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SINGULARITIES OF MAXWELL INTERFACE PROBLEMS

MARTIN COSTABEL!, MONIQUE DAUGE! AND SERGE NICAISE?

Abstract. We investigate time harmonic Maxwell equations in heterogeneous media, where the per-
meability p and the permittivity € are piecewise constant. The associated boundary value problem
can be interpreted as a transmission problem. In a very natural way the interfaces can have edges
and corners. We give a detailed description of the edge and corner singularities of the electromagnetic
fields.
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INTRODUCTION

Physical objects interacting with electromagnetic waves not only tend to have corners and edges, but are
frequently composed of several materials with different electric and magnetic properties. The electromagnetic
fields then have singularities not only at the exterior corners and edges, but also at the singular points of the
interfaces between the different materials.

We show how these singularities can be analyzed using the classical Kondrat’ev method [13]. In reference [8],
we studied the singularities at corners and edges of a homogeneous material. Here we continue this investigation
of the singularities of solutions of the time-harmonic Maxwell equations by studying the case of piecewise
constant coefficients e (electric permittivity) and g (magnetic permeability). For the case of two materials
separated by a plane, see also [5].

We try to describe as explicitly as possible the principal parts of all singular functions of the electric and
magnetic fields. We show that all the singular functions can be obtained from those of associated transmission
problems for the scalar Laplace operator. Thus one can benefit from the many results that are available on this
subject; see [10,15,16,19].

In the case of a homogeneous body [8], the singular functions are generated by those of the Dirichlet and
Neumann boundary value problems for the Laplacian. In our heterogeneous case, we also have to consider
two problems for the Laplacian. They correspond to the equations for the electrostatic and the magnetostatic
potentials. The electrostatic problem is an interface problem for the Laplace operator with exterior Dirichlet
boundary conditions and jumps of the normal derivatives at the interfaces determined by the discontinuities
of the coefficient ¢ (operator AP see (1.7) and Notation (3.3)). For the magnetostatic problem, we have
to consider the operator AJ®" (see (1.8) and Notation (3.3)) with Neumann boundary conditions and jumps
determined by the discontinuities of the coefficient .
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As in the homogeneous case [8], we find three types of singularities (type 1, 2 and 3). There may be strong
singularities that are not even in H'. We show that these are of type 1, i.e. gradients of singular functions of
the corresponding static problems.

For the singular functions of type 2, there is a difference to the homogeneous case: in [8], we obtained an
explicit formula (a differential operator, see Lem. 7.5 of [8]) that gives the Maxwell singularity in terms of the
singularity of the opposite static potential problem. In our heterogeneous case, the exponent of the singularity is
still equal to an exponent of the opposite static potential problem. For the angular part of the singular function,
however, we find an additional term, see (5.3), that involves the solution of an inhomogeneous scalar interface
problem. Thus the type 2 singularities of the electric fields have the same exponents as the magnetostatic
potentials, but their angular parts contain a term corresponding to an electrostatic field generated by interface
charges depending on the jumps [ep] of the index of refraction.

Another important difference to the homogeneous case is that the regularity for the interface problems can
be much lower, even with regular data. Thus, in the homogeneous case, one has at least H'/? regularity for
Lipschitz domains [6] and H' regularity for convex domains [20]. Here, we find only 0 as a limit for the regularity.
Thus for any s > 0 there are examples where the solution is not in H*. If there are only two materials the lower
limit of regularity is 1/4 for arbitrary polyhedra and 1/2 for convex domains.

For the two-dimensional case (which governs also the edge singularities in dimension 3), one has simple
formulas in the homogeneous case: they show that the strongest singularity is of type 1 and that the lower limit
of regularity is 7 /w if w € (0, 27) is the largest opening angle. This holds for both the electric and the magnetic
field.

In the heterogeneous case, due to the different behaviors of the coefficients € and p, the electric and magnetic
fields will have, in general, different regularities. As usual their regularity is limited by the leading singularity.
If this leading singularity is of type 1, the regularity is s — 1, with s the regularity of the corresponding static
problem. If not, the leading singularity is of type 2, and the regularity is the same as the regularity of the
opposite static problem. In the two-dimensional homogeneous case, the second possibility never happens, while
in the heterogeneous case, there are cases where the leading singularity is not of type 1, but of type 2.

Let us give an example. In a typical case of several dielectric materials (three are sufficient) with strongly
varying e, but constant j, in a convex polygon with largest opening w, one has H?*7 regularity for the magne-
tostatic potential, with v > 0 any number < 7/w — 1. For the electrostatic potential one may have only H 144
regularity with any 6 > 0. Thus the type 1 singularity for the magnetic field has regularity H'*7, compared to
the H'* regularity for the type 2 singularity. It is easy to have § < v (take three adjacent sectors of opening
m/4 and € equal to 1 in the exterior sectors and to 100 in the middle sector: then v = 0.3333 and 6 = 0.1793). In
such a situation, the electric field has only H® regularity (type 1) while the magnetic field has H'*9 regularity.
Such a difference of 1 between these two regularities is the maximum possible. (See also Rem. (8.2) for an
example where v = +o00 and 4 is close to 0.)

In Section 1, we recall the regularized variational formulation of Maxwell’s equations for heterogeneous
materials. We define the two associated scalar potential operators AP™ and Aﬁe“.

In Section 2, we characterize the closure of the subspace of smooth functions in the natural variational spaces
associated with the electric and magnetic fields.

In Section 3, we give two different decompositions of the variational spaces. In the first case, the regular part
is in H' on the whole domain, thus has no jumps across the interfaces, whereas in the second case, the regular
part has jumps in the components normal to the interfaces. In both cases, the singular parts are gradients.

In Section 4, we state the necessary results on scalar interface problems for the Laplacian. In Section 5, the
three types of Maxwell corner singularities and in Section 6, the edge singularities are studied.

Section 7 gives some conclusions about H?® regularity in general and in several particular cases. We give in
Section 8 proofs for the results about minimal edge regularity for the Laplace interface problems on which the
Maxwell regularity results are based.

We shall use the following geometric and analytic setting: we assume that Q is a Lipschitz polyhedron, which
means that €2 is a bounded Lipschitz domain with piecewise plane boundary. We also assume that ¢ and p are
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piecewise constant > 0 on €2, determining a partition & of Q) in a finite set of Lipschitz polyhedra Q4,...,Q:
on each Q;, e =¢; and p = p; with €; and p; positive constants. We denote by Fji, the (open) faces of ;. Let
Fint be the set of the interior faces (contained in ) and Fex the set of the exterior faces (contained in 9%2).

In general, we will denote by bold letters the functional spaces for the fields. Thus H*(§2) denotes the usual
Sobolev space on 2 and H*(£) denotes H*(2)3. We also need for s > 1/2 piecewise H® functions relative to
the partition &

PHY(Q,2)={pec L*(Q)| ¢; € H(Q;), j=1,...,J}
Here, of course, ¢; denotes the restriction of ¢ to €2;. For the fields we set

PH*(Q, #) = PH*(Q, 2)*.

We will also denote by PH/2 (Zint) the product of the spaces H 1/ 2(F) for F € Fiy and similarly for Fey.
Finally, as usual for Maxwell equations, we need spaces of fields with square integrable curls:

H(curl;Q) = {uc L*(Q)3| curlu € L*(Q)3}, (0.1)
and with square integrable divergences (here £ =€ or )
H(div;¢;9Q) ={uc L*(Q)?*| div(¢u) € L*(Q)} - (0.2)

As usual, if £ =1, H(div; ;) is denoted H (div ;) for short.

1. MAXWELL FORMULATIONS

Classical time harmonic Maxwell equations are given by
curlE —iwpH =0 and curlH +iweE=J in Q. (1.1)

Here F is the electric part and H the magnetic part of the electromagnetic field. The right hand side J is the
current density. The exterior boundary conditions on 9 are those of the perfect conductor (n denotes the unit
outer normal on 0€):

Exn=0 and H-n=0 on 090 (1.2)
The natural variational spaces are X (2, €) for the electric field and X7 (2, i) for the magnetic field according to
Xn(Qe)={ue H(cur; Q)N H(div;e; Q)| uxn=0 on 00N}

and
Xr(Qu)={ue H(curl; Q)N H(div;u;Q)| w-n=0 on 009}
Any field u belonging to one of these spaces is in H (curl;Q;) N H(div; ;) for each j and satisfies additional
jump conditions at the interior interfaces F' € Fiy:
Xn(Q,e) = {u €L2(Q) | curlu; € L2(Q,)%,  divu; € L2(Q;),
[uxnlp=0, [eu-nlp=0, VF € Fin (1.3)

'U,X‘TL|F:0, VFEfext}
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and
X (9, 1) = {u € L2(Q)?| curlu; € L2(Q,)%,  divu; € L2(Q),
[u X n]F = 0; [/,L'U, : n]F = 07 VF € %nt (14)
U'TL|F:O, \V/Feyext}
where the jump [v x n],. is equal to (v; x n; —vj: x n;)|p if I belongs to dQ; and to 92, with v; the restriction
of v to Q; and with n; the exterior unit normal to 0€2;.

We can formulate elliptic variational problems either for E or H. We introduce the following two formula-
tions:

u € Xn(Q,e), Vve Xn(Q,e),

(1.5)
/ pteurlu - curl v +diveu divev — w?cu - v = (f, v),
Q
where (f,v) = iw(J,v) + = (divJ,divev), and
u < XT(Q,M), Vo € XT(Q,M),
(1.6)

/ e teurlu - curl v + div pu divpv — w? pu - v = (h, v),
Q

where (h,v) = (¢71J,curlv). If (E, H) solves the Maxwell equations (1.1-1.2), then E is solution of (1.5)
and H of (1.6). The converse also holds, see [8], if w? does not belong to the spectrum of the operators —ADP
and —AN" naturally associated with equations (1.1):

e —ADI j5 defined from ﬁl(Q) into its dual H~'(Q) by

Vb, U e H'(Q), —(AP¥® v)= /Qa-:gradeD grad ¥ ; (1.7)

o —AN is defined from H'() into its dual by
VO, U e H'(Q), —(AN"®, V)= / pgrad ® grad ¥ . (1.8)
Q

We end this section by a regularity result for the divergence, see also [8].

Theorem 1.1. If u solves (1.5) with f in L*(Q)3, then diveu belongs to I%l(ﬂ) If w solves (1.6) with h in
L2(Q)3, then div pu belongs to H(£2).

Proof. Let u be solution of (1.5). Taking as test functions v = grad ® with ® in the domain D(ADP™) of AD¥
we obtain

V& € D(APT), (divew, APT® + W?®)g = (f , grad ®)gq .
Let g be a solution of the Dirichlet problem (if w? is an eigenvalue of —AP" the above equation ensures the
solvability of this problem)

NANS ﬁll(Q), —(egradq, grad U)q + (w?q, ¥)g = (f , grad ¥)gq .

Whence _ .
Vo € D(ADT), (g, APTD + w2 P)g = (f, grad B)q .
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Thus divew —q is orthogonal to the range of AP +w2, therefore is either 0 or an eigenvector of —APT associated

o
with w?. Either way, diveu — ¢ belongs to H'(f2), hence divewu too. The proof for the “magnetic” problem
(1.6) is similar. O
2. THE CLOSURE OF PIECEWISE-SMOOTH FUNCTIONS IN Xy (2,¢) AND X7(, p)

It is clear that the bilinear forms associated with problems (1.5) and (1.6) are coercive on Xy (€2, ¢) and
X7(2, p) respectively. When ¢ is smooth, it is proved in [7] that Xx(Q,e) N H'(Q) is a closed subspace of
Xn(9,¢). In our situation, the corresponding spaces are

Hy(Q,¢) := Xn(Q,e) N PHY(Q, %) and Hrp(Q,pu) = Xr(Q,u) N PHY(Q, 2).
From (1.4) and (1.3), we immediately obtain
Hy(,2) = {ue LX) | w € H'(Q),
[uxnlp=0, [eu-nlp=0, VF € Fin (2.1)
uxn|F:0, vFgﬁext}
and
Hr(Q,u) = {u € IXQ° | w € H'(Q),
[uxn]p=0, [pu-nlp =0, VF & Fy (2.2)
'U,"TL|F:0, VFEfext}'
In this section we are going to prove that not only Hy(Q,¢) is closed in Xy (€, ¢), but still Hy(€,¢) is the

closure in Xn (2, ¢) of piecewise-smooth functions. To this aim, let us introduce for any s, 1 < s < oo, the
spaces Hy (€2, ¢) and H7 (S, p):

Hy(Q,e) = Xn(Qe)NPH®*(Q, ) and Hp(Q,p) = Xp(Q,u) N PH*(Q, 2).
Of course their elements are the piecewise-H*® fields satisfying the boundary and transmission conditions of

(2.1) and (2.2).

Our main result in this section is:

Theorem 2.1. The closure of HY (2, ¢) in Xn(Q,¢) is Hy(Q,€), and the closure of H® (2, ) in Xp(Q, p)
18 HT(Q, M).

The proof follows from a succession of lemmas.

Lemma 2.2. Let Cy = maxj{sj_l,sjuj} and Cp = maxj{uj_l,sjuj}, Then for any v € HZ (S, €) there holds
/ e|gradv|* < CN/ (/f1| curl v|? + |div5v|2), (2.3)
Q Q
and for any v € HZ(Q, u) there holds

/ p|grad v|? < CT/ (671| curl v|* + |divu'v|2>. (2.4)
Q Q
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Note that the left hand sides of (2.3) and (2.4) are the bilinear forms of the operators AP™ and A" respectively
and that their right hand sides are the Maxwell bilinear forms, cf. (1.5) and (1.6).

Proof. For any j and any v € H?({);) two successive integrations by parts yield:

/ ej|gradv? = —/ sjAv'v—l—/ €j0nv - v
Q, Q; Gle

J J

= / £j (| curl v|? + | div 'v|2)
2

+/ 6j(anv'v—(curlv X n)-'u—divv('u-n)).
89,

On each face of 0§25, let us denote by v,, the normal component v - n of v and by v its tangential component
v — v,n. The tangential parts of the gradient and of the divergence are denoted by grad+ and divt. Using
that the faces of €2, are plane and relying in particular on the identity — curlv x n = grad—+ v,, — 0, vt which
holds on each face, we arrive at

/ ;| grad v|? = / 5j(| curl v|? 4 | div 'u|2) +/ grad(g;vy,) - v17 — divr v (g50p).
Q; Q; a9,

J J J

If v belongs to PH?(2, 2?) and is such that for any interface F' € Fiy, [v x n] = 0, we deduce from the above
equality that

/ elgradwv|* = / 5(| curl v|? + | div v|2) + Z / grad(evy,) - v1 — divT vT (V)
Q Q Fego, I F

+ Z / grady [ev,] . - o7 — divr vT [evn] ..
FeZFint F

Thus, if v € HF(Q,¢), [,e|gradv|? is equal to [, (] curlv|? + |divv|?) and similarly, if v € HZ(, p),
Jo 1| grad v|? is equal to [, u(| curl v|? + | div v|?). Estimates (2.3) and (2.4) are now straightforward. O

Now we are going to prove density results. For this, we go through several steps.

Lemma 2.3. Let w be a bounded sector of radius 1 in R? and let r be the distance to its vertex. Let h belong
to HY(w). Then r®h tends to h in H'(w) as a — 0.

Proof. By the dominated convergence theorem, we obtain immediately that r*h, r*d,h and r*0yh tend to h,
Oyh and 9, h respectively in L?(w) as o — 0. It remains to prove that h 9,7 tends to 0 in L?*(w) as a — 0.

The difficulty lying in » = 0, we can assume that A = 0 on » = 1. With the help of an integration by parts,
we obtain

1 1 1
1
/ |hOpr®)? rdr = —/ ah? 9,r*® dr = —/ ahdph r*® dr
0 2 Jo 0

1
= —/ ar® 1 h r9.h rdr,
0

from which we deduce

(07 2 (07 (07
120,723, < B0 Orhll

L2(w) H?"
Thus, setting
an?
X(Oé) = Hh@,r ||L2(w) ’
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we have obtained that X («) is bounded as o — 0. Similarly as above, we have

(%

X(a) —2X (2

) = —/ ar®*Yh (r*0,h — 0,h) dz dy,

from which we deduce
«
‘X(oz) _9x (5) ‘ < VX (@) [r°0:h = 0,0 1y, -

Thus, | X (a) —2X(/2)| tends to 0 as o — 0. As X () is bounded, we can deduce from this what we wanted,
i.e. that X (o) — 0. O

Lemma 2.4. Let w be as in Lemma (2.3) and let x = x(r) a smooth function in 65°(—1,1) equal to 1 in a
neighborhood of 0. Let h belong to H'(w). Then h belongs to the closure in H'(w) of the set

S(h) := {rm —x(nr)h | a€(0,1), ne N} : (2.5)

Proof. With Lemma (2.3) we have only to prove that we can choose o and n so that the norm of r®y/(nr)h in
H'(w) is as small as we want. Obviously, r®x(nr)h, r*x(nr)d,h and r®x(nr)dyh tend to 0 in L*(w) as n — oo
uniformly in « € (0,1). From the proof of Lemma 2.3, we have that hd,r® tends to 0, thus x(nr)hd,r® tends
to 0 in L?*(w) as @ — 0, uniformly in n. It remains to evaluate the norm of r*hd,x(nr) in L?(w). We start
from the estimate o

AC >0, Vre(0,1),VneN, [9.x(nr)| < -
1
n

Then, as the support of 9, x(nr) is contained in (0, =), we have

Ry x (nr) | < n=2||r 2 hd, x (nr)

La(w) S ) S T2 irel2p|

H L2(w L2(w) "

Since, for any a > 0, by Hardy’s inequality, »~'+%/2h belongs to L?(w), for any fixed «, we can choose n so

that ||r*horx(nr)|] L2(w) is as small as we want. O
As a straightforward corollary of the previous lemma, we obtain the corresponding result in R3:

Lemma 2.5. Let W = w x I where w is a plane sector and I an open interval. Let h belong to HY(W). Then h
belongs to the closure in HY(W) of the set S(h) defined by (2.5) where r is still the distance to the vertez in w.

Lemma 2.6. Let ; be a polyhedral partition of 0 and let ¥ be the skeleton formed by the union of the closed
edges of all the Q;. Then the subspace of HP (2, €) of the fields which are zero on X, is dense in Hn(Q,€), and
similarly for the spaces Hr (€, ).

Proof. Let h € Hy(€,¢) and € > 0. The proof of the existence of a h € H(2,¢) such that A = 0 on ¥ and

lh = A,

Hi(Q,2) < €15 organized in three steps.

Step 1. Let x be a function like in Lemmas 2.4 and 2.5. For each vertex S € X let pg be the distance to S.
Then x(nps)h tends to 0 in PH' (2, &) for each vertex S as n — oo. Thus we can choose n large enough so
that

PHI(Q,2) < e/4.

hy:=h— Zx(nps)h is such that ||h — hy||
s
Then we can apply Lemma 2.5 to h; in the neighborhood of each edge in ¥, and we obtain a new field hy in
H}(Q,¢) such that

hy =0 in a neighborhood ¥ of ¥ and ||h — hy]| <e/2.

PH(Q,2)



634 M. COSTABEL ET AL.

Step 2. Let #; be a neighborhood of ¥ such that ¥y C #. We can then introduce independent lifting of traces
Rp on each face F € Fins U Fuxe acting from the subspace of H/2 (F) of functions g which are zero on 7,
into PH(Q, ), so that Rp(g) is zero in a neighborhood of all the other faces. With these liftings, we can
construct a lifting Ry of the trace and jump operator vy

IN ¢ PHl(Qv ‘@) I HFeﬂext Hl/Q(F)Q X HFE«?iuc Hl/Q(F)?’
v — (gT,F =vX n|Fa gr.Fr = ['U X n]Fa gn,F = [6'0 : n]F)a

such that vy Ryg = g for all set of traces and jumps which are zero on #. Let C'r be the norm of Ry.
Step 3. We regularize hy in each ; by convolution by a regularizing sequence x,. For n large enough, the
regularized field hg is zero on ¥ and

[ h2 — hs| <e/4 and |ywhs| ppise <e/(4CR).

PH(Q,2)

Setting h = hg — Rn~ynhs yields the desired approximation of h. The proof for the other boundary conditions
is similar. |

Now, Theorem 2.1 is clearly a consequence of Lemmas 2.2 and 2.6.

3. SINGULARITIES OF THE VARIATIONAL SPACES

In this section we establish continuous decompositions of the spaces Xy (€2,¢) and Xr(Q,u) into a H* or
PH! field and a gradient. Such a decomposition is well known for the homogeneous Maxwell’s equations,
i.e. when ¢ and p are constant or sufficiently regular (e.g. Lipschitz) [2-4,12,17], and was extended to the
heterogeneous case by [5] under the assumption of two materials with a plane interface. We prove here two
sorts of decompositions in our general framework.

We begin with two lemmas giving the existence of regular vector potentials:

Lemma 3.1. Let us assume that Q is simply connected. Let u be a divergence-free L? field. Then there exists
¥ € Hr(Q,1) such that curly = u.

This Lemma is simply obtained by the combination of Theorem 3.12 in [1] which yields a potential g in
X7(€,1) and a decomposition of this ¢y in a regular » € Hr(2,1) and a gradient according to [3]. Of course
this gradient part does not contribute to the curl!

Similarly, relying on Theorem 3.17 in [1], and [3], we obtain

Lemma 3.2. Let us assume that §) is simply connected. Let u be a divergence-free L? field such that w - n is
zero on 0S). Then there exists 1 € Hn (£, 1) such that curly = u.

We also introduce the following notation:
Notation 3.3. For g = (gr), € PHY2(Fint) and f € L*(Q) we write

~APTP = f+ Z gr @0
FeFint

if we have the variational formulation (1.7):

® e HY(Q), VU e HY(Q), /

sgrad@grad\I/:/f\I/dx—l— Z /gF\Ilda.
Q Q F

FEZFint
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We use the analogous notation for Aﬁeu based on the variational formulation (1.8) with the same right hand
side as above:

dc HY(Q), VI c H'(Q), /,ugrad(bgradlll:/fllldx—l— Z /gF\I/dU.
Q Q rez. JF

Our first decomposition result yields a “regular” part in H!(Q2) and a “singular” part in the form of a gradient,
which contains in particular all the jumps through the interfaces.

Theorem 3.4. Any field v € Xp(Q, 1) admits a decomposition
v = + grad P, (3.1)

where 1 € Hr(Q,1) and ® € H(Q) satisfies —AN® = f+ 3" 5 gr @ 0p with f € L*(Q), g € PHY?(Finy).

Similarly any v € Xn(Q,¢) admits a decomposition (3.1) where ¢ € Hy(Q,1) and @ € ﬁll(Q) satisfies
—~ADPTP = f 4+ > 2., 9F @ 0p. In both cases there holds

120 sy + 11 oy + 190 pygs sy < Cllol (3.2)

Proof. We first note that with the help of a partition of unity, we can reduce to the case when €2 is simply
connected.

Let v € Xr(Q, ). Since its curl is a L? divergence-free field we can apply Lemma (3.1) to u = curl v and
find ¢ € Hp(Q,1) such that curly = curl v. Then v — 1 is a curl-free field. As Q is simply connected, this is
a gradient: there exists ® € H'(2) such that v — 1) = grad ®. Obviously ® satisfies

YU € HY(Q), /ngradfb grad\Il:/Qu('v—w)grad\Ildx,

which enters the framework of Notation (3.3) with f = —divuv + (ﬁ(lml), where the operator div is the
divergence in U;€2; (and not in Q), and for all F € Fin, g = — [, ¥ - n.

Now, if v € XN (£, ), we note that curl v satisfies also curl v-n = 0 on 9. Thus we can apply Lemma (3.2)
to obtain ¢ € Hy(£2,1) such that curly = curl v. Then, as above, there exists® € H'(Q) such that v — ¢ =

grad ®. Since (v —¥) x n =0 on 99, ¢ belongs to I}l(ﬂ) and the proof ends as above. O

Our second decomposition result is more in the spirit of the splittings given in [3,4,12] and [5]. It consists
in obtaining a “regular” part in Hp(Q, ) or Hy (9, ¢) instead of Hp(9,1) or Hy(£,1). For the assumptions
and the proof of this statement we use some facts and terminology about the behavior of the operators Aﬁeu
and AP™ with respect to the corners and edges of  and of its subdomains €2; which we describe in the next
section.

Theorem 3.5.
Neu

(i) Let us assume that the operator A" has no edge exponent equal to 1 and no corner exponent equal to
1/2. Then any field v € X1 (9, 1) admits a decomposition

v = w + grad P, (3.3)
where w € Hyp(Q, 1) and &g € H'(Q) satisfies —AN"®g € L*(Q2).

(ii) Let us assume that the operator AP™ has no edge exponent equal to 1 and no corner exponent equal to

1/2. Then any field v € Xn(Q,¢) admits a decomposition (3.3) where w € Hyn(Q,¢) and @y € I}l(Q)
satisfies —APT®, € L2(Q).
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Proof. (i) We start from the first decomposition (3.1) and split ® into two parts, each belonging to H(Q2) (see
Th. 4.1):
& =g+ Py, with AJU®geL*(Q) and @ € PH*(Q, ).

We then set w = 1 + grad ®; which belongs to PH*(Q, 2?). Since ANu®, € L?*(Q2), grad ®; belongs to
X7 (2, ). Thus w also belongs to Xr (2, p), therefore to Hr (2, i1). The proof for (ii) is similar. O

4. LAPLACE INTERFACE SINGULARITIES

As a synthesis of the thorough treatment of bidimensional interface problems in [18] and of tridimensional
monodomain boundary value problems in [9], we briefly present in this section the regularity and splitting
results for the Laplace interface operators AP and Ageu.

The notion of corner and edge is clear for a polyhedron in R?. Concerning  with its polyhedral partition &,
we call corner of (€2, &) any point ¢ which is a corner of (at least) one of the ; and edge any segment e which
is an edge of one of the §2; and either disjoint from the other {2} or contained in one of their edges.

Let us give an illustrative example: Q1 and €y are the unit cubes (0,1)% and (—1,0) x (0,1)?, and Q3 is the
parallelepiped (—1,1)2 x (—1,0). Finally € is the interior of Q; U Qs U Q3. The corners are the corners of
and the points ¢; = (0,0,0), ez = (0,1,0), ¢5 = (0,1,1), ¢4 = (0,0,1), ¢5 = (1,1,0) and ¢ = (—1,1,0). With
the two other corners ¢7 = (1,0,0) and ¢s = (—1,0,0), the interface edges are [e1, 2] (triple), [e2, €3], [e3, ca],
[647 cl]v [61, 67]7 [677 65], [657 62]7 [cla 68]7 [687 cﬁ]a [667 62] (dOUble)'

Note that it is possible to have corners and edges contained in the interior of . This would happen if we
add to the example above the fourth domain €4 = (—1,1) x (—1,0) x (0,1). Then € is the cube (—1,1)3, ¢; is
an interior corner and is the end of interior edges.

The general principle governing the properties of the operators AP™ and Aﬁe“ relies on the knowledge of
the exponents A attached to each corner and edge of (€, &), which are the (here real) numbers such that there
exist non-polynomial pseudo-homogeneous solutions of degree A to model problems on the cones or sectors I'
associated with the corresponding corner or edge.

4.1. Corner exponents

If ¢ is one fixed corner of (£, &), we shall use polar coordinates (p,?¥) centered at ¢ and denote by I'.
the polyhedral cone which coincides with €2 near c. To each 2; containing ¢ there corresponds a unique cone
I'e; C T and we denote by Fin . the set of interior (to I'c) faces of O ;.

We then denote by G, the intersection of I', with the unit sphere. For any \ € C, let us set

Q
SMNTe) = {W = p* Y log"p v (9) | v € H'(Go)}, (4.1)
q=0

which is the space of pseudo-homogeneous functions whose angular regularity is compatible with the H! reg-
ularity of variational solutions. Fitting to the operator AP we consider the subspace Sg(I'.) of SNT,) of
the functions which are zero on 9I'.. When A € N, we need two further families of polynomial spaces (which
are reduced to {0} if A ¢ N) corresponding to solutions and right hand sides respectively. Let P (T, &) be
the subspace of S3(I'.) of the functions which are polynomial in each I ; and let Q*(T'¢, &) be the space of
the couples (f,g) with f homogeneous polynomial of degree A —2 in each I';; and g = (gF)Feﬂim . with gp
homogeneous polynomial of degree A — 1 in the interface F. 1

The set AD¥(T',) of the corner exponents of the Dirichlet operator AP is then the set of the A € C such
that there exist solutions ¥ € S} (T) \ P3'(T¢, &) to

—APTO =4+ Y gr@dr, with (f.9) € QNIe, 2), (4.2)
FEZFint,c
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[cf. Notation (3.3)]. We denote the space of these solutions by Z{, (I'c,¢). The sets Afe* (') and ZReu(Les 1)
are defined similarly. Note that if ¢ is an interior corner, the spaces S3(T.) and S*(I';) coincide and there is
no influence of the external boundary conditions.

Since there holds

A?ir(p)‘q/;(ﬁ)) =0 distgradTw +AA+1)ep =0 (4.3)

with gradT and div the tangential gradient and divergence on G, the set of corner exponents in c is related
ir

o associated with the quadratic form

to the spectrum of the positive Dirichlet Laplace-Beltrami operator LB

(¢,¢) — (grad_ 1, grad_ ¢).

on the space L*(G.,¢) with scalar product

(w750)'—>(w7()0)5:/ qu)(de'.

The operator LEchr is self-adjoint on L?(G., e) with a compact inverse. Let v; < 15 < --- be its eigenvalues and
¥; be the corresponding eigenfunctions. Then one can show that

APPCAN = {44 /y+ 4 i 21} \N, (4.4)

and, if A ¢ N
Zyu(Tere) =span{ p050) | A= —1 &/ +1 1 (45)

The situation is similar for AEQU(FC) and Z3.,(Ce, ).
Relying on (4.3), we can prove that for any corner ¢, 0 ¢ AP™(T',) and 0 ¢ A/Ife“(Fc).

4.2. Edge exponents

Fix one edge e of 2 and denote by I'. the two-dimensional plane sector such that I'e x R coincides with
Q in a neighbourhood of an interior point of e. The polar coordinates in T, are denoted (r,6), the Cartesian
coordinates in the plane of I'¢ are denoted y, and z is the perpendicular coordinate. To each €); containing e
there corresponds a unique sector I'e ; C I'e and we denote by Fine . the set of interior faces of 9I'¢ ;.

Like above, we can introduce the spaces S*(T.), S3 (L) and Pg\(Te, &) of homogeneous functions of degree
A in the sector ', and the corresponding space for the right-hand sides Q*(T'¢, £22). Then the set AP(T,) of
the edge exponents of the Dirichlet transmission operator is defined exactly like above as the set of the A € C
such that there exist solutions ¥ € S3(T.) \ P} (Te, £) to

SAPR = Y gr@op, with (fig) € QAT 2), (4.6)
FEZFint,e

where AP acting in the sector T, is simply the operator obtained from the corresponding three-dimensional
operator by dropping the variable z. Thus the edge exponents are the same as the singularity exponents for
two-dimensional interface problems; see [10,15,16,19].

The intersection between I'e and the unit circle being denoted G, with (v;);>1 the spectrum of the positive
Laplace-Beltrami operator L2l associated with the quadratic form (1, @) — (g1, D) on the space L2(Gl, €),

,€
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we have:
ADF(r) = {* oy, 52 1) (47)

Indeed, when A ¢ N, this can be proved like (4.4) from the equivalence
APT(2p(0)) =0 <=  Opedpp + N2eth =0 (4.8)
and when A\ € N, this also relies on the equality for the dimensions of the polynomial spaces
dim P}, 2) = dim Q (T, ) = \J, — I, (4.9)

where J, is the number of the sectors I'¢ ; and I, = 0 if e is an internal edge and I, = 1 if not; see Corollary 4.9
in [9].

4.3. Regularity and singularities

We first give a global statement, then provide a description of the singular solutions, which requires the
introduction of further notations.

Theorem 4.1. Let s > 0, s # 1/2, f € PH*"Y(Q, #) and g € PH*"Y/?(Fint). Let ® be the solution of the
problem

—APTd = f+ Y gr®dp.
FEZFint
(i) If for any corner ¢ and any edge e

APT(D) N (=1/2,5—1/2] =0 and APT(T.) N (0, 5] = 0,

then ® belongs to PH*T(Q, 22).

(ii) If for any corner ¢ and any edge e
ADT(Te) Zs—5 and ADT(T) # s,

then ® admits a splitting ®o + ®1 into a regqular part ®; € PH*TY(Q, ) and a singular part &5 € H' ()
generated by the spaces Z, (Te,€) and Z, (Te,€) for X in AP™(T'.)N(=1/2,5—1/2) and AP™(T.)N (0, s)
respectively. In particular, if s <1, APY®q = fy with fo € PH*~Y(Q, 2).

For ¢ in the set € of corners of (2, #) and A € AP™(T',), let U2P be a basis of Z{); (I'¢,€) and denote by
)P the function defined as

(I)i"p(q,‘) = Xc(pc) ‘I’?’p(pc, ﬁc)a (4.10)

with a smooth cut-off function x. equal to 1 in a neighborhood of 0 and (p., ¥.) the polar coordinates associated
with ec.
Similarly, for e in the set & of edges of (€2, &) and A € AP (T,), let U)P be a basis of Z{; (I, ) and denote
by ®)? the function defined as
Te

B3P (2) = Xe(pe) V27 (pe, V), with pe =~ (4.11)

e
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where . is a smooth cut-off function equal to 1 in a neighborhood of 0, de a smooth function on the closed
edge e, which is equivalent to the distance to the endpoints of e and (re, 6., z.) the cylindrical coordinates
associated with e.

In order to give a precise statement, we still need weighted Sobolev spaces for the edge singularity coefficients
and a smoothing operator, exactly as in [8]: let for m € N and n € R, V}*(e) be defined as

vi(e) = {yer¥(e)| (d)"*okyere), k=0,1,..,m]

and by interpolation for non-integer m. The smoothing operator J#[-] acts like a lifting of functions on e into
€. in order to define it, we introduce the stretched variable

Ze 1
Z, = 4,
/0 de(2)

where z = 0 corresponds to an interior point of e. The change of variable z, — Z. is one to one e — R and
for any function v defined on e, we set ¥(Ze) = Y(ze). Then J[V](pe, e, ze) is the convolution operator with

respect to Ze:
1 tN . ~ )
H(pesbe; ze) :/ — 30<—> F(t —Ze) dt  with p. =
R Pe Pe

where ¢ is a smooth function in .%(R) such that [ ¢ = 1.

Te

d_e )

Proposition 4.2. Let the assumptions of (ii) 4n Theorem 4.1 be satisfied. We assume moreover that for any
edge e, the set AP (T.) N[0, s] is contained in an interval of length < 1 (this is a technical assumption to avoid
the “shadows” of the main singularities \Ilé’p). Then the singular part ®¢ has the expansion

L D DD DD Dl A D DD D W Ao (4.12)

c€C Ae[-1/2,5-1/2] P ecé Ael0,s] P

with the coefficients v)? in R and y)>P in V4 e). The sums extend over X in [~1/2,5 —1/2] N AP*(T',) and
[0, 8] N API(T,), respectively.

5. MAXWELL INTERFACE CORNER SINGULARITIES

For shortness, we here describe the corner singularities of problem (1.5) (the singularities of problem (1.6)
are obtained similarly by exchanging Dir, ¢ and Neu, p respectively). We further assume that 2 is simply
connected.

We fix a corner ¢ of (2, #) and drop the index ¢ in the notations. At this stage, we look for solutions of the
homogeneous Maxwell interface systems in the spaces of pseudo-homogeneous functions

Q
SA(T,2) = {w € XF(Ie) | div(en) € Hbo(I7), u(e) = p* 3 loghs v4(0) },
q=0

where u € X2°¢(T'* &) means that u € X)?°(I' NV, ¢), for all bounded open sets V' such that ¢ ¢ V: this space
requires exactly the angular regularity corresponding to the effective regularity of the variational solution (in
particular, for the condition div(euw) € H{ (T'*), we rely on Th. 1.1). In other words, we have to find the
non-polynomial solutions of the system

curl(p~!curlu) — egrad div(cu) = f in T,
div(eu) =0 on Or, (5.1)
u € S¥(T,e),
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when f is a homogeneous polynomial of degree A — 2 (thus it is zero if A &€ {2,3,...}). The corresponding A
are the Mazwell (Dirichlet) corner exponents.

Like in [8], this problem is split into three subproblems by introducing the auxiliary unknowns

Yp=ptecurlu and ¢ =div(eu).

Using also the space S (T, i) defined like S3 (T, e) and the space S3(I') introduced in Section 4.1, we then see
that for A ¢ {2,3,...}, problem (5.1) is equivalent to finding non-polynomial solutions to the system

~APrg=0in T with ¢ €S2 1(T). (5.2a)
curly =e¢ gradg and div(py) =0 in T with ¢ € Sp~ (T, p). (5.2b)
curlu = p¢ and div(eu)=gq in T with u € Sy(T,¢). (5.2¢)

Thus, the solutions of the system (5.2) belong to one of the three types:

Type 1. ¢ =0, ¢ =0 and u general non-zero solution of (5.2c).
Type 2. ¢ = 0, ¢ general non-zero solution of (5.2b) and u particular solution of (5.2¢).
Type 3. ¢ general non-zero solution of (5.2a), ¢ particular solution of (5.2b) and u particular solution of (5.2¢c).

These three types of Maxwell singularities are now described with the help of the corner singularities of AP
and Aﬁeu. The singularities of type 1 are treated exactly as in Lemma 7.4 of [8].

Lemma 5.1. We assume that A # —1. Then (i) is equivalent to (ii):

(1) u € SN(T,e) is a solution of (5.2) of type 1,

(i) A+ 1 belongs to AP™(T) and u = grad & where ® belongs to ZHHH (T, ).

For singularities of types 2 and 3, the jumps of the product eu through the interfaces require a special
attention.

Lemma 5.2. We assume that X is not an integer. Then (i) is equivalent to (ii):
(1) u € S(T,e) is a solution of (5.2) of type 2,

(ii) A belongs to A (') and curl u = pgrad ¥ where W belongs to ZRea(Ls 11). In that case, a representative
of type 2 is given by

1
=5 (u (grad ¥ x z) + grad rN>, (5.3)

where ry € SMY(T) is a solution of

APy = Z len] 1 ((grad\If X ) - w) ‘F ®F. (5.4)
FeZint,c

Proof. We simply need to investigate the non-zero solutions (i, u) of (5.2) of type 2. First a non-zero ¥ in
ZReu(T, 12) yields a non-zero requested v = grad ¥ (because A # 0). It then remains to find u € S (T, ¢) such
that

curl u = pp and div(eu) =0in T
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We are then looking for u of the form (5.3). In that case, we have
(A+1)curlu = curl(pgrad¥ x x)
= z-grad(uy) — w - grad x + py dive — x div(uy),

due to the identity (7.5b) of [8]. This yields
curl u = p,

because v is homogeneous, div(uw) = 0 and one can show that
x - grad(uy) = px - grad ¢

in the distributional sense.
On the other hand, the conditions div(euw) = 0 and w x n =0 on 9" will hold if (5.4) holds since

div(s,u (grad ¥ x m)) = Z gr Q 0F,
FeZint,c

where

gr = [ep(grad ¥ x x) - n|p = —[ep(grad ¥ x n) - z|p = —[eu], ((grad\II X ) - a:) )F )

since grad ¥ X m has no jump across the interfaces. By Theorem 4.14 of [18], problem (5.4) has a solution
ry € SML(T) (in view of that theorem, one sees that 7y is homogeneous if A + 1 ¢ AP'(I") and has the form
ry = ro + r1 log p, with homogeneous r and r; if not).

This guarantees the existence of u. O

Similarly, we can show:

Lemma 5.3. We assume that A is not integer. Then (i) is equivalent to (ii):
(1) u € S(T,e) is a solution of (5.2) of type 3,

(i) A —1 belongs to AP™(T') and div(eu) = q where q belongs to Zp- ' (T, ¢).

To each q € ZS;l(F,E), a representative of type 3 is given by

1
Y= X (5 (grad g x z) + gradrT),

where rr € SNT') is a solution of

Aﬁe“rT = Z len] o ((gradq X n) - :1:) ’F ®Ir,
Feé’ﬁm,c

and, if \ & Aﬁe“(F), by

T

where ry € SM(T) is a solution of

APy = 3 el (W xn) @) | @+ ((1- A+ 1+6%u)a
FeZFint,c
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TABLE 1
Type A > Generator u P q
1 [ A+1eAP[D) | -1 |®ec 2z} (T,e)| grad® 0 0

2 A e Ajeu(D) 0 |¥eZd, T u | cf Lem. 5.2 grad ¥ 0

3 | A—1eAPTD) | 1 | qgez)'(T,e) | of Lem. 5.3 | ¢f Lem. 5.3 | ¢

It remains to investigate the singularities of type 1 for A = —1 and of type 2 for A = 0.

Lemma 5.4.
(i) There is no singularity of type 1 for A = —1.

(ii) There is no singularity of type 2 for A = 0.

Proof. Since T is simply connected, the first assertion is proved exactly as in Lemma 7.8 of [8]: we obtain that
if u belongs to Sy'(I,¢) [resp. S ' (T, u)] and satisfies curl w = 0 and div(eu) = 0 [resp. div(pu) = 0], then
u = 0.

For the second one, we simply remark that if w is a singularity of type 2 in S%(T',¢), then

Y =pteurlu € S;H(T, )

is a solution of type 1 for magnetic boundary conditions. Therefore the first assertion yields v» = 0 and the
conclusion follows. O

Remark 5.5. The case I' not simply connected can be treated as in [8] and would yield topological singular
exponents. This case was avoided for brevity and is left to the reader. For other problems with multiply-
connected domains, see also [1,11].

Among the singular exponents obtained before, we select the subset Ax(I') of A satisfying A > —3/2 such
that there exists a non-zero u € S3 (I, €) solution of (5.1) and satisfying (cf. Th. 1.1)

xu € Xn(T,¢), div(xeu) € HY(T),

with a cut-off function x which is equal to 1 in a neighborhood of the corner ¢. We examine the effect of this

condition on the three types of singularities.

Type 1. A+1 belongs to AP (T). Since AP¥(I')N[~1, 0] is empty, with Lemma 5.4 we get the condition A > —1.

Type 2. A € AJ*(T'). Since curl(xu) = ycurlu + grad x x w has to be in L?(I')?, we have the condition
A > —1/2. With Lemma 5.4, this yields A > 0, because the set AJ**(I') N [~1,0] is empty.

Type 3. Here A — 1 belongs to AP'(T"). Thus condition div(yew) in H*(T') implies that yq belongs to H'(T),
thus A —1 > —1/2, whence A — 1 > 0, or equivalently A > 1.

We summarize the above results in Table 1.

Going back to the primitive Maxwell equation (1.1), we see that for a regular current density J, div(eE)
and div(uH) are regular too, thus only the singularities of types 1 and 2 can occur and they exchange each
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TABLE 2
Type | Generator | A€ E H
Elec. | @ € Z{Sim ADT grad® —k (e grad® x « + gradr,,)
Magn. | ¥ € Zﬁ}eu,H AN | k (ugradV x x + gradr,,) grad¥

other between the electric and magnetic ﬁelds (here X\ denotes the degree of homogeneity of the generator and
is either the degree of E or H and r = 5#5):
Table 2 gives the principal parts of the singularities, indeed from (1.5) and (1.6) we see that the operators

are not homogeneous and therefore the singularities have an asymptotic expansion [9, 13].

6. MAXWELL INTERFACE EDGE SINGULARITIES

In this section, our aim is to describe shortly the edge singularities of problem (1.5). Fix one edge e of
(Q, &), see Section 4.2 for the associated definitions (we drop here the index e). Let A € C. According to the
general rule [9], we search for (non-polynomial) solutions u € S (I x R, ¢) independent of z of the system

curl(p ! curlu) — egraddiv(eu) = f in T xR,

with f independent of z and polynomial in the y variable. The corresponding A\ are the Mazwell (Dirichlet)
edge exponents. Let now (v, w) be the decomposition of the field w in the system of Cartesian coordinates
(y,z). Then this system is split into 2 two-dimensional independent problems in the sector I':

curl(p~! curlv) — e grad div(ev) = f in I', f polynomial,
vxn=0 and div(ev)=0 on T, (6.1)
v € S{(T,e),

and
—div(up~'gradw) = f in I', f polynomial,
w =10 on 0T, (6.2)
w € SMIT).

The problem (6.1) is simply the problem attached to two-dimensional Maxwell equations in a polygonal domain,
and (6.2) is the transmission Dirichlet problem whose set AEi_rl (T") of singularities is well known.
For the two-dimensional “Maxwell-type” problem (6.1), as in 3D, we introduce two auxiliary (scalar) variables

Yp=pteurlv and ¢ =div(ev). (6.3)

Then for A € N, we get the equivalent system
~AP¥g —divf inT with ¢ € S37H(T). (6.4a)
curly) =¢ gradg in I’ with ¢ € SAHTD). (6.4b)

curlv = ptp, div(ev) =¢ inT with u € Sy (T,e). (6.4c)
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If A is not a positive integer, as in the previous section, this system (6.4) is reduced to a homogeneous one and
the solutions split into singularities of types 1, 2 and 3. As in [8], the singularities of type 2 do not exist [they
appear in fact as singularities of the problem (6.2)], while the singularities of types 1 and 3 are obtained like in
Section 5 in relation with the edge exponents of AP,

If A is a positive integer, as in Section 4.2, we can check that the spaces of homogeneous polynomials associated
with the right hand sides and with the solutions have the same dimension. Thus the Maxwell edge exponents
are the A € C such that the system (6.4) has non-trivial solutions.

In view of (4.7), we can state:

Lemma 6.1. The set of the edge exponents associated with the edge e is

{)\ eR | A—1orA+1 belongs to A?ir(I‘)} U AEi_rl (T).
If A ¢ N*, the corresponding singular functions u = (v,w) are as follows:
(i) If A+ 1€ AP™(T), then w =0 and v is a Mazwell singularity of type 1, given by

v = grad (r)‘“(p(é))),

when ¢ is an eigenvector of LEng associated with the eigenvalue (A + 1)2.

(i) If X e ABi_rl (T), then v = 0 and w is a singularity associated with AEi_rlz
w = rp(6),

when ¢ is an eigenvector of LEi_rl . associated with the eigenvalue A2,

(iii) If A\ — 1€ AP™(T), then w = 0 and v is a Mazwell singularity of type 3.

The singularities in point (ii) of the lemma are, in fact, closely related to the type 2 corner singularities. This
is seen from the following result.

Lemma 6.2. We have the identity between the sets of Laplace edge exponents

ADir (F) _ Alljeu(r)

pt

and more precisely we have the equivalence between the singular functions
P(0) € ZReu(Top) = prtOpt € 2, (T p ).

Proof. The proof uses the fact that in dimension 2 the passage to the conjugate harmonic functions interchanges
tangential and normal derivatives. This implies that a singular function ¥ belongs to Z3,, (', 1) if and only
if u¥ € Z3, (T, u~1), where on each sector I';, W is the harmonic conjugate of ¥. Since for our homogeneous

functions, ¥ can be expressed by the angular derivative, we can make this idea more precise as follows: let
Aﬁe“(r)‘w(é))) = 0in I'. This means that

DopOgth + Nuap = 0,  thus =10 (udytp) + X21p = 0.

Setting ¢ = udy1, the interface conditions [¢p] = 0 and [udp1)] = 0 imply therefore that [p] = 0 and [~ 1dp¢] = 0.
Whence the lemma. O

As before, we have to consider the subset of the edge exponents A satisfying A > —1 such that there exists
a non-zero u € Sy (I' x R, ¢) independent of the variable z, solution of the homogeneous system (6.1-6.2) and
satisfying
curl(xu) € L*(I")%, div,(xeu) € H(T),
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with y a cut-off function which is equal to 1 in a neighborhood of the corner of I'. The effect of this condition
on each of the singularities (i), (ii) and (iii) in Lemma 6.1 is easily checked and can be summarized as follows:
(i) In this case \; = A — 1, with A € AP"(T") and the condition is A\; > —1.
(ii) In this case Ag € AEE (T), thus Ay has to be positive.
(iii) In this case A3 = A + 1, with A € AP™(I), then the condition is Az > 1.

7. CONCLUSIONS

7.1. Regularity

Taking advantage of the information about corner and edge exponents and singularities collected in Sections 4
to 6 and using Theorem 4.1 of [8] (which also hold in our setting with the natural adaptations due to the
interfaces), we are now able to give regularity results.

As always, the regularity depends on the smallest corner and edge exponents. So, for any edge e in the set
& of the edges of (€2, &), we introduce the smallest exponent attached to AP

)\EDE =V, with v the first eigenvalue of ng
and the smallest exponent attached to Aﬁeu
)\Efe“ =V, with v the first non-zero eigenvalue of Lyer.

We have the following lower estimates for AP¥ (and similar ones for )\E’ee“). Proofs are given in Section 8.

(i) With p. the quotient of the minimum of ¢ by its maximum in the neighborhood of e, a lower estimate of
the Rayleigh quotient of ng yields

/\sD,i; 2 Pe A]lj,ier- (7.1)

(ii) If e is an external edge:
e For two subdomains in a convex angle AP¥ > 1/2.
e For two subdomains in a non-convex angle AP > 1/4, [19].
e For three subdomains (even in a convex angle) AP > 0, [14].
(iii) If e is an internal edge: l
e For two subdomains AP > 1/2.
e For three subdomains AP > 1/4.
e For four subdomains )\25 > 0.
The estimates in (ii) and (iii) are generically optimal in the sense that there exist choices of I" and e so that
/\Eielr is arbitrarily close to the lower bound.
Similarly, for any corner ¢ in the set € of the corners of (2, &), we introduce the smallest exponent attached
to AP (see Sect. 4.1)

)\215 = min(AED}icr n(-1/2, oo))

and the smallest exponent attached to Aﬁeu
ANew — iy (A}jﬁ; n(-1/2, oo)).

In general APF is the minimum of 2 and of —1/2 + /v + 1/4, with v the first eigenvalue of LEchr, and similarly

€,c

for )\ﬁfc“. In any case, )\?fg and )\g,ec“ are > 0 and satisfy a lower estimate like (7.1) by the exponents associated

with one material in the same corner.
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Let now set

. ) 1 1
Dir . : Dir Neu : : Neu
oP" = min | min APY | min AP 4 = and o = min  min AN®" | min A +-=.
c ( e ¢ cew ¢ 2 a ecé we cet ¢ 2

Dir

In fact, the regularity result (i) of Theorem 4.1 holds with any s < oD for the operator AP and with any

s < aﬁeu for the operator Aﬁe“

Theorem 7.1. Let s > 1 and f € PH*"Y(Q, 2). Let u € Xn(Q,¢) be the solution of problem (1.5). For any
€ (0, s+ 1] such that

Dir Neu
7 <min{o. ", 0, + 1},

u belongs to PH™ (), 2).

Examples.
(i) If Q contains only two subdomains, then w € PH7(Q, &) for all 7 < 1/4.
(if) If © is convex and has two subdomains, then w € PH™(Q, &) for all 7 < 1/2.
(iii) If Q is a parallelepiped divided into two subdomains separated by a plane parallel to two faces, then
u € PH™(Q,Z) for all T < 2.

But note that, as soon as three subdomains have an exterior common edge, or four subdomains have an interior
common edge, the regularity of w can be arbitrarily low (near L?). Such a situation occurs when the ratio pe
is very small.

7.2. Singularities
In this whole subsection s > 1, the data f belongs to PH*~1(Q, £) and w is the solution of problem (1.5).

A. We assume that s is such that there is no Maxwell Dirichlet corner exponent equal to s —1/2 and no Maxwell
Dirichlet edge exponent equal to s. Then u can be split in uy + u; where u; belongs to PH**1(Q, #) and wy
is the sum of contributions of the corners and the edges. If we assume moreover like in Proposition (4.2), that
for any edge e, the set of the edge exponents € [—1, s] is contained in an interval of length < 1, the function
has a structure like ®¢ in (4.12)

CEED VD S S P VI VD SEL 72)

c€C Ne[-2,5—1] ec& \e[-1,s] P

with u}? and u)? defined like (4.10) and (4.11) from bases U} and U2 of non-polynomial solutions of
problems (5.1) and (6.1-6.2). If UM has no logarithmic term, then the coefficient belongs to V*-*(e). For
non-integer \, the functions UM and UM are described in Lemmas 5.1-6.1.

B. Let us fix o € [0, s] such that for any edge e, the set of the edge exponents belonging to [—1, o] is contained
in an interval of length < 1. Then for suitable coefficients y)? € R and 72* € V*_*(e) the difference

R O S R MDY Rl B

cEE /\e[—— 0—5] ec& \e[-1l,0] P

belongs to PH+1(Q, 22).
If we take o = 0, or more generally

oP* —1 < g < min(eD", oNv) (7.4)
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then the corner and edge singularities of types 2 and 3 disappear, therefore it only gradients remain in the
singular part, which can be written as (cf. Sect. 4.3)

S0 D WP xe(pe) grad WP (p,, 0,)

ce? )‘E[_§7‘7_2] p

+ D Y D Pl xelpe) grad, WP (pe,6e),

ecé& Xe[-1l,0] P

with grad, the gradient in the variable g = ye/de.

Remark 7.2. In the splitting (7.5), the singular generators can also be expressed as curls since for a homoge-
neous function ¥ of degree \ satisfying AW = 0, we have:

e(A+1)grad ¥ = curl(egrad ¥ x x)

and
grad, (pi‘(p(é)e)> = curl, (pi‘w(é)e)),

when 1) = —+¢’ (recalling that ¢ satisfies (e¢’)’ = —A%ep), with curl, the two-dimensional vectorial curl in
the 9. plane, completed by a zero tangential component along the edge.

As in [8], we can write the singular part (7.5) as a gradient in a global way, because Lemmas 8.2 and 8.4
of [8] are (mainly) independent of the operator in consideration. Consequently, in connection with the splitting
(4.12), we have
Theorem 7.3. Assume that s > 1, the data f belongs to PH*~1(Q, ) and w is the solution of problem (1.5).
Let 0 < s+ 1 so that (7.4) holds. Then there exists ® € H(Q) satisfying —AP*® € PH(Q, &) such that

u—grad ® € PH°(Q, 2).

When o = 0, the above statement reduces to Theorem 3.5 (ii).

8. APPENDIX

In this section, we prove some lower estimates for the exponents of singularity for transmission problems for
the Laplacian in dimension two. We have to consider the following situation:

I' is described in polar coordinates (r,0) by 0 < § < w (0 < w < 27) or by 0 < 6 < 27 (w = 2m). The interval
[0,w] is divided in J subintervals by 0 = wp < wy < ... < wy = w. The function ¢ is positive and constant on
each subinterval: ¢ = ¢; for 6 € (wj_1,w;).

The function u is homogeneous in I" and satisfies

APy =0 [or ANy =0].

Thus u(r, §) = r*v(#) with A > 0 and v is a linear combination of sin A and cos A in each (w;_1,w;) satisfying
the boundary conditions

v(0) =v(w) =0 [or v'(0) =v'(w)=0],
and the transmission conditions
0] =0 and [ev]=0 atf=w,.
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Under these conditions, we have the following result:

Theorem 8.1.

(i) (External edge)
Ifw <27 and J =2, then A > 7/2w.
(ii) (Internal edge)
If w=27 and J =2, then A > 1/2;
Ifw=2m and J =3, then A > 1/4.
(iil) If w <27 and J > 3 or if w = 27 and J > 4, then for any Ao > 0 there exist €1,... ,e5 and a function
u#£ 0 with 0 < A< Ag.

Proof. (i) Consider first the case of Dirichlet conditions: the function v is continuous on [0, w], piecewise analytic,
vanishes at 0 and w, and its derivative satisfies £1v'(w]) = €20’ (w; ). One can assume that v has a positive
maximum in w* € (0,w). It follows that v'(w*) = 0, even if w* = wy, because v’ does not change its sign there.
In one of the two sectors (0,w*) (if w* < wy) or (w*,w) (if w* > wy), the function u therefore satisfies a mixed
Dirichlet-Neumann problem without interface, for which one knows the lowest singularity exponent m/2w* or

7/2(w — w*). Thus

s T T T s s
> — > — or A > > > —

A >
T 2wr T 2w T 2w T2w—w*) T 2w-—w1) 2w

For exterior Neumann conditions, we have v'(0) = v/(w) = 0. Since v is an eigenfunction of the Laplace-Beltrami
Neumann problem, it is orthogonal to constants:

/w v(0) £(6) 46 = 0.

As ¢ is positive, v has at least one zero: v(w*) = 0. Once again, on either (0,w*) or (w*,w), we obtain a mixed
Dirichlet-Neumann problem and the estimate

A\ S i { T T }> T
mind — , ——— —
= 2wy " 2(w—wr) 2w

(ii) If w = 27, we can again use that v is orthogonal to constant functions:
027r ve df = 0. This time, we conclude that v has at least two distinct zeros

0 <w* <w*™ < 2m; v(w*) = v(w**) = 0. In the two sectors
I ={(rd)|w <f<w™} and T" ={(r6) | w™ <0 <2r+w"}

our function u solves therefore the transmission problem with exterior Dirichlet conditions, and we are back to
case (i).

If J = 2, we can either argue that one of I'* or I'** is convex, or that one of the two sectors contains only
one material. Both arguments give the result A > 1/2.

If J = 3, then one of the two sectors contains at most two materials, thus from (i) follows A > 1/4.
(iii) For the case J = 4, we give the following explicit example: let

T T 3T 3m 5w 3mm
Gl—(__ _)7 GQ_(qu)v G3_(17?)7 G4_(_Z’_Z)
and

e1=¢e3=h and e, =¢4 =1.
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Let v be defined as sin A0 in G, ncosA(5 — 0) in Go, sin\(m — 0) in G3, —npcosA(5 + 0) in G4. Then
u(r, ) = r*v(0) is a singular function for our transmission problem if and only if

A
n:tanf and h=n?

We see that A — 0 as h — 0.

Since u satisfies Dirichlet conditions at § = 0 and # = 7, the same example solves a 3-material problem with
exterior Dirichlet conditions.

This example can be easily adapted to more general geometries. ]

Remark 8.2. In the example of the proof of (iii), we have a three-material Dirichlet problem with a smooth
exterior boundary. If we assume homogeneous magnetic properties, we have no type 1 edge singularity for the
magnetic field there. The type 2 edge singularity has only regularity H'*° for § < \o.
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