :

∀p ∈ L2(Ω), sup
v∈XN

b(p,v)

‖v‖
XN

≥ β ‖p‖
L2(Ω)

.

Thus both variational formulations (7.4) and (7.5) are suitable for theoretical and

numerical solution methods of the Maxwell boundary value problem. For almost all s >
0 , in particular for sufficiently large s , one has equivalence with the original problem.
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7.c Variational formulation for the magnetic field

We describe the situation for the magnetic field H with less details, since there are

numerous symmetries and Theorem 7.1 yields already information for H .

We have already seen that a suitable variational space for H is XT . The first

variational formulation is obtained by integrating the second equation of (7.1a) versus

(εT )−1H′ , and the first one versus iωH′ , for any H′ ∈ XT :

∫

Ω

ε−1 curl H · curl H
′ − ω2 µH · H

′ =

∫

Ω

ε−1
J · curl H

′ =: h(H′). (7.7)

Taking account of the equation (7.1c) div µH = 0 , we obtain the following varia-

tional problem

u∈XT , ∀v∈XT ,

∫

Ω

ε−1 curlu · curlv + s divµu div µ̄v − ω2 µu · v = h(v), (7.8)

and its saddle-point version:

(u, p) ∈ XT × L2(Ω)/C, ∀(v, q) ∈ XT × L2(Ω)/C,




∫

Ω

ε−1 curlu · curlv + s divµu div µ̄v + p div µ̄v − ω2 µu · v = h(v),
∫

Ω

div µu q = 0.

(7.9)

The Laplace-like operator which plays a similar role as ∆Dir
ε is the Neumann operator

∆Neu
µ defined from its domain

D(∆Neu
µ ) = {ϕ ∈ H1(Ω) | div µ gradϕ ∈ L2(Ω) and ∂nϕ = 0 on ∂Ω}

by ∆Neu
µ ϕ = div µ gradϕ . The operator −∆Neu

µ is invertible from D(∆Neu
µ )/C onto

L2
0(Ω) (the subspace orthogonal to constants) and has a discrete spectrum.

Theorem 7.2 We assume ω 6= 0 . Let J ∈ H(div ; Ω) ; h is defined from J in (7.7).

For a fixed s > 0 :

(i) If (E,H) solves (7.1), then u = H solves (7.8) and (u, p) = (H, c) solves (7.9) for

any c ∈ C .

(ii) If u solves (7.8) and ω2/s is not an eigenvalue of −∆Neu
µ on Ω , then (E,H) =

( i
ω
ε−1(curlu − J),u) solves (7.1).

(iii) If (u, p) solves (7.9), then p is a constant and ( i
ω
ε−1(curlu− J),u) solves (7.1).
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7.d Symmetric roles of divergences and pressures. Regularity

Under a weak assumption of regularity on the right hand sides, we obtain the H1

regularity for the divergence div εu in (7.4) and the pressure p in (7.5). This comes

from the fact that div εu and p are solutions of independent boundary value problems.

Let ε∗ = ε̄T be the hermitian adjoint of ε .

Theorem 7.3 Let s > 0 , f ∈ L2(Ω)3 and g ∈ L2(Ω) . We assume that ω2/s is not an

eigenvalue of the Dirichlet operator −∆Dir
ε on Ω .

(i) If u solves (7.4), then div εu is the solution q of the Dirichlet problem

{
q ∈

◦
H1(Ω),

s∆Dir
ε∗ q + ω2q = − div f .

(7.10)

(ii) If (u, p) solves (7.5), then p+ sg is the solution q of the Dirichlet problem

{
q ∈

◦
H1(Ω),

∆Dir
ε∗ q = − div f − ω2g.

(7.11)

Thus, if moreover g belongs to H1(Ω) , the pseudo-pressure p belongs to H1(Ω)
too. As a straightforward consequence of Theorem 7.3, we rediscover the compatibility

condition between f and g (compare (7.3)), which ensures that div εu = g and p = 0
respectively:

Corollary 7.4 Under the assumptions of Theorem 7.3, the three following conditions are

equivalent:

(i) g is solution of the Dirichlet problem (7.10);

(ii) If u solves (7.4), then div εu = g ;

(iii) If (u, p) solves (7.5), then p = 0 .

In particular, if we search for divergence- ε free solutions of (7.4), the necessary and

sufficient condition on f is that f is divergence free.

PROOF OF THEOREM 7.3. (i) If u solves (7.4), then taking as test functions v =
gradϕ with ϕ ∈ D(∆Dir

ε ) we obtain

∀ϕ ∈ D(∆Dir
ε ),

〈
div εu , s∆Dir

ε ϕ+ ω2ϕ
〉
Ω

=
〈
f , gradϕ

〉
Ω
. (7.12)

But the solution of (7.10) satisfies

∀ψ ∈
◦
H1(Ω), −

〈
sε∗ grad q , gradψ

〉
Ω

+
〈
ω2q , ψ

〉
Ω

=
〈
f , gradψ

〉
Ω
,

whence

∀ϕ ∈ D(∆Dir
ε ),

〈
q , s∆Dir

ε ϕ+ ω2ϕ
〉
Ω

=
〈
f , gradϕ

〉
Ω
.
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Thus div εu − q is orthogonal to the range of s∆Dir
ε + ω2 , which is the whole L2(Ω) .

(ii) If (u, p) solves (7.5), we obtain similarly that

∀ϕ ∈ D(∆Dir
ε ),

〈
sg + p , ∆Dir

ε ϕ
〉
Ω

=
〈
f , gradϕ

〉
Ω
−

〈
ω2g , ϕ

〉
Ω
,

and that the solution of (7.11) satisfies

∀ϕ ∈ D(∆Dir
ε ),

〈
q ,∆Dir

ε ϕ
〉
Ω

=
〈
f , gradϕ

〉
Ω
−

〈
ω2g , ϕ

〉
Ω
.

Whence sg + p− q is orthogonal to the range of ∆Dir
ε , which is the whole L2(Ω) .

We have similar statements concerning the “magnetic” problems (7.8) and (7.9): if u

solves (7.8), then div µu is the solution in H1(Ω) (with zero mean value if ω = 0 ) of a

Neumann problem. If (u, p) solves (7.9), then p+sg is similarly solution of a Neumann

problem.

Remark 7.5 There is another equivalent variational formulation of Maxwell equation. It

satisfies an inf-sup condition and is used in finite-element approximations, see NEDELEC

[24], GIRAULT - RAVIART [14] and also [2].

Let
◦
H (curl; Ω) be the space of the fields u ∈ H(curl; Ω) such that u × n = 0 on

∂Ω . With this definition, we can introduce the alternative saddle-point version, which is

a replacement for (7.5) when s = 0 :

(u, p) ∈
◦
H (curl; Ω) ×

◦
H1(Ω), ∀(v, q) ∈

◦
H (curl; Ω) ×

◦
H1(Ω),





∫

Ω

µ−1 curlu · curlv − grad p · ε̄v − ω2 εu · v = f0(v),

−

∫

Ω

εu grad q =

∫

Ω

g q.

(7.13)

For any s > 0 and v ∈ XN , we define, cf (7.3)

fs(v) = f0(v) + s

∫

Ω

g div ε̄v.

Then, if f0 ∈ L2(Ω)3 and g ∈
◦
H1(Ω) , we can prove, as a consequence of Theorem 7.3

and of the density of D(Ω)3 in
◦
H (curl; Ω) that (u, p) solves (7.13) if and only if (u, p)

solves (7.5) with f = fs .
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editors, Analyse Mathématique et Calcul Numérique pour les Sciences et les Tech-

niques, chapter IX, part. A. Masson, Paris 1988.

[8] M. COSTABEL. A remark on the regularity of solutions of Maxwell’s equations on

Lipschitz domains. Math. Methods Appl. Sci. 12 (4) (1990) 365–368.

[9] M. COSTABEL. A coercive bilinear form for Maxwell’s equations. J. Math. Anal.

Appl. 157 (2) (1991) 527–541.

[10] M. COSTABEL, M. DAUGE. Singularités des équations de Maxwell dans un poly-
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