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SINGULARITIES OF THE CHERN-RICCI FLOW

QUANG-TUAN DANG

ABSTRACT. We study the nature of finite-time singularities for the Chern-Ricci
flow, partially answering a question of Tosatti-Weinkove [53]. We show that a so-
lution of degenerate parabolic complex Monge-Ampère equations starting from
arbitrarily positive (1,1)-currents are smooth outside some analytic subset, gen-
eralizing works by Di Nezza-Lu [16]. We extend Guedj-Lu’s recent approach to
establish uniform a priori estimates for degenerate complex Monge-Ampère equa-
tions on compact Hermitian manifolds. We apply it to studying the Chern-Ricci
flows on complex log terminal varieties starting from an arbitrary current.
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1. INTRODUCTION

Finding canonical metrics on complex varieties has been a central problem in
complex geometry over the last few decades. Since Yau’s solution to Calabi’s con-
jecture, there have been a lot of developments in this direction. Cao [6] intro-
duced a parabolic approach to provide an alternative proof of the existence of
Kähler-Einstein metrics on manifolds with numerically trivial or ample canoni-
cal line bundle by the Kähler-Ricci flow. This flow is only Hamilton’s Ricci flow
evolving Kähler metrics. Motivated by the problem of the classification of com-
plex varieties, Song-Tian [42, 43] have proposed an Analytic Minimal Model Pro-
gram to classify algebraic varieties with mild singularities, using the Kähler-Ricci
flow. It requires to a theory of weak solutions for degenerate parabolic complex
Monge–Ampère equations starting from a rough initial data. Since then, there
have been various achieved results in this direction. Song-Tian initiated the study
of the Kähler-Ricci flow starting from an initial current with continuous poten-
tials. While, Guedj-Zeriahi [30] (also [54]) showed that the Kähler-Ricci could be
continued from an initial current with zero Lelong number. To the author’s knowl-
edge, the best results were, at least so far, obtained by DiNezza-Lu [16], where
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they succeeded in running the Kähler-Ricci flow from an initial current with pos-
itive Lelong number. There have been several related works in such singular set-
tings, from a pluripotential theoretical point of view, and we refer to the recent
works [27, 10] and the references therein.

Beyond the Kähler setting, there more recently has been interest in the study
of geometric flows, in the context of non-Kähler manifolds. Unlike the Kähler
case, Hamilton’s Ricci flow will not, in general, preserve special Hermitian con-
dition. It is natural to look for another geometric flow of Hermitian metrics,
which somehow specializes in the Ricci flow in the Kähler context. Many para-
bolic flows on complex manifolds which do preserve the Hermitian property have
been proposed by Streets-Tian [45, 44] and Liu-Yang [33]. The Anomaly flow of
(n− 1, n− 1)-forms has been extensively studied by Phong-Picard-Zhang [36, 37].

This paper is devoted to the Chern-Ricci flow which is an evolution equation
of Hermitian metrics on a complex manifold by their Chern-Ricci form, first intro-
duced by Gill [21] in the setting of manifolds with vanishing first Bott-Chern class.
Let (X, ω0) be a compact n-dimensional Hermitian manifold. The Chern-Ricci flow
ω = ω(t) starting at ω0 is an evolution equation of Hermitian metrics

∂ω

∂t
= −Ric(ω), ω|t=0 = ω0,(1.1)

where Ric(ω) is the Chern-Ricci form of ω associated to the Hermitian metric g =
(gi j̄), which in local coordinates is given by

Ric(ω) = −ddc log det(g).

Here d = ∂ + ∂̄ and dc = i(∂̄ − ∂)/2 are both real operators, so that ddc = i∂∂̄. In
the Kähler setting, Ric(ω) = iRjk̄dzj ∧ dz̄k, where Rjk̄ is the usual Ricci curvature of

ω. Thus if ω0 is Kähler i.e., dω0 = 0, (1.1) coincides with the Kähler-Ricci flow. For
complex manifolds with cBC

1 (X) = 0, Gill [21] proved the long time existence of
the flow and smooth convergence of the flow to the unique Chern-Ricci-flat metric
in the ∂∂̄-class of the initial metric. For general complex manifolds, Tosatti and
Weinkove [52, Theorem 1.3] characterize the maximal existence time Tmax of the
flow as

Tmax := sup{t > 0 : ∃ ψ ∈ C∞(X) with ω0 − tRic(ω0) + ddcψ > 0}.

Finite time singularities. Suppose that the flows (1.1) exists on maximal interval
[0, Tmax) with Tmax < ∞, so the flow develops a singularity at finite time. Tosatti-
Weinkove [53, Question 6.1] ask the following question

Question 1.1. Do singularities of the Chern-Ricci flow develop precisely along closed
analytic subvarieties of X?

In the Kähler setting, this question was posed by Feldman-Ilmanen-Knopf [19]
and affirmatively answered by Collins-Tosatti [8]. When X is a compact complex
surface and ω0 is Gauduchon, i.e., ddcω0 = 0, the Chern-Ricci flow preserves
Gauduchon (pluriclosed) condition, in particular, the limiting form αTmax = ω0 −
TmaxRic(ω0) is Gauduchon. The answer is thus affirmative in this case, due to
Gill-Smith [22] (also [51, 53]) where they proved singularities of the Chern-Ricci
flow form a finite union of disjoint (-1)-curves. We partially answer this question
when the limiting form αTmax is uniformly non-collapsing:

(1.2)

ˆ

X
(αTmax + ddcψ)2 ≥ c0 > 0, ∀ψ ∈ C∞(X).

We mention that when ω0 is a Gauduchon metric on compact complex surface
X the latter condition is equivalent to

´

X α2
Tmax

> 0. We say in such a case that
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the Chern-Ricci flow is volume non-collapsing at time Tmax, otherwise we say that
the flow is volume collapsing; cf. [51]). As also mentioned in [53] the question is
trivial when the flow is volume collapsing. We generalize the result to higher
dimensional manifold X which admits a Hermitian metric ωX such that v+(ωX) <
+∞ (cf. Definition 2.4). The latter automatically holds in the case of compact
complex surfaces.

Theorem A. Let (X, ω0) be a compact complex n-dimensional manifold with v+(ω0) <
+∞. Assume that the Chern-Ricci flow (1.1) starting at ω0 exists on the maximal interval
[0, Tmax) with Tmax < ∞, and that the limiting form αTmax is uniformly non-collapsing,
i.e.,

(1.3)

ˆ

X
(αTmax + ddcψ)n ≥ c0 > 0, ∀ψ ∈ C∞(X).

Then as t → T− the metric ωt converge to ωTmax in C∞(Ω) for some Zariski open set
Ω ⊂ X.

The strategy of the proof is as follows. From the uniformly non-collapsing con-
dition of αTmax , we show that there exists a quasi-plurisubharmonic function ρ with
analytic singularities such that αTmax + ddcρ dominates a hermitian metric. Such a
form is called big (cf. Definition 2.6). Then Ω is the set in which ρ is smooth. In par-
ticular, it is Zariski open. We next establish several uniformly local estimates of ω
near the maximal time Tmax, adapting the same as that of [8, 21]. The convergence
immediately follows.

Degenerate parabolic complex Monge-Ampère equations. In the previous para-
graph, we studied the behavior of the Chern-Ricci flow at finite singularity time.
It is natural to ask whether the flow can pass through this singularity. To do this,
we must define weak solutions of the Chern-Ricci flow starting from degenerate
initial currents on a compact complex variety with mild singularities. Several geo-
metric contexts are encountered in the minimal model program, which require us
to treat the case of complex variety with Kawamata log terminal (klt) singularities.
From an analytic point of view, the latter naturally leads one to deal with densities
that are allowed to blow up while belonging to Lp for some exponent p > 1 whose
size depends on the algebraic nature of the singularities.

On a compact complex n-manifold (X, ωX), we consider the following degen-
erate parabolic complex Monge– Ampère equation

(1.4)
∂ϕt

∂t
= log

[

(θt + ddcϕt)n

µ

]

,

for t ∈ (0, Tmax), where Tmax < ∞ and

• θt = θ + tχ is an affine family of smooth semi-positive forms and there is
a quasi-plurisubharmonic function ρ with analytic singularities such that

θ + ddcρ ≥ δωX for some δ > 0;

• µ is a positive measure on X of the form

µ = eψ+−ψ−

with ψ± quasi-plurisubharmonic functions, being smooth on a given Zariski

open subset U ⊂ {ρ > −∞} and e−ψ−
∈ Lp for some p > 1;

• ϕ : [0, Tmax]× X → R is the unknown function, with ϕt := ϕ(t, ·).

We define the weak solution of the Chern-Ricci flow:

Definition 1.2. A family of functions ϕt : X → R for t ∈ (0, Tmax) is said to be a
weak solution of the equation (1.4) starting with ϕ0 if the following hold.
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(1) for each t, ϕt is θt-plurisubharmonic on X;

(2) ϕt → ϕ0 in L1(X) as t → 0+;
(3) for each ε > 0 there exists a Zariski open set Ωε ⊂ X such that the function

(t, x) 7→ ϕ(t, x) ∈ C∞([ε, Tmax − ε]× Ωε). Furthermore, the equation (1.4)
satisfies in the classical sense on [ε, Tmax)× Ωε.

Our first theorem establishes the existence for the complex Monge-Ampère flow
starting with an initial function ϕ0 with small Lelong numbers.

Theorem B. Let ϕ0 be an θ-plurisubharmonic function satisfying p∗/2c(ϕ0) < Tmax

where p∗ is the conjugate exponent of p. Then there exists a weak solution ϕ of the
flow (1.4) starting at ϕ0 for t ∈ (0, Tmax).

Here c(ϕ0) denotes the integrability index of ϕ0 which is the superemum of

positive constant c > 0 such that e−2cϕ0 is locally integrable. We note that c(ϕ0) =
+∞ if and only if ϕ0 have zero Lelong numbers at all points, as follows from
Skoda’s integrability theorem.

Let us briefly describe the strategy of the proof of Theorem B. We first approxi-

mate ϕ0 by a decreasing sequence of smooth (θ + 2−jωX)-plurisubharmonic func-
tions ϕ0,j thanks to Demailly’s regularization result. Similarly, ψ± are approxi-
mated by smooth quasi-plurisubharmonic functions. We consider the correspond-

ing solution ϕt,j to the equation (1.4) with θt,j = θt + 2−jωX. We aim to establish
several a priori estimates allowing us to pass to the limit j → +∞. Precisely, we
are going to prove that for any ε > 0, there is a Zariski open set Ωε ⊂ X such that
for each 0 < T < Tmax fixed and K ⊂ Ωε,

• ‖ϕt,j‖C0([ε,T]×K) ≤ Cε,T,K;

• ∂t ϕt,j is uniformly bounded on [ε, T]× K;

• ∆ωX ϕt,j is uniformly bounded on [ε, T]× K.

We then apply the parabolic Evans-Krylov theory and Schauder estimates to ob-
tain more higher locally uniformly estimates for all derivatives of ϕt,j (we can refer
to [21] for a recent account in the Chern-Ricci flow context). We therefore can pass
to the limit to show that

ϕt,j → ϕt ∈ C∞([ε, T]× Ωε)

as j → +∞. We automatically have the weak convergence ϕt → ϕ0 as t → 0+.
More stronger convergence are discussed in Section 4.4 when ϕ0 are less singular.

We also emphasize here that the mild assumption p∗/2c(ϕ0) < Tmax guarantees
that the approximating flow is well-defined (not identically −∞) and is crucial for
the smoothing properties of the flow. As mentioned by DiNezza-Lu [16] in the
Kähler context, without this assumption, the Kähler-Ricci flow can still run, but
there is probably no regularization effect at all due to the presence of positive
Lelong numbers. Also, as in this case, they mentioned that the main difficulty

is establishing a priori C0-estimate. Their proof relies on Kolodziej’s method by
using their generalized Monge-Ampère capacity. The approach we use is recently
developed by Guedj-Lu [24, 25], whose advantage is that it still can be applied in
the case of degenerate (1,1) forms in non-Kähler context.

We finally apply the previous analysis to treat the case of mildly singular va-
rieties. This allows us to define a good notion of the weak Chern-Ricci flow on
complex compact varieties with log terminal singularities. We will discuss it in
Section 6 and prove the following.
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Theorem C. Let Y be a compact complex variety with log terminal singularities. Assume
that θ0 is a Hermitian metric such that

Tmax := sup{t > 0 : ∃ ψ ∈ C∞(Y) such that θ0 − tRic(θ0) + ddcψ > 0} > 0.

Assume that S0 = θ0 + ddcφ0 is a positive (1,1)-current with sufficiently small slopes.
Then there exists a family (ωt)t∈[0,Tmax) of positive (1,1) current on Y starting at S0 such

that

(1) ωt = θ0 − tRic(θ0) + ddcϕt are positive (1,1) currents;
(2) ωt → S0 weakly as t → 0+;
(3) for each ε > 0 there exists a Zariski open set Ωε such that on [ε, Tmax)× Ωε, ω

is smooth and
∂ω

∂t
= −Ric(ω).

This generalizes previous results of Song-Tian [43], Guedj-Zeriahi [29], Tô [54],
DiNezza-Lu [16], Guedj-Lu-Zeriahi [27] and the author [10] to the non-Kähler case,
and of [55, 35] and the author [9] to more degenerate initial data.

Organization of the paper. We establish a priori estimates in Section 3, which
will be used to prove Theorem B in Section 4. While, Theorem A will be proved
in Section 5, studying the behavior of the Chern-Ricci flow at non-collapsing finite
time singularities. In Section 6 we apply these tools to prove the existence for the
weak Chern-Ricci flow with initial degenerate data on compact complex varieties
with log terminal singularities, proving Theorem C.

Acknowledgement. The author would like to thank Chung-Ming Pan for careful
reading the first draft and Tât-Dat Tô for useful discussions.

2. PRELIMINARIES

2.1. Recap on pluripotential theory. Let X be a compact complex manifold of
dimension n, equipped with a Hermitian metric ωX. We fix θ a smooth semi-
positive (1,1)-form on X.

2.1.1. Quasi-plurisubharmonic functions and Lelong numbers. A function is quasi-
plurisubharmonic (quasi-psh for short) if it is locally given as the sum of a smooth
and a plurisubharmonic (psh for short) function.

Definition 2.1. A quasi-psh function ϕ : X → [−∞,+∞) is called θ-plurisubharmonic
(θ-psh for short) if it satisfies θϕ := θ + ddcϕ ≥ 0 in the weak sense of currents. We
let PSH(X, θ) denote the set of all θ-psh functions which are not identically −∞.

The set PSH(X, θ) isendowed with the L1(X)-topology. By Hartogs’ lemma
ϕ 7→ supX ϕ is continuous in this weak topology. Since the set of closed positive
currents in a fixed ddc-class is compact (in the weak topology), it follows that the
set of ϕ ∈ PSH(X, θ), with supX ϕ = 0 is compact. We refer the reader to [13, 29]
for basic properties of θ-psh functions.

Quasi-psh functions are in general singular, and a convenient way to measure
their singularities is the Lelong numbers.

Definition 2.2. Let x0 ∈ X. Fixing a holomorphic chart x0 ∈ Vx0 ⊂ X, the Lelong
number ν(ϕ, x0) of a quasi-psh function ϕ at x0 ∈ X is defined as follows:

ν(ϕ, x0) := sup{γ ≥ 0 : ϕ(z) ≤ γ log ‖z − x0‖+O(1), on Vx0}.
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We remark here that this definition does not depend on the choice of local
charts. In particular, if ϕ = log | f | in a neighborhood Vx0 of x0, for some holomor-
phic function f , then ν(ϕ, x0) is equal to the vanishing order ordx0( f ) := sup{k ∈
N : Dγ f (x0) = 0, ∀ |γ| < k}.

In some contexts, it is more convenient to deal with the integrability index in-
stead of the Lelong numbers. The integrability index of a quasi-psh function ϕ at a
point x ∈ X is defined by

c(ϕ, x) := sup{c > 0 : e−2cϕ ∈ L1(Vx)}

where Vx is some neighborhood around x. As above this definition does not de-
pend on the choice of open neighborhood Vx . We denote by c(ϕ) the infimum of
c(ϕ, x) for all x ∈ X. Since X is compact it follows that c(ϕ) > 0.

Skoda’s integrability theorem states that one can get the following ”optimal”
relation between the Lelong number of a quasi-psh function ϕ at a point x0 ∈ X
and the local integrability index of ϕ at x0:

(2.1)
1

ν(ϕ, x0)
≤ c(ϕ, x0) ≤

n

ν(ϕ, x0)
.

In particular c(ϕ) = +∞ if and only if ν(ϕ, x) = 0 for all x ∈ X (cf. [41] for Skoda’s
theorem or [56] for a uniform version).

2.1.2. Monge-Ampère measures. The complex Monge-Ampère measure (θ + ddcu)n

is well-defined for any θ-psh function u which is bounded, as follows from Bedford-
Taylor theory: if β = ddcρ is a Kähler form such that β > θ in a local open chart

U ⊂ X, the function u is β-psh hence the positive currents (β + ddcu)j are well-
defined for 1 ≤ j ≤ n, one thus obtains

(θ + ddcu)n :=
n

∑
j=0

(

n

j

)

(β + ddcu)j ∧ (θ − β)n−j.

as a positive Radon measure on X. Indeed, by Demailly’s regularization theorem
we can approximate u be a decreasing sequence of smooth (θ + ε jωX)-psh func-

tions uj.We obtain that (θ + ddcu)n is the limit of positive measures (θ + ε jωX +
ddcuj)

n, so is positive.
This definition does not depend on the choice of β by the same arguments. We

refer to [17] for an adaptation of [2, 3] to the Hermitian context. We recall the
following maximum principle:

Lemma 2.3. Let ϕ, ψ are bounded θ-psh functions such that ϕ ≤ ψ. Then

1{ϕ=ψ}(θ + ddcϕ)n ≤ 1{ϕ=ψ}(θ + ddcψ)n.

Proof. This is a direct consequence of Bedford-Taylor’s maximum principle; see [29,
Theorem 3.23]. We refer the reader to [26, Lemma 1.2] for a brief proof. �

2.1.3. Positivity assumptions. For our purpose we need to assume slightly stronger
positivity property of the form θ in the sense of [25].

Definition 2.4. We consider

v−(θ) := inf

{
ˆ

X
(θ + ddc ϕ)n : ϕ ∈ PSH(X, θ) ∩ L∞(X)

}

and

v+(θ) := sup

{
ˆ

X
(θ + ddcϕ)n : ϕ ∈ PSH(X, θ) ∩ L∞(X)

}
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We emphasize that when θ is Hermitian, the supremum and infimum in the def-
inition of these quantities can be taken over PSH(X, θ)∩ C∞(X) due to Demailly’s
regularization theorem and Bedford-Taylor’s convergence results.

Definition 2.5. We say that θ is uniformly non-collapsing if v−(θ) ≥ c0 > 0.

This condition is not obvious even when θ is Hermitian. We refer the reader
to [1, Sect. 3] for several examples of uniformly non-collapsing Hermitian form.

Recall that a function ρ is said to have analytic singularities if if there exists a

constant c > 0 such that locally on X, ρ = c log ∑
N
j=1 | f j|

2 +O(1) where the f j’s are

holomorphic functions.

Definition 2.6. We say θ is big if there exists a θ-psh function with analytic singu-
larities such that θ + ddcρ ≥ δωX for some δ > 0. We let Ω denote the Zariski open
set where ρ is smooth.

Such a form appears in some contexts of complex differential geometry. For
instance, if V is a compact complex space endowed with a hermitian form ωY and
π : X → Y is a log resolution of singularities, then the form θ := π∗ωY is big;
see [20, Proposition 3.2]. Moreover, we can find a θ-psh function ρ with analytic
singularities such that θ + ddcρ ≥ δωX, and

Ω = {ρ > −∞} = X \ Exc(π) = π−1(Yreg) ≃ Yreg.

2.1.4. Envelopes.

Definition 2.7. Given a measurable function h : X → R, we define the θ-psh
envelope of h by

Pθ(h) := (sup{u ∈ PSH(X, θ) : u ≤ h on X})∗

where the star means that we take the upper semi-continuous regularization.

We have the following result which has been established in [26, Theorem 2.3].

Theorem 2.8. If h is bounded from below, quasi l.s.c, and Pθ(h) < +∞ then

(1) Pθ(h) is a bounded θ-psh function;
(2) Pθ(h) ≤ h in X \ P, for some pluripolar set P;
(3) (θ + ddcPθ(h))

n is concentrated on the contact set {Pθ(h) = h}.

The following C0-estimate is crucial in the sequel.

Lemma 2.9. Let θ be a smooth real semi-positive and big (1,1)-form. Assume ϕ ∈
PSH(X, θ) ∩ L∞(X) satisfies

(θ + ddcϕ)n ≤ eAϕ−g f dVX ,

where A > 0 and f , g are measurable functions such that eAψ−g f ∈ Lq(X) with q > 1,
for some ψ ∈ PSH(X, δθ), with δ ∈ (0, 1). Then we have the following estimate

ϕ ≥ ψ − C

where C is a positive constant only depending on n, A, δ, θ, q and a upper bound for
´

X eq(Aψ−g) f qdVX .

Proof. We apply the approach which has recently developed by Guedj-Lu [24, 25].
Set u := P(1−δ)θ(ϕ − ψ). Since ϕ is bounded one has u = P(1−δ)θ(ϕ − max(ψ,−t))
for t > 0 big enough, we can thus assume that ψ is also bounded. Since ϕ − ψ is
bounded and quasicontinuous. It follows from Theorem 2.8 that ((1− δ)θ+ ddcu)n

is supported on the contact set D := {u + ψ = ϕ}. We observe that u + ψ and ϕ
are both θ-psh functions satisfying u + ψ ≤ ϕ, it follows from Lemma 2.3 that

1D(θ + ddc(u + ψ))n ≤ 1D(θ + ddcϕ)n.
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From these, we have

((1 − δ)θ + ddcu)n = 1D((1 − δ)ω + ddcu)n

≤ 1D(θ + ddc(u + ψ))n

≤ 1D(θ + ddcϕ)n

≤ 1DeAϕ−g f dVX

≤ 1DeAueAψ−g f dVX ,

with eAψ−g f ∈ Lq(X). We argue the same as in the proof of [25, Theorem 3.4 (1)
] to ensure that there exists a constant C > 0 only depending on n, q, A, θ, δ, and

‖eAψ−g f‖Lq , such that u ≥ −C. This completes the proof. �

2.2. Equisingular approximation. Fix ϕ a θ-psh function on X. We aim at approx-
imating ϕ by a decreasing sequence of quasi-psh functions which are less singular
than ϕ and such that their singularities are somehow comparable to those of ϕ.
This leads us to make use of Demailly’s equisingular approximation theorem. For
each c > 0, we define the Lelong super-level sets

Ec(ϕ) := {x ∈ X : ν(ϕ, x) ≥ c}.

We also use the notation Ec(T) for a closed positive (1, 1)-current T. A well-known
result of Siu [40] asserts that the Lelong super-level sets Ec(ϕ) are analytic subsets
of X. We refer the reader to [11, Remark 3.2] for an alternative proof.

The following result of Demailly on the equisingular approximation of a quasi-
psh function by quasi-psh functions with analytic singularities is crucial.

Theorem 2.10 (Demailly’s equisingular approximation). Let ϕ be a θ-psh function
on X. There exists a decreasing sequence of quasi-psh functions (ϕm) such that

(1) (ϕm) converges pointwise and in L1(X) to ϕ as m → +∞,
(2) ϕm has the same singularities as 1/2m times a logarithm of a sum of squares of

holomorphic functions,
(3) ddc ϕm ≥ −θ − εmωX, where εm > 0 decreases to 0 as m → +∞,

(4)
´

X e2m(ϕm−ϕ)dV < +∞,
(5) ϕm is smooth outside the analytic subset E1/m(ϕ).

Proof. We briefly sketch the idea for the convenience of the reader and which we
believe is known to experts. We follow the proof of [11] by applying with the
current T = ddc ϕ and the smooth real (1,1) form γ = −θ. We also borrow notation
from there.

For δ > 0 small, let us cover X by N = N(δ) geodesic balls B2r(aj) with respect

to ωX such that X = ∪jBr(aj) and in terms of coordinates zj = (z
j
1, . . . , z

j
n),

n

∑
l=1

λ
j
l idz

j
l ∧ dz̄

j
l ≤ γ|B2r(aj)

≤
n

∑
l=1

(λ
j
l + δ)idz

j
l ∧ dz̄

j
l

where we have diagonalized γ(aj) at the center aj. Here N and r are taken to be

uniform. Set ϕj := ϕ|B2r(aj)
− ∑

n
l=1 λ

j
l |z

l
j|

2. On each B2r(aj), we define

ϕj,δ,m :=
1

2m
log ∑

k∈N

| f j,m,k|
2,

where ( f j,m,k)k∈N is an orthogonal basis of the Hilbert space HB2r(aj)

(

mϕj
)

of holo-

morphic functions on B2r(aj) with finite L2 norm ‖u‖ =
´

B2r(aj)
|u|2e−2mϕj

dV(zj).

Note that since ddc ϕ ≥ γ it follows that ϕ − ∑
n
l=1 λ

j
l |z

l
j|

2 is psh on B2r(aj). The
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Bergman kernel process applied on each ball B2r(aj) have provided approxima-

tions ϕj,δ,m of ϕj = ϕ|B2r(aj)
− ∑

n
l=1 λ

j
l |z

l
j|

2, it thus remains to glue these functions

into a function ϕδ,m globally defined on X. For this, we set

ϕδ,m(x) =
1

2m
log

(

∑
j

θj(x)2 exp

(

2m

(

ϕj,δ,m + ∑
l

(λ
j
l − δ)|z

j
l |

2

)))

where (θj)1≤j≤N is the partition of unity subordinate to the Br(aj)’s. Now we take
δ = δm ց 0 slowly and ϕm = ϕδm,m the same computations as in [11, p. 16] ensure
that

ddc ϕm ≥ γ − ε(δm)ωX

for m ≥ m0 sufficiently large and εm = ε(δm) ց 0 as m → +∞. By the construction
the properties (1), (2), (3) and (5) are satisfied.

The property (4) is crucial for later use whose proof should be provided. The ar-
gument originated from [15, Theorem 2.3, Step 2] using local uniform convergence
and the strong Noetherian property. By the properties of functions ϕm it suffices
to show that on each ball Bj = Br(aj),

ˆ

Bj

e2mϕm−2mϕdV =

ˆ

Bj

(

∑
k∈N

| f j,m,k|
2

)

e−2mϕdV(zj) < +∞.

We let F1 ⊂ F2 ⊂ . . .Fk ⊂ . . . ⊂ O(B2r(aj)× B2r(aj)) denote the sequence of ideal

coherent sheaves generated by the holomorphic functions
(

f j,m,l(z) f j,m,l(w̄)
)

l≤k

on B2r(aj)× B2r(aj). By the strong Noetherian property (see e.g. [13, C. II, 3.22])

the sequence (Fk) is stationary on a compact subset Bj × Bj ⊂⊂ B2r(aj)× B2r(aj)
at a index k0 large enough. Using the Cauchy-Schwarz inequality we have that the

sum of the series U(z, w) = ∑k∈N f j,m,k(z) f j,m,k(w̄) is bounded from above by

(

∑
k∈N

| f j,m,k(z)|
2 ∑

k∈N

| f j,m,k(w̄)|2
) 1

2

hence uniformly convergent on every compact subset of B2r(aj) × B2r(aj). Since
the space of sections of a coherent ideal sheaf is closed under the topology of
uniform convergence on compact subsets, the Noetherian property grantees that
U(z, w) ∈ Fk0

(Bj × Bj). Hence, by restricting to the conjugate diagonal w = z̄, we
obtain

∑
k∈N

| f j,m,k(z)|
2 ≤ C0

(

∑
k≤k0

| f j,m,k(z)|
2

)

on Bj. Since all terms f j,m,k have L2-norm equal to 1 with respect to the weight

e−2mϕ this completes the proof. �

Using this one obtains the following lemma which is slightly more general to
the one in [16].

Lemma 2.11. Let θ be a big form. Assume ϕ ∈ PSH(X, θ). Then for each ε > 0 there

exist c(ε) > 0 and ψε ∈ PSH(X, θ) ∩ C∞
(

X \ ({ρ = −∞} ∪ Ec(ε)(ϕ))
)

such that

(2.2)

ˆ

X
e

2
ε (ψε−ϕ)dVX < +∞.
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Proof. The proof is quite close to that of [16, Lemma 2.7]. Recall that the bigness
of θ implies that there exists ρ an θ-psh function with singularities and supX ρ = 0
such that

θ + ddcρ ≥ 3δ0ωX for a fixed constant δ0 > 0.

Let c(ϕ) be the integrability index of ϕ. We can assume that c(ϕ) < +∞, otherwise
we are done. By Theorem 2.10, we can find (ϕm) a Demailly’s equisinglar approx-
imant of ϕ. We have that ϕm is smooth in the complement of the analytic subset
E1/m(ϕ) and

θ + ddc ϕm ≥ −εmδ0ωX

for εm > 0 decreasing to zero as m goes to +∞. We notice here that the errors
εm > 0 appear in the gluing process; see [11] for more details. We choose m = m(ε)
to be the smallest positive integer such that

m >
2

ε(1 + εm)
,

2εm

ε(1 + εm)
< c(ϕ).

We now set

(2.3) ψε :=
ϕm

1 + εm
+

εm

1 + εm
ρ.

Thus, we have

θ + ddcψε ≥
εm

1 + εm
2δ0ωX := 2κωX.

Holder’s inequality ensures that (2.2) holds, noticing that ρ ≤ 0. We easily see that

ψε is smooth in the complement of {ρ = −∞} ∪ Ec(ε)(ϕ) with c(ε) = m(ε)−1. �

3. A PRIORI ESTIMATES

3.1. Notation. We use some notation as in [16, Sect. 3.1]. Until further notice, X
denotes a compact complex manifold of dimension n endowed with a reference
Hermitian form ωX. Following the strategy in the introductory part, we assume
in this section that θt = θ + tχ with t ∈ [0, Tmax) are Hermitian forms and ϕ0 is a
smooth strictly θ-psh function. We denote by µ = f dVX a positive measure with
density ‖ f‖Lp ≤ C uniformly, for some p > 1. For more higher estimates, we
assume moreover that

f = eψ+−ψ−

where ψ± are smooth quasi-psh functions. Recall that ρ is a θ-psh function with
analytic singularities such that θ + ddcρ dominates a Hermitian form. We may
assume that supX ρ = 0.

We consider ϕt a smooth solution of the following parabolic complex Monge-
Ampère equation

(3.1)
∂ϕt

∂t
= log

[

(θt + ddc ϕt)n

µ

]

, ϕ|t=0 = ϕ0

on [0, Tmax); see [52]. We should keep in mind that ϕt plays a role of its approx-
imants ϕt,j in establishing a priori estimates. For brevity, we supress the index
j.

We fix T and S such that

p∗

2c(ϕ0)
< T < S < Tmax.

where p∗ is the conjugate exponent of p, i.e. 1
p + 1

p∗ = 1. Since we are interested in

the behavior of the flow (3.1) near zero, we can assume that

θS ≥ (1 − a)θ, for a ∈ [0, 1/2).
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It is truly natural in some several geometric context, for instance, θt are the pull
back of a Hermitian forms. Thus for each t ∈ [0, S] we have

θt =
tθS

S
+

S − t

S
θ ≥

(

1 −
at

S

)

θ.

During the proof, we use the notation ωt := θt + ddc ϕt for the smooth path of Her-
mitian forms and denote ∆t = trωt ddc the corresponding time-dependent Lapla-
cian operator on functions.

We fix ε0 > 0 small enough, and let denote by ψ0 := ψε0 established in Lemma 2.11.
By construction, ψ0 is smooth outside an analytic subset {ρ = −∞}∪ Ec(ε)(ϕ0) and

satisfies

(3.2) θ + ddcψ0 ≥ 2κωX.

We let E1, E1 denotes the following quantities

E1 :=

ˆ

X
e

2(ψ0−ϕ0)
ε0 dVX < +∞,

E2 :=

ˆ

X
e−

p∗ψ0
T dVX < +∞.

Observe that E1 is finite thanks to Lemma 2.11, while E2 is finite since p∗/(2c(ϕ0)) <
T and that ψ0 is less singular than ϕ0. One should emphasize that ϕ0 in this a priori
estimate section plays a role of its approximating sequence ϕ0,j (which are smooth

strictly θ-psh functions decreasing to ϕ0). The corresponding sequence E
j
1 are uni-

formly bounded from above in j, hence we can pass to the limit.
In what follows we use C for a positive constant whose value may change from

line to line but be uniformly controlled.

3.2. Uniform estimate. We first look for a upper a priori bound for ϕt. We recall
that

1

2
θ ≤ θt ≤ AωX , ∀ t ∈ [0, T],

for A > 0 sufficiently large. It follows from [25, Theorem 3.4] (see also [31])
that there exists a constant c and a bounded AωX-psh function φ normalized by
infX φ = 0 such that

(AωX + ddcφ)n = ec f dVX .

Proposition 3.1. For any (t, x) ∈ [0, T]× X, there exists a uniform constant C > 0
such that

ϕt(x) ≤ C.

Proof. For any (t, x) ∈ [0, T]× X, we set v(t, x) = φ(x) + ct + supX ϕ0. Then we
can check that

∂v

∂t
= log

[

(AωX + ddcvt)n

µ

]

, while
∂ϕ

∂t
≤ log

[

(AωX + ddc ϕt)n

µ

]

,

and v0 ≥ ϕ0. Hence, it follows from the classical maximum principle that v(t, x) ≥
ϕ(t, x) for (t, x) ∈ [0, T]× X. Therefore, one gets a upper bound for ϕ(t, x) by

sup
X

|φ|+ max(c, 0)T + sup
X

ϕ0.

�
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We fix two positive constants α, β such that

p∗

2c(T0)
<

1

α
<

1

α − β
< Tmax,

hence
θ + (α − β)χ ≥ 0.

We observe that the density e−αϕ0 f belongs to Lq for q > 1. Indeed, for any δ > 0

we choose q > 1 so that 1
q = 1

p + 1
p∗+δ . Hölder’s inequality and Skoda’s theorem

yield
ˆ

X
e−αqϕ0 f qdV ≤ ‖ f‖

q
Lp

(
ˆ

X
e−α(p∗+δ)ϕ0dV

)q/p∗+δ

< +∞.

It thus follows from [25] that there exists a bounded θ-psh function u such that

βn(θ + ddcu)n = eβu−αϕ0 f dV.

Proposition 3.2. For t ∈ (0, α−1),

(1 − αt)ϕ0 + βtu + n(t log t − t) ≤ ϕt.

In particular, there exists a uniform constant C > 0 such that

ϕ0 − C(t − t log t) ≤ ϕt, ∀ t ∈ (1, α−1).

Proof. The proof is identical to that of [30, Lemma 2.9]. Set ut := (1 − αt)ϕ0 +
βtu + n(t log t − t). We observe that

θt + ddcut = (1 − αt)ω0 + βtθu + t[(α − β)θ + χ] ≥ 0

by the choice of α, β. Moreover, we can check that

(θt + ddcut)
n ≥ βntnθn

u = eu̇t µ

so ut is a subsolution of (3.1). Together with u0 = ϕ0 the conclusion thus follows
from the maximum principle. �

Before finding a lower bound for solution ϕt, we prove the following upper

bound for ϕ̇t := ∂ϕ
∂t .

Proposition 3.3. For all (t, x) ∈ (0, T]× X,

(3.3) ϕ̇t(x) ≤
ϕt(x)− ϕ0(x)

t
+ n.

Proof. We argue the same as in [30] (also in [27]). We consider the function

H(t, x) := tϕ̇t(x)− (ϕt − ϕ0)(x)− nt.

Since ϕ̇t = log(ωn
t /µ) hence

∂H

∂t
= t∆t ϕ̇t + t trωt χ − n.

On the other hand, we compute

∆tH = t∆t ϕ̇t − ∆t(ϕt − ϕ0) = t∆t ϕ̇t − [n − t trωt(χ)− trωt(θ + ddc ϕ0)].

Therefore
(

∂

∂t
− ∆t

)

H = − trωt(θ + ddc ϕ0) ≤ 0.

By the maximum principle, H achieves its maximum along (t = 0). Since H(0, x) ≡
0 hence the desired inequality follows. �

We use the same arguments as in [16] to establish the following uniform esti-
mate for the complex parabolic Monge–Ampère equation.
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Theorem 3.4. Fix ε > p∗ε0. For t ∈ [ε, T] we have the following estimate

ϕt ≥

(

1 −
bt

T

)

ψ0 − C,

for some uniform constant C > 0.

Proof. Fixing t ∈ [ε, T], it follows from Proposition 3.3 that

(θt + ddc ϕt)
n = eϕ̇t ≤ en+

ϕt−ϕ0
t f dV.

We set

ψt :=

(

1 −
bt

T

)

ψ0,

for b ∈ (a, 1/2) close to a. We recall that

θt ≥

(

1 −
at

S

)

θ,

it then follows that ψt is δθt-psh with δ ∈ (0, 1) only depending on ε0, a, b, T, S

(more precisely, δ = TS−bSε0
TS−aTε0

). Using the same arguments as in the proof of [16,

Theorem 3.2], we can bound the following quantity

(3.4)

ˆ

X
e

q(ψt−ϕ0)
t f qdV < +∞,

for some q > 1, in terms of ‖ f‖Lp , E1 and E2. Indeed, fixing γ > 0 small enough,
we choose q > 1 so that

1

q
=

1

p
+

1

2p∗ + γ
+

1

2p∗ + γ
.

Hölder’s inequality thus ensures that

ˆ

X
e

q(ψt−ϕ0)
t f qdV ≤ ‖ f‖

q
Lp

(
ˆ

X
e
(2p∗+γ)(ψ0−ϕ0)

t dV

)

q
2p∗+γ

(
ˆ

X
e−

(2p∗+γ)bψ0
T dV

)

q
2p∗+γ

The second term on the RHS is finite due to the construction of ψ0 in Lemma 2.11.
Also, since ψ0 is less singular than ϕ0 hence the third term is finite.

From (3.4), we can apply Lemma 2.9 with A = 1/t and g = ϕ0/t − n to get

the desired estimate. Note that our C0-estimate only depends on n, θ, q, our fixed
parameters ε0, ε, T, S, and a upper bound for E1 and E2. �

Remark 3.5. When ϕ0 is bounded or more general has zero Lelong numbers, it
was shown in [55] (generalizing the result of [30] in Kähler context) that the esti-
mate (3.3) ensures a lower bound for ϕt using Kolodziej-Nguyen’s theorem [31].
Unfortunately, this method can not apply in more general case, namely when ϕ0

are more singular, for instance, it has a positive Lelong numbers. So, in order to
analyze the singularities of the initial potential ϕ0, Guedj-Lu’s approach [25] could
help.

3.3. Laplacian estimate. We recall the following classical inequality.

Lemma 3.6. Let α, β be two positive (1,1)-forms. Then

n

(

αn

βn

)
1
n

≤ trβ(α) ≤ n

(

αn

βn

)

(trα(β))n−1.
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We define

Ψt :=

(

1 −
bt

S

)

ψ0,

where ψ0 is defined in Lemma 2.11 with ε0 > 0 fixed.

In order to establish the C2 estimate it is necessary a lower bound for ϕ̇t =
∂ϕ
∂t .

Proposition 3.7. For (t, x) ∈ (ε, T]× X,

ϕ̇t(x) ≥ n log(t − ε) + A(Ψt − ϕt)− C

where A, C > 0 are positive constants only depending on ε, T, ‖ f‖Lp and a upper bound
of E1 and E2.

Proof. The proof is almost identical to that of [16, Proposition 3.5]. The only dif-
ference is that we use Theorem 3.4 instead of the corresponding one in [16]. We
include the proof for the convenience of readers.

By [25, Theorem 3.4], there exist a bounded θ-psh function φ1 and a constant c1

such that

(θ + ddcφ1)
n = ec1 dµ, sup

X

φ1 = 0.

We set
G(t, x) := ϕ̇t(x) + A(ϕt − Ψt)− φ1 − n log(t − ε)

for a constant A > 0 to be determined hereafter. We see that G attains its minimum
at a point (t0, x0) ∈ (ε, T]× (X\{ψ0 = −∞}). In the sequel, all our computations
will take place at this point. We compute
(

∂

∂t
− ∆t

)

G = Aϕ̇t −
n

t − ε
+ A

bψ0

S
− nA + A trωt(θ + ddcΨt) + trωt(χ + ddcφ1).

We observe that

θt + ddcΨt =
t(b − a)

S
θ +

(

1 −
bt

S

)

(θ + ddcψ0)

≥
ε(b − a)

S
θ +

1

2
2κωX.

We now choose A > 0 so big that

A(θt + ddcΨt) + χ ≥ θ.

Therefore

(3.5)

(

∂

∂t
− ∆t

)

G ≥ Aϕ̇t −
n

t − ε
+ A

bψ0

S
− nA + trωt(θ + ddcφ1).

On the other hand, Lemma 3.6 ensures that

trωt(θ + ddcφ1) ≥ n

(

(θ + ddcφ1)
n

ωn
t

)1/n

= ne
−ϕ̇t

n .

Using the elementary inequality γx − log x ≥ −Cγ for each small constant γ > 0,
x > 0, we have that

Aϕ̇t + ne
−ϕ̇t

n ≥ e
−ϕ̇t

n −C1 − C2.

Plugging this into (3.5) it follows from the minimum principle that at (t0, x0),

ϕ̇t ≥ −n log

(

C2 +
n

t − ε
−

Abψ0

S
+ nA

)

− nC1,

hence

G(t0, x0) ≥ −C3 − n log

(

C2(t0 − ε) + n −
Ab(t0 − ε)ψ0

S

)

−
Abt0(S − T)

ST
ψ0
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where we have used Theorem 3.4. We thus obtain a uniform lower bound for
G(t0, x0) again by γx − log x ≥ −Cγ for x > 0. The desired lower bound follows.

�

We are now in position to establish the C2-estimate. We follow the computations
of [52, Lemma 4.1] (see also [55, Lemma 6.4]) in which they have used the technical
trick due to Phong and Sturm [38]. Recall that the measure µ is of the form

µ = eψ+−ψ−
dV

where ψ± are smooth KωX-psh function on X for uniform constant K > 0. For
simplicity, we assume K = 1 and normalize supX ψ± = 0.

Theorem 3.8. Fix ε > p∗ε0. For (t, x) ∈ [ε, T]× X we have the following bound

(t − ε) log trωX(ωt) ≤ −Bψ0 − Cψ− + C

where A, C are positive constants only depending on ε, T, ‖e−ψ−
‖Lp and a upper bound

of E1, E2.

Proof. We follow the computations of [21, 55] (which are due to the trick of Phong
and Sturm [38]) with a twist in order to deal with unbounded functions. The
constant C denotes various uniform constants which may be different.

Consider

H := (t − ε) log trωX(ωt)− γ(u), (t, x) ∈ [ε, T]× X,

where γ : R → R is a smooth concave increasing function such that limt→+∞ γ(t) =
+∞, and

u(t, x) := ϕt(x)− Ψt(x)− κψ− + 1 ≥ 1,

as follows from Theorem 3.4 and ψ0, ψ− ≤ 0. We are are going to show that H is
uniformly bounded from above for an appropriate choice of γ.

We let g denote the Riemann metric associated to ωX and g̃ the one associated
to ωt := θt + ddc ϕt. Since H goes to −∞ on the boundary of X0 := {x ∈ X :
ψ0(x) > −∞}, H attains its maximum at some point (t0, x0) ∈ [ε, T]× X0. If t0 = ε
we are done. Assume that t0 > ε. At this maximum point we use the following
local coordinate systems due to Guan and Li [23, Lemma 2.1, (2.19)]:

gi j̄ = δij,
∂giī

∂zj
= 0 and g̃i j̄ is diagonal.

Following the computations in [55, Eq. (3.20)], we have

∆t trωX(ωt) ≥ ∑
i,j

g̃iī g̃j j̄ g̃i j̄j g̃jīj̄ − trωX Ric(ωt)− C1 trωX(ωt) trωt(ωX).(3.6)

From standard arguments as in [25, Eq. (4.5), p. 29], we obtain

|∂ trωX(ωt)|2ω̃t

(trωX(ωt))2
≤

1

trωX(ωt)

(

∑
i,j

g̃iīg̃j j̄ g̃i j̄j g̃jīj̄

)

+ C
trωt(ωX)

(trωX(ωt))2

+
2

(trωX(ωt))2
Re ∑

i,j,k

g̃iīTij j̄g̃kīk̄,

(3.7)

where Tij j̄ := g̃j j̄i − g̃i j̄j is the torsion term corresponding to ωt which is under

control: |Tij j̄| ≤ C. Now at the point (t0, x0), we have ∂ī H = 0, hence

(t − ε)∑
k

g̃kk̄ī = trωX(ωt)γ
′(u)uī.
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Cauchy-Schwarz’s inequality yields
∣

∣

∣

∣

∣

2

(trωX(ωt))2
Re ∑

i,j,k

g̃iīTij j̄ g̃kk̄ī

∣

∣

∣

∣

∣

≤ C
γ′(u)(t0 − ε)

−γ′′(u)

trωt(ωX)

(trωX(ωt))2
+

−γ′′(u)

t0 − ε
|∂u|2ωt

,

hence
∣

∣

∣

∣

∣

2

(trωX(ωt))2
Re ∑

i,j,k

g̃iīTij j̄g̃kīk̄

∣

∣

∣

∣

∣

≤ C

(

γ′(u)T

−γ′′(u)
+ 1

)

trωt(ωX)

(trωX(ωt))2
+

−γ′′(u)

t0 − ε
|∂u|2ωt

,

using that |gkk̄ī − gkīk̄| ≤ C. From this, the inequality (3.7) becomes

|∂ trωX(ωt)|2ω̃t

(trωX(ωt))2
≤

1

trωX(ωt)

(

∑
i,j

g̃iī g̃j j̄ g̃i j̄j g̃jīj̄

)

+ C

(

γ′(u)T

−γ′′(u)
+ 2

)

trωt(ωX)

(trωX(ωt))2
+

−γ′′(u)

t0 − ε
|∂u|2ωt

.

(3.8)

Set α := trωX(ωt). We compute

α̇ = trωX(χ + ddc ϕ̇) = trωX(χ)− trωX Ric(ωt)− trωX ddc(ψ+ − ψ−) + trωX(dV)

≤ trωX(C1ωX + ddcψ−)− trωX Ric(ωt)

where we have use the fact that trω(χ) is bounded from above together with
the trivial inequality n ≤ trωX(ωt) trωt(ωX). Combining this together with (3.6)
and (3.8), we infer that

α̇

α
− ∆t log α =

α̇

α
−

∆ωt α

α
+

|∂α|2ωt

α2

≤
trωt(C1ωX + ddcψ−)

α
+ C

(

γ′(u)T

−γ′′(u)
+ 2

)

trωt(ωX)

α2
+

−γ′′(u)

t0 − ε
|∂u|2ωt

(3.9)

From this, at the maximum point (t0, x0),

0 ≤

(

∂

∂t
− ∆t

)

H = log α + (t − ε)

(

α̇

α
− ∆t log α

)

− γ′(u)u̇ + γ′(u)∆tu + γ′′(u)|∂u|2ωt

≤ log α +
C3 trωt(ωX + ddcψ−)

α
+ C4

(

γ′(u)T

−γ′′(u)
+ 2

)

trωt(ωX)

α2

− γ′(u)ϕ̇t + γ′(u)Ψ̇t + γ′(u)∆ωt(ϕt − Ψt − κψ−),

(3.10)

with C3, C4 > 0 under control. Moreover, since θt ≥
(

1 − t
3S

)

θ hence

θt + ddcΨt ≥

(

1 −
bt

s

)

2κωX.

Thus we obtain

(3.11) ∆t(ϕt − Ψt) ≤ n − κ trωt(ωX).

Plugging (3.11) into (3.10) we thus arrive at

0 ≤ log α +
C3 trωt(ωX + ddcψ−)

α
− γ′(u)(n − κ trωt(ωX + ddcψ−))

− γ′(u)ϕ̇t − γ′(u)
ψ0

2S
+ C4

(

γ′(u)T

−γ′′(u)
+ 2

)

trωt(ωX)

(trωX(ωt))2
+ C5.
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We now choose the function γ to obtain a simplified formulation. We set

γ(u) :=
C3 + 3

min(κ, 1)
u + ln(u).

Since u ≥ 1 we have

C3 + 3

min(κ, 1)
≤ γ′(u) ≤ 1 +

C3 + 3

min(κ, 1)
,

γ′(u)T

−γ′′(u)
+ 2 ≤ C5u2.

Using trωX(ωX + ddcψ−) ≤ trωt(ωX + ddcψ−) trωX(ωt) we obtain

0 ≤ log α − γ′(u)ϕ̇t − γ′(u)
ψ0

2S
− 3 trωt(ωX) + C6(u

2 + 1)
trωt(ωX)

α2
.(3.12)

If at the point (t0, x0), we have α2 ≤ C6(u
2 + 1) then

H(t0, x0) ≤ T log
√

C6(u2 + 1)− γ(u) ≤ C7,

we are done. Otherwise, we assume that at (t0, x0), α2 ≥ C6(u
2 + 1). Applying

Lemma 3.6 we obtain

log α = log trωX(ωt) ≤ (n − 1) log trωt(ωX) + log n + ϕ̇t − ψ−

using that supX ψ+ = 0. Plugging this into (3.12) we obtain

0 ≤ C5 + (n − 1) log trωt(ωX)− 2 trωt(ωX)− (γ′(u)− 1)ϕ̇t − γ′(u)
ψ0

2S
− ψ−,

or, equivalently

(3.13) 2 trωt(ωX) ≤ C8 − (γ′(u)− 1)ϕ̇t − γ′(u)
ψ0

2S
− ψ−

since (n − 1) log y − 2y ≤ −y +O(1) for y > 0. In particular, we have

(3.14) ϕ̇t ≤
C5

γ′(u)− 1
−

γ′(u)

γ′(u)− 1

ψ0

2S
≤

C5

A − 1
−

Aψ0

(A − 1)2S
−

ψ−

A − 1

at (t0, x0) since trωt(ωX) ≥ 0 and A ≤ γ′(u) ≤ A + 1 with A =: C3+3
min(κ,1)

. It follows

from Lemma 3.6 that

trωt(ωX) ≥ ne
−ϕ̇t+ψ−

n .

Plugging this into (3.13) we obtain

trωt(ωX) ≤ C9 − γ′(u)
ψ0

2S
− γ′(u)ψ− ≤ C9 −

(A + 1)ψ0

2S
− (A + 1)ψ−

with C9 > 0 under control, since bey − By ≥ −C(b, B) for y ∈ R. Again Lemma 3.6
yields

log α ≤ (n − 1) log

(

C9 −
(A + 1)ψ0

2S
− (A + 1)ψ−

)

+ log n + ϕ̇t − ψ−.

Combining this together with (3.14) we have at (t0, x0)

H ≤ C10 − A

[

ϕt −

(

1 −
t

2S
−

t − ε

2(A − 1)S

)

ψ0

]

+

(

Aκ − 1 −
1

A − 1

)

ψ−

+ (t − ε)(n − 1) log

(

C9 −
(A + 1)ψ0

2S
− (A + 1)ψ−

)

.

Up to increasing A > 0 if necessary, so that

δ :=
ε

2T
−

ε

2S
−

T

2(A − 1)S
> 0,
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since ψ0 ≤ 0 we obtain, at (t0, x0),

H ≤ C10 − A

[

ϕt −

(

1 −
t

2T

)

ψ0

]

+ Aδψ0 + Aκ/2ψ−

+ (t − ε)(n − 1) log

(

C9 −
(A + 1)ψ0

2S
− (A + 1)ψ−

)

.

The second term is uniformly bounded from above thanks to Theorem 3.4. Since
−by + log y is bounded from above for y > 0, we obtain that H attains a uniform
bound at (t0, x0). This finishes the proof.

�

3.4. More estimates. Recall that there exists ρ an θ-psh function with analytic sin-
gularities such that supX ρ = 0 and

θ + ddcρ ≥ 3δ0ωX

for some δ0 > 0. By [25, Theorem 3.4], there exist a bounded θ-psh function φ1 and
a constant c1 such that

(θ + ddcφ1)
n = ec1 dµ, sup

X

φ1 = 0.

Proposition 3.9. Assume that φ1, φ2 are two smooth ωX-psh functions satisfying

ϕ̇0 ≥ C1ψ1, ϕ0 ≥
1

2
(ρ + δ0ψ2)

for some constants C1 > 0. Fix T1 ∈ (0, Tmax) such that θt >
1
2 θ for all t ∈ [0, T1]. Then

there exists a uniform constant C2 > 0 only depending on C1, δ0, T1 and supX |φ1| such
that

ϕ̇t ≥ C2(ρ + δ0ψ2 + 1) + C1ψ1, ∀ t ∈ [0, T1].

Proof. The proof is identical to that of Proposition 3.7. We consider

H(t, x) := ϕ̇t − C1ψ1 + A

(

ϕt −
1

2
(ρ + δ0ψ2)

)

− φ1,

for A > 0 to be chosen hereafter. We observe that H attains its minimum at some
point (t0, x0) ∈ [0, T1]× X. If t0 = 0 we are done by assumptions. Otherwise, by
the minimum principle we have at (t0, x0),

0 ≥

(

∂

∂t
− ∆t

)

H ≥ −An + Aϕ̇t + (−C1 + Aδ0) trωt(ωX) + trωt(ddcφ1)

where are have used that θt + ddc 1
2 (ρ + δ0ψ2) ≥ δ0ωX. Now, we choose A =

δ0(C1 + 1) thus

trωt(ωX + ddcφ1) ≥ n

(

(θ + ddcφ1)
n

ωn
t

)1/n

= ne
−ϕ̇t

n .

using Lemma 3.6. Together with the inequality ey ≥ By − CB we obtain a uniform
lower bound for ϕ̇t at (t0, x0). On the other hand, by Proposition 3.2 we see that

ϕt ≥ ϕ0 − c(t) so ϕt ≥ 1
2 (ρ + δ0ψ2) − c(t) where c(t) → 0 as t → 0. The lower

bound for H(t0, x0) thus follows, this completes the proof. �

Proposition 3.10. Assume that ψ1, ψ2 are two smooth ωX-psh functions satisfying

∆ωX ϕ0 ≤ e−C1ψ1 , ϕ0 ≥
1

2
(ρ + δ0ψ2)

for some constants C1 > 0. Fix T1 ∈ (0, Tmax) such that θt >
1
2 θ for all t ∈ [0, T1]. Then

there exists uniform constants C2 > 0, C3 > 0 only depending on C1, δ0 and T1 such that

trωX(ωt) ≤ C3e−C1ψ1−C2(ρ+δ0ψ2+δ0ψ−
), ∀ t ∈ [0, T1].
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Proof. Consider

H(t, ·) = log trωX(ωt) + C1ψ1 − γ(u)

where γ : R → R is a smooth concave increasing function such that limt→+∞ γ(t) =
+∞, and

u(t, x) := ϕt(x)−
1

2
(ρ(x) + δ0ψ2(x)) + δ0ψ−(x) + 1.

We observe that H attains its maximum at a point (t0, x0) ∈ [0, T1]× {ρ > −∞}. If
t0 = 0 then H(0, ·) ≤ log n − γ(1). Otherwise, assume t0 > 0. We compute from
now on at this point. By the maximum principle and the arguments in Theorem 3.8
we have

0 ≤

(

∂

∂t
− ∆t

)

H ≤
C trωt(ωX + ddcψ−)

trωX(ωt)
− γ′(u)(n − δ0 trωt(ωX + ddcψ−)) + C

− C1 trωt(ddcψ1)− γ′(u)ϕ̇t + C

(

γ′(u)

−γ′′(u)
+ 2

)

trωt(ωX)

(trωX(ωt))2
.

(3.15)

Here we use that θt + ddc 1
2 (ρ + δ0ψ2) ≥ δ0ωX. We set

γ(u) :=
C + C1 + 3

min(κ, 1)
u + ln(u).

We proceed the same as in the proof of Theorem 3.8 to obtain the uniform upper
bound for H(t0, x0). This finishes the proof.

�

4. DEGENERATE MONGE-AMPÈRE FLOWS

4.1. Proof of Theorem B. By Demailly’s regularization theorem (Theorem 2.10)
we can find two sequences ψ±

j ∈ C∞(X) such that

• ψ±
j decreases pointwise to ψ± on X and the convergence is in C∞

loc(U);

• ddcψ± ≥ −ωX .

We note that | supX ψ±
j | is uniformly bounded and for all j,

‖e
−ψ−

j ‖Lp ≤ ‖e−ψ−
‖Lp .

Thanks to Demailly’s regularization theorem again, we can find a smooth se-

quence (ϕ0,j) of strictly θ + 2−jωX-psh functions decreasing towards ϕ0. We set

θt,j = θt + 2−jωX and µj = e
ψ+

j −ψ−
j . It follows from [52, Theorem 1.2] (see also [55])

that there exists a unique function ϕj ∈ C∞([0, T[×X) such that

(4.1)











∂ϕt,j

∂t
= log

[

(θt,j + ddcϕt,j)
n

µj

]

ϕj|t=0 = ϕ0,j.

It follows from the maximum principle that the sequence ϕt,j is decreasing with
respect to j. Moreover, Proposition 3.1 yields that supX ϕt,j is uniformly bounded
from above. It follows from Proposition 3.2 that j → +∞, the family ϕt,j decreases
to ϕt which is a well-defined θt-psh function on X. Following the same arguments

in [55, Sect. 4.1], we get that ϕt → ϕ0 in L1(X) as t → 0+.
We next study the partial regularity of ϕt for small t. We fix ε0 > 0 and ε > p∗ε0.

Let T and S as in Section 3.1. Let ρ be a θ-psh function with analytic singularities
along D such that θ + ddcρ dominates a Hermitian form. Thanks to Lemma 2.11 we
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can find a function ψ0 ∈ PSH(X, θ)∩ C∞(X \ (D∪ Ec(ϕ0))) (the constant c = c(ε0)
is defined as in Lemma 2.11) such that

ˆ

X
e

2(ψ0−ϕ0)
ε0 dVX < +∞,

We assume w.l.o.g that ψ0 ≤ 0. Since
p∗

2c(ϕ0)
< T and ψ0 is less singular than ϕ0 we

also have
ˆ

X
e
−p∗ψ0

T dVX < +∞.

We mention that since ϕ0 is a decreasing limit of a smooth sequence ϕ0,j, the corre-
sponding constant for ϕ0,j are uniformly bounded (in j) and we can pass the limit
when j → +∞.

Recall that ψ± are smooth (merely locally bounded) in a Zariski open set U ⊂
X\D. We are going to show that ϕt is smooth on U \ (D ∪ Ec(ϕ0)) for each t >

ε. Let K be an arbitrarily compact subset of U \ (D ∪ Ec(ϕ0)). It follows from
Proposition 3.1, Theorem 3.4 and the remark above that

sup
[ε,T]×K

|ϕj| ≤ C(ε, T, K).

Next, Proposition 3.7 yields

sup
[ε,T]×K

|ϕ̇j| ≤ C(ε, T, K).

Moreover, thanks to Theorem 3.8 we also have a uniform bound for ∆ϕ
j
t:

sup
[ε,T]×K

|∆ϕj| ≤ C(ε, T, K).

Using the complex parabolic Evans-Krylov theory together with parabolic Schauder’s
estimates (see e.g. [5, Theorem 4.1.4]), we then obtain higher order estimates for ϕj

on [ε, T]× K :

‖ϕj‖Ck([ε,T]×K) ≤ C(ε, T, K, k).

This shows the smoothness of ϕt on U \ (D ∪ Ec(ϕ0)) for each t > ε since K was
taken arbitrarily. Passing to the limit in (4.1) and we deduce that ϕ satisfies (1.4) in
the classical sense on [ε, T]× Ωε with Ωε = X \ (D ∪ Ec(ε)(ϕ0)).

4.2. Uniqueness. We now follow the argument in [30] to prove that the solution
ϕ to the equation (1.4) constructed in previous part is the unique maximal solution
in the sense of the following:

Proposition 4.1. Let ψt be a weak solution to the equation (1.4) with initial data ϕ0.
Then ψt ≤ ϕt for all t ∈ (0, Tmax).

Proof. By construction in previous paragraph, ϕt,j are smooth (θt + 2−jωX)-psh
functions decreasing pointwise to ϕt. It thus suffices to show that ψt ≤ ϕt,j for all
fixed j.

Fix 0 < T < Tmax and 2−j
> ε > δ > 0. We let Uε ⊂ X denote the Zariski

open set in which ψt+ε is smooth. We can find a ωX-psh function φ with analytic
singularities along X \ Uε; see e.g. [14]. We apply the maximum principle to the
function H := ψt+ε − ϕt+ε,j + δφ. Suppose that H attains its maximum on [0, T −
ε]× X at (tε, xε) with tε > 0. Note that xε ∈ Uε. We thus have

0 ≤
∂

∂t
H ≤ log

[

(θt+ε + ddcϕt+ε,j − δddcφ)n

(θt+ε + 2−jωX + ddcϕt+ε,j)n

]

< 0
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using that −ddcφ ≤ ωX, which is a contradiction. Thus we have by letting δ ց 0,

ψt+ε(x)− ϕt+ε,j(x) ≤ sup
X

(ψε − ϕε,j).

Moreover, since (ε, x) 7→ ϕε,j(x) is continuous it follows from Hartogs’ lemma that

sup
X

(ψε − ϕε,j)
ε→0
−−→ sup

X

(ϕ0 − ϕ0,j)

The proof is complete. �

The uniqueness property we have just shown is called “maximally stretched”
by P. Topping in Riemann surface; cf. [47, Remark 1.9].

4.3. Short time behavior. In this subsection we study the behavior of the solution
to the degenerate Monge-Ampère flow in short time. We show that the solution
ϕt to the equation starting from a current with positive Lelong numbers also has
positive Lelong numbers for very short time. This follows almost verbatim from
the Kähler case [16, Sect. 4.2].

Theorem 4.2. If ϕ0 has positive Lelong number, then

Ec(ϕ0) ⊂ Ec(t)(ϕt), c(t) = c − 2nt.

In particular, the maximal solution ϕt has positive Lelong numbers for any t < 1/2nc(ϕ0).

Proof. This is identical to that of [16, Theorem 4.5]. We give a sketch of proof here.
Fixing x0 ∈ Ec(ϕ0) we can find a cut-off function χ ∈ C∞(X) with support near x0

and being identical to 1 in a neighborhood of x0. Thus φ := χ(x)c log ‖x − x0‖ is

BωX-psh and e2φ/c ∈ C∞(X). Since x0 ∈ Ec(ϕ0) we can choose φ so that φ ≥ ϕ0

by adding a positive constant. Lemma 4.3 yields

ϕt ≤ (1 − 2nt/c)φ + Ct,

hence ν(ϕt, x0) ≥ c − 2nt. If t < 1/2nc(ϕ0) then by Skoda’s integrability theorem,

e−2ϕ0/c is not integrable for 2nt < c < 1/c(ϕ0). Thus Ec(ϕ0) is not empty, neither
is Ec(t)(ϕt) for t > 0 sufficiently small. �

Lemma 4.3. Assume that φ ∈ PSH(X, ωX) satisfies eγφ ∈ C∞(X) for some constant
γ > 0 and 0 ≥ ψ± ≥ φ ≥ ϕ0. Then there exists a positive constant C depending on an
upper bound for ddceγφ such that

ϕ(t) ≤ (1 − nγt)φ + Ct, ∀ t ∈ [0, 1/nγ].

Proof. Assume that θt ≤ ωX for t ∈ [0, 1/(nγ + 1)]. As argued in [16, Lemma
4.4] we can assume that φ is smooth and work with approximants ϕt,j instead.

We choose C > 0 depending only on a upper bound of ddceγφ such that ddcφ ≤
Ce−γφωX. Consider

φt := (1 − (nγ + 1)t)φ + t log(2nCn).

We observe that

0 ≤ ωX + ddcφ ≤ 2Ce−γφωX ,

hence

(ωX + ddcφt)
n ≤ (2C)ne−nγφωn

X ≤ eφ̇t+ψ+−ψ−
ωn

X.

Therefore φt is a supersolution to the parabolic equation

(ωX + ddcut)
n = eu̇t+ψ+−ψ−

ωn
X

while ϕt,j is a subsolution. The classical maximum principle thus yields that φt ≤
ϕt,j for any fixed j. This finishes the proof. �
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4.4. Convergence at time zero. We study in this part the convergence at zero of
the degenerate complex Monge-Ampère flow.

We recall the quasi-monotone convergence in the sense of Guedj-Trusiani [28]:
ϕj → ϕ quasi-monotonically if Pθ(infl≥j ϕj) a sequence of θ-psh functions that
increases to ϕ.

Theorem 4.4. The flow ϕt converges quasi-monotonically to ϕ0 as t → 0+.

Proof. By Proposition 3.2, we have for t small

ϕt ≥ ϕ0 − C(t − t log t)

for t small. It follows that

Pθ

(

inf
0<s≤t

ϕs

)

≥ ϕ0 − C(t − t log t),

finishing the proof. �

Theorem 4.5. Assume that ϕ0 is continuous in an open set U ⊂ X. Then ϕt converges
to ϕ0 in L∞

loc(U).

Proof. The proof is almost verbatim from the Kähler case [16]. We assume without
loss of generality that ϕt ≤ 0. By Proposition 3.2, there is a uniform constant C > 0
and small time t0 such that

ϕs − C(t − s) log(t − s)− C(t − s) ≤ ϕt

for 0 ≤ s < t ≤ t0 small. Set ut := ϕt + (C + log 4)t − Ct log t. Substituting
s = t/2 we infer that ut ≥ ut/2, hence the sequence ut02−j decreases to u0 = ϕ0.

The conclusion therefore follows from Dini’s theorem. �

We also have the same result as in the Kähler case [16, Theorem 6.3]. We assume

that θ is a big form and that f = eψ+−ψ−
∈ Lp , p > 1 and ψ± are quasi-psh

functions. Assume moreover that ψ− ∈ L∞
loc(X \ D) for some closed set D ⊂ X. It

follows from [25, Theorem 4.1] that there exists a bounded θ-psh function ϕ0 such
that supX ϕ0 = 0 and

(θ + ddc ϕ0)
n = c f dV.

We recall that there is ρ ∈ PSH(X, θ) with analytic singularities along a closed
subset E such that θ + ddcρ ≥ 2δωX for some δ > 0. Set U := X \ (D ∪ E).

Theorem 4.6. Assume ϕ0 is as above. Let ϕt be the weak solution of the equation (1.4)
with initial data ϕ0. Then ϕt converges to ϕ0 in C∞

loc(U).

Proof. The proof is identical to that of [16, Theorem 6.3]. We sketch the proof here
for convenience’s readers. We first approximates ψ± by smooth their smooth ap-
proximants ψ±

j , thanks to [11]. We next apply Tosatti-Weinkove’s theorem [49] to

obtain smooth (θ + 2−jωX)-psh functions such that supX ϕj = 0 and

(θ + 2−jωX + ddc ϕ0,j)
n = cje

ψ+
j −ψ−

j dV.

Note here that f j = e
ψ+

j −ψ−
j have uniform Lp-norms. The same arguments in [25,

Theorem 4.1] shows that

• cj → c > 0;

• for any ε > 0, ϕj ≥ ε(ρ + δψ−)− C(ε);

• ∆ωX ϕ0,j ≤ e−C(ε)(ρ+δψ−).

Let ϕt,j be a smooth solution to the equation (1.4) with initial data ϕ0,j. The se-
quence ϕt,j converges to the unique weak solution ϕt. We use Proposition 3.9 and
Proposition 3.10 together with boostrapping arguments to obtain locally uniform
estimates of all derivatives of ϕt,j. This implies the convergence in C∞

loc(U). �



SINGULARITIES OF THE CHERN-RICCI FLOW 23

5. FINITE TIME SINGULARITIES

In this section we study finite time singularities of the Chern–Ricci flow, and
provide the proof of Theorem A.

We consider a family of Hermitian metrics ω(t) evolving under the Chern -Ricci
flow (1.1) with initial Hermitian metrics ω0. Suppose that the maximal existence
time of the flow Tmax < ∞. The form αTmax := ω0 − TmaxRic(ω0) is nef in the sense
of [26], i.e. for each ε > 0 there exists ψε ∈ C∞(X) such that αTmax + ddcψε ≥ −εω0.
Indeed, for ε > 0,

αTmax + εω0 = (1 + ε)

(

ω0 −
Tmax

1 + ε
Ric(ω0)

)

and since Tmax
1+ε < Tmax we have ω0 −

Tmax
1+ε Ric(ω0) + ddcψ > 0 for some smooth

function ψ. We assume that αTmax is uniformly non-collapsing, i.e.,

(5.1)

ˆ

X
(αTmax + ddcψ)n ≥ c0 > 0, ∀ ψ ∈ C∞(X).

This condition implies that the volume of (X, ω(t)) does not collapse to zero as
t → T−

max.

Theorem 5.1. Let α be a nef (1,1) form satisfying the uniformly non-collapsing condi-
tion (5.1). If X admits a Hermitian metric ωX such that v+(ωX) < +∞ then α is big.

Conversely, if α is big and v−(ωX) > 0 then α is uniformly non-collapsing.

When α is semi-positive or closed the result was proved by Guedj-Lu [26, The-
orem 4.6, Theorem 4.9], answering the transcendental Grauert-Riemenschneider
conjecture [14, Conjecture 0.8]. For our purpose, we would like to extend it in the
case that α is no longer closed.

Proof. The proof is almost identical to that of [26, Theorem 4.6] which follows the
idea of Chiose [7]. We give the details here for reader’s convenience. By the Hahn-
Banach theorem as in [32, Lemme 3.3], the bigness of α, i.e., ∃ ρ ∈ PSH(X, α) with
analytic singularities such that α + ddcρ ≥ δωX with some δ > 0, is equivalent to

ˆ

X
α ∧ ηn−1 ≥ δ

ˆ

X
ωX ∧ ηn−1

for all Gauduchon metrics η. Suppose by contradiction that for each ε > 0 there
exists Gauduchon metrics ηε such that

ˆ

X
α ∧ ηn−1

ε ≤ ε

ˆ

X
ωX ∧ ηn−1

ε .

We can normalize ηε so that
´

X ωX ∧ ηn−1
ε = 1. We fix a function ψε ∈ C∞(X) such

that αε := α + εωX + ddcψε is a Hermitian form. By the main result of [49] there
exist cε > 0 and ϕε ∈ PSH(X, αε) ∩ C∞(X) such that supX ϕε = 0 and

(αε + ddcuε)
n = cεωX ∧ ηn−1

ε .

By normalization we have

cε =

ˆ

X
(αε + ddcuε)

n ≥

ˆ

X
(α + ddc(ψε + uε))

n ≥ c0 > 0.

We apply [26, Lemma 4.13] which reformulates the one in [39, Lemma 3.1] to ob-
tain

(5.2)

ˆ

X
(αε + ddcuε) ∧ ηn−1

ε ×

ˆ

X
(αε + ddcuε)

n−1 ∧ ωX ≥
cε

n
.
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The first term on the left-hand side can be written as
´

X(α + εωX) ∧ ηn−1
ε since ηε

is Gauduchon and by assumption,
ˆ

X
(α + εωX) ∧ ηn−1

ε ≤ 2ε.

For the second term, it follows by assumption that

(5.3)

ˆ

X
(αε + ddcuε)

n−1 ∧ ωX ≤ v+(ωX)

is bounded from above. Therefore we obtain

2εv+(ωX) ≥
c0

n

which is a contradiction as ε → 0.
The proof of the last statement follows the same lines as in [26, Theorem 4.6]

which we omit here. �

Remark 5.2. When ω0 is closed or, more generally, is a Guan-Li metric, i.e., ddcω0 =
ddcω2

0 = 0, the condition (5.1) is simply written as
´

X αn
Tmax

> 0. The assumption

v+(ωX) < ∞ or v−(ωX) > 0 is independent of the choice of the Hermitian ωX due
to [26, Proposition 3.2]. We refer the reader to [1] for some examples of such X. In
particular, X is arbitrarily compact complex surface.

This result is a slight generalization of the one [34, Theorem 4.3] when α is
closed semi-positive and X admits a pluriclosed metric, i.e., ddcωX = 0. Indeed,
in this case, the LHS of (5.3) is equal to

ˆ

X
αn−1

ε ∧ ωX < ∞.

As a consequence of Theorem 5.1, we give a slight improvement of the main
result of [50] (see also [34, Theorem 4.1]) which extends the one of Demailly [12]
to the non-Kähler setting.

Theorem 5.3. Let X be a compact complex n-manifold equipped with a Hermitian metric
ωX satisfying v+(ωX) < ∞. Let α be a nef (1,1) form. Assume that x1, . . . , xN ∈ X are
any fixed points and positive constants τ1, . . . , τN such that

0 <

N

∑
j=1

τn
j <

ˆ

X
(α + ddcψ)n, ∀ψ ∈ PSH(X, α)∩ C∞(X).

Then there exists an α-psh function ϕ with logarithmic poles

ϕ(z − xj) ≤ τj log ‖z − xj‖+O(1)

in local coordinates near xj, for all j = 1, . . . , N.

Proof. By Theorem 5.1 we know that α is big. The rest of proof exactly follows the
same as that of [48, Theorem 1.3]. �

We go back to the Chern-Ricci flow. Observe that one can deduce the Chern–Ricci
flow (1.1) to a parabolic complex Monge–Ampère equation

∂ϕt

∂t
= log

[

(αt + ddc ϕt)n

ωn
0

]

, αt + ddc ϕ > 0, ϕ(0) = 0

where αt := ω0 − tRic(ω0). We assume that the form αTmax is uniformly non-
collapsing. By Theorem 5.1, there exists a function ρ with analytic singularities
such that

αTmax + ddcρ ≥ 2δ0ω0
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for some δ0 > 0. We observe that

αt + ddcρ =
1

Tmax
((Tmax − t)(ω0 + ddcρ) + t(αTmax + ddcρ))

≥ δ0ω0

(5.4)

for t ∈ [Tmax − ε, Tmax] with sufficiently small ε > 0. Set

Ω := X \ {ρ = −∞}

We establish uniform C∞
loc estimates on Ω.

Lemma 5.4. There is a uniform constant C0 > 0 such that on [0, Tmax)× X we have

(i) ϕ ≤ C0;
(ii) ϕ̇ ≤ C0;

(iii) ϕ ≥ ρ − C0;
(iv) ϕ̇ ≥ C0ρ − C0

Proof. The proofs of (i) and (ii) directly follow from the classical maximum prin-
ciple; see e.g. [52, Lemma 4.1] (which follow almost verbatim from the Kähler
case [46]).

For (iii), we set ψ := ϕ − ρ. Note that the function ψ + At ≥ −C holds on
[0, Tmax − ε] with ε as above. Fix Tmax − ε < T′

< Tmax, assume that ψ + At attains
its minimum at (t0, x0) ∈ [0, T′] × X. Note that x0 ∈ Ω. We compute at this
minimum point,

∂ψ

∂t
= log

(αt + ddcρ + ddcψ)n

ωn
0

− A

≥ log
(δ0ω0)

n

ωn
0

− A ≥ −C + A

where we have used the estimate (5.4). If we choose A > C then t0 must be zero.
This implies the lower bound for ψ, hence we are done.

For (iv), we apply the minimum principle to

Q = ϕ̇ + Aψ + Bt

where A and B are large constants to be chosen later. Our goal is to show that
Q ≥ −C on X × [0, Tmax). As above, we observe that Q ≥ −C on [0, Tmax − ε]× X.
It thus suffices to show that given any Tmax − ε < T′

< Tmax the minimum of Q on
[0, T′]× X is attained on [0, Tmax − ε]. Let (x0, t0) be the point in (Tmax − ε, T′]× X
where Q attains its minimum. Note that x0 ∈ Ω. At this point we have

0 ≥

(

∂

∂t
− ∆ω

)

Q = − trω Ric(ω0) + Aϕ̇ − An + A trω(αt + ddcρ) + B

≥ δ0 trω ω0 + A log
ωn

ωn
0

+ trω ω0 − An + B

where A is chosen so large that

(A − 1)(αt + ddcρ) + χ ≥ ω0

for t ∈ [Tmax − ε, Tmax]. But since A log y− δ0y1/n is bounded from above for y > 0
the arithmetic-geometric inequality yields

δ0 trω ω0 + A log
ωn

ωn
0

≥ δ

(

ωn
0

ωn

)1/n

+ A log
ωn

ωn
0

≥ −C1

for uniform constant C1 > 0. If we choose B = C1 + An we obtain

0 ≥

(

∂

∂t
− ∆ω

)

Q ≥ trω ω0 > 0
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a contradiction. The desired estimate follows. �

Lemma 5.5. There is a uniform constant C > 0 such that on [0, Tmax)× X we have

trω0 ω(t) ≤ Ce−Cρ.

Proof. Set ψ = ϕ − ρ + C0 ≥ 0. We apply the maximum principle to

Q = log trω0 ω − Aψ + e−ψ

for A > 0 to be determined hereafter. The idea of making use of the last term
in Q is due to Phong and Sturn [38] and was used in the context of Chern–Ricci
flow [51, 52, 55]. Note that e−ψ ∈ (0, 1].

It suffices to show that Q is uniformly bounded from above. Again, it follows
from the definition of Q that Q ≤ C on [0, Tmax − ε] × X for a uniform C > 0.
Fixing , T − ε < T′

< Tmax, suppose that Q attains its maximum at some point
(t0, x0) ∈ [0, T′] × X with t ∈ [T − ε, T′]. In what follows, we compute at this
point. From [52, Prop. 3.1] (also [52, (4.2)]) we have

(

∂

∂t
− ∆ω

)

log trω0 ω ≤
2

(trω0 ω)2
Re(gq̄k(T0)

p
kp∂q̄ trω0 ω) + C trω ω0,

where (T0)
p
kp denote the torsion terms of ω0. At the maximum point (x0, t0) of Q

we have ∂iQ = 0 hence

1

trω0 ω
∂i trω0 ω − A∂iψ − e−ψ∂iψ = 0.

Therefore, the Cauchy-Schwarz inequality yields
∣

∣

∣

∣

2

(trω0 ω)2
Re(gq̄k(T0)

p
kp∂q̄ trω0 ω)

∣

∣

∣

∣

≤

∣

∣

∣

∣

2

(trω0 ω)2
Re((A + e−ψ)gq̄k(T0)

p
kp∂q̄ψ

∣

∣

∣

∣

≤ e−ψ|∂ψ|2ω + C(A + 1)2eψ trωω0

(trω0 ω)2
.

for uniform C > 0 only depending on the torsion term. It thus follows that, at the
point (x0, t0),

0 ≤

(

∂

∂t
− ∆ω

)

Q ≤ C(A + 1)2eψ trωω0

(trω0 ω)2
+ C trω ω0

− (A + e−ψ)ϕ̇ + (A + e−ψ) trω(ω − (αt + ddcρ))

≤ C(A + 1)2 trωω0

(trω0 ω)2
+ (C − (A + 1)δ0) trω ω0 + (A + 1) log

ωn
0

ωn

(5.5)

where we have used αt + ddcρ ≥ δ0ω0. If at (x0, t0), (trω0 ω)2 ≤ C(A + 1)2 we are

done. Otherwise, we choose A = δ−1(C + 2). Hence, from (5.5) one gets

trω ω0 ≤ C log
ωn

0

ωn
+ C.

By Lemma 3.6 we obtain

trω0 ω ≤ (trω ω0)
n−1 ωn

ωn
0

≤ C
ωn

ωn
0

(

log
ωn

0

ωn

)n−1

+ C ≤ C′

since ωn/ωn
0 ≤ C0 by Lemma 5.4 and y 7→ y| log y|n−1 is bounded from above as

y → 0. Thanks to Lemma 5.4 (iii), Q is bounded from above at its maximum, this
finishes the proof. �
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Proof of Theorem A. The existence a Hermitian metric ωX satisfying v+(ωX) < ∞

holds when dim X = 2, we can generalize to the case that any n-manifold X ad-
mitting such a metric. Let K ⊂ Ω be any compact set. It follows from Lemma 5.4
and Lemma 5.5 that on K × [0, Tmax),

C−1
K ω0 ≤ ω(t) ≤ CKω0.

Applying the local higher order estimates of Gill [21, Sect. 4], we obtain uniform
C∞ estimates for ω(t) on compact subsets of Ω. We exactly proceed the same as
in [52, Theorem 1.6] to obtain the convergence. This finishes the proof. �

6. THE CHERN-RICCI FLOW ON VARIETIES WITH LOG TERMINAL SINGULARITIES

In this section we extend our previous analysis to the case of compact complex
varieties with mild singularities. We refer the reader to [18, Sect. 5] for a brief
introduction to complex analysis on mildly singular varieties.

We assume here that Y is a Q-Gorenstein variety, i.e., Y is a normal complex
space such that its canonical divisor KY is Q-Cartier. We denote the singular set of
Y by Ysing and let Yreg := Y \Ysing. Given a log resolution of singularities π : X →
Y (which may and will always be chosen to be an isomorphism over Yreg ), there
exists a unique (exceptional) Q-divisor ∑ aiEi with simple normal crossings (snc
for short) such that

KX = π∗KY + ∑
i

aiEi,

The coefficients ai ∈ Q are called discrepancies of Y along Ei.

Definition 6.1. We say that X has log terminal (lt for short) singularities if and only
if ai > −1 for all i.

The following definition of adapted measure which is introduced in [18, Sect. 6]:

Definition 6.2. Let h be a smooth hermitian metric on the Q-line bundle OY(KY).
The corresponding adapted measure µY,h on Yreg is locally defined by choosing a
nowhere vanishing section σ of mKY over a small open set U and setting

µY,h :=
(imn2

σ ∧ σ̄)1/m

|σ|2/m
hm

.

The point of the definition is that the measure µY,h does not depend on the
choice of σ, so is globally defined. The arguments above show that Y has lt singu-
larities if and only if µY,h has finite total mass on Y, in which case we can consider
it as a Radon measure on the whole of Y. Then χ = ddc log µY,h is well-defined
smooth closed (1, 1)-form on Y.

Given a Hermitian form ωY on Y, there exists a unique hermitian metric h =
h(ωY) of KY such that

ωn
Y = µY,h.

We have the following definition.

Definition 6.3. The Ricci curvature form of ωY is Ric(ωY) := −ddc log h.

We recall the slope of a quasi-psh function φ at y in the sense of [4]. Choosing
local generators ( f j) of the maximal ideal my of OY,y, we define

s(φ, y) = sup{s ≥ 0 : ϕ ≤ s log ∑ | f j|+O(1)}.

Note that this definition is independent of the choice of ( f j). By [4, Theorem A.2]
there is C > 0 such that for any log resolution π : X → Y,

ν(φ ◦ π, E) ≤ Cs(φ, y)
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with E a prime divisor lying above y. In particular, the Lelong numbers of φ ◦ π is
sufficiently small if the s(φ, y) is also sufficiently small at all points y ∈ Y.

Applying the analysis in the previous section, we have the existence for the
Chern-Ricci flow on log terminal singularities. This extends the one of the au-
thor [9, Theorem E].

Theorem 6.4. Let Y be a compact complex variety with log terminal singularities. As-
sume that θ0 is a Hermitian metric such that

Tmax := sup{t > 0 : ∃ ψ ∈ C∞(Y) such that θ0 − tRic(θ0) + ddcψ > 0} > 0.

Assume that S0 = θ0 + ddcφ0 is a positive (1,1)-current with small slopes. Then there
exists a family (ωt)t∈[0,Tmax) of positive (1,1) current on Y starting at S0 such that

(1) ωt = θ0 − tRic(θ0) + ddcϕt are positive (1,1) currents;
(2) ωt → S0 weakly as t → 0+;
(3) for each ε > 0 there exists a Zariski open set Ωε such that on [ε, Tmax)× Ωε), ω

is smooth and
∂ω

∂t
= −Ric(ω).

Proof. It is classical that solving the (weak) Chern-Ricci flow is equivalent to solv-
ing a complex Monge-Ampère equation flow. Let χ be a closed smooth (1,1) form

that represents cBC
1 (KY). Given T ∈ (0, Tmax), there is ψT ∈ C∞(Y) such that

θ0 − tRic(θ0) + ddcψT > 0 we set for t ∈ [0, T]

θ̂t := θ0 + tχ, with χ = −Ric(θ0) + ddc ψT

T

which defines an affine path of Hermitian forms. Since χ is a smooth representa-

tive of cBC
1 (KY), one can find a smooth metric h on the Q-line bundle OY(KY) with

curvature form χ. We obtain µY,h the adapted measure corresponding to h. The
Chern-Ricci flow is equivalent to the following complex Monge-Ampère flow

(6.1) (θ̂t + ddcφt)
n = e∂tφµY,h.

Now let π : X → Y be a log resolution of singularities. We have seen that the
measure

µ := π∗µY,h = f dV where f = ∏
i

|si|
2ai

has poles (corresponding to ai < 0) or zeroes (corresponding to ai > 0) along the
exceptional divisors Ei = (si = 0), dV is a smooth volume form. Passing to the
resolution, the flow (6.1) becomes

(6.2)
∂ϕ

∂t
= log

[

(θt + ddcϕt)n

µ

]

where θt := π∗ θ̂t and ϕ := π∗φ. Since (θ̂t)t∈[0,T] is a smooth family of Hermitian

forms, it follows that the family of semi-positive forms [0, T] ∋ t 7→ θt satisfies all
our requirements. We also have that θ := π∗θ0, the latter is smooth, semi-positive
and big, but no longer hermitian. We fix a θ-psh function ρ with analytic singu-

larities along a divisor E = π−1(Ysing) such that θ + ddcρ ≥ 2δωX with δ > 0.

If we set ψ+ = ∑ai>0 2ai log |si|, ψ− = ∑ai<0 −2ai log |si|, we observe that ψ± are
quasi-psh functions with logarithmic poles along the exceptional divisors, smooth

on X \ Exc(π) = π−1(Yreg), and e−ψ−
∈ Lp(dV) for some p > 1. We observe

that since the Lelong numberw ν(ϕ0, x) are sufficiently small, so we have the as-
sumption p∗/2c(ϕ0) < Tmax by Skoda’s integrability theorem. The result therefore
follows from Theorem B. �
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