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It is well-known that the unit cotangent bundle of any Riemannian manifold
has a canonical contact structure. A surface in a Riemannian 3-manifold is
called a front if it is the projection of a Legendrian immersion into the unit
cotangent bundle. We give easily computable criteria for a singular point
on a front to be a cuspidal edge or a swallowtail. Using this, we prove that
generically flat fronts in hyperbolic 3-space admit only cuspidal edges and
swallowtails. We also show that any complete flat front (provided it is not
rotationally symmetric) has associated parallel surfaces whose singularities
consist of only cuspidal edges and swallowtails.

1. Introduction

It is well-known that the unit cotangent bundle of any Riemannian n-manifold N n

has a canonical contact structure. Let M2 be a 2-manifold and f :M2
→ N 3 a C∞-

map. We call f a wave front, or front for short, if it is the projection of a Legendrian
immersion into the unit cotangent bundle of N 3. Now let f : M2

→ M̃3(c) be a
front, where M̃3(c) is the space form of constant curvature c. The associated
parallel front ft : M2

→ M̃3(c), i.e. the surface that is equidistant from f at a
distance t (called a parallel surface of f = f0), is well-defined. Moreover, if f is
a flat immersion, so is ft for t close to zero. Using this fact, we shall define a flat
front: A front f is flat in a neighborhood of p ∈ M2 if either

(1) p is a regular point of f and the Gaussian curvature of f near p vanishes, or

(2) p is a singular point of f and ft is a flat immersion around p for all t 6= 0
close to zero.

A front f : M2
→ M̃3(c) is called a flat front if it is flat everywhere on M2.

For the case c= 0, several articles have studied the singularities of developable
surfaces in R3. In particular, Izumiya and Takeuchi [2003] proved that the set of
developable surfaces whose singularities are only cuspidal edges, swallowtails or

MSC2000: primary 53C42; secondary 53A99.
Keywords: flat front, hyperbolic 3-space, cuspidal edge singularity, swallowtail singularity.
Saji was supported by JSPS Research Fellowships for Young Scientists.

303

http://pjm.berkeley.edu
http://pjm.berkeley.edu/vol/221
http://pjm.berkeley.edu/vol/221/2


304 M. KOKUBU, W. ROSSMAN, K. SAJI, M. UMEHARA AND K. YAMADA

cuspidal cross caps are open and dense in the set of noncylindrical developable
surfaces, where (u, v) 7→ (u, v2, v3) represents a cuspidal edge, (u, v) 7→ (3u4

+

u2v, 4u3
+ 2uv, v) a swallowtail, and (u, v) 7→ (u, uv3, v2) a cuspidal cross cap.

Recently, geometric inequalities for complete flat fronts in hyperbolic 3-space and
complete maximal surfaces with certain singularities in Minkowski 3-space were
found in [Kokubu et al. 2004] and [Fujimori et al. 2005]. Kitagawa [1988; 1995;
2000] has made a deep investigation of flat tori in the 3-sphere. The study of
global properties of surfaces with singularities is a newly developing research area
in differential geometry.

This paper investigates singularities of flat surfaces in hyperbolic 3-space H 3
=

M̃3(−1). The geometry of flat fronts in H 3 has been studied in [Kokubu et al. 2003;
2004]; the latter article gives an analogue of the Osserman inequality for minimal
surfaces in R3. Like constant mean curvature one surfaces in H 3, flat surfaces have
a representation formula in terms of holomorphic data, found by J. A. Gálvez, A.
Martínez and F. Milán [Gálvez et al. 2000]: Let ω and θ be holomorphic 1-forms on
a simply-connected Riemann surface M2 such that |ω|2+ |θ |2 is positive definite.
Then there exists a holomorphic immersion E f : M2

→ SL(2, C) such that

(1–1) E−1
f d E f =

(
0 θ

ω 0

)
,

and its projection to H 3 gives a flat front f = E f E∗f in H 3, where we regard H 3

as

(1–2) H 3
= SL(2, C)/ SU(2)= {aa∗ ; a ∈ SL(2, C)} (a∗ = t ā).

Moreover, any simply-connected flat front has such a representation with respect to
the complex structure induced by the second fundamental form; see [Gálvez et al.
2000; Kokubu et al. 2003; 2004]. We call ω and θ in (1–1) the canonical forms
of f . In Section 3 of this paper, we will show:

Theorem 1.1. Let f : M2
→ H 3 be a flat front with canonical forms (ω = ω̂ dz,

θ = θ̂ dz), where z is a local complex coordinate.

(1) A point p ∈ M2 is a singular point if and only if |ω̂(p)| = |θ̂ (p)|.

(2) The image of f around a singular point p is locally diffeomorphic to a cuspi-
dal edge if and only if

ω̂′θ̂ − θ̂ ′ω̂ 6= 0 and Im
(θ̂ ′/θ̂)− (ω̂′/ω̂)√

ω̂θ̂
6= 0

at p, where ′ = d/dz.
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(3) The image of f around a singular point p is locally diffeomorphic to a swal-
lowtail if and only if

ω̂′θ̂ − θ̂ ω̂′ 6= 0, Im
(θ̂ ′/θ̂)− (ω̂′/ω̂)√

ω̂θ̂
= 0 and Re

s(θ̂)− s(ω̂)

ω̂θ̂
6= 0

at p, where s(ω̂) is the Schwarzian derivative of the function h(z) :=
∫ z

z0
ω

with respect to z:

(1–3) s(ω̂)= {h, z} =
(

h′′

h′

)′
−

1
2

(
h′′

h′

)2

=

(
ω̂′

ω̂

)′
−

1
2

(
ω̂′

ω̂

)2

.

Consequently, cuspidal edges and swallowtails are stable under perturbations of
(ω, θ). It is well-known that generic fronts (which might not be flat) admit only
cuspidal edges or swallowtails; [Arnol’d et al. 1985, Section 21.6]. However, it
does not immediately follow that the set of such fronts is dense within the set of
flat fronts. Using Theorem 1.1, we shall prove a similar assertion for flat fronts in
H 3 (Theorem 3.4).

A front f :M2
→ H 3 is called complete if there exist a compact set C ⊂M2 and

a symmetric 2-tensor T on M2 such that T is identically 0 outside C and ds2
+ T

is a complete Riemannian metric of M2, where ds2 is the first fundamental form
of f . In Section 4 we prove a global result:

Theorem 1.2. Let f : M2
→ H 3 be a complete flat front which is not a covering

of an hourglass (hourglasses are rotationally symmetric — see Example 6.2), and
let { ft } be the family of parallel fronts of f . Then, except for only finitely many
values of t , all the singular points of ft are locally diffeomorphic to cuspidal edges
or swallowtails.

The image of the singular points under an hourglass is a single point in H 3, the
so-called “cone-like singularity” (see figure on page 344), and any parallel front
of an hourglass has the same singularity. Thus the assumption of Theorem 1.2 is
necessary.

Fronts which admit only cuspidal edges and swallowtails are called A-mersions,
and their topological properties have been investigated by Langevin, Levitt and
Rosenberg [Langevin et al. 1995]. The preceding theorem implies that complete
flat fronts in H 3 are generically included in this category.

The union of singular sets for the entire parallel family of a given flat front
is called a caustic. (Roitman [2003] has studied the geometric properties of flat
surfaces, motivated by a classical result of L. Bianchi; see Section 5.)

To prove Theorem 1.1, we shall give criteria for a singular point on a front to be
a cuspidal edge or a swallowtail, as follows: Let N 3 be a Riemannian 3-manifold,
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U a domain on (R2
; u, v), and let

f = f (u, v) :U → N 3

be a C∞-map with a singular point p∈U . Then there exist three functions a, b, c∈
C∞(U ) such that

d f
(

∂

∂u

)
∧ d f

(
∂

∂v

)
= a(u, v)

∂

∂x
∧

∂

∂y
+ b(u, v)

∂

∂y
∧

∂

∂z
+ c(u, v)

∂

∂z
∧

∂

∂x
,

where (x, y, z) is a local coordinate system of N 3. The rank of a map defined by

G : (u, v) 7→
(
a(u, v), b(u, v), c(u, v)

)
∈ R3

does not depend on the choice of local coordinate (x, y, z) nor on the choice of
coordinate (u, v). Now we assume f is a front. A singular point p ∈ U of f is
called nondegenerate if the Jacobian matrix of G is of rank one at p. There exists
a regular curve near a nondegenerate singular point p

γ = γ (t) : (−ε, ε)→U

(called a singular curve) such that γ (0)= p, and so that the image of γ coincides
with the set of singularities of f near p. The tangential direction of γ (t) is called
the singular direction, and a nonzero vector η ∈ Tγ (t)U such that d f (η)= 0 repre-
sents the null direction. For each point γ (t), vectors in the null direction η(t) are
uniquely determined up to nonzero scalar multiplication.

Proposition 1.3. Let N 3 be a Riemannian 3-manifold and p = γ (0) ∈ U be a
nondegenerate singular point of a front f :U → N 3.

(1) The germ of the front f at p is locally diffeomorphic to a cuspidal edge if and
only if η(0) is not proportional to γ̇ (0), where γ̇ (t)= dγ (t)/dt .

(2) The germ of the front f at p is locally diffeomorphic to a swallowtail if and
only if η(0) is proportional to γ̇ (0) and

d
dt

∣∣∣∣
t=0

det
(
γ̇ (t), η(t)

)
6= 0.

We shall prove this proposition in Section 2. These criteria are useful in other
situations. In fact, this proposition is applicable for the study of singularities of
maximal surfaces in Minkowski space; see [Fujimori et al. 2005].

2. Criteria for singular points

Preliminaries. First, we recall from [Bruce and Giblin 1984] some well-known
properties for singular points. Let

ϕ = ϕ(w) : I → R
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be a C∞-function defined on an open interval I containing the origin such that
ϕ(0)= 0. Then ϕ has an Ak-singularity at 0 if

ϕ′(0)= ϕ′′(0)= · · · = ϕ(k)(0)= 0 and ϕ(k+1)(0) 6= 0,

where ϕ′ = dϕ/dw and ϕ( j)
= d jϕ/dw j . Here, we shall consider the cases k = 2

and 3.
Let � be an open subset of (R3

; x, y, z) containing the origin 0. A map

8 : I ×�→ R

is called an unfolding of ϕ if

ϕ(w)=8(w, 0).

Moreover, if ϕ has an Ak-singularity at 0 and the matrix8x(0, 0) 8′x(0, 0) . . . 8
(k−1)
x (0, 0)

8y(0, 0) 8′y(0, 0) . . . 8
(k−1)
y (0, 0)

8z(0, 0) 8′z(0, 0) . . . 8
(k−1)
z (0, 0)


is of rank k, then 8 is called a versal unfolding of ϕ, where, for example,

8′x =
∂28

∂x∂w
, 8( j)

x =
∂ j+18

∂x∂ jw
.

The set

D8 :=
{

x ∈� ; there exists a w ∈ I with 8(w, x)=8′(w, x)= 0
}

is called the discriminant set of 8.

Fact 2.1 [Bruce and Giblin 1984, Section 6]. Suppose ϕ : I → R has an Ak-
singularity (k = 2 or 3) at 0 and 8 : I ×�→ R a versal unfolding of ϕ. Then

(1) D8 is locally diffeomorphic to a cuspidal edge at 0 if k = 2.

(2) D8 is locally diffeomorphic to a swallowtail at 0 if k = 3.

Nondegenerate singular points. Let N 3 be a Riemannian 3-manifold and T ∗1 N 3

the unit cotangent bundle. A C∞-map f : M2
→ N 3 is called a (wave) front if

there exists a Legendrian immersion L f :M2
→ T ∗1 N 3 such that f =π ◦L f , where

π : T ∗1 N 3
→ N 3 is the projection. We call L f the Legendrian lift of f .

Lemma 2.2 [Zakalyukin 1983]. Let U ⊂ R2 be a neighborhood of the origin, and
let f j : U → R3 ( j = 1, 2) be fronts. Suppose that (0, 0) is a singular point of f j

and the set of regular points of f j is dense in U for each j = 1, 2. The following
two statements are equivalent:
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(i) There exist neighborhoods V1, V2(⊂ R2) of the origin (0, 0) and a local dif-
feomorphism on R3 which maps the image f1(V1) to f2(V2), namely the image
of f1 is locally diffeomorphic to that of f2.

(ii) There exists a local diffeomorphism h on R2 and a local contact diffeomor-
phism 8 on T ∗1 R3 which sends fibers to fibers such that 8 ◦ L f1 = L f2 ◦ h,
namely the lift L f1 is Legendrian equivalent to the lift L f2 .

The lemma is proved in the appendix. We return to the general setting: Since any
contact structure is locally equivalent to the canonical contact structure on T ∗1 R3,
we may restrict our attention to fronts in the Euclidean 3-space R3. Let (U ; u, v)

be a domain in R2 and f : U → R3 a front. Identifying the unit cotangent bundle
T ∗1 R3 with the unit tangent bundle T1R3

' R3
× S2, there exists a unit vector field

ν :U → S2
⊂ R3

such that the Legendrian lift L f is expressed as ( f, ν). Since L f = ( f, ν) is Leg-
endrian,

〈d f, ν〉 = 0 and 〈ν, ν〉 = 1

hold, where 〈 , 〉 is the Euclidean inner product of R3. We call ν the unit normal
vector field of the front f . Then there exists a C∞-function λ ∈ C∞(U ) such that

(2–1)
∂ f
∂u

(u, v)×
∂ f
∂v

(u, v)= λ(u, v) ν(u, v),

where × denotes the cross product of R3. Obviously, (u, v)∈U is a singular point
of f if and only if λ(u, v)= 0.

Proposition 2.3. A singular point p ∈ U of a front f : U → R3 is nondegenerate
if and only if dλ 6= 0 at p.

Proof. Differentiating (2–1) at p, we have d( fu × fv)(p) = dλ(p)ν(p). This
implies that the rank of d( fu× fv) :U→R3 at p is at most 1, and that dλ(p) 6= 0
is equivalent to d( fu× fv)(p) 6= 0. Therefore, dλ(p) 6= 0 if and only if d( fu× fv)
has rank 1 at p, that is, the map G in the introduction has rank 1 at p. �

Let p be a nondegenerate singular point of a front f : U → R3. Since the set of
singular points is the set {λ = 0}, Proposition 2.3 implies that the set of singular
points is parametrized by a smooth curve

γ : (−ε, ε)→U

in a neighborhood of p, so that γ (0) = p. We call the curve γ (t) a singular
curve passing through p, and the direction γ̇ (0) the singular direction at the sin-
gular point p, where the dot denotes the derivative with respect to t . Since p is
a nondegenerate singular point, so is any point γ (t) for sufficiently small t . Then
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there exists a unique direction η(t) ∈ Tγ (t)U up to scalar multiplication such that
d f
(
η(t)

)
= 0 for each t . We call η(t), which is smooth in t , the null direction.

Definition 2.4. Let p be a nondegenerate singular point of a front f : U → R3,
γ (t) the singular curve with γ (0)= p, and η(t) the null direction. Then

(1) p is of type C if η(0) is not proportional to γ̇ (0).

(2) p is of type S if η(0) is proportional to γ̇ (0) and

d
dt

∣∣∣∣
t=0

det
(
γ̇ (t), η(t)

)
6= 0,

where γ̇ (t) and η(t) are considered as column vectors in R2.

This definition does not depend on the choices of γ and η.

Example 2.5. The map

f̂C(z, w) := (2w3,−3w2, z)

gives a cuspidal edge along the z-axis. The null direction is perpendicular to the
z-axis, and it has a type C singularity at (0, 0).

The map
f̂S(z, w) := (3w4

+ zw2, 4w3
+ 2wz, z)

gives a swallowtail at (0, 0). The singular curve is 6w2
+ z = 0, and the null

direction is parallel to the w-axis. So (0, 0) is a singularity of type S.

For f̂ = f̂C or f̂S, with components f̂ = ( f̂1, f̂2, f̂3), the derivative f̂w vanishes
identically on the singular curve; moreover f̂z(0, 0) = (0, 0, 1) and f̂3(z, w) = z.
We shall now prove that any front f (u, v) can be given such a parametrization
(z, w) near a nondegenerate singular point, as follows: We assume that the origin
(0, 0) of the uv-plane is an arbitrarily given nondegenerate singular point of f ,
namely

λ(0, 0)= 0 and dλ(0, 0) 6= 0,

and set
f (0, 0)= 0.

Proposition 2.6. Suppose that (0, 0) is a nondegenerate singular point of a front
f :U → R3. Then there is a diffeomorphism

9 : (V ; z, w) 7→ (U ; u, v)

with 9(0, 0)= (0, 0) and a rotation at the origin

2 : R3
→ R3
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such that

f̂ (z, w)=
(

f̂1(z, w), f̂2(z, w), f̂3(z, w)
)
=2 ◦ f ◦9(z, w) : V → R3

satisfies the following properties:

(1) f̂z(0, 0)= (0, 0, 1).

(2) f̂3(z, w)= z.

(3) The derivative f̂w vanishes identically along the singular curve. In particular,
f̂w(0, 0)= (0, 0, 0).

(4) If (0, 0) is of type C, the tangent vector ∂/∂z ∈ T(0,0)V can be chosen to be
the singular direction at the origin of V .

Proof. Let γ (t) be the singular curve passing through (0, 0). The null direction
η(t) can be extended to a vector field η̃ on U , that is,

η(t)= η̃ ◦ γ (t).

On the other hand, we take a vector ξ0 ∈ T(0,0)U which is not proportional to η(0)

and satisfies
|d f (ξ0)| = 1.

If (0, 0) is of type C, we choose ξ0 to be proportional to γ̇ (0). Then there exists a
vector field ξ on U such that

ξ(0, 0)= ξ0.

The vector fields ξ and η̃ are linearly independent in a neighborhood of the origin.
Hence by a lemma in [Kobayashi and Nomizu 1963, page 182], there exists a
new coordinate system (ũ, ṽ) such that ũ(0, 0) = ṽ(0, 0) = 0 and ∂/∂ ũ, ∂/∂ṽ are
proportional to ξ , η̃, respectively. Scaling ξ and η̃, we may assume

∂

∂ ũ
= ξ and

∂

∂ṽ
= η̃,

without loss of generality. From now on, we use the coordinates (ũ, ṽ). However,
for notational simplicity, we drop the overhead tildes and write (ũ, ṽ) as just (u, v).
So we may assume:

• The derivative fv vanishes identically on the singular curve γ (t).

• If (0, 0) is of type C, the tangent vector ∂/∂u ∈ T(0,0)U points in the singular
direction at the origin.

Since fu(0, 0) has unit length, we can take a rotation at the origin 2 : R3
→ R3

which maps fu(0, 0) to (0, 0, 1), and set

f̃ (u, v)=
(

f̃1(u, v), f̃2(u, v), f̃3(u, v)
)
=2 ◦ f (u, v).
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Then
f̃u(0, 0)= (0, 0, 1), f̃v(0, 0)= (0, 0, 0).

We set
g(u, v, z) := f̃3(u, v)− z.

Since
gu(0, 0, 0)= ( f̃3)u(0, 0)= 1 6= 0,

there exists a function u = u(z, v) such that u(0, 0) = 0 and g(u(z, v), v, z) = 0,
namely,

(2–2) f̃3(u(z, v), v)= z.

Then by
u = u(z, w), v = w,

(z, w) gives a new coordinate system. We now set

(2–3) f̂ (z, w) := f̃ (u(z, w),w).

Then assertion (2) follows immediately. By differentiating (2–2), we have

uz(0, 0)( f̃3)u(0, 0)= 1,

and we get
uz(0, 0)= 1.

Thus, by differentiating (2–3), we have

f̂z(0, 0)= uz(0, 0) f̃u(0, 0)= (0, 0, 1),

which implies (1).
On the other hand,

f̂w(z, w)=
(

f̃ (u(z, w),w)
)
w
= f̃u(u(z, w),w)uw(z, w)+ f̃w(u(w, z), w).

Since f̃v vanishes on γ , so does f̃w(u(z, w),w). Thus we have

f̂w(z, w)= f̃u(u(z, w),w)uw(z, w) on γ .

By differentiating f̃3(u(z, w),w)= z with respect to w, we have

uw(z, w)( f̃3)u(u(z, w),w)= 0.

Here, ( f̃3)u(u(z, w),w) does not vanish near (0, 0), since ( f̃3)u(0, 0) = 1. Then
we have

uw(z, w)= 0
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and thus f̂w vanishes on the singular curve, which proves (3). If (0, 0) is of type
C, then (0, 0, 1) is proportional to the singular direction of f̂ . Since f̂z(0, 0) =

(0, 0, 1), we have (4). �

Remark 2.7. In this proof,

ν̂(z, w) := ν(u(z, w),w)

gives the unit normal vector field of the (normalized) front f̂ (z, w).

In addition to the case of surfaces, we shall define fronts for plane curves.

Definition 2.8. Let I ⊂ R be an interval. A map

σ = σ(w) : I → R2

is called a (planar) front if there exists a map

n = n(w) : I → S1
⊂ R2

such that n(w) is perpendicular to σ(w) and w 7→ (σ (w), n(w)) is an immersion.
A point w=w0 with σ ′(w0)= 0 is called a singular point of the planar front σ(w),
where ′ = d/dw. At such a point, n′(w0) 6= 0 by definition.

A planar front is a projection of a Legendrian immersion in the unit cotangent
bundle T ∗1 R2 with respect to the canonical contact structure.

In the cases of f̂C and f̂S in Example 2.5, one can easily check that their slices
σ z
: w 7→ f̂ (z, w) perpendicular to the z-axis give planar fronts. The tangent line

of σ z(w) is given by

(2–4) 8(w, x, y, z) := n1(z, w)
(
x − f̂1(z, w)

)
+ n2(z, w)

(
y− f̂2(z, w)

)
= 0,

where n(z, w) = (n1(z, w), n2(z, w)) is the unit normal vector of σ z(w). Then
σ z is the envelope of this family of tangent lines, and the discriminant set D8

characterizes the image of f̂C and f̂S. According to this observation, we shall
prove that f̂ (z, w) as in Proposition 2.6, which has type C or type S singularities
at (0, 0), also satisfies that

(a) the slice perpendicular to the z-axis gives a planar front,

(b) the set D8 of 8 given by (2–4) is a discriminant set and is locally diffeomor-
phic to a cuspidal edge or a swallowtail, by applying Fact 2.1.

Now we shall prove (a) for nondegenerate singular points as follows:

Proposition 2.9. Let (0, 0) be a nondegenerate singular point of the front

f̂ = f̂ (z, w) : V → R3
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satisfying (2) and (3) in Proposition 2.6. Then there exists an ε > 0 such that the
map defined by

σ z
: w 7→

(
f̂1(z, w), f̂2(z, w)

) (
|z|< ε

)
is a planar front. Moreover, w is a singular point of σ z if (z, w) is a singular point
of f̂ .

To prove this we need the following:

Lemma 2.10. Under the assumptions of Proposition 2.9, the derivative ν̂w(0, 0)

is nonzero and perpendicular to e3 := (0, 0, 1), where ν̂ is the unit normal vector
field of f̂ .

Proof. Since f̂ is a front, it follows from (3) in Proposition 2.6 that ν̂w(0, 0) does
not vanish. Since 〈 f̂w, ν̂〉 = 0, we have

0= 〈 f̂w, ν̂〉z = 〈 f̂wz, ν̂〉+ 〈 f̂w, ν̂z〉.

Since f̂w(0, 0)= 0 by (3) in Proposition 2.6, we have

〈 f̂wz(0, 0), ν̂(0, 0)〉 = 0.

Thus,

〈ν̂w(0, 0), e3〉 = 〈ν̂w(0, 0), f̂z(0, 0)〉

=
∂

∂w

∣∣∣∣
(z,w)=(0,0)

〈ν̂, f̂z〉− 〈ν̂(0, 0), f̂wz(0, 0)〉 = 0 ,

which is the desired conclusion. �

Proof of Proposition 2.9. We fix z and let

σ(w) :=
(

f̂1(z, w), f̂2(z, w), 0
)
.

Then σ(w) is a map into the xy-plane. By (2) in Proposition 2.6, we have

σ(w)= f̂ (z, w)−〈 f̂ (z, w), e3〉e3 = f̂ (z, w)− f̂3(z, w)e3 = f̂ (z, w)− ze3

and
d

dw
σ(w)= f̂w(z, w).

This implies that a singular point of σ is a singular point of f̂ .
On the other hand, we set

n(w) :=
ν̂−〈ν̂(z, w), e3〉e3(

1−〈ν̂(z, w), e3〉2
)1/2 .

Since
〈ν̂(0, 0), e3〉 = 〈ν̂(0, 0), f̂z(0, 0)〉 = 0,
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n(w) is a well-defined unit vector field near (0, 0). Moreover,

〈σw(w), n(w)〉 = 〈 f̂w(z, w), n(w)〉 =
〈ν̂, f̂w〉− 〈ν̂, e3〉〈e3, f̂w〉(

1−〈ν̂(z, w), e3〉2
)1/2

=−
〈ν̂, e3〉(

1−〈ν̂(z, w), e3〉2
)1/2 ( f̂3)w = 0,

where we used the fact that f̂3(z, w)= z. Thus, n(w) is a normal vector of σ(w).
By Lemma 2.10, we have 〈ν̂w(0, 0), e3〉 = 0, and

d
dw

n(0)= ν̂w(0, 0) 6= 0.

Hence n′(w) 6= 0 for sufficiently small (z, w), and the map w 7→ (σ (w), n(w)) is
an immersion. �

Proof of the criteria. We now prove Proposition 1.3 from the introduction. As
pointed out in the beginning of the previous section, it is sufficient to prove the
assertion for fronts in the Euclidean 3-space R3. The idea of the proof is as follows:
Let (0, 0) be a nondegenerate singular point of a front f = f (u, v) :U→R3. Then
by Proposition 2.6, we have a normalized front f̂ (z, w). We set

σ(z, w) :=
(

f̂1(z, w), f̂2(z, w)
)
.

By Proposition 2.9, there exist positive numbers ε1 and ε2 such that

(−ε1, ε1) 3 w 7→ σ(z, w) ∈ R2

gives a planar front for |z|< ε2; that is, there exists a unit normal vector field

n = n(z, w) : (−ε2, ε2)× (−ε1, ε1)→ R2

such that 〈σw(z, w), n(z, w)〉 = 0. If we set n = (n1, n2), the equation

n1(z, w)
(
x − f̂1(z, w)

)
+ n2(z, w)

(
y− f̂2(z, w)

)
= 0

gives the tangent line of the planar front w 7→ σ(z, w), and the image of the planar
front is the envelope of these tangent lines. On the other hand, it is well-known
that the envelope generated by a family of lines

{F(w, x, y)= 0 ; w ∈ R}

is given by {(x, y) ; F(w, x, y)= Fw(w, x, y)= 0, w ∈ R}. So if we set

(2–5) 8(w, x, y, z) := n1(z, w)
(
x − f̂1(z, w)

)
+ n2(z, w)

(
y− f̂2(z, w)

)
,
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the discriminant set

D8 := {x ∈� ; there exists a w ∈ R with 8(w, x)=8w(w, x)= 0}

coincides with the image of the front f̂ . Now we set

ϕ(w)=8(w, 0, 0, 0).

Then if ϕ(w) has an Ak-singularity (k = 2, 3) and 8 is a versal unfolding, we can
conclude (b), that is, the image of f̂ is locally diffeomorphic to a cuspidal edge or
a swallowtail, by Fact 2.1. According to this plan, we shall first prove the criterion
for cuspidal edges. First, we prepare three lemmas:

Lemma 2.11. σ(0, 0) = σ ′(0, 0) = σz(0, 0) = (0, 0) and n′(0, 0) 6= (0, 0) hold,
where ′ denotes the derivative with respect to w.

Proof. These are easily computed from Propositions 2.6 and 2.9. �

Lemma 2.12. 8z(0, 0, 0, 0)=8′z(0, 0, 0, 0)= 0.

Proof. These are computed by differentiating (2–5) and by using Lemma 2.11. �

Lemma 2.13. ϕ(w) has an A2-singularity at w= 0 if and only if σ ′′(0, 0) 6= (0, 0).

Proof. By differentiating
〈
σ ′, n

〉
= 0 and using σ ′(0, 0)= (0, 0), we conclude that〈

σ ′′(0, 0), n(0, 0)
〉
= 0. Since n′(0, 0) 6= (0, 0) by Lemma 2.11, {n, n′/|n′|} forms

an orthonormal basis for R2. Therefore,

(2–6) σ ′′(0, 0)=
〈
σ ′′(0, 0), n′(0, 0)

〉
n′(0, 0)/|n′(0, 0)|2.

On the other hand, by differentiating (2–5) and by using Lemma 2.11, we have

ϕ(0)= ϕ′(0)= ϕ′′(0)= 0, −ϕ′′′(0)=
〈
σ ′′(0, 0), n′(0, 0)

〉
.

Hence ϕ has an A2-singularity at the origin if and only if
〈
σ ′′(0, 0), n′(0, 0)

〉
6= 0.

This and (2–6) prove the assertion. �

Proposition 2.14. Suppose (0, 0) is a nondegenerate singular point. Then the germ
of the image of the front is locally diffeomorphic to a cuspidal edge if and only if
(0, 0) is of type C.

Proof. By Lemma 2.2, local diffeomorphic equivalence between singular points on
fronts implies Legendrian equivalence. Since a cuspidal edge itself is of type C, any
singular point locally diffeomorphic to a cuspidal edge is of type C. Conversely,
we shall show that a singularity of type C is locally diffeomorphic to a cuspidal
edge. To prove this, it is sufficient to show that ϕ as above has an A2-singularity
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and 8 is versal. By Lemma 2.12 and (2–5), we have8x(0, 0) 8′x(0, 0)

8y(0, 0) 8′y(0, 0)

8z(0, 0) 8′z(0, 0)

=
n1(0, 0) n′1(0, 0)

n2(0, 0) n′2(0, 0)

0 0

 .

This matrix is of rank 2, since n(0, 0) and n′(0, 0) are linearly independent.
Next we prove that ϕ has an A2-singularity. We set

λ= det
(

f̂w, f̂z, ν̂
)
,

where ν̂ is the unit normal vector of the front f̂ . Here λ= 0 on the singular curve.
Since we have assumed that (0, 0) is of type C, Proposition 2.6(4) implies that
∂/∂z is the singular direction at the origin. So we have

λz(0, 0)= 0.

On the other hand,

0 6= λw = det
(

f̂ww, f̂z, ν̂
)
+ det

(
f̂w, f̂zw, ν̂

)
+ det

(
f̂w, f̂z, ν̂w

)
= det

(
f̂ww, f̂z, ν̂

)
holds at (0, 0), because f̂w(0, 0) = 0. Since f̂z(0, 0)× ν̂(0, 0) is parallel to the
xy-plane, we have〈

σ ′′(0, 0), f̂z(0, 0)× ν̂(0, 0)
〉
=
〈
f̂ww(0, 0), f̂z(0, 0)× ν̂(0, 0)

〉
6= 0.

In particular we have σ ′′(0, 0) 6= (0, 0), and by Lemma 2.13, ϕ(w) has an A2-
singularity at w = 0. �

Next, we prove the criterion for swallowtails:

Proposition 2.15. Suppose (0, 0) is a nondegenerate singular point. Then the
germ of the image of the front is locally diffeomorphic to a swallowtail if and only
if (0, 0) is of type S.

To prove this, we prepare a lemma:

Lemma 2.16. Suppose (0, 0) is a nondegenerate singular point of f̂ (z, w), but not
of type C. Then

(1) f̂ww(0, 0)= 0, in particular σ ′′(0, 0)= (0, 0), and

(2) 8′′z (0, 0, 0, 0) 6= 0.

Proof. By (3) of Proposition 2.6, f̂w vanishes identically on the singular curve.
Since (0, 0) is not of type C, the singular direction is equal to the null direction
∂/∂w, thus f̂ww(0, 0)= 0. In particular, we have σ ′′(0, 0)= (0, 0). Differentiating
(2–5) by w and z and substituting the relation

σ(0, 0)= σ ′(0, 0)= σz(0, 0)= σ ′′(0, 0)= (0, 0),
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we have
−8′′z (0, 0, 0, 0)=

〈
n′(0, 0), σ ′z(0, 0)

〉
.

Since
〈
n, σ ′

〉
= 0, we have

〈
n, σ ′z

〉
= 0. Since n′ is orthogonal to n, σ ′z is proportional

to n′. To show 8′′z (0, 0, 0, 0) 6= 0, it is sufficient to show σ ′z(0, 0) 6= (0, 0). More-
over, ( f̂3)wz vanishes identically, so σ ′z(0, 0) 6= (0, 0) is equivalent to f̂zw(0, 0) 6=0.

Differentiating
λ= det

(
f̂w, f̂z, ν̂

)
with respect to z and using the relation f̂w(0, 0)= 0, we have

(2–7) λz(0, 0)= det
(

f̂wz(0, 0), f̂z(0, 0), ν̂(0, 0)
)
.

Since (0, 0) is not of type C, ∂/∂w is the singular direction. In particular, λw(0, 0)=

0. Since dλ 6= 0 at (0, 0), we have λz(0, 0) 6= 0. Hence f̂zw(0, 0) 6= 0 by (2–7). �

Proof of Proposition 2.15. For the same reason as in the proof of Proposition 2.14,
any singular point locally diffeomorphic to a swallowtail is of type S. Conversely,
we shall show that a singularity of type S is locally diffeomorphic to a swallowtail.
To prove this, it is sufficient to show that ϕ as above has an A3-singularity and 8

is versal. By Lemma 2.12 and (2–5), we have8x(0, 0) 8′x(0, 0) 8′′x(0, 0)

8y(0, 0) 8′y(0, 0) 8′′y(0, 0)

8z(0, 0) 8′z(0, 0) 8′′z (0, 0)

=
n1(0, 0) n′1(0, 0) ∗

n2(0, 0) n′2(0, 0) ∗

0 0 8′′z (0, 0)

 .

By Lemma 2.16, 8′′z (0, 0) 6= 0, and then the rank of this matrix is 3. By Lemma
2.11 and Lemma 2.16, we have

ϕ(0)= ϕ′(0)= ϕ′′(0)= ϕ′′′(0)= 0, ϕ(4)(0)=
〈
σ ′′′(0), n′(0)

〉
.

By differentiating
〈
σ ′, n

〉
= 0 twice, we have〈

σ ′′′(0, 0), n(0, 0)
〉
= 0.

Thus, ϕ(w) has an A3-singularity if and only if σ ′′′(0) 6= 0, which is equivalent to
f̂www(0, 0) 6= 0, since f̂3(z, w)= z.

Since λ(z, w)= det
(

f̂w, f̂z, ν̂
)

and the singular curve γ is given by λ(z, w)= 0,
the singular direction is given by

ξ(z, w)=
(
λw(z, w),−λz(z, w)

)
on γ .

On the other hand, the null direction η is given by

η(z, w)=
∂

∂w
on γ .
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Since (0, 0) is of type S, we have

(2–8) 0 6=
d

dw

∣∣∣∣
w=0

det
(
ξ(z, w), η(z, w)

)
= λww(0, 0).

By the definition of λ, we have

λw = det
(

f̂ww, f̂z, ν̂
)
+ det

(
f̂w, f̂zw, ν̂

)
+ det

(
f̂w, f̂z, ν̂w

)
.

Here, since f̂w× f̂z is proportional to ν̂, we have

det
(

f̂w, f̂z, ν̂w

)
=
〈
f̂w× f̂z, ν̂w

〉
= 0.

Thus, we have

λw = det
(

f̂ww, f̂z, ν̂
)
+ det

(
f̂w, f̂zw, ν̂

)
.

Then we get

λww = det
(

f̂www, f̂z, ν̂
)
+ det

(
f̂ww, f̂z, ν̂w

)
+ 2 det

(
f̂ww, f̂wz, ν̂

)
+ det

(
f̂w, f̂wwz, ν̂

)
+ det

(
f̂w, f̂wz, ν̂w

)
.

Using f̂w(0, 0)= f̂ww(0, 0)= 0 and (2–8), we have

0 6= λww(0, 0)= det
(

f̂www(0, 0), f̂z(0, 0), ν̂(0, 0)
)
,

which proves f̂www(0, 0) 6= 0. �

Izumiya and Takeuchi [2003] gave criteria for the singularities of a noncylindrical
flat ruled front in the Euclidean 3-space R3 to be cuspidal edges and swallowtails.
One can prove those criteria by directly applying our criteria.

3. Local properties of flat fronts in H3

In this section, we give a proof of Theorem 1.1 in the introduction, and show that,
generically, singular points of flat fronts are cuspidal edges or swallowtails.

Preliminaries. We denote by L4 the Minkowski 4-space with the inner product
〈 , 〉 of signature (−,+,+,+). The hyperbolic 3-space H 3 is considered as the
upper half component of the two sheet hyperboloid in L4 with the metric induced
by 〈 , 〉. Identifying L4 with Herm(2), the set of 2× 2-hermitian matrices, via

L4
3 (x0, x1, x2, x3)↔

(
x0+ x3 x1+

√
−1x2

x1−
√
−1x2 x0− x3

)
∈ Herm(2),
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one has 〈X, X〉 = − det X for X ∈ Herm(2), and H 3 is represented as

H 3
= {x = (x0, x1, x2, x3) ∈ L4

; 〈x, x〉 = −1, x0 > 0}

= {X ∈ Herm(2) ; det X = 1, trace X > 0}

= {aa∗ ; a ∈ SL(2, C)} = SL(2, C)/ SU(2).

The tangent space of H 3 at p ∈ H 3 is the set of vectors in L4 perpendicular to p:

Tp H 3
= {Y ∈ L4

; 〈p, Y 〉 = 0}.

We define a bilinear, skew-symmetric product × as

(3–1) X × Y :=

√
−1
2

(
X p−1Y − Y p−1 X

)
for X, Y ∈ Tp H 3,

where X , Y and p are considered as matrices in Herm(2), and the products of the
right-hand side are matrix multiplications. It is easy to show that X×Y is a vector
in Tp H 3 and perpendicular to both X and Y . We call “×” the cross product of H 3.

Let M2 be an oriented simply-connected Riemannian 2-manifold, and let

f : M2
→ H 3

= SL(2, C)/ SU(2)

be a front whose Legendrian lift is

L f : M2
→ T ∗1 H 3

= SL(2, C)/ U(1).

Identifying T ∗1 H 3 with T1 H 3, we can write L f = ( f, ν), where ν(p) is a unit vector
in Tp H 3 such that 〈d f (p), ν(p)〉 = 0 for each p ∈ M2. We call ν the unit vector
field of the front f .

Suppose that f is flat, then there is a (unique) complex structure on M2 and a
holomorphic Legendrian immersion

(3–2) E f : M2
→ SL(2, C)

such that f and L f are projections of E f , where being a holomorphic Legendrian
map means that E−1

f d E f is off-diagonal. In particular, f = E f E∗f , with H 3 con-
sidered to be as in (1–2); see [Gálvez et al. 2000; Kokubu et al. 2003; 2004] for
details. If we set

(3–3) E−1
f d E f =

(
0 θ

ω 0

)
,

the first and the second fundamental forms ds2 and dh2 are given by

(3–4)
ds2
= ωθ + ω̄θ̄ + (|ω|2+ |θ |2),

dh2
= |θ |2− |ω|2.
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We call ω and θ the canonical forms of the front f . The holomorphic 2-differential

(3–5) Q := ωθ ,

which appears in the (2, 0)-part of ds2, is called the Hopf differential of f . By
definition, the umbilic points of the front f coincide with the zeroes of Q. We
remark that the (1, 1)-part of the first fundamental form

(3–6) ds2
1,1 := |ω|

2
+ |θ |2

is positive definite on M2.
Conversely, the following assertion holds (see [Kokubu et al. 2004] for the front

case and [Gálvez et al. 2000] for the regular case):

Fact 3.1. Let ω and θ be holomorphic 1-forms on a simply-connected Riemann
surface M2 such that |ω|2 + |θ |2 is positive definite. Then the solution of the
ordinary differential equation

E−1d E =
(

0 θ

ω 0

)
, E(z0)=

(
1 0
0 1

)
gives a holomorphic Legendrian immersion of M2 into SL(2, C), where z0 ∈ M2 is
a base point, and its projection into H 3 gives a flat front. Conversely, any flat front
is locally expressed in this manner.

Remark 3.2. If we identify H 3 with the upper-half component of the hyperboloid
in Minkowski 4-space L4, the parallel surface of f is written as

ft = (cosh t) f + (sinh t)ν : M2
→ H 3

⊂ L4 ,

where t is the signed distance from f and ν is the unit normal vector of f in H 3.
As pointed out in [Gálvez et al. 2000] and [Kokubu et al. 2004],

(3–7) E ft = E f

(
et/2 0
0 e−t/2

)
.

Then the canonical forms ωt and θt of ft are written as

(3–8) ωt = etω, θt = e−tθ.

Proof of Theorem 1.1. Let f :M2
→ H 3 be a flat front. Then, on a neighborhood

of p, we can take a holomorphic Legendrian immersion E f as in (3–2). Since
ds2

1,1 = |ω|
2
+|θ |2 is positive definite, at least one of ω(p) or θ(p) is nonzero. So,

by (3–2) and the fact that f = E f E∗f , we have

f −1d f = (E∗f )
−1
((

0 θ

ω 0

)
+

(
0 ω̄

θ̄ 0

))
E∗f .
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Thus, if we write ω = ω̂ dz and θ = θ̂ dz in a complex coordinate z, we have

f −1 fz = (E∗f )
−1
(

0 θ̂

ω̂ 0

)
E∗f and f −1 f z̄ = (E∗f )

−1
(

0 ¯̂ω
¯̂
θ 0

)
E∗f ,

and then

( f −1 fz)× ( f −1 f z̄)=
(
|θ̂ |2− |ω̂|2

) (1 0
0 −1

)
,

where × is the cross product as in (3–1). Thus, the singular set is the set of zeroes
of the function

λ= |θ̂ |2− |ω̂|2.

Then p is a singular point if and only if

(3–9) |ω̂(p)| = |θ̂ (p)|.

Hence (1) is proven. Since f is a front, ds2
1,1 as in (3–6) is positive definite. Hence

|ω̂(p)| = |θ̂ (p)| 6= 0 on a singular point p.
Moreover, at a singular point p, we have

dλ= d
(
θ̂
¯̂
θ − ω̂ ¯̂ω

)
=
(
θ̂ ′
¯̂
θ − ω̂′ ¯̂ω

)
dz+

(
θ̂
¯̂
θ ′− ω̂ ¯̂ω′

)
dz̄

=

(
θ̂ ′

θ̂
¯̂
θ

θ̂
− ω̂′ ¯̂ω

)
dz+

(
θ̂ ′

θ̂
¯̂
θ

θ̂
− ω̂′ ¯̂ω

)
dz̄

=

(
θ̂ ′

ω̂ ¯̂ω

θ̂
− ω̂′ ¯̂ω

)
dz+

(
θ̂ ′

ω̂ ¯̂ω

θ̂
− ω̂′ ¯̂ω

)
dz̄ (by (3–9))

=

¯̂ω

θ̂

(
θ̂ ′ω̂− ω̂′θ̂

)
dz+

ω̂

¯̂
θ

(
θ̂ ′ω̂− ω̂′θ̂

)
dz̄.

Hence a singular point p is nondegenerate if and only if

(3–10) θ̂ ′ω̂− ω̂′θ̂ 6= 0

at p.
Let p be a nondegenerate singular point, that is, (3–9) and (3–10) hold at p. Let

γ (t) be a singular curve such that γ (0)= p. Since |θ̂ |2− |ω̂|2 = 0 on γ (t),

0=
(
θ̂ ′
¯̂
θ − ω̂′ ¯̂ω

)
γ̇ +

(
θ̂ ′
¯̂
θ − ω̂′ ¯̂ω

)
˙̄γ

= |θ̂ |2
(

θ̂ ′

θ̂
−

ω̂′

ω̂

)
γ̇ + |θ̂ |2

(
θ̂ ′

θ̂
−

ω̂′

ω̂

)
˙̄γ = 2|θ̂ |2

〈(
θ̂ ′

θ̂
−

ω̂′

ω̂

)
, γ̇

〉
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holds on γ (t), because of (3–9), where 〈 , 〉 is the Hermitian inner product on C.
Here we identify Tp M2 with R2 and C via the correspondence

ζ = a+
√
−1b ∈ C ↔ (a, b) ∈ R2

↔ a
∂

∂u
+ b

∂

∂v
= ζ

∂

∂z
+ ζ̄

∂

∂ z̄
,

where z = u +
√
−1 v. Hence

√
−1
(
θ̂ ′/θ̂ − ω̂′/ω̂

)
gives the singular direction.

Thus, by a suitable choice of the parameter t , the singular curve γ (t) can be
parametrized as

(3–11) γ̇ (t)=
√
−1
(

θ̂ ′

θ̂
−

ω̂′

ω̂

) ∣∣∣∣
z=γ (t)

.

The first fundamental form ds2 is written as

ds2
=
(
ω̂ dz+ θ̂ dz̄

)(
θ̂ dz+ ω̂ dz̄

)
on the curve γ (t). Now we set ρ= θ̂/ω̂. Since ρ(p) 6=0, there exists a holomorphic
function g defined on a neighborhood of p such that g2

= ρ. Since |g| = 1 on the
singular curve γ (t), we have

ω̂

(√
−1

gω̂

)
+
¯̂
θ

(√
−1

gω̂

)
=
√
−1
(1

g
− ḡ

)
= 0.

Thus the null direction is

η(t)=

√
−1

gω̂
=

√
−1√
ω̂θ̂

.

So we have

(3–12) det
(
γ̇ , η

)
= Im γ̇ η = Im

((
θ̂ ′

θ̂
−

ω̂′

ω̂

)
1√
ω̂θ̂

)
.

Here, by Proposition 1.3, p is diffeomorphic to a cuspidal edge if det
(
γ̇ , η

)
6= 0 at

t = 0. Hence, we have (2).
Next we prove (3). Using (3–11) and (3–12), we can compute that

d
dt

det(γ̇ , η)= Re

(
s(θ̂)− s(ω̂)√

ω̂θ̂
|ω̂θ̂ |

(
θ̂ ′/θ̂ − ω̂′/ω̂√

ω̂θ̂

))
.

Hence, if
(
θ̂ ′/θ̂ − ω̂′/ω̂

)/√
ω̂θ̂ ∈ R at p, then

d
dt

det(γ̇ , η)

∣∣∣∣
t=0
=

(
|ω̂θ̂ |

θ̂ ′/θ̂ − ω̂′/ω̂√
ω̂θ̂

Re
s(θ̂)− s(ω̂)√

ω̂θ̂

)∣∣∣∣∣
p

.
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This proves (3), because of Proposition 1.3. �

Remark 3.3. We set the two hyperbolic Gauss maps to be

G =
A
C

, G∗ =
B
D

, where E f =

(
A B
C D

)
.

As shown in [Kokubu et al. 2003], we have the following expression

(3–13) E f =

(
G/∆ ∆G∗/(G−G∗)
1/∆ ∆/(G−G∗)

)
, ∆ := c exp

(∫ z

z0

dG
G−G∗

)
,

where c = e−t/2
∈ R determines which member of the parallel family ft of f we

have. In this (G, G∗)-construction of flat fronts, it is convenient to rewrite the
conditions in Theorem 1.1 in terms of (G, G∗). We have the following identities,
which will be useful for an application of Theorem 1.1 (see [Kokubu et al. 2004]):

Q := ωθ =−
dG dG∗

(G−G∗)2 , ω =−∆−2 dG, θ =
∆2dG∗

(G−G∗)2 ,(3–14)

ω̂′

ω̂
=

G ′′

G ′
− 2

G ′

G−G∗
,

θ̂ ′

θ̂
=

G ′′
∗

G ′
∗

− 2
G ′
∗

G∗−G
,(3–15)

s(ω̂)= 2Q̂+{G, z}, s(θ̂)= 2Q̂+{G∗, z},(3–16)

where ′= d/dz, Q= Q̂ dz2, s( · ) is as in (1–3) and {G, z} denotes the Schwarzian
derivative of G with respect to z:

(3–17) {G, z} =
(

G ′′

G ′

)′
−

1
2

(
G ′′

G ′

)2

.

Generic singularities of flat fronts. As an application of Theorem 1.1, we shall
now show that generic singularities of flat fronts are cuspidal edges or swallow-
tails. Let U be a simply-connected domain in C, and O(U ) the set of holomorphic
functions on U . Then, for each h ∈ O(U ), we can construct a flat front

fh :U → H 3

which is represented by a pair of holomorphic 1-forms (ω, θ)= (dz, eh dz).
Conversely, if p is not an umbilic point (i.e. Q(p)=ω(p)θ(p) 6= 0), both ω(p)

and θ(p) are not equal to zero, and we can choose a complex coordinate such that
ω= dz and θ = eh dz. Thus, any flat front is locally congruent to some fh , except
in neighborhoods of umbilic points. We remark that an umbilic point cannot be a
singular point, since θ/ω takes the value 0 or ∞ at umbilic points. By Theorem
1.1, we have:
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(1) The zeroes of Re h correspond to singular sets. Moreover, a singular point
p ∈U is nondegenerate if and only if h′(p) 6= 0.

(2) A singular point p is a cuspidal edge if and only if it is nondegenerate and
e−h(p)/2h′(p) 6∈ R.

(3) A singular point p is a swallowtail if and only if it is nondegenerate and we
have

e−h(p)/2h′(p) ∈ R and Re
(
e−h(p)(h′′(p)− 1

2 h′(p)2)
)
6= 0.

We let J k
H (U ) be the space of k-jets of holomorphic functions on U . Then J k

H (U )

is canonically identified with the product space U ×Ck+1:

J k
H (U ) 3 j kh←→ (p, h(p), h′(p), h′′(p), . . . , h(k)(p)) ∈U ×Ck+1 .

In particular, J k
H (U ) can be considered as a C∞-manifold of dimension 2(k + 2)

as well as a complex manifold of dimension k+ 2. For a compact set K of U and
an open subset O in J k

H (U ), we set

[K , O]k := {h ∈ O(U ) ; j kh(K )⊂ O}.

Let Ok be the topology of O(U ) generated by such [K , O]k , which is called the
compact open Ck-topology. If π : J k+1

H (U )→ J k
H (U ) is the canonical projection,

it can be easily seen that π is a continuous map and [K , π−1(O)]k+1 = [K , O]k .
In particular, Ok ⊂Ok+1, and

O :=

∞⋃
k=0

Ok

gives a topology on O(U ), called the compact open C∞-topology. A holomor-
phic function h ∈ O(U ) is an interior point of a given subset V(⊂ O(U )) (with
respect to the compact open C∞-topology) if and only if there exist a nonnegative
integer l and a finite number of compact sets C1, . . . , Cs in U and open subsets
O1, . . . , Os ⊂ J l

H (U ) such that

h ∈
s⋂

r=1

[Cr , Or ] l ⊂ V .

Now we give a topology on the family of flat fronts { fh}h∈O(U ) induced from the
compact open C∞-topology on O(U ). We shall prove:

Theorem 3.4. Let K be an arbitrary compact set of U and S(K ) the subset of
{ fh}h∈O(U ) which consists of fh whose singular points on K are locally diffeomor-
phic to cuspidal edges or swallowtails. Then S(K ) is an open and dense subset of
{ fh}h∈O(U ).



SINGULARITIES OF FLAT FRONTS IN HYPERBOLIC SPACE 325

Remark 3.5. Generic properties of C∞-maps are usually described in terms of
the Whitney C∞-topology (see [Golubitsky and Guillemin 1973] for definition),
because it is suitable for the technique of multiplying by a cut-off function. How-
ever, generic properties of analytic functions are different in the Whitney C∞-
topology. In the theorem above, we use the compact open C∞-topology. These
two topologies are the same when the source space is compact, but they differ
on O(U ). In fact, when the source space is noncompact, the compact open C∞-
topology satisfies the second countability axiom, but the Whitney C∞-topology on
O(U ) does not satisfy even the first countability axiom and cannot be treated by
sequence convergence. We do not know if the set S(U ) (which consists of fh whose
singular points on U are locally diffeomorphic to cuspidal edges or swallowtails)
is an open dense subset with respect to the Whitney C∞-topology.

Proof of Theorem 3.4. We set

A1 :=
{

j2h(p) ∈ J 2
H (U ) | Re h(p)= 0 and h′(p)= 0

}
,

A2 :=

{
j2h(p) ∈ J 2

H (U )

∣∣∣∣∣ Re h(p)= 0, Im
(
e−h(p)/2h′(p)

)
= 0,

Re
(
e−h(p)(h′′(p)− 1

2 h′(p)2)
)
= 0

}
.

Then A1 and A2 are both closed subsets of J 2
H (U ). The set

Ŝ(K )= {h ∈ O(U ) ; j2h(K )⊂ J 2
H (U ) \ (A1 ∪ A2)} = [K , J 2

H (U ) \ (A1 ∪ A2)]2

corresponds to S(K ) under the identification h ↔ fh , which is by definition an
open subset in O(U ).

So it is sufficient to show that Ŝ(K ) is a dense subset. Obviously, A1 is a real
closed submanifold of J 2

H (U ) with codimension three. We remark that J 2
H (U )\A1

is an open submanifold of J 2
H (U ).

Lemma 3.6. A2 \ A1 is a submanifold of J 2
H (U ) with codimension three.

Proof. We define a C∞-map ζ = (ζ 1, ζ 2, ζ 3) : J 2
H (U ) \ A1→ R3 by

ζ( j2h(p))=
(
Re h(p), Im

(
e−h(p)/2h′(p)

)
, Re

(
e−h(p)(h′′(p)− 1

2 h′(p)2)
))

=

(
u, e−u/2(v1 cos(v/2) − u1 sin(v/2) ),

1
2 e−u ((−u2

1+ v2
1 + 2u2) cos v+ 2(−u1v1+ v2) sin v

))
,

where we set

h(z)= u(z)+
√
−1 v(z), h′(z)= u1(z)+

√
−1 v1(z), h′′(z)= u2(z)+

√
−1 v2(z).

Then (z, u, v, u1, v1, u2, v2) gives the canonical coordinate system on J 2
H (U ). By

a direct calculation, we have ζ−1(0, 0, 0) = A2 \ A1. We show that (0, 0, 0) is a
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regular value of ζ . To determine the rank of the Jacobian matrix of ζ at any point
in ζ−1(0, 0, 0), we calculate the derivative of ζ with respect to u, u1 and v1:

(ζ 1
u , ζ 2

u , ζ 3
u )=

(
1, 1

2 e−u/2(−v1 cos(v/2) + u1 sin(v/2) ),

−
1
2 e−u ((−u2

1+ v2
1 + 2u2) cos v+ 2(−u1v1+ v2) sin v

))
,

(ζ 1
u1

, ζ 2
u1

, ζ 3
u1

)=
(
0,−e−u/2 sin(v/2) ,−e−u (u1 cos v+ v1 sin v)

)
,

(ζ 1
v1

, ζ 2
v1

, ζ 3
v1

)=
(
0, e−u/2 cos(v/2) , e−u (v1 cos v− u1 sin v)

)
.

Then we have

∂(ζ 1, ζ 2, ζ 3)

∂(u, u1, v1)
= e−3u/2(u1 cos(v/2) + v1 sin(v/2) ) .

We now suppose ζ(z, u, v, u1, v1, u2, v2)= 0. Then

u = 0, e−u/2(v1 cos(v/2) − u1 sin(v/2) )= 0

hold and thus

(3–18) v1 cos
v

2
− u1 sin

v

2
= 0.

Then (3–18) and ∂(ζ 1, ζ 2, ζ 3)/∂(u, u1, v1)=0 imply that u=u1=v1=0, namely,
that (z, u, v, u1, v1, u2, v2) belongs to A1. Hence dζ is of rank 3 at ζ−1(0, 0, 0)

in J 2
H (U ) \ A1. By the implicit function theorem, A2 \ A1 is a submanifold of

codimension 3. �

We continue with the proof of Theorem 3.4. We next show that Ŝ(K ) is a dense
subset. Fix a function h ∈ O(U ). Let B be the set of polynomials of degree at most
2 in z and define a map

G :U × B 3 (z, ϕ) 7→ j2(h+ϕ)(z) ∈ J 2
H (U ).

Obviously the map G is a diffeomorphism. Therefore G−1(A1) and G−1(A2 \ A1)

are submanifolds of dimension 5 diffeomorphic to A1 and A2 \ A1 respectively.
Let

π :U × B→ B

be the canonical projection. Since B is a C∞-manifold of dimension 6, Sard’s
theorem yields that π(G−1(A1)) and π(G−1(A2 \ A1)) are measure zero sets in B.
Thus

π(G−1(A1 ∪ A2))= π(G−1(A1 ∪ (A2 \ A1))
)
= π(G−1(A1))∪π(G−1(A2 \ A1))

is also a measure zero set. Thus there is a sequence {ϕn} in B such that ϕn converges
to the zero polynomial and ϕn 6∈ π(G−1(A1 ∪ A2)). We set hn := h + ϕn . Then
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( j2hn)(U ) 6∈ A1 ∪ A2, that is,

hn ∈ [U, J 2
H (U ) \ (A1 ∪ A2)]2 ⊂ Ŝ(K ).

Let d be a distance function on J l
H (U ) which is compatible with respect to its

topology. Then a sequence {gn} in C0
(
U, J l

H (U )
)

converges to g uniformly on a
given compact subset K of U if for any ε > 0, there exists a positive integer n0

such that

sup
z∈K

d
(
gn(z), g(z)

)
< ε (n ≥ n0).

We remark that

j k(O(U )
)
⊂ C0(U, J l

H (U )
)
.

Since the difference hn−h is only a polynomial ϕn of degree at most 2 converging
to the zero polynomial, one can easily check that for each nonnegative integer l,
j lhn converges to j lh uniformly on any compact subset of U .

Let V be an open neighborhood of h in O(U ). Then by the definition of the
compact open C∞-topology, there exist a nonnegative integer l, a finite number of
compact sets C1, . . . , Cs of U , and open subsets O1, . . . , Os of J l

H (U ) such that

h ∈
s⋂

r=1

[Cr , Or ] l ⊂ V.

We set

1r = d
(

j lh(Cr ), J l
H (U ) \ Or

)
> 0 (r = 1, 2, 3, . . . , s).

Note that

C := C1 ∪C2 ∪ · · · ∪Cs

is a compact set. Since j lhn converges to j lh uniformly on any compact subset of
U , there exists an integer n0 > 0 such that

sup
z∈C

d
(
( j lh)(z), ( j lhn)(z)

)
< 1

2 min(11, . . . ,1s) (n ≥ n0).

On the other hand,

d
(
( j lh)(z), J l

H (U ) \ Or
)
≤ d

(
( j lh)(z), ( j lhn)(z)

)
+ d

(
j l(hn)(z), J l

H (U ) \ Or
)
,

then

d
(

j l(hn)(z), J l
H (U ) \ Or

)
≥ d

(
j lh(z), J l

H (U ) \ Or
)
− d

(
( j lh)(z), ( j lhn)(z)

)
≥1r −

1
2 min(11, . . . ,1s) > 0 (z ∈ Cr ).
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This implies that j lhn(z)∈Or if z ∈Cr . Thus hn ∈ [Cr , Or ] l for all r =1, 2, . . . , s,
and

hn ∈

s⋂
r=1

[Cr , Or ] l ⊂ V (n ≥ n0) .

Since hn ∈ Ŝ(K ), this implies that Ŝ(K ) is a dense subset. �

4. Global properties of singular points

In this section, we shall give a proof of Theorem 1.2.

Preliminaries. Let f :M2
→ H 3 be a flat front defined on a Riemann surface M2.

In this section, we do not necessarily assume that M2 is simply-connected. Thus
the holomorphic lift E f of f is defined only on the universal cover M̃2 of M2:

E f : M̃2
→ SL(2, C),

and then the canonical forms ω and θ as in (3–3) are holomorphic 1-forms defined
on M̃2. Note that the first and second fundamental forms as in (3–4), the Hopf
differential as in (3–5), and the (1, 1)-part ds2

1,1 of the first fundamental form are
all well-defined on M2. Moreover ds2

1,1 is positive definite on M2. We have that

ω and θ have no common zeroes on M̃2, and(4–1)

|ω|2 and |θ |2 are well-defined pseudometrics on M2.(4–2)

From now on, we assume f is complete, that is, there exist a compact set C ⊂ M2

and a symmetric 2-tensor T such that T is identically zero outside C and ds2
+ T

is a complete Riemannian metric; see [Kokubu et al. 2004]. We remark that f is
complete if and only if (see [Kokubu et al. 2005])

(1) the (1, 1)-part ds2
1,1 of the first fundamental form is complete (in this case, we

say that f is weakly complete),

(2) ds2
1,1 has finite total absolute curvature, and

(3) the singular set is a compact set of M2.

In the proof of Theorem 1.2, we use only properties (1) and (2); that is, the con-
clusion of Theorem 1.2 holds for weakly complete flat fronts such that ds2

1,1 has
finite absolute total curvature.

By completeness, we know that there exist a compact Riemann surface M2 and
a finite number of points {p1, . . . , pN } in M2 such that

M2 ∼= M2
\ {p1, . . . , pN } (biholomorphism);

see [Kokubu et al. 2004, Lemma 3.3], and also [Gálvez et al. 2000]. We call the
points {p j } the ends of f . Moreover, as shown in [Gálvez et al. 2000, Lemma 2],



SINGULARITIES OF FLAT FRONTS IN HYPERBOLIC SPACE 329

the Hopf differential Q can be extended meromorphically on M2, and at each end
p j there exists a complex coordinate z around p j such that z(p j ) = 0 and the
canonical forms are written as

(4–3) ω = ω̂(z) dz = zµω̂0(z) dz, θ = θ̂ (z) dz = zµ∗ θ̂0(z) dz (µ, µ∗ ∈ R),

where ω̂0 and θ̂0 are holomorphic functions in z which do not vanish at the origin.
Since µ and µ∗ do not depend on the choice of complex coordinates, we denote

ordp j ω := µ, ordp j θ := µ∗.

These are the orders of the pseudometrics |ω|2 and |θ |2, respectively. By (3–5), we
have

µ+µ∗ = ordp j ω+ ordp j θ = ordp j Q ∈ Z,

where, by convention, ord0 Q = k if Q = zk dz2. Since f is complete, ds2
1,1 is a

complete Riemannian metric on M2 [Kokubu et al. 2004, Corollary 3.4]. Thus,

(4–4) min{ordp j ω, ordp j θ} ≤ −1.

Definition 4.1. An end p j is called cylindrical if

ordp j ω = ordp j θ.

Let G and G∗ be the hyperbolic Gauss maps of f . Then G and G∗ are both
meromorphic functions on M2, and G(p) 6= G∗(p) for all p ∈ M2.

Fact 4.2 [Gálvez et al. 2000, Theorem 4]. At an end p j , the following properties
are equivalent:

(1) G is meromorphic at p j .

(2) G∗ is meromorphic at p j .

(3) ordp j Q ≥−2, that is, Q has at most a pole of order 2 at p j .

Definition 4.3. An end p j is called regular if the three properties in Fact 4.2 hold.
Otherwise, p j is called irregular.

Remark 4.4. The ends of hyperbolic cylinders are regular and cylindrical. As
a special case of [Gálvez et al. 2000, Theorem 6], a regular cylindrical end is
asymptotic to a finite cover of a hyperbolic cylinder.

An umbilic point q ∈ M2 is a zero of the Hopf differential Q. When Q is
identically zero, that is, f is totally umbilic, f represents the horosphere. In this
section, we assume that f is not totally umbilic. Since Q is meromorphic on the
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compact Riemann surface M2, the number of umbilic points is finite. As ds2
1,1 is

positive definite at q, (3–5) implies that

(4–5)
either ordq ω = ordq Q ∈ Z+ and ordq θ = 0

or ordq θ = ordq Q ∈ Z+ and ordq ω = 0

at each umbilic point q .
Using a local complex coordinate z, we write

(4–6) ω = ω̂ dz, θ = θ̂ dz, Q = Q̂ dz2.

Global descriptions of the criteria for singular points. Let M2 be a compact Rie-
mann surface and

f : M2
= M2

\ {p1, . . . , pN } → H 3

a complete flat front which is not totally umbilic. Using the canonical forms ω and
θ in (3–3), we define

ρ :=
θ

ω
.

Though ρ might be defined only on the universal cover of M2, (4–2) implies that
|ρ| is well-defined on M2. Moreover, by (4–3), |ρ| can be extended on M2 as a
continuous map

|ρ| : M2
→ [0,+∞].

As seen in Section 3, the set of singular points of the flat front f is given by

6( f ) := {p ∈ M2
; |ρ(p)| = 1}.

Using a local expression as in (4–6), we define

(4–7) ξ :=

(
θ̂ ′

θ̂
−

ω̂′

ω̂

)
Q̂ dz3, ζc :=

(
θ̂ ′

θ̂
−

ω̂′

ω̂

)2
1
Q̂

, and ζs :=
s(θ̂)−s(ω̂)

Q̂
,

where Q = Q̂ dz2, ′ = d/dz and s( · ) is as in (1–3).

Lemma 4.5. The quantities in (4–7) are independent of the choice of complex
coordinates. In particular, ξ is a meromorphic 3-differential on M2, and both ζc

and ζs are meromorphic functions on M2.

Proof. Since |ρ| is well-defined on M2,

d(ρρ̄)= |ρ|2
(

dρ

ρ
+

dρ̄

ρ̄

)
is well-defined on M2, and then so is its (1, 0)-part. Hence

dρ

ρ
=

(
θ̂ ′

θ̂
−

ω̂′

ω̂

)
dz
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is a meromorphic 1-form on M2. Also, by (4–3) and (4–5), dρ/ρ is a meromorphic
1-form on M2. Since Q is a meromorphic 2-differential on M2, ξ = (dρ/ρ) Q
is a meromorphic 3-differential. As the symmetric product (dρ/ρ)(dρ/ρ) is a
meromorphic 2-differential,

ζc =
(dρ/ρ)(dρ/ρ)

Q

is a meromorphic function on M2.
Though the Schwarzian derivative as in (3–17) depends on the choice of com-

plex coordinates, the difference of two Schwarzian derivatives is considered as a
meromorphic 2-differential; that is, if we write S(G) := {G, z} dz2 in the complex
coordinate z,

S(G∗)− S(G)=
(
{G∗, z}− {G, z}

)
dz2

is independent of the choice of a coordinate z, as a meromorphic 2-differential.
Here, by (3–16), we have

(4–8) ζs =
{G∗, z}− {G, z}

Q̂
=

S(G∗)− S(G)

Q
.

This shows that ζs is a well-defined meromorphic function on M2. Moreover, by
(4–3) and the definition (4–7), ζs is meromorphic at each end. �

Using the invariants of (4–7), we define

6( f ) := {p ∈ M2
; |ρ(p)| = 1},

Z0( f ) := {p ∈ M2
; ξ(p)= 0},

Zc( f ) := {p ∈ M2
; Im

√
ζc(p)= 0},

Zs( f ) := {p ∈ M2
; Re ζs(p)= 0}.

Though
√

ζc is multi-valued on M2, the condition Im
√

ζc = 0 is unambiguous.
By Theorem 1.1,

• p ∈ M2 is a singular point if and only if p ∈6( f );

• p ∈6( f ) is a nondegenerate singular point if and only if p ∈ Z0( f )c;

• p ∈6( f ) is a cuspidal edge if and only if p ∈ Z0( f )c
∩ Zc( f )c;

• p ∈6( f ) is a swallowtail if and only if p ∈ Z0( f )c
∩ Zc( f )∩ Zs( f )c;

• a singular point p ∈ 6( f ) is neither a cuspidal edge nor a swallowtail if and
only if

p ∈ Z0( f )∪
(
Zc( f )∩ Zs( f )

)
.
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Here a superscript c denotes the complementary set, whereas the subscript c and
s in Zc( f ) and Zs( f ) were chosen because these symbols describe criteria for a
singular point to be a cuspidal edge or a swallowtail, respectively.

The sets Z0( f ), Zc( f ) and Zs( f ) are the same for all the parallel fronts of f ;
that is, if { ft }t∈R is the family of parallel fronts of f , we have:

Lemma 4.6.

6( ft)= {p ∈ M2
; |ρ(p)| = e2t

},

Z0( ft)= Z0( f ), Zc( ft)= Zc( f ), Zs( ft)= Zs( f ).

Proof. By (3–8), we have the first assertion. Though the remaining parts can be
proved by direct calculations, we give an alternative proof: Let G and G∗ be the
hyperbolic Gauss maps of f . Then by (3–15), we have

ξ =

(
G ′′
∗

G ′
∗

−
G ′′

G ′
+ 2

G ′+G ′
∗

G−G∗

)
Q̂ dz3,

ζc =

(
G ′′
∗

G ′
∗

−
G ′′

G ′
+ 2

G ′+G ′
∗

G−G∗

)2 1

Q̂
,

and ζs is written as in (4–8). Since the hyperbolic Gauss maps and the Hopf differ-
ential are independent of the choice of parallel front ft , we have the conclusion. �

By a direct calculation using the formulas in the proof of Lemma 4.6 and (3–14),
we have

(4–9) ζs =

(√
ζc
)′√

Q̂

with ′ = d/dz. Using this, we can prove:

Proposition 4.7. Let f be a complete flat front which is not totally umbilic. Then
the function ζc is constant if and only if f is a covering of a front of revolution.

Proof. If ζc = 0, we have dρ = 0 on M2. Hence ρ is constant. In this case, one
can conclude that f is a covering of a hyperbolic cylinder, which is a surface of
revolution.

On the other hand, assume ζc is a nonzero constant. By (4–3), θ̂ ′/θ̂ − ω̂′/ω̂ can
only have simple poles. Then by the definition of ζc in (4–7), the order of Q is at
least −2. Thus, by Fact 4.2, all ends must be regular.

By (4–9), ζs = 0 holds. Then by (4–8), we have {G, z} = {G∗, z} with respect
to any complex coordinate z. Then

(4–10) G∗ = b ? G =
b11G+ b12

b21G+ b22
, b =

(
b11 b12

b21 b22

)
∈ SL(2, C),
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where ? denotes the Möbius transformation. Here, the group SL(2, C) acts isomet-
rically on H 3 as

(4–11) H 3
3 x 7→ axa∗ ∈ H 3 a ∈ SL(2, C),

where we consider H 3 as in (1–2). Under the isometry (4–11), the hyperbolic
Gauss maps transform as (G, G∗) 7→ (a ? G, a ? G∗). Hence we may assume b in
(4–10) is a Jordan normal form.

When b is diagonal, we have G∗ =µG, where µ is constant. Here, since f is a
flat front, G and G∗ have no common branch points; see [Kokubu et al. 2004]. Thus
G has no branch point, and then we can take z=G as a local coordinate. Hence f
is locally congruent to a front of revolution (see Example 6.2 on page 344). Thus
we have the conclusion. If b is not diagonal, the eigenvalue of b is ±1, which is a
double root. Then we have G∗ = G− 1. Since the ends of f are the points where
G =G∗ ([Kokubu et al. 2004, Lemma 4.10]), the ends are common poles of G and
G∗. In this case, by (3–14) we have Q =−dG dG∗ =−dG2. Then the ordp Q at
a pole p of G is less than or equal to −4, which contradicts the fact that all ends
are regular. �

Proof of Theorem 1.2. Let

(4–12) f : M2
= M2

\ {p1, . . . , pN } → H 3

be a complete flat front which is not totally umbilic, and { ft } its parallel family.
For simplicity, we write

6t :=6( ft), Z0 :=Z0( ft)=Z0( f ), Zc :=Zc( ft)=Zc( f ), Zs :=Zs( ft)=Zs( f ).

A point p ∈ M2 is a singular point of ft that is neither a cuspidal edge nor a
swallowtail if and only if

p ∈6t ∩
(
Z0 ∪ (Zc ∩ Zs)

)
.

Then by Lemma 4.6, ft admits such a singular point if and only if

(4–13)
{
|ρ(p)| ; p ∈ Z0 ∪ (Zc ∩ Zs)

}
3 e2t .

Since ξ in (4–7) is a meromorphic 3-differential on the compact Riemann surface
M2 and Z0 is the set of zeroes of ξ , Z0 is a finite set of points. We now take for
granted the following result, to be proved shortly:

Proposition 4.8. Let f be a complete flat front such that ζc defined in (4–7) is not
constant. Then {|ρ(p)| ; p ∈ Zc ∩ Zs} ⊂ R+ is a finite set.

Assume a complete flat front f is a front of revolution. Such a flat front is a
horosphere, a finite cover of a hyperbolic cylinder, a snowman, or an hourglass (see
Example 6.2). Among these, the horospheres and hyperbolic cylinders do not have
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singular points, and all singularities of the snowman are cuspidal edges. Since we
assumed f is not a cover of an hourglass, we have the conclusion for the case of
fronts of revolution.

Next, we assume f is not a front of revolution. Then by Proposition 4.7, ζc

is nonconstant. Hence by Proposition 4.8, {|ρ(p)| ; p ∈ Zc ∩ Zs} is a finite set.
On the other hand, the parallel front ft admits a singular point which is neither a
cuspidal edge nor a swallowtail if and only if (4–13) holds. Hence we have the
conclusion. �

Lemma 4.9. Let f be a complete flat front as in (4–12) with nonconstant ζc.
Assume Zc ∩ Zs accumulates at a point p ∈ M2. Then

(1) p is a nonumbilic point in M2 or an irregular cylindrical end, and

(2) there exists a neighborhood U of p such that the number of connected com-
ponents of (

U \ {p}
)
∩ (Zc ∩ Zs)

is finite, and each connected component is a level set of |ρ|.

Proof of Proposition 4.8 assuming Lemma 4.9. Suppose

#{|ρ(p)| ; p ∈ Zc ∩ Zs} = +∞.

Then there exists an infinite sequence {zn}⊂ Zc∩Zs such that |ρ(zn)| (n=1, 2, . . . )
are mutually distinct. Since M2 is compact, we can take a subsequence of {zn}

which converges to z∞ ∈ M2. Thus by Lemma 4.9, #{|ρ(zn)|} is finite. This is a
contradiction because the |ρ(zn)| (n = 1, 2, . . . ) are mutually distinct. �

Proof of the Lemma 4.9(1). Let p be an accumulation point of Zc ∩ Zs , and take a
sequence {pn} consisting of mutually distinct points in Zc ∩ Zs such that pn→ p
as n→∞. We show the first assertion of the lemma by way of contradiction: We
assume

• p ∈ M2 is an umbilic point, or

• p ∈ M2 is an end which is not an irregular cylindrical end,

and set

µ= ordp ω, µ∗ = ordp θ and k = ordp Q = µ+µ∗ ∈ Z.

If p is an umbilic point, µ 6= µ∗ holds because of (4–5). If p is an end, µ = µ∗

holds when p is cylindrical. We consider the two cases separately.

Case 1: µ 6= µ∗, that is, p is an umbilic point or a noncylindrical end. If we take
a complex coordinate z around p such that z(p)= 0, we can write

(4–14)
θ̂ ′

θ̂
−

ω̂′

ω̂
=

a
z

(
1+ O(z)

) (
a := µ∗−µ

)
,
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where O(z) denotes a higher-order term. On the other hand, the Hopf differential
Q is written as

Q = zk (q0+ O(z)
)

dz2 (q0 6= 0).

Thus, it follows from (4–7) that

(4–15)
√

ζc = z−(k+2)/2
(

a
√

q0
+ O(z)

)
.

We assume k 6= −2. Then by (4–14), (4–15) and (4–9), we have

ζs = z−k−2
(

a
q0
+ O(z)

)
.

Let zn = z(pn). Then zn tends to the origin as n→∞. Since pn ∈ Zc ∩ Zs , we
have Im

√
ζc(zn)=Re ζs(zn)= 0. Since a ∈R, there exist sequences {εn} and {ε′n}

of real numbers such that

0≡ arg
√

ζc(zn)=−

(
k
2
+ 1

)
arg zn −

1
2

arg q0+ εn (mod π),

π

2
≡ arg ζs(zn) =− (k+ 2) arg zn − arg q0+ ε′n (mod π),

and εn, ε
′
n→ 0 as n→∞. But this implies

−
π

2
≡ 2 arg

√
ζc(zn)− arg ζs(zn)≡ 2εn − ε′n (mod π),

giving a contradiction. Then the case k 6= −2 is impossible.
Assume k =−2. In this case, (4–15) is written as

√
ζc = aq−1/2

0 + O(z). Then
by the assumption that ζc is nonconstant, there exists a positive integer l such that

(4–16)
√

ζc =
a
√

q0
+ b zl

+ O(zl+1) (b 6= 0).

In this case, by (4–9), we have

ζs = zl
(

l b
√

q0
+ O(z)

)
.

Here Im
√

ζc(zn)=0 holds on a sequence {zn= z(pn)} such that zn→0 as n→∞,
and a ∈ R. Hence (4–16) implies that

√
q0 ∈ R. Thus, we have

0≡ arg
√

ζc(zn)= arg
(
b zl

n + O(zl+1)
)
= l arg zn + arg b+ εn (mod π),

π

2
≡ arg ζs(zn) = l arg zn + arg b+ ε′n, (mod π),

where εn, ε
′
n→ 0 as n→∞. Again, the two displayed equations contradict each

other.
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Case 2: µ = µ∗, that is, p is a cylindrical end. In this case, p is a regular end
because of our assumption. By Fact 4.2 and (4–4), we have µ=µ∗=−1. Taking a
complex coordinate z such that z(p)=0, we can write Q̂= z−2

(
q0+O(z)

)
. Denote

by d ∈ Z+ ∪ {0} the branch order of G at z = 0. (For example, if G = a + zd+1,
the branch order of G at z = 0 is d.) Since µ=−1, (3–16) implies that

q0 =
1
4(d + 1)2 > 0.

Since µ = µ∗ = −1, we have (θ̂ ′/θ̂)− (ω̂′/ω̂) = O(1). Hence
√

ζc(z) = O(z).
Thus, we can write√

ζc = b zl
+ O(zl+1), Q̂ =

1
z2

( 1
4(d + 1)2

+ O(z)
)
,

where l ≥ 1 is an integer and b 6= 0. Thus,

ζs =
l b
√

q0
zl(1+ O(z)

)
=

l b
d + 1

zl(1+ O(z)
)
.

As in Case 1, we set zn = z(pn). Then we have

arg b+ l arg zn + εn ≡ 0, arg b+ l arg zn + ε′n ≡
π

2
(mod π),

where εn, ε
′
n→ 0. This is impossible.

Hence in any case, Zc ∩ Zs does not accumulate at 0. �

Proof of Lemma 4.9(2). We consider two cases.

Case 1: Suppose that Zc ∩ Zs accumulates at a nonumbilic point p ∈ M2, i.e.,
Q(p) 6= 0.

Take a complex coordinate z around p with z(p) = 0. Since Q̂(0) 6= 0, there
exists a holomorphic function ϕ(z) defined on a neighborhood of the origin such
that (

ϕ(z)
)2
= Q̂(z); that is, ϕ(z)=

√
Q̂(z), and ϕ(0) 6= 0.

On the other hand, both θ̂ and ω̂ have neither a zero nor a pole at z = 0, so by
(4–7),

√
ζc is a holomorphic function near z = 0. Since ζc is not a constant, there

exists a positive integer l such that
√

ζc = a+ bzl
+ O(zl+1), where b 6= 0. Then

by the Weierstrass preparation theorem, we can choose a coordinate z such that√
ζc(z)= a+ zl, ϕ(z)=

√
Q̂(z)= ϕ0+ O(z)

(
l ∈ Z+, ϕ0 ∈ C \ {0}

)
.

Moreover, replacing ϕ0z by z, we can set

(4–17)
√

ζc(z)= a+bzl, ϕ(z)= 1+O(z) (l ∈ Z+, b= ϕ−l
0 ∈C\ {0}).
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Here, since Zc accumulates at 0, a in (4–17) must be real, and then

(4–18) Im
√

ζc = Im(b zl).

On the other hand, by (4–9),

(4–19) ζs =
lbzl−1

ϕ(z)
= lbzl−1(1+ O(z)

)
.

We identify a neighborhood of p with a neighborhood of the origin of the z-plane.
Since Zc ∩ Zs accumulates to the origin, we can take a sequence {zn} ⊂ Zc ∩ Zs

such that zn → 0 as n→∞. Then by (4–18) and (4–19), there exists a sequence
{εn} ⊂ R such that εn→ 0 and

arg b+ l arg zn ≡ 0 (mod π),(4–20)

arg b+ (l − 1) arg zn + εn ≡
π

2
(mod π),(4–21)

hold. Subtracting (4–21) from (4–20), we have

(4–22) arg zn − εn ≡
π

2
(mod π).

On the other hand, subtracting (4–20) multiplied by l − 1 from (4–21) multiplied
by l, we have

arg b ≡ l
π

2
− lεn (mod π).

Here, since εn→ 0, we deduce that

arg b ≡ l
π

2
(mod π) and εn = 0.

Substituting these into (4–22), we have arg zn≡π/2 (mod π); that is, zn ∈
√
−1 R.

Since
√

ζc(zn) ∈R for n = 1, 2, . . . , the imaginary part of
√

ζc(z) vanishes identi-
cally on

√
−1 R, namely,

(4–23)
√

ζc(z) ∈ R (if z ∈
√
−1 R).

Similarly, one can prove that

ζs(z) ∈
√
−1 R (if z ∈

√
−1 R).

Thus, on a neighborhood of the origin, Zc∩Zs is the imaginary axis in the z-plane.
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Next, we prove that the imaginary axis is a level set of |ρ|. By (4–17), (4–19)
and (4–23),

π

2
≡ arg ζs(z)= arg

(
lbzl−1 1

ϕ

)
= arg(bzl)− arg zϕ(z)

= arg
√

ζc(z)− arg z− arg ϕ(z)

=− arg z− arg ϕ(z)=−
π

2
− arg ϕ(z) (mod π)

holds on the imaginary axis. Thus

ϕ(z) ∈ R (if z ∈
√
−1 R).

As seen in (3–11) in Section 3, the tangent vector field of a level set of |ρ| is
represented as

√
−1

(
θ̂ ′

θ̂
−

ω̂′

ω̂

)
.

At the same time,√
ζc(z)=

1
ϕ(z)

(
θ̂ ′

θ̂
−

ω̂′

ω̂

)
∈ R and ϕ(z) ∈ R (if z ∈

√
−1 R).

Without loss of generality, dρ 6= 0 holds on U \{0}, where U is a neighborhood of
the origin, because a zero of dρ is isolated in M2. Then the tangent vector of the
level set of |ρ| at a point on the imaginary axis is parallel to the imaginary axis.
Hence the level set passing through a point of the imaginary axis is the imaginary
axis. That is, Zc∩ Zs coincides with the imaginary axis, which is a level set of |ρ|.

Case 2: Suppose now that Zc ∩ Zs accumulates at an irregular cylindrical end
p. Let z be a complex coordinate with z(p) = 0. By irregularity, ordp Q ≤ −3.
Without loss of generality, we may assume ordp Q is an even number. In fact, if
we set z =w2, that is, we take the double cover of a neighborhood of p, the order
of Q at the origin with respect to the coordinate w will be an even number.

Hence, we assume

ordp Q =−2k, ordp ω = ordp θ =−k,

where k ≥ 2 is an integer. The second equality holds because p is a cylindrical
end.

Since Q has even order at the origin,
√

Q̂ is a meromorphic function on a neigh-
borhood of 0. More precisely, we can write

ϕ :=

√
Q̂ =

1
zk

(
ϕ0+ O(z)

)
(ϕ0 ∈ C \ {0}).

Since ordp ω = ordp θ , (4–7) implies that
√

ζc(z)= O(zk), that is, there exists an
integer l (l ≥ k) such that

√
ζc(z) = azl

+ O(zl+1) (a ∈ C \ {0}). Then, by the
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Weierstrass preparation theorem, we can choose a coordinate z such that

(4–24)
√

ζc(z)= zl, ϕ =
1
zk

(
b+ O(z)

)
(b ∈ C \ {0}).

Then, by (4–9), ζs is written as

ζs(z)= lzl+k−1
(1

b
+ O(z)

)
.

Since {zn} ⊂ Zc ∩ Zs is a sequence with zn→ 0, we have

l arg zn ≡ 0 (mod π),(4–25)

− arg b+ (l + k− 1) arg zn + εn ≡
π

2
(mod π),(4–26)

where εn→ 0. Subtracting (4–26) from (4–25), and (4–25) multiplied by l+k−1
from (4–26) multiplied by l, we have

− arg b+ (k− 1) arg zn + εn ≡
π

2
, −l arg b+ lεn ≡ l

π

2
(mod π).

Since εn→ 0, this yields−l arg b≡ lπ/2 (mod π), and then εn= 0 for sufficiently
large n. Thus, we have

(4–27) (k− 1) arg zn ≡
π

2
+ arg b (mod π).

Let

L j :=

{
z ∈U ; arg z ≡

1+ 2 j
2(k− 1)

π +
arg b
k− 1

(mod π)

}
( j = 0, . . . , k− 1).

Then {L j } is a set consisting of a finite number of lines in the z-plane through
the origin, and by (4–27), each zn lies on some L j . Hence there exists a subset
J ⊂{0, 1, 2, . . . , k−1} such that each L j ( j ∈ J ) contains infinitely many elements
of {zn}. We fix j ∈ J . Then we can take a subsequence {zm} of {zn} such that
zm ∈ L j ∩ Zc ∩ Zs and zm→ 0. Since ζc(zm) ∈ R and ζs(zm) ∈

√
−1 R, we have

(4–28)
√

ζc(z) ∈ R, ζs(z) ∈
√
−1 R (if z ∈ L j ).

This shows that, on a neighborhood of the origin, Zc ∩ Zs coincides with the set
of lines

⋃
j∈J L j .

Next, we show that L j ( j ∈ J ) is a level set of |ρ| for each j . By (4–24) and
(4–28),

π

2
≡ arg ζs(z)= arg

√
ζc(z)− arg z− arg ϕ

=−
1+ 2 j

2(k− 1)
π −

arg b
k− 1

− arg ϕ (mod π)
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holds on L j . Hence

arg ϕ ≡
π

2
−

1+ 2 j
2(k− 1)

π −
arg b
k− 1

(mod π) (if z ∈ L j ).

At any point in L j , the argument of the tangent vector of the level set of |ρ| is

arg
√
−1
(

θ̂ ′

θ̂
−

ω̂′

ω̂

)
≡ arg

(√
−1
(√

ζcϕ
))
≡

π

2
− arg ϕ− arg

√
ζc

≡
π

2
− arg ϕ =

1+ 2 j
2(k− 1)

π +
arg b
k− 1

(mod π),

and then, the tangent vector is proportional to the line L j . Hence each L j ( j ∈ J )
is a level set of |ρ|. Thus, we have the conclusion. �

Remark 4.10. Let p ∈ M2 be an accumulation point of Zc ∩ Zs . Then by Lemma
4.9(2), Zc ∩ Zs is a level set of |ρ| in a neighborhood of p; that is, by taking a
suitable parallel front, we may assume that a component of Zc ∩ Zs is a part of
the singular set. Since the null direction and the singular direction coincide at each
point in Zc∩Zs , the image of such a singular set is a single point in H 3. If the point
p is not an end, such a singularity seems to be a so-called cone-like singularity,
see, for example, the hourglass in Example 6.2. Another example is as follows:
Set

ω = exp
(
z+ 1

3 z3) dz, θ = exp
(
−z− 1

3 z3) dz

on C. Then by solving (3–2), we have a flat front f : C→ H 3. The singular set
of f contains the imaginary axis, which coincides with Zc∩ Zs (see figure). How-
ever, this example is not complete because the canonical forms have an essential
singularity at z =∞.

5. Caustics of flat fronts

Roitman [2003] has investigated the caustic of (the parallel family of) a flat front,
considered as the locus of singular points of the fronts in the parallel family. In
this section, we discuss caustics of flat fronts from our point of view.

Let U ⊂ C be a simply connected domain and f :U → H 3 a flat front without
umbilic points. We denote by ω and θ the canonical forms of f , and ρ := θ/ω, as
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in the previous section. Since f has no umbilic points, ρ does not take values 0
and∞.

For a point z ∈ U , we denote by κ1 and κ2 the principal curvatures of f at z.
Then by (3–4),

(5–1) κ1 =
|ρ| + 1
|ρ| − 1

and κ2 =
|ρ| − 1
|ρ| + 1

.

Since ρ 6= 0,∞, we have |κ1| > 1. Then there exists a real number r1 such that
coth r1 = κ1, called the radius of curvature. By (5–1),

(5–2) e2r1 = |ρ|.

The caustic C f of f is defined as

C f :U 3 z 7→ cosh r1(z) f (z)+ sinh r1(z) ν(z) ∈ H 3
⊂ L4,

where L4 is the Minkowski 4-space and ν is the unit normal vector of f . In other
words, C f is the locus of the centers of the principal curvature κ1 of f .

Let E f :U → SL(2, C) be the holomorphic lift of the front f . Then f and the
unit normal vector ν are given by

f = E f E∗f , ν = E f

(
1 0
0 −1

)
E∗f .

Thus, the caustic of f is

C f = E f

(
cosh r1

(
1 0
0 1

)
+ sinh r1

(
1 0
0 −1

))
E∗f

= E f

(
er1 0
0 e−r1

)
E∗f = E f

(
|ρ|1/2 0

0 |ρ|−1/2

)
E∗f .

Hence if we set

(5–3) Ec = E f

(
ρ1/4 0

0 ρ−1/4

)
P, P =

1
√

2

(
1
√
−1

√
−1 1

)
∈ SU(2),

we have

(5–4) C f = Ec E∗c , and E−1
c d Ec =

(
0 θc

ωc 0

)
,

where
(5–5)

ωc =

√
ω̂θ̂ dz−

√
−1

dρ

4ρ
, θc =

√
ω̂θ̂ dz+

√
−1

dρ

4ρ

(
ω = ω̂ dz, θ = θ̂ dz

)
.

Since U contains no umbilic points of f , both ω and θ have no zeroes. Thus ωc

and θc have no common zero, which implies that:
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Theorem 5.1 [Roitman 2003]. The caustic C f = Ec E∗c : U → H 3 of a flat front
f : U → H 3 without umbilic points is a flat front with canonical forms ωc and θc

as in (5–5). Moreover, we have

Ec =
(−1)1/4α−1/4
√

2
√

G−G∗

(
G+
√

αG∗
√
−1(G−

√
αG∗)

1+
√

α
√
−1(1−

√
α)

) (
α =

dG
dG∗

)
,

where G and G∗ are the hyperbolic Gauss maps of f . In particular, the hyperbolic
Gauss maps (Gc, Gc,∗) of C f are given by

Gc =
G+
√

αG∗
1+
√

α
, Gc,∗ =

G−
√

αG∗
1−
√

α
.

If z is a singular point of f , we have r1(z)= 0 because |ρ(z)| = 1. Therefore, the
caustic of a parallel family { ft } of flat fronts is the locus of singular points of the
fronts ft for t ∈ R.

Since the parallel family has a common caustic, the sets Z0, Zc and Zs (page 331)
can be considered as well-defined on the caustic. In particular:

Proposition 5.2. Let f : U → H 3 be a flat front without umbilic points, and with
caustic C f , where U ⊂ C is a simply connected domain. Then

(1) A point p ∈U is a singular point of the caustic C f if and only if p ∈ Zc( f ).

(2) A point p ∈ Zc( f ) is a nondegenerate singular point of the caustic if and only
if S(G)− S(G∗) 6= 0 holds at p, where G and G∗ are the hyperbolic Gauss
maps of f .

(3) A point p ∈ Zc( f ) where S(G)− S(G∗) 6= 0 is a cuspidal edge of the caustic
if and only if p 6∈ Zs( f ).

In other words, the locus of the cuspidal edges of { ft }t∈R is the set of regular
points of the caustic. Furthermore, the locus of the swallowtails of { ft } is the set
of cuspidal edges on the caustic, except the points at which S(G)− S(G∗)= 0.

Proof of Proposition 5.2. A point p ∈ U is a singular point of C f if and only if
|ωc|

2
= |θc|

2. By (5–5), this is equivalent to

0= Im
√

ω̂θ̂
ρ ′

ρ
= Im

(
|ω̂θ̂ |

1√
ω̂θ̂

(
θ̂ ′

θ̂
−

ω̂′

ω̂

))
= |ω̂θ̂ | Im

√
ζc.

Hence the first assertion holds.
In this case, p is a degenerate singular point of C f if and only if

0= θ̂ ′cω̂c− ω̂′cθ̂c =

√
ω̂θ̂
(
s(θ̂)− s(ω̂)

)
.

Then by (3–16), we have the second assertion.
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Finally, if p is a nondegenerate singular point of C f , p is a cuspidal edge if and
only if

(5–6) Im
1√
ω̂cθ̂c

(
θ̂ ′c
θ̂c
−

ω̂′c
ω̂c

)
6= 0.

Here, by direct calculation,

1√
ω̂cθ̂c

(
θ̂ ′c
θ̂c
−

ω̂′c

ω̂c

)
=

1√
ω̂cθ̂c

3

√
−1
4

√
ω̂θ̂

3(
s(θ̂)− s(ω̂)

)
=
√
−1

ζs(z)
16+ ζc(z)

.

Since ζc(z) is a positive real number if z ∈ Zc, (5–6) holds if and only if ζs(z) does
not lie in

√
−1 R. �

6. Examples

Here we give examples that reaffirm the properties of singularities in Theorems 1.1
and 1.2. We make examples of flat fronts by choosing hyperbolic Gauss maps G
and G∗ as follows: Let G and G∗ be meromorphic functions on a compact Riemann
surface M2 such that G is not identically equal to G∗, and let

{p1, . . . , pN } = {p ∈ M2
; G(p)= G∗(p)} and M2

= M2
\ {p1, . . . , pN }.

If the period condition ∮
γ

dG
G−G∗

∈
√
−1 R

holds for any loop γ on M2, we have the parallel family of a complete flat front

ft : M2
= M2

\ {p1, . . . , pN } → H 3

by substituting G and G∗ in the representation formula (3–13) in Remark 3.3 with
c = e−t/2. Moreover, by (3–14), we have

ρ =−
∆4

(G−G∗)2

dG∗
dG

.

For details, see [Kokubu et al. 2004].

Example 6.1 (Cylinders). Let G = z and G∗ =
1/z on M2

= C∪ {∞}. Then ∆ = e−t/2
√

z2− 1
and ρ(z) = e−2t . So |ρ| = 1 if and only if t = 0
and then all points of the front are singular. When
t = 0, ζc = ζs = 0 identically, and the surface
degenerates to a single geodesic line. When t 6=0,
we have a cylinder with no singularities.



344 M. KOKUBU, W. ROSSMAN, K. SAJI, M. UMEHARA AND K. YAMADA

Example 6.2 (Flat fronts of revolution: the snowman and the hourglass). Let G= z
and G∗ = µz on M2

= C∪ {∞}, where µ ∈ R \ {1}. Then ∆= e−t/2z1/(1−µ). The
set of singular points is

6t =

{
e
√
−1β

(
et
|1−µ|
√
|µ|

) 1−µ
µ+1

; β ∈ R

}
.

Since
√

ζc|6t =±2
√
−1(µ+1)/

√
µ is constant, and real if and only if µ < 0, the

singularities are cuspidal edges when µ > 0. When µ < 0, ζs |6t = 0. In this case,
the singular points are neither cuspidal edges nor swallowtails, although they are
nondegenerate. (The singular image is a single point, but there are many singular
points in the domain.)

When µ > 0, the image of 6t is a circular cuspidal edge centered about the
surface’s rotation axis (the snowman, figure on the left). When µ < 0, the image
of 6t is a single point on the rotation axis (the hourglass, figure on the right).

When µ = 0, the surface is a horosphere, and when µ = −1, the surface is a
hyperbolic cylinder.

When µ→+1, the entire surface approaches the ideal boundary ∂ H 3 of H 3.
When µ > 0, the corresponding caustic is a cylinder.

Example 6.3 (Peach fronts). Let G = z + 1
2 and G∗ = z − 1

2 on M2
= C∪ {∞}.

Then one has a parallel family of flat fronts ft :C→ H 3 resembling peaches. Since
∆ = e−t/2ez , the set of singular points is 6t =

{t/2+
√
−1y ; y ∈ R}. Since

√
ζc|6t = ±4

√
−1

is not real, we have a single cuspidal edge along
a vertical line on C. This cuspidal edge travels
out to the end, hence we have a simple example
for which every open neighborhood of the end
contains singular points, in particular, each ft is
not complete. As noted in [Roitman 2003], the
corresponding caustic is the horosphere.



SINGULARITIES OF FLAT FRONTS IN HYPERBOLIC SPACE 345

Example 6.4 (n-noid flat fronts). One can make n-ended flat fronts for n ≥ 3 with
G = z, G∗ = z1−n on M2

= C∪ {∞} \ {z ; zn
= 1}. For all t , the points z = 0,∞

are finite and nonsingular. We have ∆= e−t/2 n
√

zn − 1,

ρ(z)= (n− 1)e−2t zn−2(zn
− 1)(4−2n)/n,

√
ζc =±

(n− 2)(zn
+ 1)

√
n− 1 zn/2

, ζs =
n(2− n)

2(n− 1)

(zn
− 1)2

zn .

Then
√

ζc is real when z ∈ S1 or zn
∈ R+ \ {0}. Since

1
n− 2

ζc+
2
n

ζs =
4(n− 2)

n− 1
,

we get Zc∩ Zs = {z ; zn
= 1}∩M2

=∅; one shows easily that Z0= {z ; zn
=−1}.

In the case n = 3 (or n = 4), if 6t > log 2 (or 2t > log 3
2 , respectively), there

are twelve (sixteen) swallowtails, and all other singularities are cuspidal edges. If
6t = log 2 (2t = log 3

2 ), there are three (four) degenerate singularities at the points
z3
= −1 (z4

= −1). If 6t < log 2 (2t < log 3
2 ), there are six (eight) swallowtails,

and otherwise cuspidal edges. For figures of 3-noids, see [Kokubu et al. 2003].
Here are the caustics corresponding to 3-noids (left) and 4-noids (right):

And here are the singular curves in the domain M2, for n = 4 and (from left to
right) 2t > log 3

2 , 2t = log 3
2 and 2t < log 3

2 .
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Example 6.5 (Flat fronts with G = zn and G∗ = zm for 1 ≤ n < m). In this case,
M2
= C \ {z; zm

= zn
}, and we have m− n+ 2 ends. Then

∆= e−t/2zn(1− zm−n)n/(n−m),

ρ(z)=−
m
n

e−2t zm+n(1− zm−n)2(m+n)/(n−m),

√
ζc =±

√
−1

(m+ n)(zm
+ zn)

√
mn

z−(m+n)/2,

ζs =
m2
− n2

2mn
z−m−n(zm

− zn)2.

For small values of m and n, we can easily investigate the singularities.
First consider n = 1. For m = 2 (respectively m = 3), for all t , all singularities

are always cuspidal edges except two (four) swallowtails when e2t < 1
32 ( 3

16 ) and
at one (two) degenerate singularity (singularities) when e2t

=
1
32 ( 3

16 ). As the value
e2t increases through 1

32 ( 3
16 ), the two (four) swallowtails come together into a

single (two) degenerate singularity (singularities) and then disappear, leaving only
cuspidal edges. The surfaces for n = 1 and m = 2 and 3, and their corresponding
caustics, look like this:

(G, G∗)= (z, z2) (G, G∗)= (z, z2) (half cut) (G, G∗)= (z, z2) (caustic)

(G, G∗)= (z, z3) (G, G∗)= (z, z3) (half cut) (G, G∗)= (z, z3) (caustic)

For n= 2 and m = 3, and for all t , the singular points are always cuspidal edges
or swallowtails. All singular points are cuspidal edges, except for one swallowtail
when t < 0. When t ≥ 0, there are no swallowtails. As t increases to 0, the
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swallowtail moves out to an end and disappears when t = 0. For t = 0, the singular
set is the line Re z = 1

2 , and hence the cuspidal edge travels out to the end z =∞.
And here are the singular curves in the domain M2, for n = 1, m = 2 and (from

left to right) e2t < 1
32 , e2t

=
1
32 and e2t > 1

32 .
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Appendix. Proof of Lemma 2.2

We sketch here the proof of Lemma 2.2 from [Zakalyukin 1983]. We hope this
will help readers who are not familiar with singularity theory.

We use three well known facts:

Fact A.1. Let f : Mn
→RN be an immersion of an n-manifold Mn . Then for each

point p ∈ Mn , there exists a neighborhood U of p such that the restriction f |U is
an embedding.

Fact A.2. Let U1 and U2 be neighborhoods of the origin 0 in Rn . Let fi :Ui→RN

(i = 1, 2) be two embeddings such that f1(U1)⊂ f2(U2) and f1(0)= f2(0). Then
there exists a local diffeomorphism ϕ :U1→U2 such that f1= f2◦ϕ and ϕ(0)= 0.

It is well-known that a front can be considered as a projection of a Legendrian
immersion L : U → P(T ∗R3), where U is a domain in R2 and P(T ∗R3) is the
projective cotangent bundle. The canonical contact structure of the unit cotangent
bundle T ∗1 R3 is the pull-back of that of P(T ∗R3). We remark that this contact struc-
ture on P(T ∗R3) does not depend on the Riemannian metric on R3; see [Arnol’d
et al. 1985]. Therefore:

Fact A.3. Let f :U → R3 be a front, where U is an open subset of R2 and

8 : R3
→ R3

is a diffeomorphism. Then the composition 8 ◦ f is also a front.

These three facts reduce the theorem to the following proposition:

Proposition A.4. Let fi :Ui→R3 (i = 1, 2) be two fronts satisfying f1(0)= f2(0),
whose associated Legendrian immersions L fi :Ui→ T ∗1 R3 are embeddings, where
Ui are neighborhoods of the origin 0 in R2. Suppose that there exists a relatively
compact neighborhood Vi of 0 (i = 1, 2) such that
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(1) The closure V i is contained in Ui for i = 1, 2.

(2) The set of regular points of fi in V i is dense in V i (i = 1, 2).

(3) f1(V 1)= f2(V 2)

Then L f1(V 1)= L f2(V 2).

Before proving this proposition, we give the proof of Lemma 2.2:

Proof of Lemma 2.2. Statement (i) of the lemma follows from (ii) immediately.
So it is sufficient to show (i) implies (ii). By Fact A.3, we may assume f1(V1) =

f2(V2). Without loss of generality we may assume that V1 and V2 are relatively
compact and V 1, V 2⊂U . By Fact A.1, we may assume that the associated Legen-
drian immersion L fi :U→ T ∗1 R3 is an embedding. Since V1 and V2 are relatively
compact, we have

f1(V 1)= f1(V1)= f2(V2)= f2(V 2).

Thus by Proposition A.4, we have L f1(V 1)= L f2(V 2), in particular we have

L f1(V1)⊂ L f2(U ).

By Fact A.2, there exists a local diffeomorphism ϕ on R2 such that L f2 = L f1 ◦ϕ,
which proves the assertion. �

To prove the Proposition A.4, we set

S = f1(V 1)= f2(V 2),

Zi = { fi (p) ∈ S ; p ∈ V i is a singular point of fi } (i = 1, 2),

Z = Z1 ∪ Z2, R = S \ Z ,

and first prove the following simple lemma:

Lemma A.5. For each a ∈ S \ Zi , f −1
i (a) is a finite set.

Proof. Suppose that f −1(a) is not a finite set. Without loss of generality, we can
take a sequence {pn} such that

fi (pn)= a (n = 1, 2, . . . ).

Moreover, by taking a subsequence we may assume {pn} converges to a point
p∈V i . Then by continuity, we have fi (p)=a. Since a∈ S\Zi , p is a regular point
of fi . Thus, there exists a neighborhood V of p such that fi |V is an embedding,
which contradicts

fi (pn)= a = fi (p),

since pn ∈ V for sufficiently large n. �
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Proof of Proposition A.4. Fix a ∈ R arbitrarily. By the previous lemma, we can set

f −1
1 (a)= {p1, . . . , pm}, f −1

2 (a)= {q1, . . . , ql}.

We identify T ∗1 R3 with T1R3
= R3

× S2. Then L fi (i = 1, 2) is considered as a
map into R3

× S2, and there exist unit vectors ν1, . . . , νm and ξ1, . . . , ξ` such that

L f1(p j )= (a, ν j ), L f2(qk)= (a, ξk) ( j = 1, . . . , m, k = 1, . . . , l).

Since L f1 and L f2 are embeddings, ν1, . . . , νm (resp. ξ1, . . . , ξl) are mutually dis-
tinct. Thus the image of fi at a consists of a mutually transversal finite number of
components of surfaces. Since f1(V 1)= f2(V 2), we can conclude that m = l and

(A–1) L f1(p j )= (a, ν j )= (a, ξ j )= L f2(q j ) ( j = 1, 2, . . . , m)

for a suitable permutation of p1, . . . , pm . Now we set

W1 = ( f1|V 1
)−1(R), W2 = ( f2|V 2

)−1(R).

By (A–1), we have
L f1(W1)= L f2(W2).

Then by the continuity of L f1 and L f2 , we have

L f1(W 1)= L f2(W 2).

Thus it is sufficient to show that Wi is dense in V i . Suppose that ( fi |V i
)−1(Z) has

an interior point. By assumption (2) of Proposition A.4, there exists an open subset
Oi ⊂ Vi such that fi (Oi )⊂ Z and fi is an immersion on Oi . Take a point qi ∈ Oi .
Let Ti be the tangent plane (as a two dimensional affine plane in R3) of the regular
surface fi (Oi ) at qi , and

πi : R
3
→ Ti (i = 1, 2)

the orthogonal projection. Since πi ◦ fi has a regular point, πi ◦ fi (Oi ) contains an
interior point. On the other hand, by Sard’s theorem, the critical value set πi (Z) of
πi ◦ fi is a measure zero set. Since πi ◦ fi (Oi )⊂πi (Z), this makes a contradiction.
Hence ( fi |V i

)−1(Z) does not have any interior points. Since

( fi |V i
)−1(V 1)= ( fi |V i

)−1(R ∪ Z)= ( fi |V i
)−1(R)∪ ( fi |V i

)−1(Z),

Wi = ( fi |V i
)−1(R) is dense in V i . �

The authors’ original proof of Proposition A.4 used the Hausdorff dimension of
fi (Oi ). Go-o Ishikawa pointed out to us a simplification of the proof that requires
only the classical Sard’s theorem.
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