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Singularities of Parallel Manipulators:
A Geometric Treatment
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Abstract—A parallel manipulator is naturally associated
with a set of constraint functions defined by its closure con-
straints. The differential forms arising from these constraint
functions completely characterize the geometric properties of
the manipulator. In this paper, using the language of differential
forms, we provide a thorough geometric study on the various
types of singularities of a parallel manipulator, their relations
with the kinematic parameters and the configuration spaces
of the manipulator, and the role redundant actuation plays in
reshaping the singularities and improving the performance of the
manipulator. First, we analyze configuration space singularities
by constructing a Morse function on some appropriately defined
spaces. By varying key parameters of the manipulator, we obtain
homotopic classes of the configuration spaces. This allows us to
gain insight on configuration space singularities and understand
how to choose design parameters for the manipulator. Second,
we define parametrization singularities which include actuator
and end-effector singularities (or other equivalent definitions) as
their special cases. This definition naturally contains the closure
constraints in addition to the coordinates of the actuators and the
end-effector and can be used to search a complete set of actuator
or end-effector singularities including some singularities that may
be missed by the usual kinematics methods. We give an intrinsic
classification of parametrization singularities and define their
topological orders. While a nondegenerate singularity poses no
problems in general, a degenerate singularity can sometimes be a
source of danger and should be avoided if possible.

Index Terms—Degenerate, differential form, Morse function,
singularity, topological order.

I. INTRODUCTION

C
OMPARED with its serial counterparts, a parallel manipu-

lator (or a closed-chain mechanism or system) has a much

more complex structure in terms of its kinematics, dynamics,

planning and control. In particular, the configuration space of a

parallel manipulator is not even explicitly known, it is implicitly

defined by a set of constraint functions introduced by the manip-

ulator’s closure constraints. A parallel manipulator also has, in

addition to the usual end-effector singularities, different types of

singularities such as configuration space singularities and actu-

ator singularities. Understanding the intrinsic nature of the var-

ious types of singularities and their relations with the kinematic

parameters and the configuration spaces is of ultimate impor-

tance in design, planning and control of the system.
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Unlike its serial counterparts, where there have been well es-

tablished mathematical tools for their analysis, studies on sin-

gularities of parallel manipulators were confined to basic issues

such as definition, classification and identification of singular-

ities. Furthermore, the mathematical tools used in most studies

were directly borrowed from that for serial manipulators and

were applicable only to local analysis. The unique structures of

parallel mechanisms were not fully explored.

Gosselin and Angeles [1] were perhaps the first to define and

study singularities of closed-loop kinematic chains. Based on

some derived Jacobian relations, they introduced several no-

tions of singularities which formed a basis of later research. Park

and Kim [2] used differential geometric tools to study singu-

larities of parallel mechanisms and provided a finer classifica-

tion of singularities. In their later works, they proposed the use

of redundant actuation as a means of eliminating actuator sin-

gularities and improving manipulator performances. A six-axis

parallel machine platform was constructed based on this prin-

ciple [3], [4]. Kock [5], [6] also used redundant actuation to

design a two-degree-of-freedom (DOF) planar parallel manipu-

lator for high speed assembly. Similar works could also be found

in Nahon and Angeles [7]. It is interesting to note that redun-

dant actuation also appears in multifingered robotic hands [8],

[9], and in walking machines [10]. Merlet and others [11]–[17]

studied extensively singularities of the Stewart–Gough platform

and several of its variants. A good account of recent progress

on parallel mechanism research can be found in [18] and refer-

ences therein. Aside from local analysis, there is some research

on global analysis of manipulator singularities. C. Innocenti and

Parenti-Castelli [19], [20] studied the problem of planning a

path to connect two regular inverse kinematic solutions without

intersecting the singular sets; [21] studied the topology of self-

motion manifolds of redundant manipulators; Bedrossian [22]

performed studies on determination of self motion to take from

a singular configuration to a nonsingular configuration; Kieffer

[23], based on a Taylor series expansion method, discovered the

difference between ordinary singularities, isolated singularities

and their bifurcations. Kumar [14], Park [2] and Wen [8] intro-

duced several kinematic manipulability measures for design and

control of parallel mechanisms.

The behavior of singularities for parallel manipulator is in-

deed very complex. An interesting example is offered by that

of the Seoul National University (SNU) manipulator, a 3-DOF

translational manipulator with the joints of its three subchains

arranged in the order of universal–prismatic–universal (UPU).

Tsai [24] initiated design of general 3-UPU manipulators and

his work was later generalized by Gregorio and Parenti-Castelli

[25]. Gregorio et al. [26], [27] analyzed singularities of Tsai’s
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manipulator and divided them into rotational and translational

singularities. Park and his coworkers [28] identified a configu-

ration space (CS) singularity of the SNU manipulator and ob-

served that the manipulator at its home position exhibits finite

motions even with all active prismatic joints locked. Zlatanov et

al. [29] studied this singularity using screw theory and classi-

fied it as a constraint singularity. The same singularity was also

identified by Joshi and Tsai [30], Simaan and Shoham [31], and

Wolf et al. [32] using an augmented Jacobian matrix which took

the constraints into account. By interpreting the rows of this ma-

trix as lines, line geometry method, i.e., that in [11], could be

used to efficiently find all possible singularities. Even though a

good explanation of this singularity of the SNU manipulator has

been offered in [28], [29], a concise mathematical formula for

detecting these singularities is not available.

Thepurposeofthepaper is twofold.First, inviewofthefact that

aparallelmanipulatorismostnaturallydescribedbytheconstraint

functions and theirdifferential formsassociatedwith the manipu-

lator’sclosureconstraints,wedevelopaunifiedmathematicaltool

forsingularityanalysisofparallelmechanismsusingthelanguage

ofdifferentialforms.Wegivepreciseandcoordinateinvariantdef-

initions of configuration space and parametrization singularities

with actuator and end-effector singularities as special cases of the

latter. We investigate the intrinsic nature of the various singulari-

tiesof aparallelmechanism, their relationswith thekinematicpa-

rameters and the configuration space of the manipulator and the

role redundant actuation plays in reshaping the singularities and

improving the manipulator’s performance. We present a detailed

classification of parametrization singularities and identify those

which are potentially dangerous and should be avoided or elimi-

nated through design.

Thepaperisorganizedasfollows:InSectionII,weintroduceno-

tationsandreviewbasicsofdifferential forms.Wethendefineand

give concise conditions for CS singularity. Based on this, we an-

alyze the “strange” singularity of the SNU manipulator and show

that it is a CS singularity. Then, we show that configuration space

singularities can be reformulated as the critical points of a Morse

function on some appropriately defined spaces. By varying a se-

lected kinematic parameter of the manipulator, different homo-

topicclassesoftheconfigurationspacecanbeobtained.Thisstudy

allowsustodeterminepermissiblerangesofthekinematicparam-

eters in the design phase. In Section III, we define parametriza-

tionsingularitywithend-effectorandactuatorsingularitiesas two

special cases. According to the rank of the constraint functions,

we divide parametrization singularity into regular and irregular

ones. We explicitly show that one singularity of the SNU manipu-

lator is an irregular actuator singularity. In Section IV, we develop

a fine classification of parametrization singularities and show the

computation and implication of each class of singularities. In par-

ticular, we note that degenerate singularities are sometimes dan-

gerous and should be avoided. Finally, Section V follows with a

brief conclusion of the paper.

II. CONFIGURATION SPACE SINGULARITIES

A parallel manipulator as shown in Fig. 1 is regarded as a set

of open-chains connected in parallel to a common rigid body,

known as the end-effector. The joints that connect the links of

Fig. 1. Coordinate systems for a parallel manipulator.

each open-chain and the chains with the end-effector can be rev-

olute, prismatic, universal or ball-in-socket joints. The config-

uration space of a revolute joint is , the unit circle, for a

prismatic joint, for a universal joint, and for a

ball-in-socket joint. Thus, the ambient space of the manipu-

lator is given by the Cartesian product of the joint spaces of all

the joints that make up the manipulator. We denote by

the local coordinates of . The loop (or closure) constraints of

the manipulator are denoted by

... (1)

Note that the loop constraints are obtained by equating pairwise

the end-effector positions from each of the open chains. The

preimage is referred to as the configuration space

of the manipulator.

Given a function , its differential, denoted and

given in local coordinates by

is a one-form, i.e., . Physically, an element in

has the meaning of a generalized force, and its pairing with a

generalized velocity vector in gives the virtual power. In

particular, for

is the directional derivative of in the direction .

We refer the readers to [33] for the definition of ,

a two-form, known as the wedge product of with , and

similarly that of , an -form. In local coordinates
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Fig. 2. An example: Four-bar mechanism.

Two functions and are said to be linearly independent at

if and are linearly independent as two

covectors. The latter is translated exactly into the requirement

that

When , the intersection of with

is not transversal [34].

Definition 1: A point is called a CS singularity if

(2)

The concept of CS singularity was initiated by Park and Kim

[2] which provides a geometric interpretation of the uncertainty

configurations [35] and the constraint singularities [29]. A basic

result of differentiable manifolds [33] shows that if ,

, then is a submanifold of dimension

of .

Example 1: A Four-Bar Mechanism: Consider a four-bar

mechanism with link lengths , and as shown in Fig. 2. Let

be the separation between the two fixed bases, and , and

the angle coordinates (another angle variable is eliminated

from the angle constraint). The loop constraints are given by

(3)

(4)

Without loss of generality, we assume that and

. Computing , , 2 and gives

where and for , 2, 3. Thus, CS

singularities are obtained by solving

and the solutions are (modular a free parameter) or ,

, 2, 3. In view of the constraint , the singularity points

as a function of the separation distance are given in Table I.

To visualize the configuration space of the mechanism and

see how changes as a function of , we draw two circles

and with their centers at the origin, and radius and

, respectively, and another circle with center at ( , 0)

and radius , as shown in Fig. 3. Obviously, the annulus formed

TABLE I
CONFIGURATION SPACE SINGULARITY

POINTS VERSUS PARAMETER �

Fig. 3. Relative position between the annulus and the circle O .

by and is the workspace of the tip point of link 2 obtained

by rotating the first two links, and is the trajectory of the

same point obtained by rotating about . The loop constraints

are satisfied if and only if intersects the annulus. Define

, , , and

(see Table I). When is large and far away to the right, is

empty. As approaches , becomes a single point, a circle

for , a “figure 8” at , two separate circles for

, back to “figure 8” at , a circle for , a

single point at and back to the empty set for .

A. CS Singularities of the 3-UPU Manipulator

In this subsection, we will study the CS singularities of a well

studied spatial mechanism: the 3-UPU manipulator as shown

in Figs. 4 and 5. As implied by its name, the manipulator con-

sists of three serial chains with their joints arranged in the order

of UPU, where only the three prismatic joints are actuated. By

simply applying the Gruebler’s mobility formula, we see that

the mechanism has three DOFs.

3-UPU manipulators with their simple kinematic structure

have attracted many researchers. Tsai [24] and Gregorio and

Parenti-Castelli [25] provided conditions for such a manipulator
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Fig. 4. The SNU 3-UPU manipulator.

Fig. 5. The SNU 3-UPU manipulator.

to be purely translational. Han et al. [28] performed singularity

analysis of such a manipulator in detail. They found that for the

axis arrangement as the SNU manipulator (see Figs. 4 and 6),

the mechanism will exhibit a “strange” singularity at the home

position, where the end-effector is free to rotate even when all

the prismatic joints are locked. They pointed out that “strange-

ness” of the singularity lies in the fact that it can not be detected

Fig. 6. The SNU manipulator with the {first, second} and {fourth, fifth} axles
of the three serial chains lying in two parallel planes.

from the kinematics relation, , where is the

generalized velocity of the end-effector,

the joint angles of the three actuators, and the Jacobian matrix

whose rows represent the screws of the three prismatic joints.

is full rank at the home position and thus fails to predict the ob-

served behavior, (see [29] for more detail). Han et al. [28] iden-

tified such a singularity as a CS singularity by checking the rank

(and the condition number) of the Jacobian matrix of the loop

closure equations. Zlatanov, Bonev and Gosselin [29] obtained

the same results by exploring the rank of the constraint screws.

This singularity was also identified by Joshi and Tsai [30] using

an augmented Jacobian matrix which took the constraints into

account. By interpreting the rows of this matrix as lines, line

geometry method, i.e., that in [11], could be used to efficiently

find all possible singularities. In this section and the next we

show that this singularity is not only a CS singularity, but also

an irregular actuator singularity. We also show the equivalence

between the HKKP method [28] and the ZBG method [29].

Following the notations of Murray et al. [36], let

, be the joint angles

of the three serial chains. Denote by the configuration

of the end-effector relative to the world frame and its Lie

algebra. An element of can be represented in terms of

homogeneous coordinates as

and that of by

where for , we have

Let be the identification map
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The forward kinematics of the th chain is described by the

product of exponential formula

where is the screw representing the th joint in the

th chain.

Note that

is exactly the Maurer–Cartan form

[37], [38] with its action on a permissible velocity

. The end-effector velocity is

given by

with the Jacobian of the th chain. Express the manipulator’s

loop closure constraints as

and equate the Maurer–Cartan form of the three chains, we have

...

We can prove that at the home position of the SNU manipulator

(5)

While for Tsai’s manipulator (see Fig. 7), the left-hand side of

(5) is not zero. Figs. 8 and 9 represent the inverse condition

number of the SNU manipulator and that of Tsai’s manipulator

in a neighborhood of the home position. This shows that the

home position of the SNU manipulator is a CS singularity. Ap-

pendix A gives , for the SNU manipulator and

Tsai’s manipulator at their home positions. The derivation is

similar to that of HKKP [28].

To establish the equivalence between the HKKP method

[28] and the ZBG method [29], we first consider CS sin-

gularities in the space with the map

where with being the

Cartesian coordinates of the end-effector of the th subchain.

Since , there exists a set of Pfaffin constraints such

that

Fig. 7. Tsai’s manipulator with the planes formed by the {first, second} axle
of the three serial chains being different, and so do the planes formed by the
{fourth, fifth} axle.

Fig. 8. The inverse condition number of the SNU manipulator.

Fig. 9. The inverse condition number of Tsai’s manipulator.

where , is the constraint screw of the th

chain satisfying . Here, for simplicity, we assume that

, are of full rank. Second, the loop constraints
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impose another set of Pfaffin constraints on

such that

Collectively, we have the following complete set of Pfaffin con-

straints:

...

It is shown in Appendix B that

(6)

Another proof in Appendix C also shows that

(7)

In other words, a CS singularity of HKKP [28] is equivalent to

the linear dependence of the , , coinciding with

the definition of ZBG [29]. For the SNU manipulator at its home

position, we have

and thus, (6) is zero. On the other hand, for Tsai’s manipulator,

we have

and the left-hand side of (6) is not zero, and the home position

of Tsai’s manipulator is not singular.

B. CS Singularity: Another View

Observe from Example 1 that away from CS singularities or

when or , is indeed

a manifold of dimension one. However, the topological struc-

ture of these two one-dimensional manifolds are quite different,

with one being connected and the other not. Also, note that the

topology of the configuration space changes precisely at the

CS singularity points. From this change, we can obtain an ini-

tial design guide for selection of the parameter . For instance,

should be chosen so that, first of all, CS singularities are

avoided, and secondly, the resulting configuration space is either

a unit circle or two separate circles .

Other design criteria can be later introduced to fine-tune the pa-

rameter within a selected range. This topic will be addressed

in another research on optimal design of parallel manipulators

using LMI technique and semi-definite programming [39].

To develop a general understanding of CS singularities and

their relations with some key kinematic parameters of a par-

allel manipulator, we apply Morse theory [34] where CS sin-

gularities are viewed as the critical points of an appropriately

defined function with its value being the design parameter. By

Fig. 10. Torus in (s , s , l c + l c � l c ).

varying the design parameter from one critical value to another,

we obtain the homotopy classes of the configuration space and

useful information on suitable ranges of the design parameter.

We use again the four-bar mechanism to illustrate the applica-

tion of Morse theory for study of CS singularities and kinematic

parameter design.

Example 2: Four-Bar Mechanism Revisited: Assume that

does not vanish (this is in fact true for all value of ), and

is a manifold of dimension 2. Topologically, is

a torus as shown in Figs. 10 and 11.

Rearrange so that

and let be the restriction of to , i.e.,

Note that gives the height of the torus, as shown in Fig. 10

and 11. Furthermore, . A point

is called a critical point of if

The value of at a critical point is called a critical value. Since

we see that is a critical point if and only if there exists a

Lagrange multiplier such that

The later is true if and only if the CS singularity condition

is satisfied. Thus, CS singularity points are translated

exactly into critical points of . Let

We state the following useful result from [34].

Proposition 1: Let and suppose that the set ,

consisting of all with , is compact, and

contains no critical points of . Then, is diffeomorphic to
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Fig. 11. Diagram of the torus-topology of the four-bar mechanism.

. Furthermore, is a deformation retract of , so that the

inclusion map is a homotopy equivalence.

In other words, the parameter should be chosen to lie in a

range so that contains no critical points of .

Given a critical point , it is important to know whether

it is an isolated critical point or not. This can be answered by

a result of Morse Lemma [34] which states that, if the Hessian

of at is nondegenerate, then is an isolated critical

point. To compute the Hessian, , we assume that is pa-

rametrized by ( , ), and let

From (3) we obtain

(8)

Using (8) and applying the chain rule to

yields

(9)

Apparently, the Hessians at all four critical points are nondegen-

erate, and they are thus isolated critical points. The Morse index

of is defined as the number of negative eigenvalues of .

This index is independent of the local coordinates for . The

Morse index of at each of the four critical points is given

in the last column of Table I. Note that in Fig. 10, a good visu-

alization of is obtained as follows. Let be a differentiable

map

that maps to a new manifold . has the same topology as

since the critical points of on are mapped to those on

, and the Morse index of

(10)

is equal to that of because at

the critical points. is depicted in Fig. 10 instead of with

, , and .

To conclude the four-bar example, we note that other kine-

matic parameters can also be studied by manipulating the con-

straint functions. For instance, to consider we simply let

The general theory for understanding the relation between

a selected kinematic parameter and the topology of the con-

figuration space proceeds in a similar manner as that of the

four-bar example. We assume, for simplicity, that the first

functions are linearly independent for all , where

and

...

Then, is a manifold of dimension . Let ,

and define

to be the restriction of to . Since the tangent space

has the form

it is not difficult to see that a point is a critical point of

if and only if it is a CS singularity. The study of CS singularities

is translated into study of the critical points of the Morse func-

tion . By varying the parameter over , we obtain homo-

topy classes of the configuration space. To determine whether a

critical point is isolated or not, the Hessian of can be com-

puted as in the previous examples.

III. PARAMETRIZATION SINGULARITY

Consider the configuration space of a par-

allel manipulator. We wish to specify or parametrize it with

a suitable set of parameters. In general, if does not contain a
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CS singularity, then it is a manifold of dimension , and

a minimal number of parameters is needed to locally

parametrize . For parallel manipulators, there are two natural

choices of parametrization variables: the angle coordinates of

the active joints and the coordinates of the end-effector.

Just like the polar coordinates of the unit sphere that becomes

singular at its boundary of definition, any set of parametrization

variables for could encounter singularities. In this section, we

study singularities of a parallel manipulator when the angle co-

ordinates of the active joints and the coordinates of the end-ef-

fector are used to parametrize . Here singularities could arise

either because the parametrization variables reach their limits

(or not properly chosen) or\and becomes singular simultane-

ously. Traditionally, actuator singularities [2] (or singularity of

type 2 [1], redundant output [40], forward singularity and un-

controllable singularity) and end-effector singularities [2] (or

singularity of type 1 [1], redundant input [40] and inverse singu-

larity) have been separately defined. But, we see here that these

singularities are just two special cases of parametrization singu-

larities.

We will use again the language of differential forms to give

precise conditions of parametrization singularities. We will

study these singularities when is a manifold (i.e., away from

CS singularities) and when is singular. We call the former

case regular P-singularities and the latter case irregular P-sin-

gularities. Physical significance of these singularities will also

be discussed. In the section that follows, a finer classification

of the regular P-singularities will be presented.

A. Regular Parametrization Singularity

Assuming that does not contain a CS sin-

gularity and is thus a manifold of dimension , we say

that the manipulator is nominally actuated if the number of ac-

tuated joints is equal to , and redundantly actuated if it

is strictly larger than . For a nominally actuated system,

the set of active joint angles, denoted , serves as

a natural candidate for the coordinates of . Normally, every

coordinate system has its limitations as parametrization singu-

larities are inevitable at certain points in . It is important in

kinematic analysis and control to know the singularities of each

coordinate system. To define precisely parametrization singu-

larities and give exact conditions for occurance of these singu-

larities, we consider the case of a unit sphere parametrized by

the horizontal axes.

Example 3: Parametrization of : A unit sphere in is

specified by

Let . A local coordinate system of at is a

local diffeomorphism

where , , 2 are known as the coordinate functions of

. In general, , , 2 could be any two of , .

Here, we simply choose , , 2 without loss of

generality.

Definition 2: A point is called a parametrization

singularity (or P-singularity) if drops rank, i.e., there exists

such that

(11)

In the current setting, the above condition is equivalent to

(12)

On the other hand, we also have from the definition of that

(13)

Equations (12) and (13) show that , , and are linearly

dependent, and hence

(14)

Note that, by expanding (14), yields

The above condition is equivalent to that in Gosselin [1] and

Park [2], which states that is a P-singularity if and only

if of the following expression drops rank:

(15)

where and . From the Implicit Function

Theorem we know that, away from P-singularities, the passive

joints can be expressed uniquely in terms of the active joints

which can in turn be measured using sensors integrated with the

actuators.

(11), (14) and (15) give three equivalent conditions for P-sin-

gularities, from which we conclude that the P-singularities of

the ( , )-coordinates coincide with the equator of

the unit sphere.

Generalizing from the unit sphere example, we have the fol-

lowing.

Proposition 2: Let , , be a set of

local coordinate functions on . A point is a P-singularity

of if and only if the -form in (16) vanishes at

(16)

In particular, if we let , the joint angles of

the active joints, then the condition for actuator singularities

(or A-singularity) is given by

(17)

and if we let , the local coordinates of the

end-effector, then the condition for end-effector singularities

(or E-singularity) is given by

(18)

Because of inevitable P-singularities, a single set of

active joints can not cover an entire manifold of dimension
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. To provide a complete coordinate system, more active

joints need to be introduced so that a new combination of the

active joints can serve as a valid coordinate system when another

set is singular. Consider, for instance, the case of a unit sphere. If

we “actuate” joint as well, then the unit sphere is completely

covered by the three coordinate systems ( , ),

. This is because the three equators defined by ,

, i.e. the P-singularities of these three coordinate charts,

have no common intersection point. In other words, for a point

to be an A-singularity of ( , , ), we need to have

The only solution of the above equation is , which

is not in .

In general, when there are a total active joints, a

point is an A-singularity if no combination of

active joints exists that makes a regular point.

Corollary 1: A point is an A-singularity of

active joints (or redundant actuators) if

and only if

(19)

where . In other words, all

n-forms vanish simultaneously at .

Remark 1: All results contained in this paper are coordinates

invariant, an added advantage of using differential forms!

B. Irregular P-Singularity

Obviously, at a CS singularity, the condition (16) and

(17) for P- or A-singularity is automatically satisfied. In this

case, the set of 1-forms or

may drop rank by one or

more. We call these singularities irregular P- or A-singularities.

At an irregular A-singularity, is not a manifold, the mech-

anism may instantaneously gain one or more DOF, and the

originally nominally actuated system becomes underactuated.

The home position of the SNU manipulator is an irregular

A-singularity as it is a CS singularity. This explains why the

end-effector can experience finite motion even with all active

joints locked.

For a redundantly actuated manipulator, a definition of irreg-

ular A-singularity is given by

(20)

where ,

. In other words, all n-forms vanish

simultaneously at . From (17), we see that irregular

actuator singularities can not be eliminated by actuating a

new set of joints while keeping the number of actuators fixed.

However, from (20), it is possible to avoid them through

redundant actuation.

Remark 2: To completely identify actuator and end-effector

singularities, it is necessary to take into account the constraints

in addition to the kinematics as was done in (16), (17) and (18).

To conclude this section, we highlight following two advan-

tages of our approach to singularity analysis: 1) The use of ex-

terior algebra (also called Grassmann algebra [41]) is a good

generalization of other tools such as matrix analysis and screw

theory, as shown in Section 2.1; 2) naturally taking into account

the constraint functions in addition to the selected actuator and

end-effector coordinates. The former allows us to analyze sin-

gularities of a wide class of parallel manipulators and the latter

allows us to completely search for all actuator and end-effector

singularities, including the “strange” A-singularity of the SNU

manipulator.

IV. GEOMETRIC STRUCTURE OF REGULAR

P-SINGULARITIES

When a parallel manipulator is at a regular P-singularity, the

set of passive joints becomes undetermined. Depending on the

nature of the singularity, the manipulator may still be able to

exhibit finite motions even when all actuators are locked. This

can sometimes be a source of danger as the mechanism may col-

lapse, harming the mechanism itself or humans in the workspace

of the mechanism. It is thus important to be able to classify all

singularities and identify these which are potentially dangerous.

A. Degrees of Deficiency and Stratified Structure

Consider a parallel manipulator with actuated joints

. Define the set of regular P-singularity

points

and the set of annihilation vectors at

The dimension of measures the deficiency of these one-

forms and is called the degree of deficiency (DoD) of the P-sin-

gularity. Since the , , are linearly independent,

. On the other hand, is also equal to the co-rank

of the Jacobian matrix , with

being the angles of the passive joints,

we have . Thus, an upper bound on is given by

Let

be the set of singularities of DoD . A result of

[42] shows that is generically a manifold of codimension

. We also have .

Define

and

is a distribution of annihilation spaces of dimension on

, and is a distribution of annihilation spaces on , with

not necessarily constant ranks. Note that the dimensions of
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Fig. 12. 2-DOF parallel manipulator.

and are not necessarily the same. With these notions, we

are able to give a classification of P-singularity points [42].

Definition 3: A point is called a first-order singu-

larity point if and only if there does not exist a vector

that is also tangent to . Otherwise, is called a second-order

singularity.

Second-order singularity has a special property that it may

still be close to the singular curve under a perturbation along an

annihilation vector (e.g. the vector that is tangent to ).

Example 4: P-Singularities of a 2-DOF Parallel Manip-

ulator: Consider a 2-DOF parallel manipulator shown in

Figs. 12 and 13, where the ambient space is parametrized by

( , , , , , ), and the actuated joints by ( , ).

By equating pairwise the end-effector position coordinates

from each of the three arms, we obtain the following constraint

functions:

Actuator singularities are obtained by solving the equation

or

There are two solutions given by, respectively

Consider first singularity point , where the singularity mani-

fold is obtained by solution of the constraint function

Fig. 13. Dimension of the 2-DOF parallel manipulator.

and . The result is a one-dimensional curve,

with a basis for its tangent space given by

where

A basis for can also be calculated from the definition, and

is given by

is tangent to if

In other words, most points of the singularity curve are first-

order singularities, see, e.g., Fig. 14(a). Only one point given

by the above condition is a second-order singularity. Fig. 14(b)

shows the configuration of the second-order singularity.

Consider next singularity point . The singularity curve

is determined by the constraint and . The

basis for its tangent space is given by
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(a) (b)

Fig. 14. (a) First-order singularity. (b) Second-order singularity.

where

A basis of is calculated as

Thus, no solution exists for to be tangent to , and all these

points are first-order singularity points.

B. Degenerate and Nondegenerate Singularities

A second-order singularity can be further classified into a

nondegenerate singularity if it is isolated and degenerate sin-

gularity if it is continuous. More precisely, we know that gener-

ically is a -codimensional submanifold of , and

is a -dimensional subdistribution of

annihilation vectors on .

Definition 4: A second-order singularity is degen-

erate if and only if there is a constant rank (with )

sub-distribution such that

1)

2) can be integrated to form a

degenerate singular manifold .

Note that the second condition requires to satisfy the

Frobenious involutive condition. Degenerate second-order

singularities may be a continuous curve or a surface of higher

dimensions. A degenerate A-singularity is sometimes dan-

gerous because the mechanism may collapse along the integral

manifold even if all active joints are locked. Similarly, a

mechanism with a degenerate E-singularity will exhibit finite

internal motions without affecting the end-effector. It is for

these reasons that degenerate singularities should be eliminated

in the design, or to be avoided to the least.

A hierarchic diagram of our classification of singularities is

given in Fig. 15.

Fig. 15. A hierarchic diagram of singularities, A-sing.: actuator singularity.
E-sing.: end-effector singularity. P-sing.: parametrization singularity. N.
Degenerate: Nondegenerate.

It should be noted that Definition 4 is too abstract to be useful

in practical situations. Alternative conditions in terms of local

coordinates can be developed for verifying degeneracy of a sin-

gularity point. Park [2] first explored the Hessian of some Morse

functions and developed sufficient conditions for an A-singu-

larity to be nondegenerate. Here, we follow the idea initiated by

Park and study the coefficients of the Taylor series expansions

of the most obvious Morse functions on , .

Let beanA-singularity, beabasis

of . Then, a variation vector can be written as

is a degenerate A-singularity if and only if

(21)

for small . Taking the Taylor series expansion of (21) yields

(22)

Note that the first term on the right-hand side of (22) drops out

since is an annihilation vector. Also, for arbitrarily small ,

the remaining coefficients in (22) are required to be zero for

.

(23)

(24)

... (25)

where is a tensor of order 3 and

gives the coeffi-

cients of . Thus, degeneracy of the singularity is equivalent

to the existence of a nonzero solution to (23), (24) and (25). In

other words, if there exists an such that the quadratic form

is positive definite or nega-

tive definite, then the considered singularity is nondegenerate.

This kind of singularity is also called elliptic as the quadratic
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Fig. 16. 3-DOF parallel manipulator.

Fig. 17. Dimension of the 3-DOF parallel manipulator.

form has an elliptic Dupin indicatrix [43]. The quadratic form

associated with a degenerate singularity should be hyperbolic,

parabolic, or planar.

Example 5: Degenerate Singularities of a 3-DOF Parallel

Manipulator: Consider a 3-DOF parallel manipulator shown in

Fig. 16 and 17, where the ambient space is parametrized by

. The configuration of the end-effector is

described by the Cartesian coordinates with

( , ) the displacement of the center , and the orientation

angle. are chosen to be the active joints. The

loop closure constraints are given by

Fig. 18. Vectors of 3-DOF parallel manipulator.

where , and . A-singu-

larities are obtained from

The solution is a surface determined by the following equations:

(26)

(27)

where

Since , , ,

, , are vectors as shown in Fig. 18, an obvious solution

of (26) is given by

or equivalently

where represents the angle from to . The singular

configuration of the manipulator is depicted in Fig. 19 where the
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Fig. 19. Nondegenerate P-singularity.

lines of the link , , pass through the center of the ma-

nipulator simultaneously. The annihilation velocity at this con-

figuration is computed as

or in terms of end-effector velocity as , that is,

the end-effector is allowed to perform an infinitesimal rotation

about the center .

To determine the degeneracy of this singularity, the Jaco-

bian and the Hessian (similar for

others) are needed as shown in the equation at the bottom of

the page. It is not difficult to verify that

and is positive semi-definite. Furthermore, if

, there exists an such that .

This shows that the singularity is nondegenerate. On the other

hand, one degenerate singularity can be obtained by simply let-

ting . The Hessian matrix of (similar for

others) is calculated as

The annihilation vector turns out to be a constant vector

. This singularity is shown in

Fig. 20.

Fig. 20. Degenerate P-singularity.

V. CONCLUSION

This paper presented a geometric framework for analyzing

the singularities of a parallel manipulator. Using the differential

forms associated with the constraint functions, we derived

simple conditions for configuration space singularities. Topo-

logical structure of these singularities and their relations with

the kinematic parameters of the system were investigated sys-

tematically using Morse function theory. We gave an intrinsic

definition of parametrization singularities, and showed that

actuator and end-effector singularities are just two of its special

cases. We applied the proposed approach to the analysis of the

observed “strange” singularity of the SNU manipulator and

showed that it is in fact a CS singularity and an irregular A-sin-

gularity. We derived conditions for classifying parametrization

singularities into first-order and second-order singularities. The

latter can be further classified into nondegenerate and degen-

erate singularities. The danger associated with a degenerate A-

or E-singularity was described.

It should be noted that the mathematical tool presented in this

paper is a powerful one even for general analysis of parallel

manipulators. In a forth coming paper, we will extend this tool

to geometric control of parallel manipulator based systems.

APPENDIX A

JACOBIAN MATRICES OF THE SNU MANIPULATOR AND TSAI’S

MANIPULATOR AT THE HOME CONFIGURATION

The Jacobian matrices of the three chains of the SNU manip-

ulator at its home position are given by the first equation at the
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bottom of the page, and that of Tsai’s manipulator by the second

equation at the bottom of the page. The initial configurations of

the end-effector for these two manipulators are the same and

given by

APPENDIX B

PROOF OF (6)

First, we note that the Pfaffin constraints can be manipu-

lated into
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If

then

To prove the converse, we expand as the sum

of linearly independent forms. One form is

If , we have necessarily that

APPENDIX C

PROOF OF (7)

Consider the map

is precisely the tangent map of . It is not difficult

to see that

If is an annihilating vector of , , then

which shows that is an annihilating vector of

. Conversely, if annihilates , ,

then from

has a unique solution for . We derive from the

remaining equations that

where . This clearly shows that annihilates

, . Further, we can easily prove that the di-

mensions of the annihilation spaces for these two set of forms

are equal and then (7) derives.
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