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Abstract. In the paper, we will define tangent lightcone map, tangent lightcone cur-
vature and tangent lightcone height function. Then we study the geometry of the timelike
surfaces in Minkowski 4-space through their contact with spacelike hyperplane and give the
classification of singularities of tangent lightcone map based on the Legendrian singularity
theory of Arnol’d.

1. Introduction. In [9, 10, 11], the authors and others studied the submanifolds in
Minkowski space. In this paper, we study the surface in Minkowski 4-space from a different
view point. As it was expected, the situation presents certain peculiarities when it is compared
with the Euclidean case and the case of the papers [9, 10, 11]. For instance, in our case it is
always possible to choose two lightlike tangent directions along the surface as a frame of
its tangent bundle. By using this, we define a Lorentzian invariant Kt(1,±1) and call it the
tangent lightcone curvature of the timelike surface. As a preparation for the further study on
the relationships between the de Sitter Gauss curvature and tangent lightcone curvature, we
study singularities of tangent lightcone map of a timelike surface in Minkowski 4-space and
reveal the relationships between such singularities and geometric invariants of these surfaces
under the action of Lorentzian group. For this purpose, we need to develop local differential
geometry of timelike surfaces in Minkowski 4-space similarly as it was done for surfaces in
Euclidean 4-space [12].

We shall assume throughout the whole paper that all maps and manifolds are C∞ unless
the contrary is explicitly stated.

Let R4 = {(x1, x2, x3, x4) ; x1, x2, x3, x4 ∈ R} be a 4-dimensional vector space. For any
vectors x= (x1, x2, x3, x4) and y= (y1, y2, y3, y4) in R4, the pseudo-scalar product of x and
y is defined by 〈x, y〉 = −x1y1 + ∑4

i=2 xiyi. We call (R4, 〈 , 〉) a Minkowski 4-space and
write R4

1 instead of (R4, 〈 , 〉).
We say that a vector x in R4

1 \ {0} is spacelike, lightlike or timelike if 〈x, x〉 is positive,
zero or negative, respectively. The norm of a vector x ∈ R4

1 is defined by ‖x‖ = √|〈x, x〉|.
For any x, y ∈ R4

1, we say x pseudo-perpendicular to y if 〈x, y〉 = 0.
We fix an orientation and a timelike orientation of R4

1 (i.e., a 4-volume form dV , and
future timelike vector field, have been chosen). Let X : U → R4

1 be an embedding, where U
is an open subset of R2. We denoteM = X(U) and identifyM with U by the embedding X.
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We say M a timelike surface if the tangent plane TpM of M is a timelike plane (i.e.,
Lorentz plane) (cf. [20]) for any point p ∈ M . In this case, the normal space NpM is a space-
like plane. Let {e1(x, y), e2(x, y)} be a pseudo-orthonormal frame of TpM and {e3(x, y),

e4(x,y)} be a orthonormal frame of NpM , where p = X(x, y), e1 is a timelike vector and
e2, e3, e4 are spacelike vectors.

We shall now establish the fundamental formula for a timelike surface in R4
1 by methods

similar to those in [10].
We can write dX = ∑4

i=1 ωi · ei and dei = ∑4
j=1 ωij · ej by the 1-forms ωi and ωij

given by ωi = δ(ei )〈dX, ei〉 and ωij = δ(ej )〈dei , ej 〉, where

δ(ei ) = 〈ei , ei〉 =
{

1 , i = 2, 3, 4 ;
−1 , i = 1 .

We have Codazzi type equations:{
dωi = ∑4

j=1 δ(ei )δ(ej )ωij ∧ ωj ;
dωij = ∑4

k=1 ωik ∧ ωkj ,
where d is exterior derivative.

It follows ω3 = ω4 = 0 from the fact 〈dX, e3〉 = 〈dX, e4〉 = 0. Therefore we have{
dω3 = −ω31 ∧ ω1 + ω32 ∧ ω2 = 0 ;
dω4 = −ω41 ∧ ω1 + ω42 ∧ ω2 = 0 .

By Cartan’s Lemma, we can write:

ω13 = aω1 + bω2 , ω14 = āω1 + b̄ω2 ,

ω23 = bω1 + cω2 , ω24 = b̄ω1 + c̄ω2 ,

for appropriate functions a, b, c, ā, b̄, c̄ in C∞(M,R).
We define 〈d2X, ei〉 = −〈dX, dei〉 for i = 3, 4, then we can define a vector-valued

quadratic form

〈d2X, e3〉e3 + 〈d2X, e4〉e4 = (aω2
1 + 2bω1ω2 + cω2

2)e3 + (āω2
1 + 2b̄ω1ω2 + c̄ω2

2)e4 ,

which is called the second fundamental form of timelike surface M.
For a given v = me1 + ne2 ∈ TpM, we have dv = dme1 +mde1 + dne2 + nde2. Then

〈dv, e3〉 ∧ 〈dv, e4〉 = Kt(m, n)ω1 ∧ ω2 ,

where Kt(m, n) = (am + bn)(b̄m + c̄n) − (ām + b̄n)(bm + cn), which is called tangent
lightcone curvature.

We now consider a matrix

A± =
[
a ± b b ± c

ā ± b̄ b̄ ± c̄

]
.

Let k±
i , i = 1, 2 be the eigenvalues of A±, which are called principal tangent lightcone

curvature.
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On the other hand, we define

LCp =
{
x ∈ R4

1 ; −(x1 − p1)
2 +

4∑
i=2

(xi − pi)
2 = 0

}

and

S2+ = {x = (x1, x2, x3, x4) ∈ LC := LC0 ; x1 = 1} ,
where p = (p1, p2, p3, p4) ∈ R4

1.We call S2+ the lightlike unit sphere and LC∗
p = LCp \ {p}

the lightcone at the vertex p. Given any lightlike vector x = (x1, x2, x3, x4), we have x̃ =
(1, x2/x1, x3/x1, x4/x1) ∈ S2+.

On the other hand, we define three maps: two of them are maps

TL±
M : M → S2+

defined by T L±
M(p) = ẽ1 ± e2(x, y), where p = X(x, y). Each one of these maps shall be

called the tangent lightcone map of X(U) = M.

The last one is

η : R4
1 → R4

1

defined by η(v) = ∑4
i=1 kie(i+2)mod4(x, y), which is called the alternation map, where

v = ∑4
i=1 kiei (x, y), ki ∈ R, e0(x, y) = e4(x, y).

For a lightlike vector v ∈ R4
1 and a real number c, we define a spacelike hyperplane

(associate with v) with normal vector η(v) by

HP(v, c) = {x ∈ R4
1 ; 〈x, η(v)〉 = c} .

2. Tangent lightcone height functions on timelike surface. LetM ⊂ R4
1 be a time-

like surface. We define the function

H : M × S2+ → R

by

H(X(x, y), v) =
〈
X(x, y)−

(
0, 0,

1

2
ax2 + 1

2
cy2 + bxy,

1

2
āx2 + 1

2
c̄y2 + b̄xy

)
, η(v)

〉

+ 1

2
kσ1 x

2 + 1

2
kσ2 y

2 ,

where v ∈ S2+, σ = + or σ = −.We callH the tangent lightcone height function on timelike
surface M.

For any fixed v0 ∈ S2+, we denote hv0(X(x, y)) = H(X(x, y), v0). Then we have the
following proposition:

PROPOSITION 2.1. Let M ⊂ R4
1 be timelike surface, H be the tangent lightcone

height function onM and p0 = X(x0, y0). Then the following assertions hold :
(1) ∂hv/∂x(p0) = ∂hv/∂y(p0) = 0 if and only if v = ẽ1 ± e2(x0, y0);
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(2) ∂hv/∂x(p0)=∂hv/∂y(p0) = det H(hv)(p0)=0 if and only if v = ẽ1 ± e2(x0, y0)

and Kt(1,±1)(p0) = 0, where det H(hv)(p0) is the determinant of the Hessian matrix of hv
at p0.

PROOF. By applying a Lorentzian motion, we may assume that p0 is the origin of R4
1.

We can choose appropriate local coordinate such that X is given in the Monge form:

X(x, y) = (x, y, f1(x, y), f2(x, y)) ,

f1,x(0, 0) = f1,y(0, 0) = f2,x(0, 0) = f2,y(0, 0) = 0 ,

f1,xx(0, 0) = a, f1,xy(0, 0) = b, f1,yy(0, 0) = c ,

f2,xx(0, 0) = ā, f2,xy(0, 0) = b̄, f2,yy(0, 0) = c̄ ,

e1(0, 0) = (1, 0, 0, 0), e2(0, 0) = (0, 1, 0, 0) ,

e3(0, 0) = (0, 0, 1, 0), e4(0, 0) = (0, 0, 0, 1) .

By a straightforward calculation, we know ∂hv/∂x(p0) = ∂hv/∂y(p0) = 0 if and only if

〈(1, 0, 0, 0), η(v)〉 = 〈(0, 1, 0, 0), η(v)〉 = 0 .

It is also equivalent to the condition that v is in Tp0M ∩ S2+, which means

v = µ(e1 ± e2)(x0, y0) = ẽ1 ± e2(x0, y0) .

On the other hand, since

det H(hv)(p0)

=
∣∣∣∣ 〈(0, 0, f1,xx − a, f2,xx − ā), η(v0)〉 + kσ1 〈(0, 0, f1,xy − b, f2,xy − b̄), η(v0)〉

〈(0, 0, f1,xy − b, f2,xy − b̄), η(v0)〉 〈(0, 0, f1,yy − c, f2,yy − c̄), η(v0)〉 + kσ2

∣∣∣∣
= 0 ,

we have

det H(hv)(p0)

=
∣∣∣∣ 〈(0, 0, f1,xx − a, f2,xx − ā), η(v0)〉 + kσ1 〈(0, 0, f1,xy − b, f2,xy − b̄), η(v0)〉

〈(0, 0, f1,xy − b, f2,xy − b̄), η(v0)〉 〈(0, 0, f1,yy − c, f2,yy − c̄), η(v0)〉 + kσ2

∣∣∣∣
= kσ1 k

σ
2 = Kt(1, σ1)(p0) = 0 .

�

THEOREM 2.2. Let M ⊂ R4
1 be a timelike surface. We denote by H(hv) the Hessian

matrix of tangent lightcone height function H on M, T L±
M the tangent lightcone map of M

and p = X(x, y). Then the following conditions are equivalent :
(1) For a fixed v in S2+, p is a degenerate critical point of hv;
(2) p is a singularity of the tangent lightcone map on M and v is equal to T L±

M(p)

in S2+;
(3) Kt(1,±1)(p) = 0.
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PROOF. Consider the subset Σ(H) = {(p, v) ∈ M × S2+ ; ∂hv/∂x(p) = ∂hv/∂y(p) =
0}, which is equal to {(p, v) ∈ M × S2+ ; v = ẽ1 ± e2(x, y)} by Proposition 2.1(1). We now
observe that the restriction π |Σ(H) of the canonical projection π : U × S2+ → S2+ can be
identified with the tangent lightcone map T L±

M. Under this identification, we see easily that
the condition (1) is equivalent to the condition (2).

Since p is a degenerate critical point of hv, we have det H(hv(p)) = 0. Hence, by
Proposition 2.1(2), we have Kt(1,±1)(p) = 0, and the condition (1) is equivalent to the
condition (3). �

From this theorem, we know that the point at which the tangent lightcone curvature is 0
is the singularity of the tangent lightcone map, and is the point at which the Hessian matrix of
the tangent lightcone height function H is 0.

3. The tangent lightcone pedal surface of a timelike surface. In this section, we
consider a singular surface in the positive lightcone

LC∗+ = {x = (x1, x2, x3, x4) ∈ LC0 ; x1 > 0}

associated to M whose singularities correspond to singularities of the tangent lightcone map
of M. We now define a family of functions

H̃ : M × LC∗+ → R

by

H̃ (X(x, y), v) =
〈
X(x, y)−

(
0, 0,

1

2
ax2 + 1

2
cy2 + bxy,

1

2
āx2 + 1

2
c̄y2 + b̄xy

)
, η(ṽ)

〉

+ 1

2
kσ1 x

2 + 1

2
kσ2 y

2 − v1 ,

where v = (v1, v2, v3, v4).We call H̃ the extended tangent lightcone height function ofM =
X(U). Denote h̃v(X(x, y)) = H̃ (X(x, y), v). As an immediate consequence of Proposition
2.1, we have the following proposition.

PROPOSITION 3.1. Let M be a timelike surface and H̃ : M × LC∗+ → R be the
extended tangent lightcone height function of M. For v0 ∈ LC∗+, we have the following:

(1) h̃v0(p0) = ∂h̃v0/∂x(p0) = ∂h̃v0/∂y(p0) = 0 if and only if ṽ0 = ẽ1 ± e2(x0, y0)

and

v1 =
〈
X(x0, y0)−

(
0, 0,

1

2
ax2

0 − 1

2
cy2

0 − bx0y0,
1

2
āx2

0 − 1

2
c̄y2

0 − b̄x0y0

)
, η(ẽ1 ± e2)

〉

+ 1

2
kσ1 x

2
0 + 1

2
kσ2 y

2
0 .
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(2) h̃v0(p0) = ∂h̃v0/∂x(p0) = ∂h̃v0/∂y(p0) = det H(h̃v0)(p0) = 0 if and only if

ṽ0 = ẽ1 ± e2(x0, y0),

v1 =
〈
X(x0, y0)−

(
0, 0,

1

2
ax2

0 − 1

2
cy2

0 − bx0y0,
1

2
āx2

0 − 1

2
c̄y2

0 − b̄x0y0

)
, η(ẽ1 ± e2)

〉

+ 1

2
kσ1 x

2
0 + 1

2
kσ2 y

2
0 ,

and Kt(1,±1)(p0) = 0. Here, X(x, y) = (X1(x, y),X2(x, y),X3(x, y),X4(x, y)).

The assertion of Proposition 3.1 means that the discriminant set of the extended tangent
lightcone height function H̃ is given by

DH̃ =
{
v ; v =

(
〈X(x, y)− α, η(ẽ1 ± e2)〉 + 1

2
kσ1 x

2 + 1

2
kσ2 y

2
)
(ẽ1 ± e2)(x, y)

for some (x, y) ∈ U
}
,

where α = (0, 0, 1
2ax

2 − 1
2cy

2 − bxy, 1
2 āx

2 − 1
2 c̄y

2 − b̄xy). Therefore we define a pair of
singular surfaces in LC∗+ by

T P±
M(p) = T P±

M(x, y) =
(

〈X(x, y)− α, η(ẽ1 ± e2)〉 + 1

2
kσ1 x

2 + 1

2
kσ2 y

2
)
(ẽ1 ± e2)(x, y) .

We call each T P±
M the tangent lightcone pedal surface ofX(U) = M. Each singularity of the

tangent lightcone pedal surface corresponds exactly to a singularity of the tangent lightcone
map.

For given two tangent lightcone pedal surfaces f1 : U1 → LC∗+ and f2 : U2 → LC∗+,
write f1 ∼ f2 provided there exists a neighborhood U of x such that U ⊂ U1 ∩ U2, and the
restriction f1|U coincides with f2|U . These equivalence classes are called tangent lightcone
pedal surface germs.

We now explain the reason why such a correspondence exists from the view point of
symplectic and contact geometry. We consider a point v = (v1, v2, v3, v4) in LC∗+, then we

have a relation v1 =
√
v2

2 + v2
3 + v2

4 .We adopt the coordinate (v2, v3, v4) of the manifoldLC∗+.
We now consider the projective cotangent bundle π : PT ∗(LC∗+) → LC∗+ with the canonical
contact structure. We review geometric properties of this space. Consider the tangent bundle
τ : T PT ∗(LC∗+) → PT ∗(LC∗+) and the differential map dπ : T PT ∗(LC∗+) → T LC∗+
of π. For any X in T PT ∗(LC∗+), there exists an element α in T ∗(LC∗+) such that τ (X) is
equal to [α]. For an element V in Tx(LC∗+), the property α(V ) = 0 does not depend on the
choice of representative of the class [α]. Thus we can define the canonical contact structure
on PT ∗(LC∗+) by

K = {X ∈ T PT ∗(LC∗+) ; τ (X)(dπ(X)) = 0} .
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Since we consider the coordinate (v2, v3, v4), we have PT ∗(LC∗+) ∼= LC∗+ × P(R2)∗.
We call

((v2, v3, v4), [ξ2 : ξ3 : ξ4])
the homogeneous coordinate of PT ∗(LC∗+), where [ξ2 : ξ3 : ξ4] is the homogeneous coordi-
nate of the dual projective space P(R2)∗.

It is easy to show that X is in K(x,[ξ ]) if and only if
∑4
i=2 µiξi = 0, where

dπ̃(X) = ∑4
i=2 µi∂/∂vi . An immersion i : L → PT ∗(LC∗+) is said to be a Legendrian

immersion if dimL = 2 and diq(TqL) ⊂ Ki(q) for any q ∈ L. We also call the map π ◦ i
the Legendrian map and the set W(i) = imageπ ◦ i the wave front of i. Moreover, i (or the
image of i) is called the Legendrian lift ofW(i).

If j is a Lagrangian immersion, then the critical value C(j) of π̄ ◦ j is called the corre-
sponding caustic (see [1, p. 296]), where π̄ : T (LC∗+) → LC∗+ is the canonical projection.
Moreover, j (or the image of j ) is called the Lagrangian lift of C(j). If X is a Legendrian
submanifold, Y is a Lagrangian submanifold and f : X → Y is a covering map, then f is
called Legendrian covering map.

In order to study the tangent lightcone pedal surface, we give a quick survey on the
Legendrian singularity theory mainly due to Arnol’d-Zakalyukin [1, 24]. Although the general
theory has been described for general dimension, we only consider the 3-dimensional case for
the purpose. Let F : (Rk × R3, 0) → (R, 0) be a function germ. We say that F is a Morse
family if the mapping

∆∗F =
(
F,

∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × R3, 0) → (R × Rk, 0)

is non-singular, where (q, x) = (q1, . . . , qk, x1, x2, x3) ∈ (Rk × R3, 0). In this case we have
a smooth 2-dimensional submanifold

Σ∗(F ) =
{
(q, x) ∈ (Rk × R3, 0) ; F(q, x) = ∂F

∂q1
(q, x) = · · · = ∂F

∂qk
(q, x) = 0

}
,

and the map germ ΦF : (Σ∗(F ), 0) → PT ∗R3 defined by

ΦF (q, x) =
(
x,

[
∂F

∂x1
(q, x) : ∂F

∂x2
(q, x) : ∂F

∂x3
(q, x)

])

is a Legendrian immersion. Then we have the following fundamental theorem of Arnol’d-
Zakalyukin [1, 24].

PROPOSITION 3.2. All Legendrian submanifold germs in PT ∗R3 are constructed by
the above method.

We call F a generating family of ΦF . Therefore the corresponding wave front is

W(ΦF )

=
{
x ∈ R3 ; there exists q ∈ Rk such thatF(q, x) = ∂F

∂q1
(q, x)= · · ·= ∂F

∂qk
(q, x)=0

}
.
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By definition, we have DF = W(ΦF ). By the previous arguments, the tangent lightcone pedal
surface T P±

M is the discriminant set of the extended tangent lightcone height function H̃ . We
have the following proposition.

PROPOSITION 3.3. The extended tangent lightcone height function H̃ is a Morse fam-
ily.

PROOF. We define the function

H̄ : U × S2+ × R → R

by H̄ ((x, y),w, r) = H(X(x, y),w)− r. We consider a C∞-diffeomorphism

Φ : U × S2+ × R → LC∗+
defined by Φ((x, y),w, r) = ((x, y), rw). Then we have H̃ ◦ Φ = H̄ . It is enough to show
that H̄ is a Morse family. For any w in S2+ with η(w) = (w1, w2, w3, w4), we have

H̄ ((x, y),w, r) = −X1(x, y)w1 +X2(x, y)w2 +
(
X3(x, y)− 1

2
ax2 − 1

2
cy2 − bxy

)
w3

+
(
X4(x, y)− 1

2
āx2 − 1

2
c̄y2 − b̄xy

)
w4 + 1

2
kσ1 x

2 + 1

2
kσ2 y

2 − r ,

where X(x, y) = (X1(x, y),X2(x, y),X3(x, y),X4(x, y)). We now prove that the mapping

∆∗H̄ =
(
H̄ ,

∂H̄

∂x
,
∂H̄

∂y

)

is non-singular at any point. The Jacobian matrix of ∆∗H̄ is given as follows:
 〈Xx, η(w)〉 − 〈Ix, η(w)〉 + kσ1 x 〈Xy, η(w)〉 − 〈Iy, η(w)〉 + kσ2 y〈Xxx, η(w)〉 − 〈Ixx, η(w)〉 + kσ1 〈Xxy, η(w)〉 − 〈Ixy, η(w)〉 A

〈Xyx, η(w)〉 − 〈Iyx, η(w)〉 〈Xyy, η(w)〉 − 〈Iyy , η(w)〉 + kσ2


 ,

where

A =

 −X1 X2 X3 − J X4 −K −1

−X1,x X2,x X3,x − Jx X4,x −Kx 0
−X1,y X2,y X3,y − Jy X4,y −Ky 0


 ,

I =
(

0, 0,
1

2
ax2 + 1

2
cy2 + bxy,

1

2
āx2 + 1

2
c̄y2 + b̄xy

)
,

J = 1

2
ax2 + 1

2
cy2 + bxy , K = 1

2
āx2 + 1

2
c̄y2 + b̄xy .

Since X is embedding, the rank of the matrix

A =
( −X1,x X2,x X3,x − Jx X4,x −Kx

−X1,y X2,y X3,y − Jy X4,y −Ky

)

is equal to 2 at (0, 0), so H̄ is a Morse family at (0, 0). For any point (x0, y0) in U, consider
the map

Φ̃ : U × S2+ × R → U × S2+ × R
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defined by Φ̃((x, y),w, r) = ((x − x0, y − y0),w, r). Then we have H̃ ◦ Φ ◦ Φ̃ = H̄ ◦ Φ̃,
and we know that H̄ ◦ Φ̃ is a Morse family at (x0, y0). This complete the proof. �

By Proposition 3.3, we remark that the tangent lightcone pedal surfaces T P±
M are wave

fronts and the extended tangent lightcone height function H̃ gives generating families of the
Legendrian lifts of T P±

M.

4. Contact with spacelike hyperplanes. In this section we consider the geometric
meanings of the singularity of the tangent lightcone map and the tangent lightcone pedal
surface of X(U) = M.

We consider the contact between timelike surface and spacelike hyperplane as the clas-
sical differential geometry. In the first place, we briefly review the theory of contact due to
Montaldi [18]. Let Xi, Yi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2 and
dimY1 = dimY2. We say that the contact of X1 and Y1 at y1 is of same type with that of
X2 and Y2 at y2 if there is a diffeomorphism germ Φ : (Rn, y1) → (Rn, y2) such that
Φ(X1) = X2 and Φ(Y1) = Y2. In this case we write K(X1, Y1 ; y1) = K(X2, Y2 ; y2). It is
clear that, in the definition, Rn can be replaced by any manifold. In his paper [18], Montaldi
gives a characterization of contacts by using the terminology of singularity theory.

THEOREM 4.1. Let Xi, Yi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2

and dimY1 = dimY2. Let gi : (Xi, xi) → (Rn, yi) be immersion germs and fi : (Rn, yi) →
(Rp, 0) be submersion germs with (Yi , yi) = (f−1

i (0), yi). Then

K(X1, Y1 ; y1) = K(X2, Y2 ; y2)

if and only if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.

For any p0 = X(x0, y0), and v0 in LC∗+, we consider a function H : R4
1 × LC∗+ → R

defined by

H(x, v) =
〈(
x1, x2, x3 − 1

2
ax2

0 − 1

2
cy2

0 − bx0y0, x4 − 1

2
āx2

0 − 1

2
c̄y2

0 − b̄x0y0

)
, η(ṽ)

〉

+ 1

2
kσ1 x

2
0 + 1

2
kσ2 y

2
0 − v1 .

We denote hv0(x) = H(x, v0) and we have a spacelike hyperplane

h−1
v0
(0) = HP

(
ṽ0,

〈(
0, 0,

1

2
ax2

0 + 1

2
cy2

0 + bx0y0,
1

2
āx2

0 + 1

2
c̄y2

0 + b̄x0y0

)
, η(ṽ0)

〉
+v0,1

)
.

We consider the lightlike vector v±
0 = e1 ± e2(x0, y0) and

c± =
〈
X(x0, y0)−

(
0, 0,

1

2
ax2

0 − 1

2
cy2

0 − bx0y0,
1

2
āx2

0 − 1

2
c̄y2

0 − b̄x0y0

)
, η(ẽ1 ± e2)

〉

+ 1

2
kσ1 x

2
0 + 1

2
kσ2 y

2
0 .
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Then we have

hv±
0

◦X(p0) = H ◦ (X × idLC+
0
)(p0, v

±
0 ) = H(p0, ṽ

±
0 )− c± = 0 .

We also have relations
∂hv±

0
◦X

∂x
(p0) = ∂H

∂x
(p0, ṽ

±
0 ) = 0

and
∂hv±

0
◦X

∂y
(p0) = ∂H

∂y
((p0), ṽ

±
0 ) = 0 .

This means that the spacelike hyperplane h−1
v±

0
(0) = HP(ṽ±

0 , w
±) is tangent toM = X(U) at

p0, where

w± =
〈(

0, 0,
1

2
ax2

0 + 1

2
cy2

0 + bx0y0,
1

2
āx2

0 + 1

2
c̄y2

0 + b̄x0y0

)
, η(ṽ0)

〉
+ c± .

In this case, we call each HP(ṽ±
0 , w

±) the tangent spacelike hyperplane of M = X(U) at
p0. Moreover, the intersection

HP(ṽ+
0 , w

+) ∩HP(ṽ−
0 , w

−)
is the tangent plane of M at p0. Let v1 and v2 be vectors. If v1 and v2 are linearly dependent,
then corresponding hyperplanes HP(v1, c1) and HP(v2, c2) are parallel. Then we have the
following simple lemma.

LEMMA 4.2. Let X : U → R4
1 be a timelike surface and σ = ±. Consider two points

p1 = X(x1, y1), p2 = X(x2, y2). Then we have the following:
(1) T LσM(p1) = T LσM(p2) if and only if HP(vσ1 , c

σ
1 ) and HP(vσ2 , c

σ
2 ) are parallel.

(2) T PσM(p1) = T PσM(p2) if and only if HP(vσ1 , c
σ
1 ) = HP(vσ2 , c

σ
2 ).

Here, v±
i = ẽ1 ± e2(xi, yi) and

c±i = 〈X(xi, yi), η(ẽ1 ± e2)〉 + 1

2
kσ1 x

2
i + 1

2
kσ2 y

2
i

for i = 1, 2.

On the other hand, for any map f : N → P, we denote Σ(f ) the set of singular points
of f and D(f ) = f (Σ(f )). In this case, we call f |Σ(f ) : Σ(f ) → D(f ) the critical part
of the mapping f. For any Morse family F : (Rk × R3, 0) → (R, 0), (F−1(0), 0) is a
smooth hypersurface. Hence we define a smooth map germ πF : (F−1(0), 0) → (R3, 0) by
πF (q, x) = x.We can easily show thatΣ∗(F ) is equal toΣ(πF ). Therefore, the correspond-
ing Legendrian map π ◦ΦF is the critical part of πF .

Now we introduce an equivalence relation among Legendrian immersion germs. Let
i : (L, p) ⊂ (PT ∗R3, p) and i ′ : (L′, p′) ⊂ (PT ∗R3, p′) be Legendrian immersion germs.
Then we say that i and i ′ are Legendrian equivalent if there exists a contact diffeomorphism
germH : (PT ∗R3, p) → (PT ∗R3, p′) such thatH preserves fibers of π andH(L) = L′. A
Legendrian immersion germ into PT ∗R3 at a point is said to be Legendrian stable if, for every
map with the given germ, there is a neighborhood in the space of Legendrian immersions (in
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the WhitneyC∞ topology) and a neighborhood of the original point such that each Legendrian
immersion belonging to the first neighborhood has a point in the second neighborhood at
which the germ is Legendrian equivalent to the original one.

Since the Legendrian lift i : (L, p) ⊂ (PT ∗R3, p) is uniquely determined on the reg-
ular part of the wave front W(i), we have the following simple but significant property of
Legendrian immersion germs.

PROPOSITION 4.3. Let i : (L, p) ⊂ (PT ∗R3, p) and i ′ : (L′, p′) ⊂ (PT ∗R3, p′) be
Legendrian immersion germs such that regular sets of π ◦ i and π ◦ i ′ are dense, respectively.
Then i and i ′ are Legendrian equivalent if and only if the wave front sets W(i) andW(i ′) are
diffeomorphic as set germs.

This result has been pointed out first by Zakalyukin [25]. The assumption in the above
Proposition is a generic condition for i and i ′. Especially, if i and i ′ are Legendrian stable,
then they satisfy the assumption.

We can interpret the Legendrian equivalence by using the notion of generating families.
We denote by En the local ring of function germs (Rn, 0) → R with the unique maximal ideal
Mn = {h ∈ En ; h(0) = 0}. Let F,G : (Rk × Rn, 0) → (R, 0) be function germs. We say
that F andG are P -K-equivalent if there exists a diffeomorphism germ Ψ : (Rk × Rn, 0) →
(Rk × Rn, 0) of the form Ψ (x, u) = (ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk × Rn, 0) such that
Ψ ∗(〈F 〉Ek+n ) = 〈G〉Ek+n . Here Ψ ∗ : Ek+n → Ek+n is the pull-back R-algebra isomorphism
defined by Ψ ∗(h) = h ◦ Ψ .

Let F : (Rk × R3, 0) → (R, 0) be a function germ. We say that F is a K-versal
deformation of f = F |Rk×{0} if

Ek = Te(K)(f )+
〈
∂F

∂x1

∣∣∣∣
Rk×{0}

,
∂F

∂x2

∣∣∣∣
Rk×{0}

,
∂F

∂x3

∣∣∣∣
Rk×{0}

〉
R

,

where

Te(K)(f ) =
〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉
Ek

(see [14]).
The main result in Arnol’d-Zakalyukin’s theory [1, 24] is the following:

THEOREM 4.4. Let F,G : (Rk × R3, 0) → (R, 0) be Morse families. Then
(1) ΦF and ΦG are Legendrian equivalent if and only if FandG are P -K-equivalent.
(2) ΦF is Legendrian stable if and only if F is a K-versal deformation of F |Rk×{0}.

Since F andG are function germs on the common space germ (Rk × R3, 0), we do not
need the notion of stably P -K-equivalences under this situation (cf. [1]). By the uniqueness
of the K-versal deformation of a function germ, and by Proposition 4.3 and Theorem 4.4, we
have the following classification of Legendrian stable germs (cf. [10]). For any map germ
f : (Rn, 0) → (Rp, 0), we define the local ring of f by Q(f ) = En/f ∗(Mp)En.
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PROPOSITION 4.5. Let F,G : (Rk × R3, 0) → (R, 0) be Morse families. Suppose
that ΦF and ΦG are Legendrian stable. Then the following conditions are equivalent.

(1) (W(ΦF ), 0) and (W(ΦG), 0) are diffeomorphic as germs.
(2) ΦF and ΦG are Legendrian equivalent.
(3) Q(f ) andQ(g) are isomorphic as R-algebras, where f =F |Rk×{0}, g =G|Rk×{0}.

PROOF. Since ΦF and ΦG are Legendrian stable, they satisfy the generic condition of
Proposition 4.3. Hence the conditions (1) and (2) are equivalent. The condition (3) implies
that f and g are K-equivalent [14, 16]. By the uniqueness of the K-versal deformation of
a function germ, F and G are P -K-equivalent. This means that the condition (2) holds. By
Theorem 4.4, the condition (2) implies the condition (3). �

Now we have tools for the study of the contact between timelike surfaces and spacelike
hyperplanes. Let T PσM,i : (U, (xi, yi)) → (LC∗+, vσi ) (i = 1, 2) be two tangent lightcone

pedal surface germs of timelike surface germs Xi : (U, (xi, yi)) → (R4
1, pi), where σ = ±.

We say that T PσM,1 and T PσM,2 are A-equivalent if there exist diffeomorphism germs φ :
(U, (x1, y1)) → (U, (x2, y2)) and Φ : (LC∗+, vσ1 ) → (LC∗+, vσ2 ) such that Φ ◦ T PσM,1 =
T PσM,2 ◦ φ. If both of the regular sets of T PσM,i are dense in (U, (xi, yi)), it follows from
Proposition 4.5 that T PσM,1 and T PσM,2 are A-equivalent if and only if the corresponding
Legendrian lift germs are Legendrian equivalent. This condition is also equivalent to the
condition that two generating families H̃1 and H̃2 are P -K-equivalent by Theorem 4.4. Here,
H̃i : (U × LC∗+, ((xi, yi), vσi )) → R is the extended tangent lightcone height function germ
of Xi.

On the other hand, if we denote h̃i,vσi (u) = H̃i(u, v
σ
i ), then we have h̃i,v±

i
(u) = hv±

i
◦

Xi(u). By Theorem 4.1, K(X1(U),HP(ṽ
σ
1 , w1), v

σ
1 ) = K(X2(U),HP(ṽ

σ
2 , w2), v

σ
2 ) if and

only if h̃1,v1 and h̃2,v2 are K-equivalent, where

wi =
〈(

0, 0,
1

2
ax2
i + 1

2
cy2
i + bxiyi,

1

2
āx2
i + 1

2
c̄y2
i + b̄xiyi

)
, η(ṽi )

〉
+vi,1 .

Therefore, we can apply the previous arguments to our situation. We denote by
Qσ (X, (x0, y0)) the local ring of the function germ h̃vσ0 : (U, (x0, y0)) → R, where vσ0 =
T PσM(x0, y0). We remark that we can explicitly write the local ring as follows:

Q±(X, (x0, y0)) = C∞
(x0,y0)

(U)

〈〈X(x, y), η(ẽ1 ± e2)(x0, y0)〉 − 1〉C∞
(x0,y0)

(U)

,

where C∞
(x0,y0)

(U) is the local ring of function germs at (x0, y0) with the unique maximal ideal
M(x0,y0)(U).

THEOREM 4.6. Let Xi : (U, (xi, yi)) → (R4
1,Xi(xi, yi)) (i = 1, 2) be timelike sur-

face germs such that the corresponding Legendrian lift germs are Legendrian stable and
σ = ±. Then the following conditions are equivalent :

(1) Tangent lightcone pedal surface germs T PσM,1 and T PσM,2 are A-equivalent.

(2) H̃1 and H̃2 are P -K-equivalent.



SINGULARITIES OF TANGENT LIGHTCONE MAP OF A TIMELIKE SURFACE 467

(3) h̃1,v1 and h̃2,v2 are K-equivalent.
(4) K(X1(U),HP(ṽ

σ
1 , w1), v

σ
1 ) = K(X2(U),HP(ṽ

σ
2 , w2), v

σ
2 ), where wi(i = 1, 2)

are defined as above.
(5) Qσ (X1, (x1, y1)) andQσ (X2, (x2, y2)) are isomorphic as R-algebras.

PROOF. By the previous arguments (mainly by Theorem 4.1), it has been already shown
that conditions (3) and (4) are equivalent. Other assertions follow from Proposition 4.5. �

For a timelike surface germ X : (U, (x0, y0)) → (R4
1,X(x0, y0)), we call each set

(X−1(HP(v±, w±)), (x0, y0))

a tangent spacelike hyperplane indicatrix germ of X, where v± = ẽ1 ± e2(x0, y0) and

w± = 〈X(x0, y0), η(v
±)〉 + 1

2
kσ1 x

2
0 + 1

2
kσ2 y

2
0 .

Moreover, by the above results, we can borrow some basic invariants from the singularity the-
ory on function germs. We need K-invariants for function germ. The local ring of a function
germ is a complete K-invariant for generic function germs. It is, however, not a numerical
invariant. The K-codimension (or, Tyurina number) of a function germ is a numerical K-
invariant of function germs [14]. We denote

L-ord±(X, (x0, y0)) = dimR

C∞
(x0,y0)

(U)

〈h̃v±
0
(x, y), h̃v±

0 ,x
(x, y), h̃v±

0 ,y
(x, y)〉 .

Usually L-ordσ (x, u0) is called the K-codimension of h̃vσ0 , where σ = ±. However, we call
it the order of contact with the tangent spacelike hyperplane at X(x0, y0). We also have the
notion of corank of function germs.

L-corankσ (X, (x0, y0)) = 2 − rank Hess(h̃vσ0 (x0, y0)) ,

where v±
0 = e1 ± e2(x0, y0).

By Proposition 3.1, X(x0, y0) is an Lσ -parabolic point if and only if

L-corankσ (X, (x0, y0)) ≥ 1 .

Moreover X(x0, y0) is a lightlike umbilic point if and only if L-corankσ (X, (x0, y0)) = 2.
On the other hand, a function germ f : (Rn−1, a) → R has the Ak-type singularity if

f is K-equivalent to the germ ±u2
1 ± · · · ± u2

n−2 + uk+1
n−1. If L-corankσ (X, (x0, y0)) = 1,

the extended tangent lightcone height function h̃vσ0 has generically an Ak-type singularity at
(x0, y0). In this case we have L-ordσ (x, u0) = k. This number k is equal to the order of
contact in the classical sense (cf. [5]). This is the reason why we call L-ordσ (X, (x0, y0)) the
order of contact with the tangent spacelike hyperplane at X(x0, y0).

5. Classification of singularities of tangent lightcone map and tangent lightcone
pedal surface. In this section we consider generic singularities of tangent lightcone map and
tangent lightcone pedal surface. We consider the space of timelike embeddings Embt (U,R

4
1)
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with Whitney C∞-topology, where U ⊂ R2 is an open subset. We have the following theo-
rem.

THEOREM 5.1. There exists an open dense subset O of Embt (U,R
4
1) such that, for

any X in O, the following conditions hold:
(1) Each lightlike parabolic set Kt(1, σ1)−1(0) is a regular curve. We call such a curve

the lightlike parabolic curve.
(2) The tangent lightcone pedal surface T PσM along the lightlike parabolic curve is a

cuspidal edge except at some isolated points. At these points T PσM is a swallowtail. Here,
σ = ± and a map germ f : (R2, a) → (R3, b) is called a cuspidal edge if it is A-equivalent
to the germ (u1, u

2
2, u

3
2) at the origin (cf. Fig. 1) and a swallowtail if it is A-equivalent to the

germ (3u4
1 + u2

1u2, 4u3
1 + 2u1u2, u2) at the origin (cf. Fig. 1).

For the proof of Theorem 5.1, we consider the function H : R4
1 × LC∗+ → R which is

given in §4. We claim that Hv is a submersion for any v ∈ LC∗+, where Hv(x) = H(x, v).
For any X in Embt (U,R

4
1), we have H̃ = H ◦ (X× idLC∗+). We also have the l-jet extension

j l1H̃ : U × LC∗+ → J l(U,R)

defined by j l1H̃ ((x, y), v) = j lh̃v(x, y).We consider the trivialization J l(U,R) ≡ U × R ×
J l(2, 1). For any submanifoldQ ⊂ J l(2, 1), we denote Q̃ = U ×{0}×Q. Then we have the
following proposition as a corollary of Wassermann [21, Lemma 6] (see also Montaldi [19]
and Looijenga [13]).

PROPOSITION 5.2. Let Q be a submanifold of J l(2, 1). Then the set

TQ = {X ∈ Embt (U,R
4
1) ; j l1H̃ is transversal to Q̃}

is a residual subset of Embt (U,R
4
1). If Q is a closed subset, then TQ is open.

On the other hand, we denote by K l (z) the K -orbit through z = j l h̃v0(0) in j l(2, 1)
(cf. [14]). If h̃v0(q) is l-determined relative to K , then H̃ is a K -versal deformation of h̃v0 if
and only if j l1H̃ is transversal to U × {0} × K l (z) (cf. [14, p. 149]).

We now consider the stratification of the l-jet space J l(U,R) such that K -versal de-
formations are transversal to the stratification and the pull-back stratification in the parameter
space corresponds to the canonical stratification of the discriminant set. By Theorem 4.4, such

FIGURE 1.
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a stratification should be K -invariant, where we have the K -action on J l(2, 1) (cf. [14, 16]).
For this reason, we use Mather’s canonical stratification here [7, 15], [17, §7 and §8]. Let
A l (2, 1) be the finitely many canonical stratification of J l(2, 1)\Wl(2, 1), where

Wl(2, 1) = {j l h̃v0(0) ; dimREk/((TeK )(h̃v0)+ Ml
k) ≥ l} .

If l is sufficiently large, then codimWl(2, 1) ≥ 3 holds (see [7, Chapter 3]). We now define
the stratification A l

0 (U,R) of J l(U,R)\Wl(U,R) by

U × (R\{0})× (J l(2, 1)\Wl(2, 1)), U × {0} × A l(2, 1) ,

where

Wl(U,R) ≡ U × R ×Wl(2, 1) .

In [21, Theorem 2], Wan has shown that if j l1H̃ (0) is not in Wl(U,R) and j l1H̃ is transversal
to A l

0 (U,R), then πH̃ : (H̃−1(0), 0) → (LC∗+, 0) is an MT-stable map germ (see also [7,
Chapters 3 and 4], [8, Theorem 1.2]). Here, we call a map germ MT-stable if it is transversal
to the canonical stratification of a jet space which is introduced in [14, 16]. The main assertion
of Mather’s topological stability theorem is that an MT-stable map germ is a topological stable
map germ. Moreover, the critical value set of an MT-stable map germ is canonically stratified.
For some notions, see [15]. As an application of Theorem in [6], we have the following
proposition.

PROPOSITION 5.3. Let H̃1, H̃2 : (U × LC∗+) → (R, 0) be Morse families such that
π
H̃1

and π
H̃2

are MT-stable map germs. If Q(h̃1,v0) and Q(h̃2,v0) are isomorphic as R-
algebras, then πH̃1

and πH̃2
are topologically equivalent. Moreover, in this case, DH̃1

and
DH̃2

are stratified equivalent.

By the Propositions 5.2, 5.3 and above discussion, we have the following theorem.

THEOREM 5.4. There exists an open dense subset O of Embt (U,R
4
1) such that, for

any X in O, the germ of the corresponding tangent lightcone pedal surface T P±
M at each

point is the critical part of an MT-stable map germ. Here, T P±
M(U) is the critical part of

π|H̃−1(0) : M × LC∗+ → LC∗+.

As an application of Legendrian singularity theory [1, Chapters 20 and 21], we have
Theorem 5.1. The assertion of Theorem 5.1 can be interpreted that the Legendrian lift of the
tangent lightcone pedal surface T P±

M of X in O is Legendrian stable at each point. Since the
Legendrian lift of T P±

M is the Legendrian covering of the Lagrangian lift of TL±
M [1, p. 323,

Proposition], it has been known that the corresponding singularities of TL±
M are folds or cusps

[1]. Hence, we have the following corollary.

COROLLARY 5.5. Let O ⊂ Embt (U,R
4
1) be the same open dense subset as in Theo-

rem 5.1. For any X in O, the following assertions hold :
(1) A lightlike parabolic point (x0, y0) inU is a fold of the tangent lightcone map TLσM

if and only if it is a cuspidal edge of the tangent lightcone pedal surface T PσM.
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(2) A lightlike parabolic point (x0, y0) in U is a cusp of the tangent lightcone map
T LσM if and only if it is a swallowtail of the tangent lightcone pedal surface T PσM. Here, a
map germ f : (R2, a) → (R2, b) is called a fold if it is A-equivalent to the germ (u1, u

2
2) at

the origin, and a cusp if it is A-equivalent to the germ (u1, u
3
2 + u1u2) at the origin.

Following the terminology of Whitney [23], we say that a surface X : U → R4
1 has

the excellent tangent lightcone pedal surface T PσM if the Legendrian lift of T PσM is a stable
Legendrian immersion at each point. In this case, the tangent lightcone pedal surface T PσM
has only cuspidal edge and swallowtail as singularities. Theorem 5.1 asserts that a timelike
surface with an excellent tangent lightcone pedal surface is generic in the space of all timelike
surfaces in R4

1.We now consider the geometric meanings of cuspidal edge and swallowtail of
the tangent lightcone pedal surface. We have the following results analogous to the results of
Banchoff et al. [2].

THEOREM 5.6. Let T PσM : (U, (x0, y0)) → (R4
1, p0) be the excellent tangent light-

cone pedal surface of a timelike surface X and h̃vσ0 : (U, (x0, y0)) → R be the extended

tangent lightcone height function germ at v±
0 = e1 ± e2(x0, y0), where σ = ±. Then we have

the following:
(1) (x0, y0) is a lightlike parabolic point of X if and only if L-corankσ (X, (x0, y0)) = 1.
(2) If (x0, y0) is a lightlike parabolic point of X, then h̃vσ0 has the Ak-type singularity for
k = 2, 3.
(3) Suppose that (x0, y0) is a lightlike parabolic point of X, then the following conditions
are equivalent :

(a) T PσM has a cuspidal edge at (x0, y0).

(b) h̃vσ0 has an A2-type singularity.
(c) L-ordσ (X, (x0, y0)) = 2.
(d) The tangent spacelike hyperplane indicatrix is an ordinary cusp, where a curve

C ⊂ R2 is called an ordinary cusp if it is diffeomorphic to the curve given by
{(u1, u2) ; u2

1 − u3
2 = 0}.

(e) For each ε > 0, there exist two distinct points (xi, yi) in U (i = 1, 2) such that

‖(x0, y0)− (xi, yi)‖ < ε

for i = 1, 2, both of these two points are not lightlike parabolic points, and the tangent
spacelike hyperplanes to M = X(U) at these points are parallel.
(4) Suppose that (x0, y0) is a lightlike parabolic point of X, then the following conditions
are equivalent:

(a) T PσM has a swallowtail at (x0, y0).

(b) h̃vσ0 has an A3-type singularity .
(c) L-ordσ (X, (x0, y0)) = 3.
(d) The tangent spacelike hyperplane indicatrix is a point or a tachnodal, where a

curve C ⊂ R2 is called a tachnodal if it is diffeomorphic to the curve given by
{(u1, u2) ; u2

1 − u4
2 = 0}.
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(e) For each ε > 0, there exist three distinct points (xi, yi) (i = 1, 2, 3) in U such that

‖(x0, y0)− (xi, yi)‖ < ε

for i = 1, 2, 3, and the tangent spacelike hyperplanes to M = X(U) at (xi, yi) are parallel.
(f) For each ε > 0, there exist two distinct points (xi, yi) (i = 1, 2) in U such that

‖(x0, y0)− (xi, yi)‖ < ε

for i = 1, 2, and the tangent spacelike hyperplanes to M = X(U) at (xi, yi) are equal.

PROOF. We have shown that (x0, y0) is a lightlike parabolic point if and only if

L-corankσ (X, (x0, y0)) ≥ 1 .

We also have L-corankσ (X, (x0, y0)) ≤ 2. Since the extended tangent lightcone height func-
tion germ H̃ : (U × LC∗+, ((x0, y0), v0)) → R can be considered as a generating family of
the Legendrian lift of T PσM, h̃vσ0 has only Ak-type singularities for k = 1, 2, 3. This means

that the corank of the Hessian matrix of h̃vσ0 at a lightlike parabolic point is 1. The assertion
(2) also follows. By the same reason, the conditions (a), (b) and (c) of (3) ; (resp. (a), (b) and
(c) of (4)) are equivalent. If the extended tangent lightcone height function germ h̃vσ0 has an

A2-type singularity, then it is K-equivalent to the germ ±u2
1 + u3

2. Since the K-equivalence
preserve the diffeomorphism type of zero level sets, the tangent lightlike hyperplane indicatrix
is diffeomorphic to the curve given by ±u2

1 + u3
2 = 0. This is an ordinary cusp. The normal

form for the A3-type singularity is given by ±u2
1 + u4

2, so that the tangent spacelike hyper-
plane indicatrix is diffeomorphic to the curve ±u2

1 + u4
2 = 0. This means that the condition

(3), (d) (resp. (4), (d)) is also equivalent to the other conditions.
Suppose that (x0, y0) is a lightlike parabolic point, then the tangent lightcone map has

only folds or cusps. If the point (x0, y0) is a fold point, there is a neighborhood of (x0, y0)

on which the tangent lightcone map is 2 to 1 except at the lightlike parabolic curve (i.e, fold
curve). By Lemma 4.2, the condition (3), (e) is satisfied. If the point (x0, y0) is a cusp, the
critical value set is an ordinary cusp. By the normal form, we can understand that the tangent
lightcone map is 3 to 1 inside the region of the critical value. Moreover, the point (x0, y0) is
in the closure of the region. This means that the condition (4), (e) holds. We can also observe
that, near the cusp, there are 2 to 1 points which approach to (x0, y0). However, one of those
points are always lightlike parabolic points. Since other singularities do not appear in this
case, the condition (3), (e) (resp. (4), (e)) characterizes a fold (resp. a cusp).

If we consider the tangent lightcone pedal surface instead of the tangent lightcone map,
the only singularities are cuspidal edge and swallowtail. For the swallowtail point (x0, y0),
there is a self intersection curve approaching to (x0, y0). On this curve, there are two distinct
points (xi, yi) (i = 1, 2) such that T PσM(x1, y1) = T PσM(x2, y2). By Lemma 4.2, this means
that tangent spacelike hyperplane toM = X(U) at (xi, yi) are equal. Since there are no other
singularities in this case, the condition (4), (f) characterizes a swallowtail point of T PσM. This
completes the proof. �
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We can study more detailed properties of timelike surfaces in Minkowski 4-space. These
will be discussed elsewhere.
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