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In this paper we shall study the propagation of singularities of solutions 
to boundary value problems for elastic equations with free boundary condi
tions in an isotropic medium and Maxwell's equations in a vacuum region 
by a perfect conductor. If we consider elastic equations , all the points of 
the cotangential space of the boundary are classified into five classes . The 
propagation of singularities arising from a point in each class is analyzed 
here. We also show that the behavior of the singularities of solutions to 
boundary value problems for Maxwell's equations is the same as that of 
solutions to Dirichlet problem for wave equations. As applications of the 
theorems on the propagation of singularities, we can show the exponential 
decay of local energy, if the obstacle is non-trapping . We can also check all 
points of the singular support of the scattering kernel, if the obstacle is 
convex.

First in [16] Lax and Nirenberg proved reflective phenomena of singu
larities of solutions to boundary value problems for hyperbolic equations 
and Taylor studied the same phenomena for first order systems including 
Maxwell's equations in [20]. In [13] and [22] Taylor and Melrose independ
ently constructed a parametrix near a diffractive point and studied the 

propagation of singularities arising from a diffractive point for solutions to 
boundary value problems of wave equations. The same analysis for solutions 
to boundary value problems of Maxwell's equations was done in [8] and [21] 
by Ivrii and Taylor. Finally in [14], [15], Melrose-Sjostrand they studied the 

propagation of singularities arising from all kind of glancing points for solu
tions to boundary value problems of second order equations of real principal 
type.

In Section 1.1 we first reduce the boundary problems of elastic equations 
to those of first order systems, and using Taylor's decoupling method of [20], 
in Section 1.2 and 1.3 we show the existence of Rayleigh waves as the propa

gation of singularities phenomena and study reflective phenomena of singu
larities. After getting a simpler form of the principal symbol of the reduced 
first order system, we construct a micro local parametrix near a diffractive
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point by Eskin's method [5] and study the propagation of singularities in 
Section 1.5. In order to analyze singularities near a non-diffractive glancing 

point, we develop the energy method of Melrose-Sjostrand [15] in Section 1.6. 
The condition we have obtained is a generalization of theirs (see Theorem 
1.21). We show that the boundary value problem of the first order system 
which is reduced from Maxwell's equation also satisfy our condition. By 
this observation a theorem on the propagation of singularities of a solution 
to Maxwell's equation is proved in Chapter 2. Similarly we can study the 
boundary value problem of elastic equations with Dirichlet condition. This 
is done in Appendix of [25].

There are a few results on singularities of solutions to boundary value 

problems of elastic equations. In [6] Guillot-Ralston showed the propagation 
of singularities under the assumption that Lopatinski determinant is not zero 
at a gliding point. However we can show that Lopatinski determinant is 
zero at the point (see Remark 1.13). In [10] and [11] Kubota constructed 

parametrices for first order systems which are reduced from elastic equations. 
However unlike our method, his method of reducing to a first order system is 
not invertible. Hence one can not show the existence of parametrices for 
elastic equations with free boundary conditions by his method. In [23] Taylor 
showed the existence of Rayleigh waves as the propagation of singularities 

phenomena, by constructing a parametrix near non-glancing point.
In Appendix we obtain theorems on the propagations of singularities of 

solutions to boundary value problems for higher order single strictly hyper
bolic equations and first order strictly hyperbolic systems with generalized 
Agmon-Lopatinski condition. Our theorems are generalizations of those in 

[6], [12].

Chapter 1. Elastic wave equation

We consider here an elastic wave equation in an isotropic medium. Let 

Q be a domain in Rn (n•†2) with a smooth boundary aQ and the displacement 

u=t(u1, •c, un) satisfies the following equation of linear elasticity in R•~9

(1.1)

where and 2 are certain scalar quantities called the "Lame constants". For 

simplicity we assume a and 2+4a are positive, when 2+p<0 and 2+2p>0, 

see Remark 1.7, 1.10, 1.24 and 1.26. We assume free boundary conditions on 

aQ; namely, the normal components of the stress tensor vanish:

(1.2) on

where the stress tensor is
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and v=(v1, •c, vn) is the normal to aQ. We assume that solutions ue~'

(Q•~R) of the boundary value problems we shall consider in this paper is an 

extensible distribution, i.e., there exists a distribution uoE'(Rn+1) such that 

uo=u in R•~Q.

1.1. Reduction to a first order system

We assume that the boundary ~Q is defined by the equation xn-g(x')=0 

near xoEaQ, where x'=(x1, •c, xn-1). Observe that if u(t, x) satisfies the 

boundary value problem (1.1) and (1.2), then u(t, y)=Au(t, A-1y), also satisfies 

the same problem for any orthogonal matrix A. Hence we may assume xo=0 

and (gradg)(0)=0. Let us consider the coordinate transformation;

(1.3) yj=xj(j=1, n-1), yn=xn-g(x').

Then our boundary value problem reduces to the following one:

(1.4) inon

Here the principal symbol of L(t, y, Dt, Dy) is

where G=t(-gradg(y),1), a~=t(tr7', 0)=t(1, •c, ~n-1, 0), En is the n•~n square 

identity matrix and t(+Grin) is the transposed vector of the column vector 

+G~n. The principal symbol of Bo (y, Dy) is

where a• b is the inner product in Rn of a and b.
Let us reduce the problem (1.4) to a first order system. Put u1=Au 

and u2=Dynu, where A is the pseudodifferential operator with the symbol 

(r2+I|2+1)1/2. Then the equation Lu=0 is reduced to the following first 
order system:

(1.5) DynU=M(y, Dt, Dy')U in yn>0.

Here U=t(tu1, tu2) and the principal symbol of M(y, Dt, Dy,) is

where A1=(r2+|i'|2)1/2, A=(2+1)GtG+Ia|G|2En,
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The boundary condition Bou=0 on yn=0 is reduced to

(1.5) B(y, Dt, Dy')U=0 on yn=0,

where B=(B111-1, B2)(y, Dt, Dy') and the principal symbol of B2 and B1 are 
B2(y, v, i)=A and

respectively.
Then we have the following.

LEMMA 1.1. i) Let L2(y, r, r~) be the principal symbol of the differential 
operator L(y, Dy, Dy) in (1.4): then Det L2(y, r, ~) is equal to (r2-|~+Gin|2)n-1• 

(r2-(A+2,e)|~+G~n|2).
ii) Let a(y, r, i') be an eigenvalue of M1(y, r,) which is homogeneous of 

degree 1. Then the necessary and sufficient condition for M1U=aU is that the 
eigenvalue a satisfies Det L2(y, r, rj', a)=0, and the eigenvector U=t(tul, tu2) 
satisfies L2(y, r, Y~', a)u1=0 and u2=aA-1lu1.

iii) If (r2-(A+2i)|+Ga|2)=0, then L2(y, r, r~', a)(~ +Ga)=0. If r2-|

v+Ga|2=0, then L2(y, r, ~', a) u1=0, where u1 satisfies the condition u1. 
(r~+Ga)=0.

PROOF. Since a non-zero eigenvalue of (+ G~n)t(+Gin) is just |+Grin|2, 
the statement i) is easy. The condition M1U=aU means that u2=aA-11u1 and 

(M21+aM22)u1=a2Au1. Since L2(y, r,)=-A~2n+M22~n+M21, we have the 
statement ii). From

it follows that the statement iii) holds.

Let p be A or A+21a. Then we have

where a and rp are defined by the last equality. Since for y=0,

we have the following five cases;
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i) is a parabolic type.

ii) is a parabolic-hyperbolic mixed type.

iii) is a hyperbolic type.

iv)
v)

REMARK 1.2. We can regard (y', ii') as an element of T*(aQ)0 by the 

following coordinate transformation. Let y'(z)=(y1(z),•c, yn-1(z)) be the 

solution of

Since (ay'/az')(z', 0) is the identity matrix, we can solve the equation y'=

y'(z', zn) and get the solution z'=p(y', zn). A coordinate transformation as
sociated with ~(y) induces the following canonical transformation x2:

Then if (x2oX1)(x, e)=(z', 0,) with xEaQ, where xl is the canonical transfor
mation associated with (1.3), is a tangential (normal) direction to aQ if and 
only if bn=0 (~'=0).

1.2. The case r~>0

Let (v0,'o) E Rn\0 with r~(0, vo, )=|>0, to be any point of R and 

1o be a conic neighbourhood of po=(to, 0, vo,). Let s•}j (y, v, i) (j=1,•c, n) 

be a C~-function on Po•~[0, eo) of degree 0 in (v, i'). We assume that 

s•}1 (y, v, 1)'), •c, s•}n (y, v,) form a base of the generalized eigenspace of 

M1(y, v, r') corresponding to eigenvalues with positive or negative imaginary 

parts. Put S(y, v, i)=(s+1(y, v,), •c, s+n(y, v,), s-1(y, v, i'), •c, s-n(y, v, )) 

and define a pseudodifferential operator S(y, Dt, Dy') with the principal 

symbol S(y, v, i'). Then by the argument in the Section 2 of Taylor [20], 

there exists a pseudodifferential operator K(y, Dt, Dy') of order-1 such that 

the boundary value problem (1.5) and (1.6) is reduced to the following

(1.7) inon

where V=(1+K)S-1U, B1=BS(1+K)-1 and the eigenvalues of the principal



124 KAZUHIRO YAMAMOTO

symbol of E+(E_) have positive (negative) imaginary parts. Moreover f and 

g satisfy the conditions ~i5(t, y', Dt, Dy')fEC°°(Rn•~[0, so)) for any ~b with supp

 c:Fo and WF(g)(1I'o=p.

By Lemma 1.1 the eigenvalues of M1(y, z, i) are c•} (y, r, )=a(y,i)•}

i(rp(y, z, i'))1/2, where p= or A+2e. Put

and w•}n=(+a•}+2~G)A-11, where ƒÖ•}2,•c, iv•}n-1, are positively homogeneous o 

degree 0 and form a base of the orthogonal space of i'-a•} grad g. Then

(1.8)

are eigenvectors of a, a•}2+2, respectively, which are linearly independent 

when T•‚0.

Denote the boundary operator B1 of (1.7) by (B+, B_)(y, Dt, Dy')where 

B+ and B_ are n•~n square matrices. Then the principal symbol B+(y', 0, v, i) 

is called Lopatinski matrix and its determinant R(y', r, i) is called Lopatinski 

determinant.

LEMMA 1.3. When ro is not zero, the Lopatinski determinant R(y', r, i) 

has a simple real zero. At this real zero (aR/av)(y', r, i) is not zero.

PROOF. We denote the principal symbol of B1 by (b+1,•c, b+n, b-1,•c, b-n). 

By easy computations we obtain for y=0

(l.9)

Therefore an equivalent condition to R(y', r, i')•‚0 is that b+1 and b+n are 

linearly dependent. The exact forms of b+1 and b+n are as follows:

where ai (i=1, •c, 4) are defined by the last equalities of the above. Since
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a2 is not zero, an equivalent condition to the condition that b+1 and b+n are 

linearly dependent is that

Then

(1.10)

where we used (a)2(O, z, r~')=p-1v2-|~'|2. We may show that for fixed ~'•‚0 

there exists a simple root z of f(0, z, i)=0 such that p1r~'12>r2>0. Since 

(v2-2~c|,/|2)2•†0 and 4~C2(a+a++2)(0, r, ')<0, the coindition f(0, r, ,')=0 is 

equivalent to the following

where we used (a 2µ)(o, z,)=-(i|~,|2-22)1/2((2+2,u)|~'|2-22)1/2/(p(2+2))1/2. 
Put r2=s, then we have

(1.11)

where h(s) is defined by the last equality of (1.11). Since h(0)=-16(2+,a)•~

(,||2)3/(2+2a)<0, h(ei |~1'|2)=(i|1'|2)3>0 and p<8i/3, where h"(8~c|~'|2/3)=0, 

h(s) has a simple root between 0 and i|~'|2. It follows that R(y', z, ) has a 

simple real zero and oR/or•‚0 on R=0 by the implicit function theorem.

Let us consider the case ro=0. In this case M1 has generalized eigen

vectors with the eigenvalues •}i|~'o|2. Put s+1=t(+i(2+3iC)('o, (32+5~c)•~

t
, •}i(2+ie)|i'o|)(A1)-1. Then we have

where s•}n=2(2+p)t((t',•}i|'|), •}i(to,•}i|'|)) E Ker (M1(0, 0, ')•}i|'|). More

over s is defined by t(twj, •}itwj), where wj=t(twj, 0) with wj• '=0 (j=2,

•c, n-1) and w•}n=t(t', •}i|'|)A-1l. Then s•}1, •c, s+n , s-1, •c, s-n are linearly 

independent. The projection to the generalized eigenspace of M1 correspond

ing to eigenvalues with positive or negative imaginary part is defined by

where C•} is a small circle with the center •}i|''o|. Using this operator, we 

put s•}j(y, z, ')=P•}(y, z, ')s •}j, where 22+|~1'|2=1, and define S(y, z, ~)'=

(s+1, •c, s+n, s-1, •c, s-n) as a smooth positively homogeneous function of degree 

0. Then we have
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LEMMA 1.4. The Lopatinski determinant R(0, 0, r~'o) is not zero. 

PROOF. By the definition of Lopatinski matrix we see that

where S+=(s+1, •c, s+n). Put B+(0, 0,)=(b+1, •c, b+n), where b+j is the j-th 

column vector of B+(0, 0,'o). By easy computations we have

(1.12)

Therefore it follows by (1.12) that the condition R(0, 0, 2)•‚0 is equivalent to 

the following

By the assumption 2+1a>0 we have the desired property.

REMARK 1.5. By the analysis at vo=0, we see that the stationary problem

inonis a coercive elliptic boundary value problem.

Let u be a solution of the boundary value problem (1.4). Then as in 

[14], WFb(u)C(T*Rn+1+\0)U(T*Rn\0) is defined as follows: i) If p=(t, y, v, r~)
ET*Rn+1\0, then peWFb(u) if and only if p WF(u, yn>0). ii) If p=(t, y', z, r~'}
ET *Rn\0, then p WFb(u) if and only if there exists a properly supported 

pseudodifferential operator A(t, y', Dt, Dy,)EL0(Rn) with compact support, 
which is elliptic at p, such that

for some e>0. By Proposition 1.2 of [14] this definition is independent of 
coordinate systems.

The behavior of WFb(u) in the elliptic range is as follows:

THEOREM 1.6. Let ~e be the null set of the Lopatinski determinant 
R(y', z, ~') in the elliptic range, that is e={(t, y', v, r~')ET*(Rn\0): r~(y', 0, r, 
>0, R(y', v, 7)=0}. Then we have

(1.13) WFb(u)fl{(t, y', r, 7')ET*(R•~aD)\0: r~(y', 0, z, 7')>0}Cƒ°e.
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Moreover WFb(u) is invariant under the Hamilton vector field Hz-h, where 

R=(r-h(y', ))R with R•‚0.

PROOF. In (1.7) we shall put V=t(tV+, tV_) and f=t(tf+, tf_), where V•} 

and f•} are Rn valued functions. By the condition on f we have poE

WF(f_(t, y', e)) for some positive e. Since V_ solves the backward parabolic 

equation DynV_-E_(t, y, Dt, Dy')V=f_, by an argument similar to that of 

Lemma A.2 in [20] (see also Section 1.1 in Chapter III of [24]), we have po 

WF(V_(t, y', 0)). This means that po does not belong to WF(B+V+|yn=o). If 

R(p0) is not zero, V+ solves the forward parabolic equation with smooth data 

near po. So we can conclude that po e WF6(V+) and (1.13) holds. We assume 

R(p0)=0. Let T(t, y', Dt, Dy') be a pseudodifferential operator of order 0 with 

the principal symbol (R-1(y', v, r~')En)(cof R)(y', z, v'), where (cof R)(y', z, ) is 

the cofactor matrix of R(y', z, ,'). Then we can show that WFb(V+) is in

variant under the Hamilton vector field Hz-h by Hormander's theorem, be

cause the principal symbol of TB+ is (z-h(y',))En. This completes the 

proof of Theorem 1.6.

REMARK 1.7. i) Let u(t, x) be a solution of the boundary value problem 

(1.1) and (1.2). We assume supp u(t, x) U supp (at u)(t, x) is away from the 

boundary 3Q for some tER. Then WFb(u)(1X-11(e) is empty, because by the 

fi nite propagation property of solutions of (1.1) we have u(t, x)=0 for |t-t|, 

xEU, where U is a neighbourhood of aQ, and the component of t-variable of 

a bicharacteristic of z-h is increasing with t.

ii) We assume 2+p<O and 2+2p>0. Then the elliptic range is defined 

by r~ +2u>0. In this case h((2+ 2p)I|~'|2)=24I|'|6/(2+2i)>0, where h is defined 

by (1.11). From this fact together with f(0)>0 and 2+2p<8p/3, it follows 

that f(t)>0 if 0<t<(2+2/4|1|2. This implies that the Lopatinski determinant 

R(y', z, ) is not zero if z•‚0. Combining this fact with Lemma 1.4 we see 

that WFb(u) is empty in the elliptic range.

1.3. The case r<O and r2+2~•‚0

First we shall consider the case r~<0<r2+2~. We assume r~(0, zo, r'o)<0

<ƒÁƒÉ+2ƒÊ(0, zo,). Then •‚0 and vo•‚0. Put a•‚=a•‚(-r~)1/2 and a•‚+2~=a•‚

i(rA+2u)1/2 and define s•}j(y, 2, r)(j=1,•c, n) by (1.8), which are linearly inde

pendent. Then by an argument similar to the one of Section 1.2, we have

(1.14)
in yn>0,

on yn=0,
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where H•}(y, Dt, Dy') is an (n-1)•~(n-1) square matrix, whose components 

are pseudodifferential operators of order 1 with the principal symbol aEn-1, 

and e is a scalar pseudodifferential operator of order 1 with the principal 

symbol a+2. Here the wave front sets of f and g have the same properties as 

those of f and g of (1.7). Let r is a half bicharacteristic in {(t, y, z, ~) E 

T*(Rn+1)\0; yn>0} defined by in-a(y, z, i), passing through (to, 0, 0, vo, 

a•}(0, zo, i'o)) and Fo be a conic neighbourhood of po=(to, 0, zo,

 ƒÅ'o). THEOREM 1.8. We assume ru(0, zo, ƒÅ'o)<0<r2+2(0, v0, y). If WFb(u)(1ƒÁƒÃ~ is 

empty in Fo•~[0, ~o)•~R, then po does not belong to WFb(u) and WFb(u)Cr-ƒÃƒÊ is 

empty, where ƒÃ=+or-.

PROOF. Put B(y, Dt, Dy')=(B1+, b+, B1-, b-), where B1•} is an n•~(n-1 

matrix and b•} is a column vector. If we denote the principal symbol of B1•} 

and b•} by (b•}1,•c, b•}n-1) and b•}, respectively, then b•}j and b•} are defined by 

(1.9). Since in (1.10) c•}ƒÊa+ƒÉ+2ƒÊ has the non-zero imaginary part, we see that 

B+=(B1+, b+) and C+=(B1-, b+) are elliptic pseudodifferential operators. De

note V of (1.7) by t(tV1+, v+, tV1-, v-). Then since v_ solves a backward para

bolic equation, B1+ V1++b+v++B1-V1- is smooth near po. If WFb(u)(1r+ƒÊ is 

empty in Fo•~[0, eo)•~R, we can easily show that po does not belongs to 

WF(V1+|yn=0). By the ellipticity of B+ po does not belong to WFb(V ). It follows 

that WFb(u)(1T-ƒÃƒÊ is empty. This completes the proof of Theorem 1.8.

Next we shall consider the case 0>r~+2~(0, zo, ƒÅ'o). In this case the eigen

values of M1 are a+ƒÏ=a•}(-rp)1/2, where p is p or 2+2p. If ƒÅ'o•‚0, then s+1,•c, s+n 

s-1, •c, s-n defined by (1.8) are linearly independent. If ƒÅ'o=0, we put 

s•}j=t(tej, (a•}ƒÊ(0, r0, 0)|r|-1)tej)(j=1, •c, n-1) and s•}n=t((a+2~(0, r0, 0)|ro|-1)en, 

(a+2(0, ~o, 0)|zo|-1)2ten), where ej is the unit column vector whose j-th com

ponent is 1. Let

where p is equal to p or 2+2p and C•}ƒÏ is a small circle with the center ƒÏp1/2|ro|, 

and s•}j=Ps•}j, s•}n=P•}ƒÉ+2~s•}n. Using the matrix S=(s+1,•c, s+n, s-1, •c, s-n), we 

have

in yn>0,

on yn=0,

where H+, H-, f and g have the same properties as H+, H, f, g of (1.14) and



Singularities o f solutions to the boundary value problems 129

the principal symbol of h•} is ƒ¿•}ƒÉ+2ƒÊ. Let r•}ƒÏ(p=p or 2+2p) be a half bicharac

teristic in yn>0 defined by (ran-a•}ƒÏ(y, z, r~') passing throught (to, 0, v0, ƒÅ'o, a•}ƒÏ

(0, D0,ƒÅ'o). 

THEOREM 1.9. We assume r2+2,u(0, r0, ƒÅ'o)<0. If WFb(u)fl(ƒÁƒÃƒÊUrƒÃƒÉ+2,u) is empty 

in 1',•~[0, eo)•~R, where I'o is a conic neighbourhood of po=(to, 0, zo, g'o), then 

po does not belong to WFb(u) and WFb(u)f(r-ƒÃƒÊUr-ƒÃƒÉ+2) is also empty.

PROOF. By an argument as in the proof of Theorem 1.8, we only have 

to show that B+ and B- are elliptic, where B=(B+, B-). If ƒÅ'o•‚0, by a a+2~

>0, we see that (1.10) is not zero. It follows that B+ and B- are elliptic. In 

the case ƒÅ'o=0 by easy computations we also see that b•}j(

0,ƒÑo, 0)=ƒÊ(ƒ¿•}ƒÊ_??_-11)ej (j=1, •c, n-1) and b•}n (0, r0, 0)=(2+2p)(a•}ƒÉ+2ƒÊA-11)2en. It follows that B+ and 

B- are elliptic. This completes the proof of Theorem 1.9.

REMARK 1.10. i) Since the first derivation of the polynomial h(s) defined 

in (1.11) is

and f((2+2p)|'|2)=24|~'|6/(2+2p), matrices (b+1, •c, b+n-1, b-n) and (b-1, •c, b-n-1, 

b+n) are non-singular, if we assume 2>4p, where B+=(b+1, •c, b+n). Therefore 

the statement of Theorem 1.9 should be changed as follows: If WFb(u)(1

(rUr+2~) is empty, then po WFb(u) and WFb(u)f(r'Ur2 )=ci,, where e and 

o are+or-.

ii) In the proofs of Theorem 1.8 and 1.9 we did not use the fact ƒÉ+ƒÊ>0. 

Thus theorems similar to Theorem 1.8 and 1.9 hold when 2+p<O and 2+2p

>0.

1.4. Further reduction near a glancing point of r~

Let (r0, i'o)ERn/0 satisfy r(0, r0, i)=|'|2-p-11v2o=0 and to be any point 

of R. All functions are considered in T'o•~[0, eo), where I'o is a small conic 

neighbourhood of po=(to, 0, ro,ƒÅ'o) To get a simple form for the principal 

symbol of M1 in 1'o•~[0, eo), we use Agranovich's argument (see [2] and [l0]). 

Let d(y, ,) be a smooth vector valued function such that d(y, a~)• (ƒÅ+GƒÅn)=0 

and d is analytic with respect to ƒÅn. Put v=t(td, A-11ƒÅntd ), where X11=(|ƒÅ'|2+r2)1/2, 

and define

where k=1, 2 and C is a small circle with the center 0. We can prove the 
following.
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PROPOSITION 1.11. Let sk(y, z, ƒÅ') be a positively homogeneous function of 

degree 0 defined by Sk(y, v, ƒÅ': 0) with v2+|ƒÅ'|2=1. Then we have

(1.15)

PROOF. Since (M21+pM22-Ap2)d=(Z2-p|ƒÅ+Gp|2)d, we have (pE2n-M1)v

=((p-a)2+r~)t(0,ƒÊ|G|2A-lt1(A-1d)), This implies that

It follows that

Therefore we have (1.15) from p(p-a)=(p-a)2+r~+a(p-a)-r~ and p=

(p-a)+a.

We shall seek an exact form of sk. Let d1=t(tƒÅ'ƒÅn, (ƒÅ'•Egrad g)ƒÅn-|ƒÅn|2) and 

dj=t(td'j, d'j•Egrad g) (j=2, •c, n-1), where d'2(ƒÅ'), •c, d'n-1(ƒÅ') form a base of 

the orthogonal space cf ƒÅ' and are of degree 0. Then d1,•c, dn-1 give a 

base of the orthogonal space of ƒÅ+GƒÅn. We define positively homogeneous 

functions sj (y, v, ƒÅ') and sn-1+j(y, z, ƒÅ') of degree 0 to be s1(dj) and s2(dj), 

respectively, where sk(dj) (k=1, 2) is the sk defined by the dj's in Proposition 

1.11.

LEMMA 1.12. We have

(1.16)

where d1=t(tƒÅ', ƒÅ'•Egrad g) and j=2, •c, n-1.

PROOF. First we remark that by simple calculations of residues we have

Using the above formula and p(p-a)=(p-a)2+r~+a(p-a)-r, we can 

easily prove (1.16) for j=2,•c, n-1. The equalities for sl and sn are proved 

by using p2(p-a)=(p+a)((p-a)2+r~)+(a-r)(p-a)-2r~a and p2=(p-a)2

+r+2a(p-a)+a2-r~.

Denote the eigenvalues of M1 by a•}ƒÉ+2ƒÊ=a•}i(r2+2~)1/2 and put s2n-1=
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t(t(ƒÅ+c
+2µG), a+ƒÉ+2u t(ƒÅ+a+~+2~G)A-11)A-11 and s2n=t(t(~+a-ƒÉ,+2tcG), a-ƒÉ+2p t("l+a-~+2uG) 

-11)-11. Using sj, we can define a matrix S=(s1,•c, s2n), which is non

singular. By the argument same as the one appearing in the first part of 

Section 1.2, we get the following boundary value problem;

(1.17)
in yn>0,

on yn=O,

where e+ and e- are scalar pseudodifferential operators of order 1 with the 

principal symbols a+2~ and a+2, respectively, and M2 is a (2n-2)•~(2n-2) 

square matrix of a pseudodifferential operator whose principal symbol is as 

follows:

Let us compute the principal symbol (b1, •c, b2n-2, b+, b-) of the boundary 

operator B. First we remark that d1•EG=0, d1•Er=|i'|2 and dj•EG=dj•Er~=0 

(j=2, •c, n-1). Using these relations, we have

where j=2, •c, n-1. Put C0=(b1, bn+1,•c, b2n-2, b+), which is a non

singular matrix, and define an elliptic pseudodifferential operator C(y, Dt, Dy') 

of order 0 with the principal symbol C0(y, v, v'). In (1.17) we may assume 

that boundary operator is C-1B, where the principal symbol of C-1B is 

(e1, 0,•c, 0, b'n, e2,•c, en-1, en, b'2n). Denote V of (1.17) and B(y, Dt, Dy') by 
t(tV

2, U+, v-) and

respectively, where B2 is an (n-1)•~2(n-1) matrix, tB3, b+2, b-2 are column 

vectors and b+3 , b-3 are scalars. Then the boundary value problem (1.17) is 

reduced to the following problem;

(1.18)
in yn>0,

on yn=0,
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(1.19)
(Dyn-e+)v+=f+ in yn>0,
v+=g3+B3V2 on yn=0,

(1.20) (Dyn-e-)v-=f- in yn>0,

where f=t(tf2, f+, f -), g=t(tg2, g3), B2=B2, g2=g2-b-2v-, B3=-B3 and g3=g3
-b-3v-, when b+2=0 and b+3=1. Since v- solves a backward parabolic equation 

(1.20) for f- with a condition po WFb(f-), we have Po WF(v-(t, y', 0)). This 
means that WF(g2) U WF(g3) does not contain po. Thus if we can prove po 
WF(V2(t, y', 0)), then po WFb(v+) from (1.19).

REMARK 1.13. Now we shall compute the Lopatinski matrix and deter
minant of the problem (1.18) near a glancing point. Let (a+ b)(y , r, i) be a 
solution of (,n-a)2+r=0 such that

Put S1=En11 0 Then S-11M2S1=((a+ b)Bn-1 1 and B2S1

=(B21+bA-11B22, B22), if B2=(B21
, B22). Then the Lopatinski matrix and deter

minant are defined by B21+bA-11B22=(e1+b11-11b'n, bA-11e2
,•c, bA-11en) and

respectively, where b'n1 is the first component of b'n. It follows that R(y', r, i)

=0 if and only if r
~(y', 0, z, )=0 near a glancing point. This implies that 

the closure of the real simple surface ~e appearing in Theorem 1.5 does not 

belong to the glancing surface r~=0.

1.5. Singularities of a solution near a diffractive point of r~

We assume (0, r, ~'o) is a diffractive point of (iin-a)2+r~, i.e., r(0, z, ?~'o)

=0 and {Y~n-a, r
~}(0, v0, i'o)<0. Under this assumption we shall construct a 

microlocal parametrix near po=(to, 0, v, 'o) for the problem (1.18) as 12=0. 

Let Po be a conic neighbourhood of po and p=(t, y', z, i) be an arbitrary point 

of Po such that there exists n with (ajn-a(y', 0, z, i'))2+r~(y', 0, z, i)=0. We 

say that a half bicharacteristic r(s)(r (s)) of (1)-a)2+r~ in yn>0 starting at 

P is outgoing (incoming) if (dyn/dt)(S(t))>0 ((dyn/dt)(s(t))<0), where yn(s) and 

t(s) are the yn and t components of T (s) (r(s)) , respectively, and s(t) is the 

inverse function of t(s). Let U=Uo•~[0, eo), where Uo is a small neighborhood 

of (to, 0), and aU be U0.

THEOREM 1.14. Let po be a diffractive point. Then we can construct a 

microlocal parametrix E+ (E-), which is a continuous linear map from D'(aU)
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to ~'(U), such that if gEY(U) and WF(g)Cf' o, then (Dyn-M2)E(g)EC°°(U) 
and B2E(g)|y n=0-gEC~(aU) and the wave front set of E+(g) (E-(g)) is con
tained in WF(g) and the union of outgoing (incoming) bicharacteristics starting 
at points belonging to WF(g).

PROOF. Put V2=t(tv1, tv2), where vj is an Rn-1 valued function
, and de

note Dyn-M2 by

where the principal symbol of R ~ is -r~ll-11 and Aij is of order 0. Then 
(Dyn-M2)V=0 is equivalent to the following:

(1.21)

(1.22) v2=(1+A12)-1(Dy n-a-A11)v1,

where A=-(A11+A22), B=(A11+A22)a-[(D
yn-a), A11]+(A+A12)[(Dyn-a)-

A22, (A+A12)-1]-A12R~+(A+A12)A21, which is of order 1
, and R=-ARE, By 

assuming zo>0, we shall construct E+(g). The principal symbol of the pseudo

differential operator appearing in (1.21) is essentially the scalar (rn-a)2+r. 

Thus using the method of Eskin [5] without any change
, we can construct a 

microlocal parametrix G of the problem (1.21).

Let A(s) be one of the Airy functions and 0 and p be functions appearing 

in Theorem 2.1 of [5], which are of degree 1 and 2/3
, respectively. Here as 

long as there is no fear of confusion we shall use y=(t
, y1,•c, yn). Then a 

parametrix G of (1.21) has the following form;

where E Rn, a=eo/||, x() is a cutoff function and g(y , ) and h(y, ) belong 
to S01,0, S-1/31,0 with the principal symbols go, ho, respectively, which are extended 
in p<0 (see [10] and [21]). We have

(123)

where the principal part of g1 and h1 is O(a), K()-(A'/A)(a I2/3)
, which is 

not zero for any and belongs to S1/31/3
,0, and co is a smooth function defined 

by Bo=8|yn=o and Po=p|yn=0 as 0o-2(p3/20-a3/2|e|)/3 when a>0
, and as 0o when 

a<0. Here we remark that po=(a+O(cr))|e|2/3 and we can take an arbitrary 

function for go in p=0. Since aynƒÆ-a(y', a
y'ƒÆ)|yn=0 is O(a) (see Section 5 of 

[5]), we have
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(1.24)

where c(y, ) is a non-zero scalar and of order -1/3, and g2 and h2 are of order 
0 and -1/3, respectively and are 0(a). Let b0 be the scalar elliptic Fourier 
integral operator with the phase function c0 and the amplitude function 1, 
and P-10 be the inverse elliptic Fourier integral operator of b0. Put D-1
b ;'En-1. Then -1(B2F+(v)|yn=0) is a pseudodifferential operator of order 0, 
where F+(v)=t(t(Gv)(y), t((A+A12)-1(Dyn-a-A12)G(v))). By the stationary 

phase method we can compute the principal symbol of the above pseudodif 
ferential operator from (1.23) and (1.24). We assume g0=En-1 in a=0. Then 
the principal symbol has the form:

(1.25)

where cj•‚0 (j=1,•E•E•E, n-1) and D1, D2 are O(a). Put

where c0(e)=(1+|X|2)1/6. The principal symbol of Q(v1)=-1(B2F+(v)|yn=0) is 

C+D3+DK+D4K-1 ES01/3,0, where C is elliptic and D3f D4 are O(a). By the 

asymptotic formula of the Airy function we have c1(1+|s|)•…|K(s)|•…c2(1+|s|). 

So DK E S01/3,0 is a small symbol if a is sufficiently small and D4K-1 E S01/3,0 is 

of order |a|1/2. These imply that C+D3+DK+D3K-1 is an elliptic symbol of 

S01/3,0 if a is sufficiently small. Therefore if WF(g)CI'o, we can easily solve 

Q(v1)=g modulo C°°(aU). The outgoing property of E+(g)=F+(K0Q-1g) is 

proved in Section 7 of [5]. This completes the proof of Theorem 1.14.

Let us consider the dual problem of (1.18) for f2=0. Since the principal 

symbol of B2 is (e1, 0,•E•E•E, 0, b•Ln, e2,•E•E•E, en-1), where b•Ln=t(a•L1, •E•E•E, a•Ln)(y, 2,~') 

the boundary operator C2(y, Dt, Dy•L) of the dual problem has the following 

principal symbol

(1.26)

where aj(y, z, ~')=-a•Lj(y, -v, n'). We also construct a parametrix of the 

dual problem of (1.18)
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(1.27)
(Dyn+tM2)E=0 in yn>0,

C2(y, Dt, Dy•L,)E=g on yn=0.

COROLLARY 1.15. Let ƒ¡1 be a conic neighbourhood of (t0, 0, -r0, -gyp). 

There exists an outgoing (incoming) microlocal parametrix tE+(tE-) of (1.27) in 

ƒ¡1, which satisfies all the properties mentioned in Theorem 1.14.

PROOF. If in (1.26) a2=•E•E•E=an-1=0, then the proof of this corollary is 

just the same as that of Theorem 1.14. In the present case the principal 

symbol of the pseudodifferential operator corresponding to F+(v) is as follows

(1.28)

where Di and D2 are 0(a), cj•‚0 (j=1,•E•E•E, n-1) and aj is defined by aj and 

the canonical transformation associated with the phase function ~0. We can 

easily find a non-singular matrix  g0=(gl,•E•E•E, gn-1)=(gij)i
,j=1,•E•E•E,n-1 which 

satisfies the conditions g1=t(c, a2,•E•E•E, an-1), g1•Egj=0 (j=2,•E•E•E, n-1) and 

Det((gij)i,j=2,•E•E•E,n-1)•‚0. Since we can specify go at a=0 as we like, (1.28) be

comes

where D1 and D2 are 0(a) and Det A•‚0, which is essentially the same as 

(1.25). This completes the proof of Corollary 1.15.

Let r+u (7) be the outgoing (incoming) bicharacteristic starting at a dif 

fractive point p0=(t0, 0, v0, ix). Using the argument of [13], we have

LEMMA 1.16. Let u be a solution of the boundary value problem (1.14). 

We assume either WFb(u)(17 or WFb(u)(;i is empty. Then po does not belong 

to WF(u|yn=0) U WF(Dynu|yn=0).

PROOF. By (1.19) and (1.20) we may prove that po WF(V2|y n=0) for V2 in 

(1.18). Now we assume WFb(u)(1r_c. We define the extension Vc2 of V2 

such that Vc2=V2 if yn•†0, and Vc2=0 if yn<0. Similarly we also define fc2. 

Take a scalar function p(y) e C°°(U) which is identically 1 near 0, then
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where tE+(g) is an outgoing microlocal parametrix of (1.27) and g E C~(aU). 
This is equivalent to

(1.29)

where ~b=c(y•L, Dy•L.) E L0(aU) and such that the support of the full symbol 

~1(y•L, /) is in a conic neighbourhood ƒ¡0 of p0 and ~b(y•L', /)=1 near p0. As for 

the right hand side of (1.29), we assume g E Y(U) and WF(g) is contained 

in sufficiently small conic neighbourhood ƒ¡1 of (t0, 0, -r0, -,'). Then by 

the properties of f2 and tE+(g), p(Dyn+M2)tE+(g), pcfc2 and (1-~b)ptE+(g) 

belong to C(U). Moreover by the assumption WFb(V2)flr=~b, we can 

define the duality <Vc2, [Dyn+M2, p]tE+(g)).

Next we shall consider the left hand side of (1.29). By the property of 

the principal symbol of B2 we may assume B2=(e1, b2,•E•E•E, bn, e2,•E•E•E, en-1, 

where the principal symbol of bj(j=2,•E•E•E, n-1) is 0. Put BI=En-1, BII=

(bn, b2,•E•E•E, bn-1) and denote V2 by t(v1,•E•E•E, v2n-2). We define VI=t(v1, vn+1,

•E•E•E, v2n-2, VII=t(v, v2,•E•E•E, vn-1). Similarly we also define p(tE+ (g))I and

 p(2E+(g))II• Then the condition B2V2=g is equivalent to VI=g-BIIVII. Sub

stitute the above into <V2(y•L, 0), (ptE+(g))(y•L, 0)>a, then we get

(1.30) <VII, p((tE+(g))I-tBII(tE+(g))I))•Ý+<g2, p(tE+(g))I)•Ý

-< VII, [tBII, p](tE+(g))I)•Ý.

We shall consider the second and third terms when g E '(aU) with WF(g)c

ƒ¡1. Here since (1-p)g E C~ implies [tBII, p](tE+(g))I E Co (aU), we can define 

the dualities <VII, [tBII, p](tE+(g))I) and <g2, p(tE+(g))I) by the condition of g2. 

Put-tBII=(b1,•E•E•E, bn-1) and denote by C2 (b1, e2,•E•E•E, en, b2,•E•E•E, bn-1). Then 

C2tE+(g)=(tE+(g))II-tBII(tE+(g))I and the principal symbol of C2 has the form 

(1.26). So we may assume tE+(g)II-tBII(tE+(g))I=g modulo CU). Now we 

consider the space (aU) (see p. 125 in [7]). Since Co (aU) is a dense subset 

of D1(aU), using (1.29), (1.30) we can continuously define the duality <VII, g)a 

for any g E 1( (aU). This means that p0 does not belong to WF(VII(y•L, 0)). It 

follows that pa WF(V2(y•L, 0)) by VI=g2-BIIVII. This completes the proof 

of Lemma 1.16.

Now let us state a theorem on propagation of singularities near a dif 

fractive point.

THEOREM 1.17. Let u be a solution of (1.4). We assume either WFb(u) (1 

r or WF2(u) flT is empty. Then po does not belong to WFb(u) and WFb(u)(1 

(1 U 1;) is also empty.
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PROOF. By Lemma 1.16 we may assume (WF(u(y•L, 0)) U WF((Dynu)(y•L, 0))) 

n I'o is empty, where ƒ¡0 is a conic neighbourhood of p0. Let uc be the zero 

extension of u to yn<0 and L be A(y)D2yn+B(y, Dt, Dy•L,)Dyn+(Cy, Dt, Dy•L), 

where Det A(y)•‚0. We have

(1.31)

where o(1)yn=dojdyn. By easy computations we see that the intersection of 

the wave front set of the right hand side of (1.31) and {(t, y, v, ~) E T Rn+1/0: 

(t, y•L, r, i) E ƒ¡0} is empty. Therefore, by Hormander's theorem on singular

ities, we have WFb(u)fl(r U r;) is empty if either WFb(u)flr or WFb(u)f1r 

is empty. Let us prove p0 WFb(u). Since L is elliptic near (0, en), there 

exists a properly supported pseudodifferential operator Q of order 0 such that 

QL=I+R, where WF(R) f1 {(t, y, r, ~) E T *Rn+1/0: |(r, ,')|•…o0|(~ ~|}=~b. From 

(1.31) we have

We assume p(t, y', Dt, Dy•L) is of order 0 and elliptic at p0 such that WF(c) C P0. 

Then, by Lemma 8.33 of [3], we find that Q((Au)(y•L, 0)Ooyn'+i(ADynu+Bu)

(y•L, 0)®o) is smooth if 0•…y•…for some e>0. On the other hand, by Pro

position A.1 of [19], we can regard cR as a pseudodifferential operator on 

Rn+1. Since WF(uc) f1 {(t, y, z, i) F T*R/0, (t, y•L, v, if) E F0, y,, <e}=q, we can 

conclude cbRuc is smooth if |yn|•…s. It follows that q5u is smooth if 0•…y•…e. 

This completes the proof of Theorem 1.17.

1.6, Singularities near a non-diffractive glancing point of r,

The argument used in this section depends deeply on one of Melrose and 

Sjostrand [14], [15]. Several notations used here is also the same as their 

notations. Throughout this section, for simplicity we shall use symbols t=y0, 

y =(y0, y1,•E•E•E, yn)=(y•L, yn), z=~o and =(?~', /7n/ (7)o, ... , y7n),

First we shall analyze singularities of a solution to the boundary value 

problem (1.18). Using the coordinate transformation defined in Remark 1.2, 

we may assume M2 has the following form:

(1.32)

where 112 is an elliptic formally selfadjoint pseudodifferential operator with 

the principal symbol 112(y, i'), R~ is a properly supported pseudodifferential 

operator with the principal symbol (A-12 r)(y, if) and Aij(y, Dy•L) is of order 0. 

Let Q(y, Dy•L), G(t, Dy•L), and F(y, Dy•L) be the properly supported pseudodiffer
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ential operators of the following forms:

(1.33)

where q is a compactly supported pseudodifferential operator of sufficiently 

low order, G1=G*2G2 is elliptic and of order 0, and F1 is of order 0. Then by 

the integration by parts we have the following.

LEMMA 1.18. Let A2(y, Dy•L) be a properly supported pseudo-differential 

operator of order 1 with the principal symbol A2(y, i') and u=t(tul, tu2) be an 

element of C°°(R+: Y(Rn)). Put Q1=FQA-12Dy n. Then we have

(1.34)

i{(CQLu, u)-(GQu, Lu)+(Q1Lu, u)-(Q1u, Lu)}

=-i(G(QM2-M*2 Q)u, u)-i((Q1M2-M*2Q1)u
, u)

+i([M*2, G]Qu, u)-(G•LQu, u)-(GQ•Lu, u)

-(Q•Llu
, u)-(G1qu2, u1)•Ý-(GIq*u1, u2)•Ý

-(F1g_??_-12 1D
ynu2, u1)•Ý-(F1q*_??_-12Dynu1, u2)•Ý,

where (,) and (,)a are continuous extensions of L2 products on Rn+1+ and Rn, 

respectively and the full symbols of G•L, Q•L and Q•Ll are derivations with respect 

to yn of the full symbols of G, Q and Q1, respectively.

Let {mD(y, /): T•†1} be a real-valued bounded set of S01
,0(R2n+1), we define 

N Smz(R2n+1) to be the space of all a(y, ~') E C(R2n+1) such that for each multi
index (j, a, j3), compact set K of Rn+1 and >0, there is a constant C=
C(K, j, a, ,Q, s), which is independent of z, such that

on K•~Rn. Since Smz C SCl-s ,5 for any c> sup my, >0 when mZ(y, ~') is 

N bounded, the corresponding space Lm(Rn+1) of pseudodifferential operators 

have all the usual properties.

Near. (0, r~') with R~(0, ')=0, choose a local coordinate (t, s)=(t, s•L, s2n) in 

T*Rn/0 such that t and s•L are homogeneous of degree 0, s2n is homogeneous 

of degree 1, t(0, /)=s•L(0, ')=0, s2n(0, r~')=1 and HRH=a/at. Choose X E C°°(R:

[0, 1]) with x(x)=0 for x<1/2, x(x)=1 for x>1 and define

for 0<£ •… ~o in D, where so is sufficiently small and

Since g.•…-3/2 in aD(1{yn>0}, we can extend gE to a homogeneous function
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C°°(Rn+l+•~Rn>0) of degree 0 with g0•…-3/2 outside D. For v•†1 put

Then the g; form a bounded family in S01,0(Rn+1+•~Rn).

Let b(y) e Co (Rn+1: R) be identically 1 in the region where g80•†-1. Let 

No>0 and a•†1 be fixed constants and q2 e LO No+1 be a formally selfadjoint 

bounded family with uniformly compact support and the principal symbol 

~2(y)(1+1y1'I)oge-No+l. Put q1=11-12 1q2 E L6gE-N0. Then we have

LEMMA 1.19 (see Section 2 of [15]). Let R~(y, Dy•L) be a properly supported 

pseudodifferential operator of order 1 with the principal symbol rA-12(y, ,').

 Then there exists aEz(y, Dy•L) E L(og~-No)/2 and cE'z(y, Dy•L) E Log;-No which are 

bounded families of compactly supported pseudodif ferential operators such that

Im([q1, R~]v, v)=•aa~'~vll2+(c~'zv, v).

Moreover a~ z has the principal symbol with the order of the magintude of

(1.35)

in the region t•†0, gE•†-1 and WF(c 'Z) does not intersect this region.

Before proving a key theorem, we need the following.

LEMMA 1.20. Let B2(y, Dy•L) be the boundary operator of (1.18). We denote 

the principal symbol of B2 by (e1, 0, •E•E•E, 0, b•Ln, e2, •E•E•E, en-1). Then b•Ln=a(r/)e1 at 

y=0.

PROOF. From (1.17), C0=(b1, bn+1,•E•E•E, b2n-2, b+) and C-10 have the follow

ing forms for y=0:

where b=2pa+2~Y/ with ~'=t(~1, •E•E•En-1) Then the n-th column vector of 

C-10B is equal to C-10bn=2i IY/I2A1 1C;1en_ 2a I v I'2A1 2c-1t(_ t (A-1b), 1). 

Since the first column vector of A is ( 2p J ~' I2)Aj 2Y~', we have A-1Y/=

(~o_ 2p I i' 12)-11 e1. It follows that A-1b=a(~')e1 for some function a. By the 

definition of B2 we have the desired property for b•Ln.

The following theorem is a key to the proof of the theorem on singular

ities near a glancing point.

THEOREM 1.21. Let (0, r~') e Rn+1•~(Rn/0) be a glancing point of r, i.e., 

r(0, ')=0 and V2 E C°°(R+: Y(Rn)) be a solution of (1.18). Then there exists
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eo, o>0 such that for some 0<e•…eo

then exp (tHR,)(0, ~') does not belong to WFb(u) for |t|•…oe, where exp (tHR
~)(0, i) i

s a bicharacteristic of R(y•L, 0, if) starting at (0, if).

PROOF. Let Q(y, Dy•L) be a compactly supported and formally selfadjoint 

operator in L°gE-N0 such that

where R0=4-21R~. Then, since q<112-A2g1=0, we have

(1.36) QM2-M*2Q=[Rn, q1]E2n-2+R0°a+jS,

where a= (ai n-1 0 and a1, a2 E L°g~-N0 are bounded families having the
 principal symbols with the order of the magnitude of

(1.37) 0(1)(a/e2)log(1+|if|)(1+|~2'|)c_N0

if t•†0, gE•†-1, and j9 E °g-D is a bounded family having the principal 

symbol with the order of the magnitude of O(1)(1+|y|)QgE-N0. Here the 

implied constant O(1) is independent of e, o, u, r, a.

Let G1(y, if) be the principal symbol of G1 in (1.33) which is a positive 

definite matrix. Then there exists a positively definite matrix G2(y, if), which 

is smooth, such that G1=(G2)2 by the implicit function theorem (see the proof 

of Lemma 3.2.3 in [7]). Therefore using Proposition 2.2.2 of [7], we get an 

N elliptic properly supported pseudodifferential operator G(y, Dy•L) such that

where R E L-~, which can be neglected. Put V2=u=t(tul, tu2), where uj is a 
vector in Rn-1. Then using (1.36), we have

(G(QM2-M*2Q)u, u)=([Rn, q1]Gu, Gu)+(N1u, u),

where N1=G(R0°a+j3)+G*[G, [R, q1]R2n-2]. Put AE'z=a~"R2n _2, where a~'Z is 

the one in Lemma 1.19. Then by (1.35), (1.37) and the fact that the principal 

symbol of Ru is O(32) in the region gE•†-1, we have

GR0a=(A)*aoAE'T+C,

where a0(y, Dy•L) belongs to f E,>0 L01_E, , e,, and its principal symbol have the
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order of the magnitude of O(1)oe, and WF(C';) does not intersect the region 

t•†0, gE•†-1. Similarly we have

where j0, C have the same properties as those of, a0, Cx,E respectively. We

 remark G*[G, [R~, q1]E2n-2] E L°gE-N0-1 and |(Lu, u)|•…Ce•au•a2+CN•au•a2-N, for 

any L(y, Dy•L,) E whose principal symbol has the order of the magnitude 

of O(1)e. Since, by their constructions, C(j=1, 2) have uniformly large 

negative order except in the region t<0, g,•†-1, and by the assumtion on 

WFb(V2), we have

where CE will hereafter denote some positive constant that is independent of 

r and C will hereafter denote a positive constant that is independent of 

s, a, u, v for s•†~ and a, r•†1. Using the above estimate, Lemma 1.19 and the 

N usual estimate for the elliptic operator G, we obtain

(1.38) C•aAƒÐ,ƒÑƒÃ,u•a2•…-Im(G(QM2-M*2Q)u, u)+CƒÃ.

Put N2=Q1M2-M*2Q1-[M*2, G]Q-i(G•LQ+Q•L1) in (1.34). Then by easy 

calculations we have

N2=ƒ¿(y, Dy•L,)A2-1Dyn+ƒÀ(y, Dy•L),

where a, j3 are bounded families in L''° having the principal symbols with 

the order of the magnitude of (a/c2) log (1+|r/|)(1+|if|)'"° _ , O(1)(1+|i|)'° 

in the region gE•†ƒÀ-1, respectively. Using (1.35) again, we have

(1.39)

Since A,,DA21Dyn=A-12DynAE'r+[A,", A21]Dyn+A-12[A,'r, Dyn] and Dynu=

M2(y, Dy•L)u+f2 with (0, if) WFb(f2), it follows that for any e'>0,

(1.40)

where A0=(1+|Dy•L|2)1/2. Here we shall use the classical interpolation 

inequality

(1.41)

Using Dynu=M2(y, Dy•L)u+f2, we have

D2ynu=(R0ƒÊM3+M4)u+f3,

where M3 E L1,0, M4 E L11,0 and (0, if) E WFb(f3). It follows that for any s'>0
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(1.42)

because the principal symbol of R0~ has the order of the magnitude of O(1)2 

in the region g•†-1. From (1.39), (1.40), (1.41) and (1.42) we have

(1.43) |(N2u, u)|•…CƒÂ•aAƒÐ,ƒÑƒÃu•a2+CƒÃ.

Next we shall consider (CQ•Lu, u). This is equal to (G1q•Lu2, u1)+(G1(q*)•Lu1, 

u2), where q•L and (q*)•L are defined similarly to q and q* for Q•L. From (1.32), 

the following equality holds

u2= (A2+A12)-1{Dynu1-A11u1-f21},

where f2=t(tf21, tf22) and (0, r~') WFb(f21). It follows that G1q•Lu2=x11-121Dynu1+

jSu1+f21 and ((q*)•L)*G*1u2 has a similar formula, where a, S are bounded

 families in L°gE N0, L°gE-N0-1, respectively, having the principal symbol with 

the order of the magnitude of (7/s)2 log (1+|/|)(1+|r~'|)6gE-N0 in t•†0, g,•†-1, 

and (0, ~') WFb(f21). Therefore, by calculations similar to those for (N2u, u), 

we have

(1.44) |(GQ•Lu, u)|•…OƒÂ•aAƒÐ,ƒÑƒÃu•a2+CƒÃ.

Next we shall study (Glqu2, u1)3+(Glq* u1, u2)3. Put u=t(v1,•E•E•E, v2n-2), 

u=t(vn, v2,•E•E•E, vn-1) and B2=(biji(y, Dy•L,)). Then the boundary condition B2u

=g2 on yn=0 implies that

(1.45)

where b•Lj=t(b2j,•E•E•E, bn-1j) and g2=t(g21, tg22). It follows that (G1qu2, u1)3+

(Gq*ul, u2)3=((D*lG1gD2+D*2G1q*D1)u, u)3+N3, where |N3|•…CE. Since q=

(1-R0)q1, there exists q3 E L(vg;-N°)/2 with the principal symbol (1+(r~Aj2) 

(y, x'))1/21i(y)(l+|)N0)/2 near (0, r~') such that q=q*3q3+q4, where q4 E 

L-N0-1 with the principal symbol with the order of the magnitude of O(1)

•~(6/~2) log (1+||)(1+|/|)°gE-N0-1 in the region where t•†0, g8•†-1. Using q3, q4, 

we have

(1.46) D*lG1qD2+D*2G1q*D1=q*3(D*1G1D2+D*2G1D1)q3+N4,

where N4 belongs to L6gE-N0-1 and has the principal symbol with the order of 

the same magnitude as q4. Thus

| (N4u, u)•Ý|•…C(ƒÂ/ƒÃ)•aA-10/2AƒÐ,ƒÑƒÃu•a2•Ý+CƒÃ.
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The classical trace inequality

II~~ 1~2AE'zuII a ~2IiAC'zulld X ii 11o lA:'ZuIIa

and the same reasoning used for N2 entail

(1.47) |(N4u, u)•Ý|•…CƒÂ•aAƒÐ,ƒÑƒÃu•a2+CƒÃ.

Next we shall consider (F1g1121Dy nu2, u1)6+(Fiq*i1-12Dynu1, u2)6. From 

(1.32), we have

A-12Dynu1=u2+A11u1+A12u2+h1,

A-12D
ynu2=-R0ƒÊu1+A21u1+A22u1+h2,

where Aij(y, Dy•L) is of order -1 and (0, r~') WFb(hj) (j=1, 2). Substitute 

the above equalities into (F1qA-12Dynu2, u1)a+(F1q*A-12Dy
nu1, u2)6. Then

(1.48) (FiqA-12Dynu2, u1)6+(F1q*A-12Dynu1, u2)5

=-(F1qR0u1, u1)a+(F1q*u2
, u2)a+N5,

where |N5|•…CoIIAE "uI2+C, by the classical trace inequality. From (1.45), 

(1.48) is equal to

(1.49) ((D*2F1D2-D*1F1R0D1)q3u, q3u)a+N6,

where N6•…CoIIA:"uII2+C,. Combining (1.46), (1.47) and (1.48) we have

(G1qu2, u1)a+(Gq*u1, u2)a+(F1qa-12Dynu2, u1)a+(F1q*A-12Dynu1, u2)6

-((D*lG1D2+D*2G1D1+D*2F1D2-D*1F1R0 uD1)q3u, q3u)a+N7,

where |N7|CoIIA"UII2+C,.

Put

where a>0 and the principal symbol of b is equal to b•Ln in B2. Then by 

Lemma 1.19 the principal symbol of G1 is positive definite near (0, v•L), and the 

principal symbol D*lG1D2+D*2G1D1+D*2F1D2-D*1F1R0°D1 is equal to

where a•L=a(l-|bln|2r~A21)+2Reb1n(|b•Ln|2-1). If we take a sufficiently large a, 

the principal symbol of D*1G1D2+D*2G1D1+D*2F1D2-D*1F1R0uD1 is non-positive 

definite near (0, v'). Applying the sharp Garding inequality, we get
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(1.50) where ~' is an arbitrary small positive number.

Combining (1.38), (1.43), (1.44), (1.47) and (1.50), we obtain

(1-Co)A:ru•…C&.

Consequently, if o>0 is sufficiently small, AEzu is bounded, for sufficiently 

large z and each fixed a and <o. Hence, letting roo, A:' u E L2 for any 

large a. Thus u has no wave front set where g,>0, since A&'°° is elliptic 

there. By minor changes of gE and sign of components of F1, we can 

similarly prove exp (tHR~)(0,'2') e WFb(V2) for -o~•…t•…0. This completes the 

proof of Theorem 1.21.

Now we shall consider the problem (1.18), where we only assume that 

the principal symbol of B2 has a maximal rank. So we may assume there 

exists u=(ul,•E•E•E, un-1), where uj is one of the components of u=V2, such 

that Btu=g2 is equivalent to u1=D1(y, Dy•L)u+g1 and u2=D2(y, Dy•L)u+g2 for 

some D1 and D2. By the proof of Theorem 1.21 we have the following

THEOREM 1.22. We assume that there exist matrices G•}1(y,'2') and 

F•}1(t,'2'), where G•}1 is positive definite, such that the principal symbol

(1.51)•} •}{D*1G•}lD2+D*2G•}1D1+D*2F•}1D2-D*lF•}lD1(r112 2)}

is non negative in a conic neighbourhood of (0, v'). Then V2 has the same 

property as that of Theorem 1.21.

Let us consider the boundary value problem

Dynu+R(y, Dy•L)u=0 in yn>0,

Dynu+L(y, Dy•L)u=0 on yn=0,

where R is a real principal type scalar pseudodifferential operator of order 2 

with the principal symbol r and L is of order 1 with the principal symbol 1. 

We note that this problem can be transformed into a boundary value problem 

for a first order system by putting u1=Au, u2=Dynu. Then our condition on 

(1.51)•} is

•} {2(Rel)g•}-f•}(|l|2-r)}•†0.

This is equivalent to the condition (2.2)•} of [15].

Following [15], we shall define a generalized bicharacteristic for Pp(Y,'2)

='2n+rp(y,'2'), where p is p of A+2p.
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DEFINITION 1.23. a) A subset of (T*Rn+1+/0) U (T*Rn/0) is the 

following set; If (y,'2) E LJb ,p E (T *Rn+1+/0), then p (y, ,)=0 and if (y•L, ii') E

 b,p fl (T*Rn/0), then there exists ~n such that pp(y•L, 0, ~', ran)=0. Next we 

define various conic subsets of ~b,p. Define vg,p=~b,p n (T*R++1'0), p=

{(y', /) E T*Rn/0: rp(y', 0, /)<O} f L:b,p, ~'b,p = {(y', 7)') E T*Rn\O: rp(y', 0,'2')

=0,:F (H5
,y)(y', n0,'2')>0} f ~b,p, ~b3p={(y','2') ET*Rn/0: rp(y', 0,'2')=0, 

(H2pp,yn)(y',0,'2')=0}fl pnb,p and ={(y', 72') E T*Rn\O: rp(y', 0, 7')=0, (HkRpy) 

(y', 0,'2')=0 for all k} n :b,p. Using these notations, we shall define a 

generalized bicharacteristic.

b) Let I~o be a small conic neighbourhood of (0, ') and ~0 be ([,X

[0, s)XR)f A generalized bicharacteristic is a curve rp: IJ0, where 

IC R is an interval, such that i) If r(t0) E to E I, then rp(t) is differential 

at to and r'p(t0)=Hpp(rp(t0)), ii) If rp(t0) En',p U then rp(t) E for 0•‚

|t t-t0| small, iii) If rp(t0) E fib', p U b3~ and we write rp(t)=(y(t),'2(t)), then 

(y(t), ''(t)) is differentiable at t=to with the derivatives (dyn/dt)(to)=0, 

d(y•L(t),'2'(t))/dt|t=t0=Hrp (y•L(t0),'2'(t0)), where rp(y','2')=(r,A2 1)(y', 0,'2').

In [15], it was proved that for any (0, ~')E L~b,p there exists a generalized 

bicharacteristic passing through this point, that is unique if (0, r~') 

In [20], an example was given for which there exist two generalized bicharac

teristic passing through the same point, that belongs to Let r(t) be 

any generalized bicharacteristic passing through (0,'2') such that r(0)=(0, '2'). 

We set r•}p=U{r(t): •}t>0}, where the union is taken over all generalized 

bicharacteristic satisfying the above conditions. Using these remarks and 

notations, we can state the following

THEOREM 1.24. Let (0, 7~') E T*Rn/0 with r~(0, ')=0, r=P0•~[0, e)•~R, 

where e is a small positive number, P0 is a conic neighbourhood of (0, v'), and 

u be a solution of (1.4). Then WFb(u)C and if WFb(u) (1 r is empty, then 

(0,'2') does not belong to WFb(u) and WFb(u) (1 r; s is also empty, where o=+

 or -.

Since we have proved the propagation of singularities near p E g,, U 

~L U mob',, we can prove the above theorem for (1.18), by using the method 

of Theorem 5.10 in [15], Theorem 1.21 and the Remark stated in the last part 

of Section 1.4. By the decomposition into (1.18), (1.19) and (1.20), we have 

the theorem for a solution u of (1.4).

REMARK 1.25. In section 1.5 and 1.6 we did not use the fact A+p>0. 

Since we only used ar+2•‚0, we can prove the theorems on the propagation 

of singularities near (0, ~') with rp(0, ')=0, r2+2p(0, '2')<O, if A+4i<0 and A+

2p>0. In this case, the arguments and desired theorems are similar to those
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of the next section.

1.7. The case r2+2~=0

In this section we assume )•‚0. Put d(y, i)= +Crn, where =(1•E•E•E,

,n-1, 0), v(y, r, ,)=t(td, A-1t1 din) and define

where k=1, 2 and C is a small circle with the center 0. Then since (D1-
M1(y, z, ij'))Sk=0, we have M1s2n-1=as2n-1-r2+2~cA-11s2n and M1s2n=A1s2n-1+as2n, 
where s2n-2+k(y, z, ~/)=Sk(y, z, a~': 0). By a computation similar to the one 
used in the proof of Lemma 1.12, we obtain

Let s•}j(j=1,•c, n-1) be a vector defined by (1.8), S(y, z, i') be a matrix de

fined by (s+1,•E•E•E, sn-1, sl,•E•E•E. sn-1, s2n-1, s2n) and S(y, Dt, Dy,) be a pseudodif 

ferential operator of order 0 with the principal symbol S(y, v,). Then by 

Taylor's argument there exists a pseudodifferential operator K of order -1 

such that the boundary value problem (1.5) and (1.6) is reduced to the 

following:

(1.52) inon

where V=(1+K)S-1 U, B=B0S(1+K)-1 and the principal symbol H•} and M2 

are a En-1 and

respectively. The principal symbol of B=(b+1•E•E•E,b+n-1, b-1,•E•E•E, b-n-1, b2n -1, b2n) 

is as follows:

(1.53)
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When y=0, b•}1={p((a•})2-|/|2)-2pay|2en}A-12, b•}j=pa•}w•}jA-1, b2n-1=2|2X

enA-21, b2n=2p~JA11. Since (a•})2-|,|2=f-1(Z2 2p|'|2)=p-1(Z2-(2+2p)|'I/|2+

A|y|2) at y=0, it is not zero near a glancing point of rz+2u• Hence the matrices 

(bi ,•E•E•E, b+n-1, b2n-1) and (b-1,•E•E•E, b-n-1, b2n-1) are non-singular if 2 is not zero. 

Therefore we assume B(y, Dt, Dy•L) is one of the following forms:

where B•} is n-1 square matrix, tb•} and c are column vectors and d is a 

scalar. We put V=t(tv+, tv-, tv), where v± is a vector of Rn-1 and v=t(v1, v2) 

is a vector of R2. Then the boundary value problem (1.52) admits the follow

ing decomposition:

(1.54)•}
(Dyn-H•})v•}=f•} in yn>0,

v•} =g1-B•}v•}cv2 on y=0,

(1.55)•}
(Dyn-M2)v=f2 in y>0,

B2v=g2-b•}v•} on y=0,

(1.56)•} (Dyn-H•})v•}=f•} in y>0,

where f=t(tf+, tf-, f2), g=t(tg1, g2) and B=(1, d).

Let p0=(t0, 0, zo, ~'0) be a glancing point of rA+2~, i.e., r2+2(0, zo, ')=0. 

Denote by r•}a half null bicharacteristic in yn>0 of ~n-a+a•}, passing 

through (t0, 0, r0, ~', •}r1/2(0, z0, r')) and by rr+2,, a union of generalized 

bicharacteristics passing through ,o0, which is defined similarly to r in 

Theorem 1.24.

THEOREM 1.26. I f ƒÉ•‚0, Let r be P•~[0, s)•~R, where P0 is a conic 

neighbourhood of P0, and u be a solution of (1.4). Then WFb(u) fU 

Lb,2+2u), and if WFb(u) f (r U rA+2) (1 P=~b, where and ~' are + or -, P0 

WFb(u) and WFb(u) fl (r;° U rr) nr=c.

PROOF. Assume WFb(u)(1r~_~. Then since v- solves the equation 

(1.54)+, where P0 WFb(f-), we can conclude Po WF(v-|yn=0). Therefore in 

(1.55)+, p0 does not belong to WF(g2), where g2=g2-b-v-|yn=0. First we shall 

consider the case where P0 is diffractive. By (1.23) and (1.24) we have

where a=t(g0, 0)+O(a) e S01 ,0 and b e S1,o 3. Since B2=(1, d), ~-1(B2E•}(g2)|y=0)
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is a elliptic pseudodifferential operator. Thus a result similarly to Lemma 

1.16 holds for the boundary value problem (1.55)•}. It follows that WFb(u) 

has the desired properties.

In the case where po is non-diffractive, we just check the condition (1.51)•} 

to get Theorem 1.20 for (1.55)•}. In this case put D1=-d, D2=1 and G•}1=1. 

Then (1.51)•} is equivalent to

•}{-(d+d)+(1-|d|2(r2+2~a`121))F•}1}>0.

Thus, if we put F•}1=•}a, where a is a sufficiently large positive constant, 

then we have (1.51)•}. This completes the proof of Theorem 1.26.

REMARK 1.27, i) In this section we only used A~0 and did not use 

 +p>0. Therefore we can porve a result similar to Theorem 1.24, when 

i(+ti<0 and A+2a>0.

ii) When =0, matrices (b+1,•E•E•E,b+n-1, b2n) and (b-1,•E•E•E, b-n-1, b2n) are 

non-singular because b2n=2' at y=0. So the boundary operator of the 

corresponding problem (1.55)•} has the form (b, 1). From (1.53) we can seek 

b. However its properties are too complicated to analyze.

Chapter 2. Maxwell's equation

We shall consider Maxwell's equation in a vacuum region Q bounded 

by a perfect conductor. The electric and magnetic fields, E and B, satisfy 

eight equations;

(2.1)
•Ý E/at curl B=0, div E=0,

•Ý B/•Ýt+curl E=0, div B=0

and on the boundary of the conductor, E and B satisfy

(2.2) n•~E=n•EB=0 on •ÝQ,

where n is a normal vector on 3Q. It is convenient to write boundary value 

problem (2.1) and (2.2), separately, as follows:

(2.3)
•Ý2E/•Ýteƒ¢-ƒ¢E=0 in R•~ƒ¶Q,

div E=0 and n•~E=0 on R•~•Ýƒ¶,

(2.4)
•Ý2B/•Ýt2 -ƒ¢B=0 in R•~ƒ¶

,

n•EB=0 and n•~curl B=0 on R•~asp.

Since the above two problems are translation and rotation free, we may 

assume 0eaQ and aQ is defined by x3=g(x•L) with grad g(0)=0, where x•L=
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(x1, x2). Let us consider a coordinate transformation; yj=xj(j=1,2), y3=x3-
g(x'). Then the boundary conditions of (2.3) and (2.4) become as follows :

(2.5)
E=GE2, on y3=0,

(2.6)
GB=0 on y3=0,

where G=t(-ag/ay1, -aglay2,1) = t(-g1, -g2,1) and

Next we apply the coordinate transformation given in Remark 1.2. Using 

the same y for the new coordinate, we have the following two boundary 

value problems:

(2.7)

PE=0 in y3>0,

on y3=0,

E=GE3 on y3=0,

(2.8)
P(y, D5)B=0 in y3=0,

on y3=0,

where P is a second order single operator whose principal symbol is p2=-
G12{~3+r(y, v, i')} with

and

We can simplify the boundary conditions of (2.7) and (2.8) as in the 
following lemma.

LEMMA 2.1. I f E and B satisfy the boundary conditions (2.7) and (2.8), 
respectively, then they also satisfy the following conditions:

(2.9)
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(2.10) G•EB=0,

where a = - Rl • (aG/ay3) - rl • (aG/ay2) and A is a 2•~2 square matrix.

PROOF. Differentiate E=GE3 with respect to yj(j=1,2) and substitute 
them into j3,aE/a y3 + r1aE/a y2, then using G • R1= G • r2= 0, we get G • aE/a y3 = 
aE3. Put tA1=(e1,e2,tG), where ej is the unit vector of R3 such that j-th 
component is 1, and multiply aaB/ay3 + p2aB/ay3 + r2aB/ay3 by A1. Then since 
t G • a = t G • j3 2 = t G • T2= 0, we have an equivalent condition

(2.11)

where a3 is a 2•~3 matrix whose first and second line vectors are equal to 

these of a, p, and p3f r3 are defined similarly. From G• B=0, if j=1, 2,

where

Since J33U=r3o=0 in (2.11), it follows that

(2.12)

Multiply (2.2) by a4, where

Then we have the desired form (2.10) by setting A = - a4(/33e1 + r3e2).

We shall reduce the boundary value problems to first order systems. Put 
F=t(F1,F2)=t(tE,Dy ,tE). Then

(2.13)
in y3>0,

D1(y,Dt,Dy,)F=0 on y3=0,

where I3 is the 3•~3 identity matrix, Q(y,Dt,Dy,) is of order 0, R(y,Dt,Dy,) 

has the principal symbol - r(y, z, ')A1, and by (2.9)
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Similarly put C=t(tC1,tC2)=(AtB, D53 tB). Then,

(2.14)
(Dy3-M)C=0 in y3>0,
D2C=0 on y3=0,

where by (2.10),

Here A of (2.10) is (aij)i,j=1,2.
Let ~jb be vb ,1 in Definition 1.22 for p=1 and p0= (t0, 0, zo, ') be a hyper

bolic point of p, i.e., r(0, zo, j') <0. We define a half bicharacteristic r+(r-) 
passing through po of ~n - ( r)"2(in + (- r)1'2), which is in y3>0.

LEMMA 2.2. The wave front sets o f E and B are contained in b, and i f 
po = (to, 0, v, ~') is a hyperbolic point and WFb(E) (1 YE _ c, then pa WFb(E) 
and WFb(E) ;1 r E _ ~b, where is + or -. The same statement holds for B.

PROOF. We assume r(0, v0, ') ~0. Put (- rA 2)1i2= i and

Using S, from (2.13) and (2.14), we have boundary value problems, which are 
similar to (1.7). Then the principal symbols of their boundary operators are 
as follows:

where Dij is a 3•~3 square matrix. Since all the matrices Dij(i,j=1,2) are 

non-singular, we have the desired properties.
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Let PO = (t0, 0, r0, ~o) be a diffractive point of r. By an argument similar 
to Section 1.5, we can define an incoming (outgoing) bicharacteristic starting 
from a diffractive point.

LEMMA 2.3. A solution (E, B) of the boundary value problem of (2.1) and 
(2.2) have the same properties as those mentioned in Lemma 1.15.

PROOF. We can show that there exist microlocal parametrices for the 
dual problems (2.13) and (21.4). The principal symbol of the boundary oper
ators tD1(y,Dt,Dy,) and tD2(y,Dt,Dy,) of the dual problems for (2.13) and 

(2.24) are

respectively. The trace of a microlocal parametrix of Dy3-tM on y3=0 has 

the following form:

where a=t(0, tg0)+O(a), b= t(ctg0, th0)+ 0(a) with 3•~3 square matrices g0, h0 

and a non zero scalar c. Then the principal symbol of the pseudodifferential 

operator ~tD1tE±(g)iys-o is as follows:

(2.15)

Put

on

and multiply (2.15) by K0. Then we have

which belongs to S01/3,0 and is non-singular. So we can choose K-10(Dy')v1 such 
that tD1'E±(g),yn_o=g modulo C°°. Similarly we can define K1=(K-1e1, K-1e2, e3)
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and choose Kr-11v1 such that tD2 tEt(g)~y3_o =g modulo C°° for any g, because 
g1(0) =g2(0)=0.

Next let us consider a non-diffractive glancing case.

LEMMA 2.4. Let (to, 0, 20, ~o) be a glancing point of n+ r and F and C be 
solutions of (2.13) and (2.14), respectively. Then F and C have the same pro

perties as those in Theorem 1.20.

PROOF. We only check the condition (1.51)±. First we shall consider 
N the problem (2.13). In this case we put F=t(f4, f5, f6), where F=t(f1,...,f6). 

Then

Since D*1D2=0, if we put Gi = 13 and Fi = 0, we have (1.51)±. As for (2.14), 
D=t(d1, d2, d6), D1=D2, D2=D1. Similarly, D*1D2=0 implies the same con
clusion.

Summing up Lemma 2.2, 2.3 and 2.4, we get the following

THEOREM 2.5. The behavior of the singularities of a solution to Maxwell's 
equation (2.1) and (2.2) is the same as that of solutions to the Dirichlet problem 

for the wave equation.

Next we shall consider a general Maxwell's equation.

(2.16)
div E=g1,

div B=g2,

where c1 and c2 are positive constants and all the components of matrices aj, 
bj, and vectors fj, gj(j=1,2) are smooth functions on Q. In most of the 
physical situations a1 is constant and a2=b1=b2=f1=f2=g2=0. The boundary 
condition to be considered is one of energy conserving boundary conditions 

(see [18]).

(2.17) on aS~,

where A is a real valued function, that is 0 if c1•‚c2, defined in Q. (2.16) can 

be rewritten as

(2.18)

where F=t(tE, tB), Q1 is a 6•~6 matrix whose components are first order
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differential operators and G is a R6-vector valued function defined from fj 
and gj(j=1,2). Put

Then E= (E + AB)/(1 + ~2), B= (B AE)/(1 + A2), and from (2.17) and (2.18) we 
have the following boundary value problem:

in R X Q,

n•~E=n•EB=0 on RXaQ,

where F=t(tE,tB) and Q2 has the same properties as Q1. When c1=c2 E 
and B also satisfy (2.16) for some aj, bj, fj and gj (j=1,2). So we may assume

n•~(curl B)=C1E+C2B+g3 on aQ,

where Cj(j=1,2) is a 3•~3 square matrix on SQ and g3 is a vector on SQ.

Since we only used conditions on the principal symbols in the proof of 

Theorem 2.5, we have

COROLLARY 2.6. A solution of the boundary value problem (2.16) and 

(2.17) has the same properties as those in theorem 2.5.

Appendix

In this Appendix we shall consider the propagation of singularities of 
solutions to boundary value problem for strictly hyperbolic single or system 
equations with some boundary condition, which is a generalization of 
Agmon-Lopatinski condition.

First we study higher order strictly hyperbolic single equations con
sidered in Eskin [5]. Let Q be an open set in Rn with a smooth boundary 
SQ. Let us consider a solution of the following boundary value problem;

(A.1)
A(t,x,Dt,Dx)u=f(t,x) in R X Q,

Bj(t,x,Dt,Dx)u=gj(t,x) on Rxa12, j=1,...,1,

where A is a strictly hyperbolic equation of order 2m with respect to t and 
Bj(j=1,...,l) are differential operators of order mj<2m. We assume the 
following conditions: For any fixed (t, x, z) with z 0 each component of the 
surface A2m(t, x, z, ~)=0 is a bounded strictly convex surface in Rn, where A2m 
is the principal part of A. We also assume A2m is non-characteristic with 
respect to R X SQ, i.e., A2m(t, x, 0, n) is not zero for any (t , x) E R X SQ, where 
n=n(x) is the normal vector to aQ at x.

We introduce a local coordinate system y=(y0, y1, ..., yn)=(y',yn) in
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some neighbourhood of (t0, x0) E R X aQ such that t=y0,(t0,x0) is the original 

point of Rn+1, aQ is on yn=0, and R X Q is contained in the half space yn>0. 
Let A2m(y, ~) and Bj ,mj(y, ,) be the principal part of A and Bj in terms of the 
new coordinate system, respectively, where 2 = (r/, ran) _ (r~o, v", ran). By the 
assumption on A there is at most one double real jn-root of the equation 
A2m(0, r~', Y~n)=0 for any ~'=0. In the neighbourhood of the above point 

(0, v'), we can decompose A2m as follows:

(A.2)

where A2p(y, r~', r1 n) is a strictly hyperbolic polynomial with respect to in of 

order 2p(0•…p•…m-1), A2m-2p-2 is an elliptic polynomial of order 2m-2p-2, 

,1o(y, r~') is of order 1 and r(y, /) is of order 2. By the strictly hyperbolicity 

of A2m(y, r~), we have r(0, r~') = 0 and (ar Ja)(0, r~') * 0. Hence the surface r(y, ,~') 

= 0 is smooth. On the other hand, if A2m(0, ', ran) does not have a real 

double root, then in the neighbourhood of (0, ') we have

(A.3)

where A2p is a strictly hyperbolic polynomial of order 2p(0•…p•…m) and 

A2m-2p is an elliptic polynomial of order 2m-2p.

Now we shall formulate a generalization of Agmon-Lopatinski condition. 

From the assumption on A2m we can write A2p of (A.2) or (A.3) as follows:

where (a,/0)(O, ')<0 for j =1, ... , p and (a2p + 1/0)(O, ')>0 for j=1, ...,p. 
Let A2m_2p_2(y, rI')=A+(y, i')A_(y, r~') be a factorization of the elliptic poly
nomial A2m-2p-2 with respect to in such that A+ (A_) is a polynomial of order 
m-p-1 with all roots of which lies in the half plane Im ~n>0 (Im 7)n<0). 
Let J be a subset of {l,..., 2p} whose number of elements is N and put

(A.4)

if A2m(0, ', r~o) = 0 has a double root. If there is no double root of A2m(0, r2', rIn) 
= 0, then AJ is defined similarly to (A.4) without ran  ia. In the following 
definition we shall say the rank of vectors a1,..., al is p if the dimension of 
the vector space spanned by a1,..., al is p.

DEFINITION A.1. We say that the boundary value problem (A.1) satisfies 

generalized Agmon-Lopatinski condition at (0, r~') with respect to J, if the 
rank of the polynomials Bj ,mj (0, ', vn) (j=1,...,l) is m-p+N modulo the 
polynomial A,(7n).
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If J={1,...,p} and l=m, the above condition is the Agmon-Lopatinski 
condition. Later we shall show this condition is equivalent to that used in 
Majda-Ocher [12].

Denote (A.1) by the new coordinate system: then we have

(A.5)
A(y,Dy)u=f(y) in yn>0,

Bj(y,Dy)u=gj(y') on yn=0, j=1,...,l.

Here A(y, Dy)=Dyn + jJ1ak(y, Dy')Dyn-k, and Bj(y, Dy)=~k ~11 bjk(y, D) x 
D7' +-k (j=1,.., l), where ak(y, Dy'), bjk(y, Dy') are differential operators 
with respect to y' of order k and k-1, respectively. Let A(D) be a properly 
supported pseudodifferential operator with the symbol (1 + l v/ 12)1/2 and vj be 
A2m-iDyn 1U (j=1,..., 2m). Then the boundary value problem (A.5) is reduced 

to the following first order system

(A.6)
(Dyn-M(y, Dy' )) V=F in yn>0,
B(y,Dy,)V=G on yn=0;

where V=t(v1, ..., V2m), F=t(0,...,0,f), G=t(g1,..., gl) with gj=A2m-mj+1g. 

(j 1,..., l). Here M(y, Dy') and B(y, Dy') have the following forms:

where ak=-ak(y, Dy')A-k+i and bjk=" 112m-m;+1b ( D ) A-(2m-mj+k) Hereafter 
we assume that A2m(0, r~, r~2)=0 has a real double root and functions appear
ing in the argument below will be defined in a conic neighbourhood of (0, v'). 
From (A.2) there exists a non-singular matrix S1 whose components are 
smooth homogeneous functions of order 0 such that M1S1= S1D1, where 
M1(y, if) is the principal symbol of M(y, Dy') and

(A.7) with

Here E+ (E_) is a (m-p-1)•~(m-p-1) square matrix whose eigenvalues
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have positive (negative) imaginary parts, E+ has Jordan form at (0, v'), and 

the 2•~2 square matrix M2(y, i') has the form:

where a, b and c satisfy the condition r(y, ')= -(a2+ bc).
Since either b(0, ~') or c(0, a~') is not zero from (ar/a~o)(0, ~') *0, if we de

note one of the following two non-singular matrices by S2(y, ~')

then we have

(A.8)

Put

S=S1S3, and B0S=(b1,...,b2m), where Ba is the principal symbol of B(y, Dy'): 
then we have

LEMMA A.2. Let J={j1,...,jN} be a subset of {1,...,2p}. Generalized 
Agmon-Lopatinski condition at (0, r~') with respect to J is equivalent to the con
dition the rank of (bj1,...,bjN, b2p+1, b2p+3,...,bm+p+1)(0, Y~') is m-p+N.

PROOF. In this proof we always assume ~' =1. Let pi, • •., pk be the 
distinct eigenvalues of E+(0, ~') with multiplicities n1,...,nk, respectively 

(n1...+nk=m-p-1). Then

with

where Ej is an n3•~nj square matrix. Here we used the fact that if A is an 

eigenvalue of M2 and v is an eigenvector of A, then v= at(1, A, • • • , A2m-1) with 

a E C. Hence the dimension of the eigenspace corresponding to A is 1. Put 

S(0 -'\-( ~s ... s t ... t ) and SJ=(sj1,...sjN, s2p+1, t1,...,t

m-p-1). Then
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s1,..., s2p+1 are the eigenvectors with respect to the eigenvalues A1(0, v'), 
22p(0, v'), X0(0, ') of M1(0, v'), respectively, and

where j=1,..., k and q=2,..., nj.
We shall seek generalized eigenvectors of the eigenvalues p~ (j= 1, • • • , k). 

Let f(x)=t(1, x,..., x2m-1) and

Sj,q=((q-1)!)-1(d/dx)q-1f,x_ ,, q=1, ..., k,.

Then by (M1 p;) f = (x- p1) f  t(0, , 0, A2m(O, ~', x)), it follows that

q=2,..., kj.

Therefore we may assume

i=1,...,

2p,tn1+...+nj-1+q=Sj ,q.

We denote Bj,m,(0, r/, fin) by (Q~AJ)(i1)+B;(rn). Then generalized Agmon
Lopatinski condition is equivalent to the condition that the rank of B1(~?n), 
• • •, B1(r~n) is m-p+N. This is also equivalent to the condition that the 

rank of matrix B=(bjk) is m-p+ N, where Be(rn)=~k p+Nb~k~m-p+N-k• 
Since

where the i-th component of sj , q E Bm  p + N are equal to those of sj,g (i=1,...,
m-p+N),

where the column vectors of S, are similarly defined from the column vectors 

of SJ. Thus we only prove that det SJ•‚0. We assume (am-p+N,...,a1)SJ=0 

and put g(x)=a1xm-p+n-1+...+am-p+n-1x+am-p+n. Then g(21)=O, k=1, • .., 

N, g(20)== 0, and (d/dx)qg(p3) = 0, q=0,...,nj-1, j=1,..., k. It follows that 

the polynomial g(x) of degree m-p+N-1 has m-p+N roots. Thus we 

have g=0, i.e., ai=0 (i=1,...,m-p+N). This completes the proof of
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Lemma A.2.

REMARK A.3. Let PJ be the projection to the generalized eigenspace of 
the eigenvalues A~1(0; v'), A~N(0, v'), 20(0, r~') and those of E+(0, v'). By 
Lemma A.2 it follows that the generalized Agmon-Lopatinski condition is 
equivalent to the condition that the rank of B0 (0, ~')P, is m--p+ N, where 
B0(y, r~') is the principal symbol of B(y, Dy') of (A.6).

In Majda-Osher [12], they used the following condition. Put

and

Then they say that the boundary conditions B1,...,Bl are perfect reflections 
at (0, ~') if there are no non-trivial solutions v(yn) with sup|yn>0|v(yn)|<c to 
the following boundary value problem of an ordinary differential equation

A+J(Dyn)v(yn)=0 in yn>0

B0(Dyn)v(yn)=0 on yn=0

LEMMA A.4. The above Majda-Osher's condition is equivalent to gener
alized Agmon-Lopatinski condition.

PROOF. We shall use notations which appeared in the proof of Lemma 
A.2. Clearly Majda-Osher's condition is equivalent to the following; There 
are no non-trivial solutions v(yn) such that

(A.9)
AJ(Dyn)v(yn)=0 in y>0,
B0(Dyn)v(yn)=0 on yy=0,

where B0(Dyn)v=t(B1(Dyn)v,..., Bl(Dyn)v). Put V=t(v1,...,vm-p+N) with 
vj(yn)=Dj-1ynv(yn). Then (A.9) is reduced to the following first order system:

(A.10)

V(yn)=0, yn>0,

V=0 on yn=0,

where AJ(Dyn)=Dm-p+Nyn__ ~k p+N akD; .P+N-k and B/Dyn)= yk o +N 7 file 1.
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In the proof of Lemma A.2 we showed that the generalized Agmon-Lopatinski 

condition was equivalent to the condition that rank BSJ=m-p+N. Hence 

we first assume this condition. Then in (A.10) the boundary condition is 

V=0 on yn=0 because det SJ•‚0. By the uniqueness theorem of ordinary 

differential equation, it follows that any solution of (A.10) is automatically 

zero. If we assume rank BSJ<m-p+N, then there exists a non-zero vector 

V0 such that BV0=0. Let V be a non-zero solution of the Cauchy problem 

for (A.10) with data V=V0 on yn=0. Then this solution also satisfies (A.10) 

with B0V=0 on yn=0. This completes the proof of Lemma A.4.

Let r~ be a half bicharacteristic in yn>0 defined by - ~') starting 

at (0, ', A,(0, v')). If we assume that the generalized Agmon-Lopatinski con

dition at (0, ') with respect to J holds and WF0(V) (1(U ; 6r) J;c, then using 

the arguments of Section 1.4 and 1.7, in a conic neighbourhood of (0, a~') we 

can reduce the problem (A.5) to the following:

(A.11)
V,=F1 in yn>0,

V1=G1+A1V2 On yn=0,

(A.12)
(Dyn-M2(y,Dy'))V2=F2 in yn>0,
B2(y,Dy')V2=G2 on yn=0,

(A.13)
(Dyn-M3(y,Dy'))V3=F3 in yn>0,
V3=G3+A2V2 on yn=0,

where the principal symbols of M2 and M3 are equal to S-12M2S2 in (A.8) and 

E+ of (A.7), respectively. A1(y, Dy') and A2(y, Dy') are p•~2, (m-p-1)•~2 

matrices, respectively, whose components are of order 0, B2=(1, b), and 

(0, ~j') E WF0(FJ) U WF0(G;) (j=1, 2, 3). By the form of B2, the problem (A.12) 

satisfies Kreiss condition, i.e., Lopatinski determinant is not zero. So by 

the same argument as that used in Section 1.7, we have the following gener

alization of [12].

THEOREM A.5. Let (0, ') be a glancing point of A2m, i.e., r(0, ')= 0 and 

u be a solution of (A.5). We assume the generalized Agmon-Lopatinski con

dition at (0, ti') with respect to J, WF0(u) f (U e 0r~)= ¢, and a family of half 

generalized bicharacteristics starting at (0, ~') defined from (ran --X0)2+ r does 

not belong to WFb(u). Then (0, ~') WF0(u), WF0(u) (1(U ~p 1 r)= c5 and the 

family of generalized bicharacteristics starting at (0, ~') does not intersect with 

WFb(u).
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We shall show an example of boundary value problems considered in 
this chapter.

EXAMPLE A.6. Let aj(j=1,...,m) be a positive constant such that 0<
a1<a2<...<am. We shall consider a strictly hyperbolic operator

where A2m-1(t, x, Dt, Dy) is an arbitrary differential operator of order 2m-1. 
Then A satisfies all the conditions imposed. Let Q be an arbitrary open set 
in Rn with a smooth boundary aQ and a/an be the normal derivative of aD. 
Consider the following boundary value problem;

A(t,x,Dt,Dy)u=f in RX Q,

on RXaQ j=1,..., m,

where f E C~(R X Q), g1 E C°°(R X aD) (j=1,...,m). In this case the gener
alized Agmon-Lopatinski condition at (0, ') with respect to J is equivalent to

where J={j1,...,jN} and A~ (j=1,...,m-p-1) are simple roots of A+(0, ',fin) 
=0. If p>N, the generalized Agmon-Lopatinski condition holds for any J.

Next we shall consider the following boundary value problem:

(A.14)
In xn>0,

B(x)U=G on xn=0,

where U=t(u1,..,,u2m), Ak(k=0,...,n) and B are 2m•~2m, l•~2m matrices, 

respectively, whose components are smooth functions, and R E C~(k '), G E 

C~(Rn). We assume the polynomial Det (v-F k=1 Ak(t, x)ek) satisfies the con

dition imposed on A2m of (A.1), and Det An(t, x)•‚0. Then the polynomial 

Det(&n+An1(E2mv+ k=1Ak(t, x) k)) has the decomposition (A.2) or (A.3). Let 

J=(j1,...,jN) be an arbitrary subset of {1,..., 2p} and PJ be the projection 

to the generalized eigenspace corresponding to the eigenvalues , , ' 

and the roots of A+=0. From Remark A.3 we have the following generali

zation of the theorem in [6]:

THEOREM A.7. Let U be a solution of (A.14). Under the assumption rank
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BPJ=m-p-N, the same statement mentioned in Theorem A.5 holds for U.
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