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I. Introduction 

We are concerned with the structure of solutions of systems of conservation 

laws 
U,+F(U)x=0, - ~ < x < ~ ,  t > 0  

which are strictly hyperbolic and genuinely nonlinear in the sense of LAX [7]. Here 

U takes on values in R" and F is a nonlinear mapping function from R" to R"., 

The problem of structure is posed for both generic and arbitrary solutions. For 

a single genuinely nonlinear equation (n= 1), it is known (SCHAE~R [10]) that 

solutions are generically piecewise smooth. For the general single equation, 

solutions are also known to be generically piecewise smooth (GucKENHEIMER [5]). 

Moreover, the generic stability of shock waves in a single genuinely nonlinear 

equation has been established by GOLt:mTSKY & SCHAEFFER [4]. On the other hand, 

the problem of generic structure for systems is presently open. 

In this paper we are concerned with the structure of an arbitrary solution of 

a system of conservation laws. The paper is divided into three working sections: 

Section 2, the local decomposition of the solution into elementary waves; Section 3, 

the classification and propagation of singularities in the solution and the limiting 

behavior at singularities; Section 4, the propagation of sound waves in domains 

of continuous flow. We consider solutions which are constructed by the difference 

scheme of GLIM~ [2] and whose initial data have small total variation. Such 

solutions satisfy the entropy admissibility criterion of LAX [9]. While the analysis 

is carried out for systems of two equations, it would seem that a straightforward 

generalization to systems of n equations is likely. 

It is well-known that solutions are functions of bounded variation in the sense 

of CESARI: their first order partial derivatives are locally Borel measures. A solution 

therefore inherits the regularity and structure common to all such functions 

(here referred to by the notation BVC). For the purpose of comparison we recall 

the structure of an arbitrary BVC function, [1], [12]. Let V be a BVC function 

defined on an open domain in R". Each point P of its domain is classified as a 
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regular or irregular point according to the existence or nonexistence of a hyper- 

plane through P with respect to which V has approximate one-sided limits at P. 

The set I of irregular points is sparse in the sense that it has zero ( m -  1)-dimensional 

Hausdorff measure. Each regular point proves to be either a point of approximate 

continuity or a point of approximate jump discontinuity, according to whether 

as the associated one-sided limits are equal or distinct. The set J of jump points is 

countably rectifiable with respect to (m-1)-dimensional Hausdorff measure in 

the sense of FEDERER: there exist compact subsets Kj~R m-1 and univalent Lip- 

schitzian maps qs; such that ffj(Kj) are disjoint and such that J = U ~;(Kj)w M, 
j = l  

where M is a set with zero ( m -  1)-dimensional Hausdorff measure. 

The singular sets of the solution have the following structure (Theorem 3.1). 

The set I of irregular points is at most countable. The set I w J is an at most 

countable union of Lipschitz continuous curves F, = {x,(t), t} such that no two 

curves intersect in more than two points. Furthermore, the speed of propagation 

5%( 0 of each curve is a function of bounded variation. The curves F, constitute the 

shock waves of the solution. The set of irregular points consists precisely of the 

points of collision and formation of shocks, together with the centers of (generalized) 

compression waves impinging on shocks. 

In contrast to an arbitrary BVC function the limiting behavior of the solution 

at a singular point admits a classical description (Theorem 2.1, Corollary 3.1). 

At each regular point on a shock wave the solution has one-sided pointwise 

limits with respect to both the left and right sides of the shock. These limits are 

distinct and satisfy the Rankine-Hugoniot relations. Moreover, the shock waves 

F. propagate at classical shock speed in the sense that, with the possible exception 

of a countable set of points, the derivative 5%(t) exists and is given by the classical 

formula which relates the speed of propagation of a shock to the one-sided limits 

of the solution along the shock. The exceptional set is contained in the set of 

irregular points and corresponds to points of wave interaction. At each irregular 

point on a shock wave the limiting behavior of the solution admits a description 

in terms of generalized elementary waves, cf. Theorem 2.1. 

The above regularity of shock waves is essentially optimal. Even for a single 

conservation law there exist solutions with the property that the speed of prop- 

agation 5%(0 of each shock wave F, fails to exist on a dense subset of its domain 

of definition. In such examples the collision set, and hence the shock set w F,, 

is everywhere dense in the upper half-plane. 

Although a solution may admit an everywhere dense shock set, there is a 

measure-theoretic ,sense in which the individual waves F, are isolated and locally 

dominate the variation of the solution (Corollary 3.1). There exists a neighborhood 

of each regular point on a shock in which the restriction of the solution to the 

complement of the shock has arbitrarily small total variation. This property 

implies the stability of shocks in LAx's sense, namely that nearby characteristics 

run into the shock when followed in the forward direction of time. The isolated 

character of shock waves is a consequence of the condition of genuine nonlinearity. 

The characteristic curves which impinge on a shock do so at a uniform angle 

depending on the magnitude of the shock. Thus the accumulation of shocks 

occurs simultaneously with the diminishing of magnitude and the approach of 
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shock speed to characteristic speed. Likewise, there is a measure-theoretic sense 

in which the set of irregular points consists only of isolated points of wave inter- 

action; cf. Theorem 2.1 and Theorem 3.1. 

In contrast to an arbitrary BVC function, the admissible discontinuities of 

a solution have a natural physical interpretation as either shock waves or points 

of wave interaction. Moreover, the solution is not merely approximately continu- 

ous on the complement of its shock set but is continuous in the pointwise sense 

(Corollary 2.1). Furthermore, the solution is Lipschitz continuous in any interior 

component of the set on which it is continuous (Theorem 4.1). The interior re- 

gularity is a consequence of the reversibility of the solution in domains of continu- 

ous flow and the corresponding geometry of characteristic curves. A quantitative 

expression of the reversibility of Lipschitz continuous solutions is provided by 

a theorem of LAX [8] which estimates the Lipschitz constant of uniformly bounded 

solutions in terms of the equations and the length of the interval of existence of 

the solution. We note that not much additional regularity is expected since Lip- 

schitz continuous solutions can be constructed whose first order partials deriva- 

tives fail to exist on an everywhere dense subset of their domain of definition. 

As an immediate corollary of the interior Lipschitz continuity it follows from 

a theorem of LAx [-6] that the discontinuities in the first order partial derivatives 

of the solution propagate only along characteristic curves. Thus a solution affords 

a classification of its singularities into shock waves, points of wave interaction 

and sound waves. 

The limiting behavior of the solution at a singular point is derived as a corollary 

of its local structure. The structure of a solution U in the neighborhood of an 

arbitrary point (Xo, to) is determined by the one-sided limits U(x o • 0, to) of the 

restriction of U to the line t---t o. If the restriction is discontinuous at x 0 then U 

admits a local decomposition into generalized elementary waves; cf. Section 2. 

If the restriction is continuous at x o there exist no recognizable waves interacting 

at (x o, to), in the sense that the solution is not only continuous at (x o, to) as a func- 

tion of x and t but its restriction to a small neighborhood of (x o, t 0) has arbitrarily 

small total variation on almost all space-like and time-like arcs (Corollary 2.2). 

The problem of local structure is two-fold: to determine, in a small neighbor- 

hood N of a given point (x0, to), the structure of the outgoing solution at (x o, to) 

(i.e. the restriction of U to N ~ {t > to} ) and the structure of the incoming solution 

at (Xo, to) (i.e. the restriction of U to N c ~ { t < t o }  ). The solution distinguishes 

between the positive and negative directions of time through the entropy condition. 

The structure of the outgoing solution is similar to the structure of the classical 

solution of the Riemann problem. In general the outgoing solution of a system of 

two equations admits a decomposition into three wedge-shaped domains of small 

variation which are separated either by generalized shock waves or generalized 

(centered) rarefaction waves; cf. Section 2. Moreover, the structure of the outgoing 

solution is determined by the one-sided limits U(xo • 0, to) of the restriction of 

U to t = t  o. These can be classified into three types according to the relative 

location of U(x  o +0, to) and U(x o - 0 ,  to) in state-space (Corollary 2.1). In general, 

the incoming solution admits a decomposition into three wedge-shaped domains 

of small variation which are separated by generalized compression waves; cf. 

Section 2. In contrast to the outgoing solution, the structure of the incoming 
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solution is not uniquely determined by the limits U(xo+O, to) since the initial 

value problem is not properly posed in the backward direction of time. 

The main tool in the analysis of the local structure of the solution is the theory 

of characteristics developed by GLIMM & LAX [3]. The use of this theory for both 

the large-time decay and the local structure of the solution is a reflection of the 

fact that the equations are invariant under similarity transformations. In Sec- 

tion 2 we recall certain basic results in the theory of characteristics. 

With the exception of Theorem 4.1 on interior Lipschitz continuity, the proofs 

of this paper do not make essential use of the existence of a coordinate system 

of Riemann invariants, a condition which is special to systems of two equations. 

It is for this reason that (with the possible exception of Theorem 4.1) a natural 

generalization of our results to systems of n equations can be expected. 

2. Local Structure 

Consider a system of two equations 

(2.1/ ~ - c +  F(C)=0, C= uv ' F= 

which is strictly hyperbolic and genuinely nonlinear in the sense of Lax [7]. 

For  concreteness, the system (2.1) is assumed to satisfy the GHNM-Lax shock 

interaction condition [3], i.e. the condition that the interaction of two shocks of 

the same field produces a shock of that field and a rarefaction wave of the opposite 

field. This condition is known to hold for equations of physical interest, e.g. gas 

dynamics and shallow water waves. 

First we shall recall the classical definitions of elementary waves. Let wj = wj(u, v), 
j = 1, 2, denote a pair of Riemann invariants for system (2.1). The corresponding 

characteristic equations for smooth solutions take the form 

Ot wj + 2 i wj = 0, j = 1, 2, 

where 21 and 22 denote the characteristic values of F', 2x<2 a. It is standard to 

normalize the right eigenvectors r~ of F' so that the condition of genuine non- 

linearity is expressed by 

rj. 17)~j > 0, j =  1, 2, 

and then to normalize the invariants so that 

(2.2) rj. Vwj>O, j= 1, 2. 

The classical waves can be conveniently described by associating a major 

and a minor Riemann invariant with each characteristic field. We define the major 

invariant of the fh field, Mj(U), to be the function wj and define the minor in- 

variant of the jth field, mr(U), to be the function w k, k 4:j. The elementary waves 

are of two types, simple and shock. A j-simple wave is a domain in the x - t  plane 

on which the solution U is smooth and on which the minor invariant rnj(U) is 

constant. A j-simple wave is classified as a j-rarefaction wave or as a j-compression 
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wave according to whether the j-characteristics within the wave do or do not 

diverge with increasing time (equivalently, whether the major invariant Mr(U ) 

is an increasing or decreasing function of x for fixed t). A j-shock wave is a curve 

of discontinuity whose speed of propagation satisfies the j-shock conditions 

of LAX [7]. Under the normalization (2.2), the major invariant M r decreases with 

increasing x across a j-shock. Under the GLIMM-LAX shock interaction condition 

the minor invariant m r also decreases with increasing x across a j-shock. Thus, 

the decreasing variation of both invariants is supported by shocks and compression 

waves while the increasing variation is supported by rarefaction waves. The change 

in the minor invariant across a shock is third order in the change in the major 

invariant independently of any shock interaction condition: 

[mr] = O ([Mj] 3). 

The classical solution of the Riemann problem is a self-similar solution 

U = U(x/t) which consists in general of three constant states such that any two 

consecutive states are separated by a shock or rarefaction wave. The structure of 

the solution can be conveniently classified by an ordered pair (W1, I4/2), where 

W~=S or W~=R according to whether the j-wave of the solution is a j-shock or 

a j-rarefaction wave. If the solution contains only one wave, say a k-wave, then the 

absence of the j-wave, j ~ k, will be indicated by setting Wj = ~b. 

The structure of the solution of the Riemann problem is determined by the 

positions in state-space of the initial data. For  given data U +, U-  let w + = wr(U e) 

and let 
_+ 

P+ =(w~, w 2 ). 

In the plane of Riemann invariants let St=St(P- ) and Rr=Rj(P-) denote the 

shock wave curves and the rarefaction wave curves of the jth field through the 

point P - ;  cf. Figure 1. The structure of the solution U is determined by the location 

of P+ either on one of the curves Rr, S r or in one of the open quadrants Qr defined 

by R r and S r [11]: 

U=(R,R) if P+~Q1 U=(R,~b) if P+~R 1 

U=(R,S) if P+ ~Q2 U=(~b,S) if P+ ~S 2 
(2.3) 

U=(S,S) if P+~Q3 U=(S,  ~b) if P+~SI 

U=(S,R) if P+~Q, U=(qS, R) if P+~R 2. 

W2 
02 

03 }s, 

Fig. 1 

R~ 

R2 
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The solution U contains three constant states U_, U m and U§ such that the middle 

state U m is a uniquely defined smooth function of the initial data which will be 

denoted by 

(2.4) Vm = Um(U +, U-). 

The problem of locally decomposing an arbitrary solution into waves requires 

a generalization of the classical notion of an elementary wave. Let a j - -a t (U*,  U-) 
denote the speed of propagation of a classical j-shock separating U + and U-  : 

or= ( f  + - f - ) / ( v  + - v - ) =  (g+ - g-)/(u + - u-). 

Definition. A generalized j-characteristic is a Lipschitz continuous curve 

Xr(t ) whose speed of propagation exists, with the possible exception of countably 

many points, and has the following properties. If Xr(t ) is a point of continuity 

of the restriction U(',  t) then 

xr(t) = { v(xr( t ) ,  O}- 

If Xr(t ) is a point of discontinuity of the restriction U(., t) then the limits U +- = 

U(Xr(t)+O, t) satisfy the Rankine-Hugoniot relations and 

2r(t) = +, v - ) .  

Generalized characteristics can be constructed as the limit of approximate 

characteristics X~ in the GLIMM approximate solutions U h, [3]. The property that 

generalized characteristics propagate at either shock or characteristic speed 

follows from the corresponding property for approximate characteristics. The 

speed of propagation Xr(t) of a j-characteristic X r constructed in this fashion is 

necessarily a function of bounded variation [3]. 

Let Xr(t ) < Yj(t) be two j-characteristics which are defined in a neighborhood 

of a given point (x o, to) and which pass through (Xo, to). Let 

nj = {(x, t): Xj(t) < x < Yj(t)}. 

A generalized j-simple wave is defined by the limiting behavior in t of the increasing, 

decreasing and total variations in x of the restriction of the invariants mj(U(', t)) 
and Mr(U(. , t)) to the interval [Xr(t), Y~(t)]. 

Definition. The domain nrc~{t>to} is a generalized j-rarefaction wave if 

Xj(t) < Yj(t) for t > t o and if the following properties hold: 

(2.5) lira IVMr[Xj(t), Yj(t)] >0  
t ~ t o  

(2.6) lim D VMj [Xj(t), Yj(t)] = 0 
t ~ t  0 

(2.7) lim TVmr[Xj(t), Yj(t)] = O. 
t ~ t  0 

Conditions (2.6) and (2.7) imply that the total strength of all shocks within the 

wave approaches zero as t approaches t 0. Condition (2.5) is roughly equivalent 

to the condition that j-characteristics leaving (Xo, to) diverge with increasing time. 

For  the equations of isentropic gas dynamics conditions (2.5)-(2.7) imply that 

the predominant effect of the wave is to rarefy rather than compress the gas. 
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Definition. The domain n j ~  {t<to} is a generalized j-compression wave if 

the following properties hold: 

(2.8) lim DVMj[Xj(t), Yj(t)] > 0 
t ~ t  0 

(2.9) lim I VMj [Xj(t), Yj(t)] = 0 
t ~ t  0 

(2.10) lim IVmj[Xj(t), Yj(t)] =0.  
t ~ t  0 

Condition (2.7) is not imposed on a generalized j-comt~ression wave in order 

to accommodate j-shocks within the wave. Any combination of classical j-shocks 

and classical centered j-compression waves interacting at a point qualifies as a 

generalized j-compression wave. The notion of a j-compression wave which does 

not contain j-shocks in the limit as t approaches t o is introduced in Section 3. 

We note that rates cannot be associated with the limits (2.5)-(2.10) which 

define generalized rarefaction and compression waves, due to the invariance of 

the equations under similarity transformations. 

Let K be an interval contained in R +. 

Definition. A j-shock wave is a j-characteristic Xj(t), t e K, whose strength, 

str Xj(t)= [U(Xj(t)+ O, t ) -  U(Xj(t) - O, t)[, 

has the following property. For  every bounded subinterval of K, not containing 

the end points, there exists a 6 >0  such that str Xj(t)> 6 if t lies in that subinterval. 

We note that the strength of a shock wave is defined except possibly at a 

countable set of points. The strength of a shock wave at the initial and end points 

t I and t 2 of its domain of definition will be defined by taking limits: 

s t r  X j ( t k )  = lim str Xj(t). 
t ~ t  k 

Let Q be a simply-connected domain with piecewise smooth boundary. 

Let 1 s denote a typical line segment on the line t - -s  and let ly denote a typical line 

segment on the line x = y. Let 

Vat, (O) = sup { TVU(It): l, c O} 

Varx (~2; G) = sup { TVU (l,): l~ = O, xe  G} , 

where TVU(l) denotes the total variation of U restricted to the line segment I and 

G c ~ .  

Definition. A region ~ is a state of small variation with respect to (Xo, to)CO 

if there exists a set G with zero Lebesgue measure such that 

(2.12) lim Var t (O c~ B,) + lim Var x (f2 n B, ; G) = 0, 
r ~ O  r ~ O  

where B, is the ball of radius r centered at (x o , to). 

In the above situation the limit of U(x, t) as (x, t) approaches (x o , to) within O 

exists and will be denoted by 

U(xo, to ; 0). 
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The absence of a restriction on the line segments I t beyond that required by the 

inclusion is a consequence of L~-continuity of the solution in t; cf. (3.1). 

The local decomposition of the solution into elementary waves in a neigh- 

borhood of a given point (x o, to) requires separate consideration of the incoming 

and outgoing solution at (x o, to), i.e. the restriction of the solution to N c~ {t < to} 

and N c~ {t> to} respectively. In Theorem 2.1 the structure of the incoming and 

outgoing solutions is described in terms of j-characteristics X j <  Y~,j=I,2, 

passing through (Xo, to) and in terms of the following domains which are comple- 

mentary to the waves nj (cf. Figure 2): 

f2 ={(x , t ) :x<Xl ( t  ) if t> to ,  x < X 2 ( t  ) if t<to} 

f 2 + = { ( x , t ) : x >  Y2(t ) if t>=t o, x<Yl(t) if t<to} 

,Q,.,, = {(x, t): ~(t)<x<X2(t)} 

,(2,= {(x, t): Y2(t)<x<Xl(t)}. 

Theorem 2.1. Through each point (Xo, to), t o > O, there pass generalized j-char- 

acteristics X j ( t )<  Yj(t), j = l ,  2, which are defined on an interval containing t o in 

its interior and which satisfy the following properties" 

1) The domains ~2+ , f2m, f2, are states of smaU variation with respect to (x o, to). 

2) Either nj n {t < to} is a generalized j-compression wave or 

lim TVU[Xj( t ) ,  Yj(t)-I =0, t < t  o. 
t ~ t o  

3) Either nj ~ {t > to} is a generalized j-rarefaction wave or nj c~ {t > to} equals 

Xj(t) and Xj(t) is a generalized j-shock such that str Xj(t  o + 0)>0 or 

lim TVU[X~(t) ,  Y~(t)]---0, t > t  o. 
t ~ t o  

A typical example is illustrated in Figure 2. 

It is a straightforward corollary of Theorem 2.1 that the structure of the out- 

going solution at (Xo, to) is determined by the limits 

U • %f U(x o + 0, to) 

in the same way as the solution of the Riemann problem with initial data U-+. 

A further expression of the property of locally finite propagation speed is the 

t 

l X1 =Y1 X2 Y2 

~rn 

X2 = Y2 Xl Y1 

Fig. 2 
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fact that 

U • = U(x o, t o ; f2• 

Corollary 2.1. Let w~ =wj(U • and P• =(w~, w• ). The structure of the out- 

going solution at (Xo, to) satisfies the classification given in (2.3) for the Riemann 

problem. The limiting value of U at (Xo, to) with respect to the middle state is deter- 

mined as in the Riemann problem: U(xo, t o ; f2m)= Um(U +, U-).  

Corollary 2.2. I f  the restriction of U to t = t o is continuous at Xo, then any neigh- 

borhood of (Xo, to) is a region of small variation with respect to (Xo, to). In particular, 

U is continuous at (Xo, to) as a function of x and t. 

Remarks. In the case where P+ lies on one of the shock or rarefaction wave 

curves through P -  the outgoing solution consists of only one wave. For example, 

if P -  lies on R 1 then the union of 12 m, rc 2 and O+ is a state of small variation with 

respect to (Xo, to) and the outgoing solution is classified as (R1, q~), 

It follows from the structure of the incoming solution at (Xo, to) that the in- 

creasing variation of both Riemann invariants approaches zero as t approaches t o 

from below. Therefore, 

wj(U(xo+O, to)) -wj(U(xo-O,  to))<0, j =  1,2. 

These inequalities imply in particular that the outgoing solution cannot assume 

the forms (R 1 , qS), (~b, R2) or (R 1 , R2). Centered rarefaction waves exist at times 

t > 0 only as a result of their birth from the interaction of shocks and/or compres- 

sion waves. A classification of the structure of the incoming solution similar to 

that of the outgoing solution is not possible since the incoming waves are not 

uniquely determined by the limits U + and U- .  

Preliminaries. The standard measure of the magnitude ~ of a classical j-wave 

is the jump in the major invariant from right to left across the wave: 

e~=M? - M ; .  

Under the normalization (2.2) shock waves have negative magnitude and rar- 

efaction waves positive. In the GLIMM approximate solutions U h the balance be- 

tween the total amount of j-shock ( - )  and j-rarefaction wave (+ )  entering (E) and 

leaving (L) a given region A is expressed by the approximate conservation laws 

for waves [3]: 

(2.13) L:~ (A) = E~ (A) -T- Cj(A) + O(z) Q(A). 

Here Q and C~ denote the total amount  of wave interaction and the total amount  

of j-wave cancellation within A, and z denotes the oscillation of U h within A. 

The domain A is an arbitrary union of diamond-shaped regions formed by con- 

necting the random mesh points of the difference scheme with line segments; 

cf. [3]. Similar conservation laws hold in the limit for the solution U. 

The conservation laws (2.13) also hold for domains bounded by pairs of 

approximate characteristics [3]. In fact, the trajectory of an approximate j-char- 

acteristic is determined by this very condition and by the requirement that j-rar- 

efaction waves of U h do not cross approximate j-characteristics. A j-rarefaction 
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wave in U h cannot enter or leave a region through that part of its boundary which 

consists of approximate j-characteristics. The prescription [3] of the trajectory 

of approximate j-characteristics in the forward time direction applies with only 

a simple modification to the backward time direction and yields in the limit 

generalized j-characteristics with the same properties. 

Our analysis of the local structure of the solution employs estimates of GLIMM & 

Lax I-3] which connect the rate of spreading of a pair of j-characteristics to the 

amount of j-shock and j-rarefaction wave contained between them. In order to 

minimize the influence of characteristics of the opposite field, the distance between 

j-characteristics is measured at times displaced in the direction in which k-waves 

propagate, k :#j. Consider a sequence of approximate j-characteristics X~ < Yr. 

Let a~ denote the family of space-like polygonal arcs which lie between X~ and yjh 

and which consist of space-like edges of diamonds in U h. Let t~' denote the terminal 

h which originates at time t. Figure 3 illustrates the case j = 1. time of the arc a t 
Let +- h CO t (at) denote the total amount of j-shock and j-rarefaction wave in U h 

which crosses a~ between but not on X~ and yjh. If X~ and Yi h coalesce, the quantities 

e)~ are defined to be zero. After passing to a subsequence, the characteristics 

X~ and y h converge uniformly to generalized j-characteristics X~ and Yj, and the 

arcs a) converge to space-like line segments a t which propagate at a speed equal 

to the fixed ratio of mesh lengths Ax/At .  In addition, the limiting amounts of 

j-shock and j-rarefaction waves crossing a t, namely 

e)~ (a,) = lim o)~ (a~), 

exist and are functions of bounded variation in t [3]. The rate at which Xj and Y~ 

approach is influenced predominantly by the balance of j-shocks and j-rarefaction 

waves: 

(2.14) 

where 

Yj(t*) - 2 j ( t ) =  I~jA~(t) + 0(1)  (o)~- +Ira/- I), 

Aj(t) = co~- + e)j- - (1 /2  + O(z)) (str Xj + str Yj)+ O(z) ( o f  +1%-I) 
(2.15) 

= o) > o.  

Here t * = t * ( t )  denotes the time at which the line segment a t intersects Yj. The 

factor of 1/2 enters equation (2.15) as a consequence of the fact that the speed of 

xt 

Fig. 3 
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propagation of a weak shock is the average of the characteristic speeds on either 

side up to second order terms: 

(2.16) )(~ (t) = 2~ { U (Xj.(t) _ 0, t)} + �89 pj (1 + O (z)) str Xj(t). 

The action of k-waves on the spreading of j-characteristics is minimized by 

measuring distances at times displaced in the direction of k-waves [3]. If D*(t)= 
Yi(t*)- Xj(t), then 

(2.17) D*(T)<const.{D*(t)+#y f [Aj(t)ldt } 

where both of the constants are of the form 1 + O(TVUo). Note that dj(t) depends 

only on j-waves and that 

D*(t)= (1 + O(z)) I Y~(t)- Xj(t)[. 

In [3] it is shown using estimate (2.17) that either j-characteristics diverge with 

increasing time or the total amount of j-rarefaction wave between them decays 

modulo contributions from wave interactions: 

(2.18) const, col {L(T)} < I L(T)[ + O(z) Q {Tr~ ~ (t < T)}, T > t. 
= T - t  

Here L(T) denotes the interval between Xj and Y~ at time T. An analogous argument 

shows that either j-characteristics diverge with decreasing time or the amount of 

j-shock and j-compression wave between them decays modulo contributions from 

wave interactions and cancellations: 

< L(t)[ + O(z) Q {n~ c~ (t < T)} + const. C{~j c~ (t < T)}. (2.19) const. Ico; {L(t)} =-~Z--~ 

The presence of a cancellation term in (2.19) is a consequence of the following 

fact. As time decreases the strength of a j-shock may increase due to cancellations 

with j-rarefaction waves. In the forward time direction the cancellation of waves 

favors estimate (2.18). We recall that the measures C and Q are obtained as the 

w*-limit of measures C h and Qh which are defined by associating with the center 

of each diamond in U h a point mass equal to the amount of cancellation and 

interaction, respectively, which occurs in that diamond. 

Analysis of Local Strueture. Fix a point (x o, to) with t o > 0. One approach to the 

0 w~ generated by the restriction localization problem is to consider the measures ffxx 

of the Riemann invariants w~ to the line t =  t o. However, it is known only t h a t  

the approximate solutions converge pointwise a.e. on t = t o (after passing to a 

subsequence). Thus if x o is, for example, a point of discontinuity of the restriction 

U(-, to), one is guaranteed only that the difference between the associated in- 

he evaluated on a small interval creasing and decreasing variation measures ~xx wj 

containing x o is close to the limiting jump wj(x o + 0, to ) -  w~(x o -0, to) for small h. 

Hence, on face value the conservation laws for waves do not imply that waves 
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of a particular family will dominate near (x o, to) due to the presence of the inter- 

action term. Nevertheless, the invariance of the equations under similarity 

transformations together with the large-time behavior of the solution suggest 

that the cancellation process will dominate the interaction process in the limit 

despite the existence of a point mass of Q at (Xo, to). 

The main idea of the proof  of Theorem 2.1 is to construct the generalized 

j-characteristics X~ and Y~ as the limits of approximate characteristics X h and y h 

whose x-intercepts on the line t = t o approach x o at a rate which is slow enough 

to allow the cancellation process to dominate the interaction process. 

Lemma 2.1. There exist generalized j-characteristics Xi( t  ) < Yj(t), j = 1, 2, 

passing through (Xo, to) which are defined on some interval containing t o and which 

have the property that the domains (2• f2 m and (2, are states of small variation with 

respect to (x o, to). 

Proof. Let oof, h denote the measures defined by setting COf, h(I ) equal to the 

absolute value of the total amount  of j-shock ( - )  and j-rarefaction wave (+ )  in 

U h which crosses the x-interval I at time t o. After passing to a subsequence, let ~of 

denote the w*-limit of col, h. Let 

Dr=  {(x, t): 0 < l x - x o l + ~  I t - t o ] < r } ,  

where 6 equals the ratio of mesh lengths A x/A t. The boundary of D r consists of 

space-like arcs. Let 

I r = D r n { t = t o } .  

Choose a sequence D, of domains with radii r, such that r. +1 < r, and such that 

col (I.) + Q(D ,) + C (D,) <= 1/n . 

Since any finite positive measure admits at most countably many disjoint sets of 

non-zero weight, we may assume without loss of generality that 

co + (~3I. - { X o }  ) + Q(OD,,) + C(OD.) = 0 

for all n. For  each fixed n and every m < n, define annular domains D,,m by 

D,,,, = {(x, t): r,, < Ix-xol + 6  I t - t o l  <r,} 

(see Figure 4). It follows from w*-convergence that for each fixed n the total 

amount  of wave crossing D,,,, at time t = t  o and the total amount  of wave can- 

cellation and interaction within D,,,, is small if h is sufficiently small: there exist 

h(n, m) such that 

(2.20) e)f,n(O.,,, c~ {t = to} ) + Oh(D,,,,) + Ch(O,,m) < 2/n 

if h < h (n, m). 

Consider the subsequence U m = Uam where 

(2.21) h, .=min{h(n ,  m): n +  1 <m}. 
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Let X~" and Y]" denote the approximate j-characteristics in Um which pass through 

the points (x,,, to) and (y,,, to) defined by 

Xm= Xo - [rm] Ax,  ym= Xo + [r,,] A x ,  

Where the square bracket denotes the smallest integer greater than or equal to r m. 

The characteristics X~' and yjm do not cross the inner boundary of D,,., since OD,,,. 

consists of space-like arcs and both points (x,,, to) and (y,,, to) lie in D,,m; cf. 

Figure 4. Let ~ ,  ~ and ~ '  denote the open regions determined by X~" and yjm 

as in Figure 4. 

Fix e>0  and choose n <  1/e. It follows from (2.20), (2.21) and the approximate 

conservation laws for waves that the total variation of Ut is O(e) in all of the 

regions ~+,  Q~, O." provided l > m. The lemma follows by passing to a subsequence 

of approximate solutions for which X] and yjh converge. 

The limiting behavior of the outgoing solution at (x 0, to) as t approaches t o is 

determined by the rate at which Xj and Yj approach. If Xj and Y~ are separated 

by a distance of the order t - t o then they bound a generalized j-rarefaction wave. 

If not, there are two possibilities: either Xj and Ys" coincide on some interval 

[to, q] as a generalized j-shock wave or the total x-variation of U between Xj 

and Y~ approaches zero as t approaches t o. Let 

Lj = lim { Yj(t)- Xi(t)} / ( t  - to), t > t o . 
t ~ t o  

Lemma2.Z I f  L j > 0  then ~ jn{ t> to}  is a generalized j-rarefact ion wave. 

I f  L~ = 0 then ei ther 

lim T V U  [Xj(t), Yj(t)] = 0, t > t o 
/ ~ t  0 

or X j ( t ) =  Y~(t) on some interval [to, t l ]  and str Xj ( t  o + O)> O. 

Proof. Suppose X~ and Yi do not coincide on any interval of the form [t o, tl]. 

We claim that 

(2.22) str Xj ( t  o + O) = str Y~(t o + O) = O. 
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Assume on the contrary  that str Xj(t o + 0) = y > 0. The condit ion of genuine non- 

linearity guarantees that all j-characteristics near Xj are directed toward Xj at a 

uniform angle depending only on y, [3]. There exist positive constants al(V ) 

and aa(7) with the following property.  If t is near t o then, with the possible ex- 

cept ion of  countably  many  points t > t o, 

(2.23) 2i{ U(x, t)} + a 1 < Xj(t) 

provided in the case j-= 1 that  

(2.24) X 1 (t)_<_ x < min {X 1 (t) + a2, X 2 (t)} 

and in the case j = 2 that  

X2(t)~x <X2(t)+~7 2. 

The inequality (2.23) is established during the proof  of Lemma 3.4 of [3]; cf. 

pp. 55-63. While the hypotheses of Lemma  3.4 require that certain measures do 

not  admit  point  masses at (x o, to) the proof  of (2.23) holds virtually without 

modification. The restriction in (2.24) that x be less than X 2 is imposed simply 

to bound  x away from the wave r~ 2. 

With the possible exception of countably many points, the shock stability 

condit ions are satisfied along Yj, [3]:  

(2.25) + o, t)} =< 'b{ - 0, t)}. 

It follows from (2.23) and (2.25) that Xg and Y~ cannot  intersect at t o if they are 

separated at times arbitrari ly close to t o. This completes the proof  of (2.22). 

It is an immediate  corollary of the proof  of Lemma 2.1 that  

(2.26) lim co~ [Xj(t), Yj(t)] = 0 
t ~ t o  

if k 4 j .  Therefore,  only j-waves need be considered. Suppose L j > 0 .  Then X~ 

and Yj intersect only at t o and it is only necessary to consider waves which are 

contained strictly between X~ and Yj by (2.22). It will be shown that  

(2.27) limo~f(Xj(t),  Yj(t)) = 0, t > t  o 
t ~ t  0 

(2.28) lim col (Xj(t), Yj(t)) > 0, t > t  o . 
l ~ t o  

Fix e > 0 and let T > t > t o. Applying (2.19) to Xj and Y~ yields 

const. [col (Xj(t), Yj(t))] _<_ { Y~(t)- Xj( t ) } / (T-  t) + const. C(rc~ c~ {t =< s __< T}) 
(2.29) 

+ O(z) Q(n jn  {t < s< T}). 

Choose T sufficiently close to t o so that the second and third terms on the right 

of (2.29) are both  less than e/3 for t > t 0, and then choose t so that the first term is 

less than ~/3. This proves (2.27). 

Inequali ty (2.28) is established by applying (2.17) to X i and Yj: this gives 

D*(t) < const, pj i IAJ ( t) l dt 
tO 
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where 

A j(t) = ~ .  + o~/+ ( 1/2 + O (~)) (str X~ + str Y/) + O (z) co + + O (~) [co; [. 

Since D*(t) = (1 + O(r)) [ Xj( t ) -  Yi(t)[ and since Aj is a function of bounded variation 

it follows that 

Lj<c~  p~lim[di(t)[,  t> io .  
t~,o 

The limit of the second, third and fifth terms of Aj equals zero by (2.22) and (2.27). 

Hence 

L~_<_ const. #j lira ~o + (t). 
t ~ t  0 

This proves (2.28) since Lj > 0. 

Consider the case Lj = 0. Suppose Xj and Yj coincide on some interval of the 

form [-to, tl]. Then either strX~(to+0)>0 or s t rXj ( to -0)=0 .  In both cases the 

proof of the lemma is complete. Suppose Xj and Y~ do not coincide on any such 

interval. In view of (2.22), (2.26) and (2.27) it is only necessary to prove that 

lim ~o + (Xj(t), Yj(t)) = O, t > t o . 
t ~ t o  

Fix ~>0 and let T > t > t  o. Applying (2.18) to Xj and Yj. yields 

(2.30) const. ~o~ (Xj(T),  Yj(T)) < { Yj(T) - X j ( T ) } / ( T -  t) + 0(~) Q(ltj c~ {t <= s < T}). 

Choose T sufficiently close to t o so that the second term on the right of (2.30) is 

less than e/2 for t > t o and so that 

{ Y~(T) - X j ( T ) } / ( T -  to) < ~/3. 

Then choose t > t o so that the first term on the right of (2.30) is less than e/2. This 

completes the proof of the lemma. 

In order to complete the proof of Theorem 2.1 it remains only to establish the 

second of the three assertions. The second statement follows immediately from 

the definition of generalized compression wave, equation (2.26) and the third 

order property of the minor invariants, i.e. [mr] = O ([Mj] 3). 

3. Classification and Structure of Singularities 

It is well-known that solutions U constructed by the difference scheme of 

GLIMM are functions of bounded variation in the sense of CESARL This property 

is guaranteed by the estimates: 

T V U  (. , t )< const. TVUo 

and 

(3.1) S [U(x, tl)- U(x, t2)Idx <const. Iq -t21. 
- o o  

Here the constant depends only on the equations. We shall briefly recall certain 

basic definitions and results in BVC theory [1], [12]. 

Let u = u(y) be a real-valued measurable function defined on R". The function u 

is said to have an approximate limit lu(y) at the point y if the complement of the 
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inverse image of every open set (9 containing lu(y) has Lebesgue density zero at y: 

lim [u- 1 ((9)c ~ B(y, r)I/In(y, r) l = 0, 
r - ~ 0  

where B denotes a ball of radius r centered at y and 1" [ denotes m-dimensional 

Lebesgue measure. If u(y) = lu(y) then u is said to be approximately continuous at y. 

The singularities of an arbitrary BVC function can be classified using the 

notion of.an approximate limit with respect to a half-space. The function u is said 

to have an approximate limit lvu(y ) at y with respect to the half-space 

Hv(y)  = {z  h(z - y, v) > 0}  

if its restriction to H v has an approximate limit at y: 

lim lu- l (O)C ~ l-lv(y) c~ B(y, r)l/lB(y, r ) [=0 
r ~ 0  

where O is any open set containing l~u(y). Consider, for example, a piecewise 

smooth function u defined on IR 2. At each point y which lies on exactly one curve 

of discontinuity, there exist approximate limits lvu(y)+ l~u(y) with respect to both 

of the complementary half-planes determined by the normal v to the curve at y. 

At a point of non-tangential intersection of two or more curves of discontinuity 

the function u does not have approximate limits with respect to any pair of comple- 

mentary half-planes. 

Let u be a BVC function defined on an open domain f2 in R". The points of I2 

are classified as regular or irregular according to the existence or nonexistence of 

approximate  limits with respect to some pair of complementary half-spaces: 

R =- {y: 3 l+_vu(y ) for some v} 

I = R L  

The set I of irregular points has vanishing ( m -  1)-dimensional Hausdorff measure. 

The set R of regular points is naturally partitioned into subsets 

A -= {y~R:  l~ u(y)= l_v u(y)} 

J =  {y~R:  l~u(y):+-l_vu(y)}. 

After a modification on a set of zero m-dimensional Lebesgue measure u has the 

following properties. At each point of A, u is approximately continuous. In 

particular, u has identical approximate limits with respect to each and every 

half-space H,,(y). At each point of the jump set J, u has approximate limits l_+~ u(y) 

if and only if a = _ v. 

The following definitions are preliminary to the classification of singularities 
n in a solution. Let F be a countable collection of shock waves Fih, j = 1, 2, with the 

following property. Any two distinct waves Fj" and Ff" of the j-t field intersect at 

most at their initial and end points. Let clz(F ) denote the points of interaction 

of shock waves of opposite fields at which there exist at least two shocks with 

non-zero strength: 

cl z (F) = U { P = FI" c~ F2 m : str FI" (P) > 0, str F2 m (P) > 0}. 
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Let cj(F) denote the points of interaction of shocks of the jth field at which there 

exist at least two shocks with non-zero strength: 

Q(F)= U {P=F~"nFT: strFj"(P)>0, strFT(P)>0 }. 
n~zrn 

Let gj be a generalized j-compression wave centered at (x o, to). The wave 7~j will 

be called pure if it satisfies either 

(3.2) lim TVmj(Xj(t), Y~(t)] = 0 or lim TVm~[Xj(t), Yj(t))= O. 
t ~ t O  t ~ t o  

The conditions (3.2) imply that the maximum strength of all j-shocks within nj 

approaches zero as t approaches to, with the possible exception of one of the 

edges X2 or Y~. The freedom of allowing a shock to bound a pure compression 

wave is a technical convenience. Let co(F) denote the set of all centers of com- 

pression waves which lie on some shock wave of E Let c(F) denote the collision 

set of F: 
2 

c(r)  = U c~(r) u c12(r). 
j = o  

Let f (F)  denote the set of all initial points P of shock waves Ff such that 

str F/(P) > 0, i.e. the formation set of E 

Theorem 3.1. Let U be a solution which is constructed by the difference scheme 

of GLIMM and which has initial data with small total variation. Let J and I denote 

respectively the set of jump points and the set of irregular points of the solution U 

considered as BVC function defined on {(x,t):t>O}. There exists a countable 

collection F of shock waves Ff with the following properties: 

1) Any two distinct waves Ff and Ff ~ of the same field intersect at most at their 

initial and end points. 

2) J =  0 F ~ " - I .  
n=l  

3) ~=c(r )~ f ( r ) .  

4) U is continuous in the classical pointwise sense at each point of (J u I) c. 

Remarks.  1. The sets c(F) and f (F)  need not be disjoint. A shock wave of one 

field may form at a point of interaction of two or more shocks of the opposite 

field. Similarly a shock may form at the center of a pure compression wave of the 

same or opposite field. 

2. The center of every pure compression wave in U is an irregular point. Such 

centers necessarily lie on some shock wave in E 

3. It is necessary to restrict the formation set of F to include only those initial 

points at which the corresponding shock has non-zero strength. Unless a classical 

compression wave is centered, the initial point of the shock to which it gives rise 

will be a point of continuity of the solution. In this situation the shock initially 

has zero strength. 

The shock set UFj" of the solution may be everywhere dense in {(x, t): t>0}.  

For  example, in a scalar conservation law with convex flux, monotonically 
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decreasing data with a dense set of discontinuities will give rise to an everywhere 

dense shock set. However, there is a sense in which the shock waves Ff are isolated. 

We shall say that a shock wave X(t)  is isolated with respect to an interior point 

(X(to), to) if there exists a neighborhood of (X(to), to) in which the total x-variation 

of U is arbitrarily small on the complement of F, i.e. if for every e > 0  there exists a 

> 0 such that 

T V U [ X ( t ) - b , X ( t ) ) + T V U ( X ( t ) , X ( t ) + 6 ] < e  if I t - t o ] < b .  

At such a point the limiting behavior of the solution can be described classically. 

Let X be a shock wave of U defined on [q ,  t2]. Let 

X + ={(X, t): x > X ( t ) ,  t 1 < t  <t2} 

X -  ={(x, t): x < X ( t ) ,  t 1 < t  <t2}. 

The following corollary is an immediate consequence of Theorem 3.1. 

Corollary 3.1. Let X be a j-shock wave of E Let (x o, t o ) ~ X - I  be an interior 

point of  X .  Then 

1) X is isolated with respect to (Xo, to). 

2) The speed of propagation X(to) exists and equals a j{ U(xo +O, to), U(xo-O, to)}. 

3) The domains X + are states of  small variation with respect to (Xo, to). 

4) The limits U{(xo, to); X +} exist, equal U (xo +_O, to), and satisfy the Rankine- 

Hugoniot relations. 

5) There exists a neighborhood of (x o, to) in which all generalized j-characteristics 

run into X when followed in the forward direction of  time. 

It follows from the proof of Theorem 3.1 that the shock waves Ff exist as the 

limit of approximate  j-characteristics in the approximating solutions U h. Thus 

the speed of propagat ion of each shock wave Ff is a function of bounded variation 

[3]. In particular, each shock is continuously differentiable with the possible 

exception of a countable set of points. This regularity is optimal even for a scalar 

conservation law. In the example cited above of a solution with an everywhere 

dense shock set, the speed of propagation of each shock wave fails to exist at a 

(countable) dense set of points. 

Proof  of Theorem 3.1. The structure of J will be considered first. For reference 

we recall the following fact which was established as part  of the proof of Lemma 2.2. 

Assertion 1. Let X and Y be generalized j-characteristics at least one of which 

exists as the limit of approximate characteristics. Suppose X(to)= Y(to). Then 

either X and Y coincide on an interval of the form [to, q ]  or 

str X (t o + 0) = str Y (t o + O) = O. 

Fix a point (x o, to), t o >0. A shock wave X will be said to be incoming at 

(Xo, to) if the following properties hold: the domain of definition of X contains an 

interval of the form [tl, to], X(to) = x o and str X( t  o - O) > O. 

Assertion 2. Let Xj  and Y~ be the generalized j-characteristics constructed in 

Theorem 2.1. Then one of the following properties holds: 
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1. There exists no j -shock which is incoming at (Xo, to). Either nj is a pure 

j -compress ion  wave or  

lim TVU[Xj(t), Yj(t)] = 0 .  
t~to 

2. There exists exactly one j -shock wave X which is incoming at (x o, to). In 

this case X satisfies one of  the following: 

(a) Xj(t)< X(t)< Yj(t) for t near  t o. Either at least one of  the sets 

{(x, t): Xj(t)<=x<=X(t)}, {(x, t): X(t)<=x~ Yj(t)} 

is a pure  j -compress ion  wave or  

(3.3) aim TVU[Xj(t), X(t))+ lim TVU(X(t), Yj(t)] = 0, t < t o . 
t ~ t o  t ~ t o  

(b) Xj(t)=X(t)<Yj(t)  for t near  t o. Either {(x, t): X(t)< x <  Yj(t)} is a pure 

j -compress ion wave or  

(3.4) lim TVU(X(t), Yj(t)] = 0, t < to. 
t ~ t  0 

(c) Xj(t)<X(t)=Yj(t)  for t near  t o. Either {(x, t): Xj(t)< x <  X(t)} is a pure 

j -compress ion  wave or  

(3.5) lim TVU [X~(t), X(t))= O, t < t o . 

3. There  exist at least two shock waves which are incoming at (Xo, to). 

The  p roof  of Assert ion 2 is s t raightforward and details are left to the reader. 

We note  that i fX  is a shock wave in U then X is necessarily the limit of approximate  

characteristics in U h. More  precisely, if X is a j -shock wave such that  str X (t o + 0 )>  0 

then there exists an interval [t o, tl] on which X coincides with the generalized 

j-characterist ic Xj through (X(to), to) which is constructed in Theorem2.1 .  

Assert ion 1 implies that X and X i coincide on the intersection of the domain  of  

definitiin of X with the set { t>  to}. 

Assertion 3. Suppose (x o, to)~J. Then there exists precisely one shock wave 

X(t) with the following propert ies:  X(t) is defined on an interval containing t o in its 

interior, X(to)= x o and X(t) is isolated with respect to (Xo, to). 

Proof Theorem 2.1 together  with the fact that  (x o, to) is regular implies that 

U(xo+O , to) lies on one of the shock wave curves through U(xo-O, to), say the 

shock wave curve of the first kind. Consider the 1-characteristics X 1 and Y~ 

through (x o, to) which are constructed in Theorem 2.1. Since (x 0, to) is a j ump  

point, X l ( t )=  Yl(t) on some interval [t o, q ]  and s t r X l ( t o + 0 ) > 0 .  Since (Xo, to) is 

regular, 

limTVU[X2(t),  Y2(t)] = 0, t<to,  
t~to 

where X 2 and Y2 are the 2-characteristics constructed in Theorem 2.1. Thus, only 

1-waves need be analyzed. 
Consider  the alternatives of Assert ion 2. We claim that there exists exactly 

one 1-shock X(t) which is incoming at (Xo, to) and moreover  that either (3.3), 

(3.4) or (3.5) holds. If, on the contrary,  the first alternative held then (x o, to) would 
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not be regular. If the second alternative held and there existed a pure 1-compression 

wave centered at (x o, to), then U(x o + O, to) would lie in the fourth open quadrant 

with respect to U(x o -O, to) as defined by the shock and rarefaction wave curves 

through U(xo-O, to). In this situation the outgoing solution at (xo, to) would 

contain a 2-rarefaction wave, contradicting the fact that (Xo, to) is regular. If the 

third alternative held, then U(x o + O, to) would again lie in the fourth open quadrant 

with respect to U(xo-O, to). 
The desired shock wave X(t) is obtained by choosing a 1 and 0- 2 close to t o and 

setting X(t) = )((t) for t in [0-1, to] and X(t) = X l (t) for t in [to, a2]. This completes 

the proof  of the assertion. 

Next we shall construct a countable family of shock waves X, such that 

J= U X . - I .  Choose a countable dense set G =  {t,} such that I c~ {(x, t): tEG} is 

empty. The existence of G is guaranteed by the fact that I has zero 1-dimensional 

Hausdorff  measure. Let {(x,, t,)} be an enumeration of the points of discontinuity 

of the functions U( ' ,  to), t o e G. A shock wave X. is constructed through each point 

(x,, t,) as follows. First, consider the shock wave X through (x,, t,) which is 

constructed in Assertion 3. Let [tl, t2] denote the domain of definition of X. 

Define X,(t) = X(t) for t in It1, t2]. The domain of definition of X, is extended in 

the following way. Consider a characteristic Y of the same field as X which passes 

through (x,, t,) and which is defined for t > t.. As a consequence of Assertion 1, 

X and Y coincide on the interval [t., t2]. Normalize str Y(t) to be left-continuous 

and let [t., 0-,] denote the component  of { t> t.: str Y(t+_ 0)> 0} which is open in 

the relative topology and which contains t,. Define X.( t )= Y(t) for t in It,, a.]. 

The curve X, is a shock wave since for every proper subinterval of its domain of 

definition there exis tsa6 > 0  such that str X,(t)> 6 on that subinterval. 

We note that the shock wave X, is maximal in the forward direction of time in 

the following sense. If s t r X , ( a , - 0 ) > 0  then there does not exist an outgoing 

shock wave of the same field at the point (X,(a.), 0-,) which has non-zero strength 

at 0-,. This property is a consequence of Assertion 1 and the definition of the 

domain of X,. 

In order to prove that J =  U X , - I  we first observe that U is approximately 

continuous at each point (x o, to) in (I w j)c. At such a point it follows from the 

structure of the outgoing solution that U( ' ,  to) is continuous at x o. Therefore by 

Corollary 2.2, U is continuous at (x o, to) as a function of x and t. This establishes 

the fourth statement of the theorem and the inclusion X , -  1 c J. 

Consider the inclusion J c X , - 1 .  Let (Xo, to)eJ and consider the shock 

wave X through (Xo, to) constructed in Assertion 3. Choose a jump point (x,, t.) 

on X with t, < t o. The shock waves X, and X coincide for t > t, by Assertion 1. 

Thus (x o, to)e X. and we conclude that J = U X , -  I. 

Assertion 4. The set of irregular points is at most countable. 

Proof Let (x o, to)eI. We claim that either there exists some pure compression 

wave centered at (Xo, to) or there exist at least two distinct shock waves which are 

incoming at (Xo, to). These alternatives are not mutually exclusive. There are two 

situations to consider. First, suppose there exists no incoming shock wave at 

(x o, to). Then Assertion 2 implies that there exists a pure compression wave 

centered at (x o, to). Otherwise x o would be a point of continuity of U(-, to). 
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Second, suppose there exists precisely one shock of (say) the jth field which is 

incoming at (x o, to). If there exists a pure compression wave of the k th field, k . j ,  

centered at (x 0, to) then no further argument is necessary. If not, there necessarily 

exists a pure compression wave of the jth field centered at (Xo, to). The contrary 

assumption would imply that (x o, to) is a jump point. This establishes the claim. 

Clearly, in both cases the interaction measure Q has a point mass at (x o, to). 

Since Q is a Borel measure, Q can admit only countably many point masses. This 

completes the proof of the assertion. 

It remains to redefine the domains of definition of the shock waves X, so that 

the first and third statements of the theorem hold. Let {(z,, s.)} be an enumeration 

of the set of irregular points. Let Z,,j, j = 1, 2, denote the outgoing shock waves 

through (z., s.) which are constructed in Theorem 2.1. We recall that Z.,j are 

defined for t>s. and s t rZ. , ; ( s .+0)>0.  There exists at least one such wave at 

(z., s.) by Theorem 2.1. Extend Z.,j to be maximal in the forward direction of time 

by the method used to extend the shock waves X. through the jump points (x., t.). 

If possible extend Z.,j backward for some interval [a., s.] by choosing one of the 

incoming j-shocks at (z., s.). Choose a. sufficiently close to s. so that 

str Z.,;(~r. + 0) >0. 

Consider the countable collections of waves {X.} and {Z..j} and the corre- 

sponding points {(x., t.)} and {(z., s.)}. By relabeling, let {X.} and {(x., t.)} 

denote an enumeration of {2(.} u {Z.j} and {(x., t.)} w {(z., t.)}, respectively. 

The new collection {X.} will be used to construct the shock waves F" required for 

the theorem. For simplicity the subscript j, indicating the field of the shock, will be 

suppressed. 

First, certain countable families Y, = { yk:k an integer} of shock waves will be 

defined which have the following properties: 

P1. For a fixed n, the shock waves Yf are all defined on intervals of the form 

[akn, b] or [a k, ~ )  and satisfy 

y k = y ~  and a k<a~ if k->j. 

P2. yk and Y~ intersect in at most one point if n 4= m. 

Pa" str Y~(~+O)>O. 
P4- For every integer p, 

Y.'=Uxo. 
n,k<p n<=p 

Ps. If the end point of Yf intersects the intial point of Y~ at, say, time t and if 

Yf and Y~ are shock waves of the same field, then str Yf(t-O) and/or str Y~(t+O) 
equals zero. 

P6. If X is an arbitrary shock wave in U then one of the following holds: 

a) X intersects Fp in at most a finite number of points, b) There exists a time t = a 

satisfying the following three properties: X(a) is an interior point of X, X is 

included in Fp for t > a, and X intersects Fp in at most a finite number of points 

for t < a. c) X is included in Fp. 
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The above indices n and k form subsequences of integers. The shock waves 

F" are defined by 
F " =  lim y k. 

k~oo 

The limit exists since the total variation of the speed of propagation of Yff is 

uniformly bounded in k for fixed n. 

The construction of Yff is inductive. Let g l  1 = X 1 . Assume that by the pth step 

the waves Y,~ have been defined and that they satisfy properties P1 to P6 .The step 

p + 1 is as follows. Consider the shock wave Xp+ 1 . Let r and s denote, respectively, 

the maximum of the indices n and k which occur in the collection of all waves y k 

defined by the pth step. 

Case 1. Suppose X~+ 1 intersects Fp in at most a finite number of points. 

Set Y~1+1 =Xp+ 1 and proceed to step p + 2 .  

Case 2. Suppose Xp+ 1 is included in Fp for t > a  and intersects Fp in at most 

a finite number  of points for t < a .  Suppose further that P = { X p + l ( a ) , a  } is an 

interior point of Xp+ 1 . If P is an interior point of some shock wave in Fp, then 

define Yr~+l to .be the restriction of Xp+ 1 to t_<_~r and proceed to step p+2 .  If not, 

then P is necessarily the initial point of some shock wave u which has been 

constructed by the pth step and which is of the same field as Xp § 1. In this subcase 

define Y2 +1 to be the union of Y,~ with the restriction of Xp+ 1 to t __<0 and proceed 

to step p + 2. 

Case 3. Suppose Xp+ 1 is included in Fp. Proceed to step p + 2. 

It follows from the construction above that the shock waves F" and F m, 

n#:rn, intersect in at most two points. It is straightforward to show that 

I ~ c ( F ) w f ( F ) .  Consider the opposite inclusion. Clearly c (F)~  I. Let (x o, t o ) e f (F  ) 

and suppose (Xo, to) is not an irregular point. Since (Xo, to) is the initial point of a 

shock wave F" satisfying str F,(t o + 0) > 0, it follows that (x o, to) is a jump point. 

Therefore, (x o , to) is an interior point of some shock wave X by Assertion 3. Since 

F" is defined as the limit of y k, there exists an index k such that Yff and X coincide 

on a certain interval of time. Let Pk denote that particular step of the induction at 

which y k is constructed. Choose a regular point (xm, t,,) on X such that t m < t o and 

such that the corresponding shock wave X m is considered at a step p,, > Pk" Let C 

denote the collection of all shock waves X~ which are considered between steps 

Pk and p,, and which pass through regular points (x~, tt) on X. Note that X,, and 

irk coincide on some interval of time since X m and X coincide for t > t,,. Let p 

denote the first step between Pk and Pr~ at which a shock wave 21 in Ccoincides 

with some shock wave Y,~,j>k, on some interval of time. 

Let z denote the t-component of the initial point of Y]. We claim that )(t 

intersects Iv_ 1 in at most a finite number of points within {t<=z}. Suppose not. 

Then there exists a time a < z such that )~t is included in Fp_ 1 for t > ~r. Hence, 

by property P6, there exists a shock wave in Fp_ 1 having an end point with non- 

zero strength which coincides with the initial point of Y,J. This contradicts prop- 

erty Ps. Thus, at step p a shock wave y j+l is constructed as the union of Y.~ with 

the restriction of X~ to t =< z. This fact implies that (Xo, to) is an interior point of F". 

We conclude from this contradiction that (x o, to) is irregular. This completes the 

proof  of the theorem. 
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4. Interior Regularity 

For a single genuinely nonlinear equation (n = 1), the interior Lipschitz con- 

tinuity of the solution is a consequence of two properties: the invariance of the 

solution along characteristics and the fact that characteristics are straight lines. 

The main step in the corresponding result for systems is the proof that the Riemann 

invariants wj are constant along generalized j-characteristics. The fact that the 

spreading of characteristics of one field is not significantly impaired by the action 

of characteristics of the opposite fields follows from an estimate of GLIMM & LAX [3] ; 

cf. (4.4) and (4.5). 

Theorem 4.1. 7he solution U is Lipschi tz  continuous on any open component  

o f  the set on which it is continuous. 

The proof is partitioned into lemmas. Let B denote an open ball on which 

U is continuous. Let Xj and Yj be two j-characteristics within B such that X j ( t ) <  

Yj(t). Let c_o~:(t)=o)~(a,) denote the total amount of j-shock ( - )  and j-rarefaction 

wave (+)  which crosses the space-like line segment at joining Xj and Yj; cf. Section 2. 

Lemma 4.1. I f  t z > t 1 then Io)~ (tz)l < [co~ (tl) [. 

Proof. Let K c B  denote a closed ball containing Xj and Yj. Let M ( h , K )  

denote the maximum of the strength of all elementary waves of U h which intersect 

K and put 

M ( K )  = ~im ~ M(h ,  K).  

Neglecting cancellation terms in the conservation law for waves yields 

[col (te) [ < [co~ (tl) [ + const. M ( K )  Q(K); 

cf. estimate (3.53) of [3]. 
We shall show that M(K)=0.  Assume on the contrary that there exists a 

subsequence U k of solutions which contain elementary waves ek such that ek 

intersect K and such that 

I magnitude cql > 26 > 0. 

By passing to a further subsequence we may assume that the waves c~ k converge 

to some point (x o, to) in K. We recall that the length of 0~ k is O(k). Since (Xo, to) 

is a point of continuity of U, the conservation laws for waves imply the existence 

of a neighborhood N of (x o , to) with the following property: The total x-variation 

of U h restricted to any horizontal line segment within N is less than 

+ const. Q {(Xo, to) } if h is sufficiently small. Therefore, for small k 

I magnitude ekl < fi + const. Q {(x o, to)}. 

We assert that Q does not have a point mass in B. Fix e > 0 and let 

L(t) = {(x, s):x o - fl < x < x o + fl, s = t}. 

It follows from Theorem 2.1 that there exists a f l>0  such that 

TV~Uh{L(t)}<=e if t o - f l < t < t  o. 
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The Qh-measure of the domain of determinancy D(L) of any line segment L on 

t = const, depends quadratically on the x-variation of U h restricted to L I-3]: thus 

Qh {D(L)} =< const. (TV  x Uh {L}) 2. 

Hence Q{(x o, to) } = 0  and the proof  of the lemma is complete. 

Let Xj and Yj be two j-characteristics in B passing through (x o , to) and (Yo, to), 

respectively, where x o < Yo. 

Lemma 4.2. The characteristics Xj and Yj do not intersect within B for t < t o. 

Proof. Consider the case j =  1. Assume on the contrary that X~ (t)< Y~ (t) for 

z < t < t  o but that XI(z )=YI(Z  ). It follows from the proof of Theorem 2.1 that 

a~- (z + 0) = 0. By use of the relation 

Wl ( r l  (t*), t * ) -  w 1 ( X  1 (t), t) = (/)~- (t) --~ (2) 1 (t) -~- 0 {o) 1 (t) 3 } 

a n d  the continuity of U it follows that coW-(z+0)=0. Here t*=t*( t )  denotes the 

time at which the space-like segment a t originating on X 1 intersects Y~. Hence 

by Lemma 4.1, 

~ ? ( t ) = 0  for z <t<=t o . 

Therefore A 1 ( t )=0 for z < t < t o and estimate (2.17) implies that 

O<D*(to)<Const.  D*(t ) for z < t  < t  o. 

This contradicts the assumption that Xl(Z)= I"1 (z) and completes the proof of 

the lemma. 

Fix a point (Xo, to) in B and let X j ( t ) = X j ( t ; y )  be a j-characteristic which 

passes through (y, to) and which exists as the limit of a sequence of approximate 

j-characteristics Xh(t). Since B is open there exists a time t 1 < t o such that every 

characteristic is contained in B for t 1 < t < t o provided y is sufficiently close to x o . 

Lemma 4.3. The invariant wj is constant along every characteristic Xj(t; y) for 

t 1 < t ~ t  o �9 

Proof. By Lemma 4.2 the characteristics Xj(t ' ,x)  and Y~(t;y) do not intersect 

if x * y provided tl < t ~ t o. Hence, there exist at most countably many characteris- 

tics Xj(t;  y) which have either non-zero Q-measure or non-zero C-measure. Let 

Xj = {(x, t): x = Xj(t), t, < t ~ to}. 

We shall first show that wj is constant along Xj(t) provided that 

(4.1) Q { X j } = C { X j } = O .  

Consider a characteristic Xj  satisfying (4.1) and let D h denote the union of all 

diamonds in U h which intersect Xy(t). The total variation ofw~ along Xy is bounded 

in terms of the following quantities [3]: the total amount  Ej(Xy) of j-shock entering 

Xy, the total amount  Tk(Dh) of k-wave, k #:j, which is contained in D h, the maximum 

M(Dh) of the strength of all elementary waves of U h in D h, and the total amount  

of cancellation and interaction in D h. Thus 

(4.2) h h < h TVwj (X~) = Ej(Xj )  + M(Dh) 2 Tk(Dh) + Ch(Da) + 0 (z) Oh(Dh). 
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Condition (4.1) implies that the third and fourth terms on the right hand side 

of (4.2) approach zero as h approaches zero. The proof of Lemma 4.1 shows that 

M(Dh) approaches zero. Hence the second term of (4.2) approaches zero since 

Tk(D,) is uniformly bounded in h. The first term on the right of (4.2) is analyzed 

using the following estimate [-3] : 

(4.3) str Xh(to -- 0) = str X~.(t x + O) - 0 { Ch(Dh) } + [Ej(X~)I + O(z) Qh(Dh). 

Since U is continuous, the strength of X~ tends to zero and equation (4.3) implies 

that Er(X~) approaches zero. We conclude that wj is constant along X r if X i has 

zero Q-measure and zero C-measure. 

Since the collection of j-characteristics Xj(t;y) satisfying (4.1) is dense, it 

follows that w~ is constant along every characteristic curve Xr(t; y). This completes 

the proof of the lemma. 

Proof of Theorem 4.1. Fix a point (x o, to) within B. Choose t~ < t o < t z such 

that the j-characteristic Xj(t;y) defined by 

Xj (t 2 ; y) = y 

lies in B for q = t _ t 2 provided y is close to the particular value Yo which satisfies 

Xr(to ; Yo) = Xo.  

Consider a small increment Ax > 0 and suppose 

Aw-wj(xo + AX, to)-Wj(Xo, t)>O. 

Let ~b(x)= wj(x, tl) and let z(x) denote the x-coordinate of the point of intersection 

of the line t = t 1 with the characteristic Xj which passes through (x, to). Since wj 

is constant along Xj, it follows that 

A w -  r o + a x ) ) -  r ar 

Letting Az = z(x o + A x ) -  Z(Xo), we have 

A ~ = ~  

By virtue of the continuity of U and the invariance of w r along j-characteristics, 

the distance D*(t) satisfies 

(4.4) const. {D*(zl) + [wr] (z 2 - zl) } < D*(z2) 

(4.5) D* (%) < const. {D* (T 1 ) + [wj] (% - zl )}, 

where z 2 >'cl and where [wr] denotes the jump in wj between the j-characteristics 

which define D*. The estimates (4.4) and (4.5) are established in the proof of 

Theorem 1.1, [-3]. Since the distance D*(t) satisfies 

D* (t)= (1 + 0(~)) Dr(t), 

where Dr(t ) denotes the horizontal distance, it follows from (4.4) that 

Az < const. { A x -  Aw( to-  tl)}. 
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Thus, 

and 

Aw A49 f Aw 
Axx <A-zz ~const.-~xx (to - q)} 

- - <  const. 1+( to-  tl) <-const./(to-tt). 
d x - -  

If dw < 0  then  a s imi la r  e s t ima te  fo l lows  by c o n s i d e r i n g  w(x t t2) and  e s t ima te  (4.5). 

T h e  case  whe re  d x  < 0  is ana logous .  T h e  L ipsch i t z  c o n t i n u i t y  of  U in the  t -d rec t ion  

fo l lows  f r o m  the  f o r m  of  the  e q u a t i o n s  (2.1). 

Note. This research was supported in part by NSF Grant GP-34322 X~ 
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