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Singularity Analysis of a Six-dof Parallel
Manipulator using Grassmann-Cayley Algebra
and Grobner Bases

Stéphane Carg Guillaume Moroz, Thibault Gayral?, Damien Chablatand
Chao Cheh

Abstract The subject of this paper deals with the singularity analydia six-
dof three-legged parallel manipulator for force-feedbaderface. To this end,

a geometric condition for the manipulator singularitieigtained by means of
Grassmann-Cayley algebra; the parallel singularitiehefrhanipulator are com-
puted using Jacobian and @amer basis. As a result, the algebraic relations of the
singularities satisfied by the orientation variables apored. Finally, the parallel
singularities of the manipulator are plotted in its ori¢inta workspace.

1 Introduction

The challenge in Virtual Reality (VR) today is to developeitiisparent” haptic inter-
face. VR aims at creating high-fidelity reproductions of al mnvironment, where
a user perceives the illusion of being in this environmerntt exeracts with it to
perform specific tasks in an effective and comfortable wdyHaptics is critical in
VR applications, where the user actively manipulates thmikited world, such as
in surgical simulators [2]. There are two main classes ofibajevices: admittance
devices and impedance devices [3]. Admittance deviceegdbesorce applied by
the operator and then control the operator’s position. Ereyften more expensive
because of the cost of the required force sensors, and mongleo because of the
weight of the force sensors. Impedance devices, also teioneelfeedback devices,
are simpler, cheaper and more common. The fidelity in VR reguight and stiff
interfaces. In this vein, Cheet al. developed a new six-dof three-legged parallel
manipulator for force-feedback interface [4]. The advgataf the proposed device
is that all motors are mounted on the ground. This featuna@fsigntly reduces the
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overall mass and inertia of the moving parts, which will gvafly yield a more
transparent haptic device.

Here, we focus on the singularity analysis of the foregoirgipulator by using
Grassmann-Cayley algebra (GCA) andb@mer bases (GB). Singularities can be
found using either numeric, symbolic or geometric methdas. Gough-Stewart
parallel manipulators, the rows of the backward Jacobiatrixnare the Plicker
coordinate vectors of six finite lines that are the lines dfomcof six actuation
forces applied by the actuators to the moving platform. Témaltel singularities of
such manipulators that Merlet [5] analyzed using Grassniiaengeometry occur
when those lines become linearly dependent. Ben-Horin &oth&n analyzed the
parallel singularities of six-dof parallel manipulatorsing GCA [6, 7]. Kanaan et
al. [8] enlarged the application of GCA to lower-mobility nmigulators, in which
the rows of the backward Jacobian are either finite lineso(pé&ch wrenches) or
infinite lines (infinite pitch wrenches). These wrenchespa&nown as governing
lines, are actuation and constraint wrenches applied totheng platform.

This paper is organized as follows. Section 2 describes teipulator under
study. Sections 3 and 4 are devoted to its singularity aigalygh Grassmann-
Cayley algebra and @bner bases, respectively. Finally, the parallel singfigar
of the manipulator are plotted in its orientation workspace

2 Manipulator Description

Figure 1 illustrates the parallel manipulator under studhyich is a simplified kine-
matic version of the manipulator proposed in [4]. It is corsgd of an equilateral
moving platform connected to the base by means of threei@hegs. Each leg is
composed of three orthogonal prismatic joints and one $igoint, the first two
prismatic joints being actuated. P stands for a prismaiit jshereas S stands for
a spherical joint. An underline letter denotes an actuated.jAs a consequence,
the manipulator is named 3PPS manipulator and provides six-degree-of-freedom
motions, i.e., three translations and three rotations.

2.1 Parameterization

Let Cy, C; andCs be the corners of the moving platform (MP) of side length
Let.Zp (Cp, Xp, Yp,Zp) be the frame attached to the moving platform, its origin
being the centroid of the MR}, is parallel to ling(C,Cz) andZ;, is normal to the MP.
Accordingly,

2r\/3/6 —rv/3/6 —rv/3/6
0 0 0
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Fig. 1 The 3-APPS manipulator

are the Cartesian coordinate vectors of poitsC, andCs expressed iy Like-
wise, let.Z#, (O, X,Y,Z) be the frame attached to the base and

X1 0 X3
alp=|Y1|,8p=|Y2|,8=|0 (2
0 b4) z3

be the Cartesian coordinate vectors of pofitsA, andAg.

2.2 Orientation Space

The orientation space can be fully represented with theakites(Q2,Qs3,Q4), a

subset of the quaternions coordinates. Indeed, the qumtsnepresent the rotations

of the platform with a rotation axis and an angled. The relation between the
quaternions and the axis and angle representation can hé fio(9]:
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Q1 =c0g0/2), Q2 = usin(6/2), Qs = uysin(6/2), Qs = usin(8/2)  (3)

whereuZ + uZ+uZ =1and 0< 6 < 7.
Thus, each rotation can be mapped onto a point of the unitilbdie space
defined by the variable®», Qs, Q) with the following bijection:

0
@ . x]0, —n%’\{(o)}
0

Uy Q2 :=uxsin(6/2)

U |,0+— | Qz:=uysin(8/2) 4)

Uy Qa:=Uusin(8/2)

where.# is the unit sphere in a 3-dimension space, & the closed unit ball.
When 8 is equal to zero, the corresponding rotation matrix is tremiidy that

does not depend on the rotation axidt also maps to the center & in the quater-
nions representation.

2.3 Geometric Model

Letc, = [cx ¢y CZ]T be the Cartesian coordinate vector of pdhthe centroid of
the MP, expressed ify,. The following equations characterize the geometric model
of the 3-APPS manipulator:

e —1/3v3Q1% —1/3v3Q% +1/6V3—QeQ3+ QQs—x1 =0 (5a)
oy —1/3v3QQs — 1/3V3QuQu — Qu* — Qs?+1/2—y1 =0 (5h)
oy —1/3v3QQs — 1/3V3QuQu+ Qi* +Qs? —1/2—y, =0 (5¢)

c,—1/3V3QQs+1/3V3Q Qs+ Qs +Qi1Q~2 =0  (5d)
cx+2/3vV3Q12+2/3v3Q:2 —1/3V3-x3 =0  (5€)
C;+2/3V3QQs—2/3vV3QuiQs -2 =0  (5f)

QP+ Q7 +Qs*+Q?~1=0 (50

3 Singularity Analysis with Grassmann-Cayley Algebra

3.1 Grassmann-Cayley Algebra

The Grassmann-Cayley Algebra (GCA), also known as extalgabra, was devel-
oped by H. Grassmann as a calculus for linear varieties tipgran extensorsith
the join and meetoperators. The latter are associated with $panandintersec-



Singularity Analysis of a Six-dof Parallel Manipulator 5

tion of vector spaces of extensors. Extensors are symbolicatypteéd by Ricker
coordinates of lines and characterized by ttstép In the four-dimensional vec-
tor spaceV associated with the three-dimensional projective sfpacextensors of
step 1, 2 and 3 represent points, lines and planes, resplgciihey are also asso-
ciated with subspaces bf, of dimension 1, 2 and 3, respectively. Points are repre-
sented with their homogeneous coordinates, while linegantkes are represented
with their Picker coordinates. The notion of extensor makes it postibleork at

the symbolic level and therefore, to produce coordinate-filgebraic expressions
for the geometric singularity conditions of spatial pazhthanipulators (PMs). For
further details on GCA, the reader is referred to [6, 10, 21 18B].

3.2 Twist System of the 3-PPPS Manipulator

A unit screw is given by = [s, (so x s+ As)]T wheresis a unit vector along the
screw axisg is the position vector of a point on the screw axis, with respe a
reference frame andl is the pitch of the screw. A screw of intensify is written
as: $= p$. A zero pitch screv = (s, 1 xs)T (A =0) corresponds to the ttker
coordinate vector of a finite line iBs. An infinite pitch screws. = (0, )T (A — o)
corresponds to the &tker coordinate vector of an infinite line in the projective
spacePs.

A twistis a screw representing the instantaneous motion of a ragigt,lawrench
is a screw representing a system of forces and moments agtiagigid body. Let
€ denote a twist and denote a wrench.

(@ Aninfinite pitch twiste,, represents a pure translation;

(b) A zero pitch twisteg represents a pure rotation;

(c) A pure force constrains the translation along its linexdfion and is repre-
sented by a zero pitch wrencb;

(d) A pure moment constrains the rotation about its directiod is represented
by an infinite pitch wrench..

Each leg of the 3-PPS manipulator provides three independent translatiods an
three independent rotations, represented with six incg@rtwistsel,y, &.,, &3,
Eb1 €0 Epr 1 = 1, 2, 3, that span its twist syterll. As shown in Fig. 1, the inde-
pendent twists can be defined as:

N u N \ N w
801_[cixu]’goz_[cixv}’gm_[cixw] (6)
and
try =825 =283 =0, u]’ (7a)
gl =8 =283=0v] (7b)
trg =8 =83,=[ow] (7¢)
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wherecs, ¢; andcs are the Cartesian coordinate vectors of po®itsC, andCs,
respectivelyu, v andw are the unit vectors along th€ Y andZ axes of%,.

T=T (8)

3.3 Wrench System of the 3-PPPS Manipulator

The actuated joints of the 3HPS manipulator are the first two prismatic joints of
each leg. The actuation wren@'gh corresponding to the first prismatic joint of the
ith leg is reciprocal to all the twists i, but to€ ;. Likewise, the actuation wrench
f},z corresponding to the second prismatic joint of itheleg is reciprocal to all the
twists inT', but to&!,. As a result,

oL = [cl\;v]’fglz [ngw]’fgl: [c;iu] ©)
and
for = {cliu}’fgz_ {cz\;v]’fgz_ {c3v>\:w] (10)
In a non-singular configuration, the six actuation wrendigsis,, 13, 13, 13,
and fgz span the actuation wrench system of theFRB manipulator. As the 3-

PPPS manipulator does not have any constraint wrench, itsaglebench system
amounts to its actuation wrench, namely,

21 21 22 22 23 23
W3—ppps = spanTos, 1oz, 161, 162> 101, 102) (11)

The legs of the 3-PPS manipulator apply six actuation forces to its moving-
platform. Its global wrench system is a six-system. A patalingularity occurs
when the wrenches in the six-system become linearly depm¢add span k-system
with k < 6.

3.4 Wrench Diagram of the 3-PPPS Manipulator in P;

The six actuation forceg};, 73,, 73, 73, T3, and i3, form a basis of the global
wrench systeriiz_ppps. Those wrenches are represented by six finite lin€s.ifio
obtain the six extensors of the PS superbracket, we have to select twelve pro-
jective points on the six projective lines, i.e., two poiatseach line. The extensor
of a finite line can be represented by either two distinctdimibints or one finite
point and one infinite point.
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Let c1, ¢, c3 be the intersection points 6§, and 3,, T3, and3,, 73; and 3,
respectively. From Fig. 1}, and fgl are parallel and intersect at the infinite plane
M., at pointx = (x, 0)T, which corresponds to thé direction. Likewise,i3; and
fgz are parallel and intersect at the infinite plafig at pointy = (y, 0)T, which
corresponds to thé direction. Similarly,fg1 andf032 are parallel and intersect at the
infinite planefT., at pointz = (z, 0)", which corresponds to thedirection.

Therefore, the six points have been selected to expressBRPS superbracket
andf&l =ci1y, f&z =c1x, f'gl =coz, f'gz =y, f'gl =c3x andfgzz caz. The wrench
diagram of the 3-PPS manipulator is shown in Fig. 2.

y
. pe
Y2l
1 b s ~ 1 ’Z
/ ~ < 7 \
/ ~ /N
AR ’ \
1 7 s S 7 \
/ 7 S o / \
1 ’ ! ~S_ 7 \
Mo ’ 1 S~ \
) y) 7 ;> \
A 22 22 23 =3
5 02 Tn  To1 To2

c2
C1 €3

Fig. 2 Wrench diagram ir’; of the 3-FPPS manipulator

3.5 Superbracket of the 3-PPPS Manipulator

The rows of the backward Jacobian matrix of a parallel mdatpuare the Rlcker
coordinates of six lines iRs. The superjoin of these six vectorsRgcorresponds to
the determinant of their six Btker coordinate vectors up to a scalar multiple, which
is the superbracket in GCA (V(?)) [12]. Thus, a singularity occurs when these
six Plicker coordinate vectors are dependent, which is equivedemsuperbracket
equal to zero.

The expression of the 3HPS superbracket i&1xc1ycoycazcsxcsz], which
corresponds to six points selected in the robot wrench diagt his expression can
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be developed into a linear combination of 24 bracket montsniita 14], each one
being the product of three brackets of four projective mifithe 3-PPPS super-
bracket was simplified by means of the user interface deeelap[15]:

[C1§C1XCQXC2Z03§C3§] = [%KZX] ([Cs CQZC1HC2§C1J -

[caxzco[cs szq]) (12)

3.6 Geometric Condition for the 3-PPPS Manipulator Singularities

Let I'1 be the plane passing through pa@itand normal to vectow. Let 1, be the
plane passing through poi@t and normal to vectou. Let 13 be the plane passing
through pointCz and normal to vectov. Let 14 be the plane passing through points
C1, C; andCs. From Eq. (12) and the user interface developed in [15]riigwout
that the 3-PPPS manipulator reaches a singular configuration if and drpjaines
My, 5, M3 andr1,4 intersect at least at one point.

4 Singularity Analysis with Grdbner Bases

In this section, we focus on the computation of the paraltejdarities of the 3-
PPPS manipulator using the Jacobian andi@rer bases. We derive the algebraic
relations of the singularities satisfied by the orientatiariables.

4.1 Jacobian Formulation

The formula we use to define the parallel singularities isdégrminant of a Ja-
cobian matrix. This criterion was introduced in [16], wherarallel singularities
were referred to singularities of the first type. Equatidse{(g) depend on six joint
variablesT = (x1,y1,Y2,2,X3,23), Six pose variablegy, ¢y, c;,Q2, Q3,Q4) and one
passive variabl€Q;). We denote byX the union of the pose and the passive vari-
ables. LefA be the Jacobian matrix of these seven equations with respXci.e.,
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oF;
A= <ax> -
— 2 2 -
100—§xf3Q2—Q3 -Q Q ~3V3Q+ Qe
1 1 1 1
010 —éxfng —éfst—zqs —éﬁQl —5\@@4—2@
1 1 1 1
010 —§xf3Q3 —éfsQﬁzQs —gﬁQl —§\@Q4+2Q1
1 1 1 1
001 —5\/§Q4+Q1 é\/§Q1+Q4 —5\/§Q2+Q3 5\/§Q3+Q2

4 4
100 5V3Q 0 0 3V
2 2 2 2
001 gﬁm —éx/éQl é\/éQz —éx/éQs
L1000 2Q> 2Qs3 2Qq 2Q

(13)

Moreover, letB be the Jacobian matrix of Egs. (5a)-(g) with respect to tid jo
variables. It appears thBtis the negative identity matrix. Denoting (X, T) the
vector of seven polynomials on the left-hand side of Eq9-(§ha we have:

F(X,T)=0 (14)
Differentiating Eq. (14) with respect to time we obtain:
AX-T=0 (15)

In particular, as in [16], we can infer from Eq. (15) that pealasingularities occur
when the determinant & vanishes:

detA) = —8Q4V/3Q3> +48Q2°Q3Q1 — 48Q,Q3°Q4 (16)
— 241/3Q,°Q3Qs + 48Q4Q2Q12 + 24+/3Q,Q1Q4?
+24Q3v/3Q1°Q4 — 48Q3Q1Q4% — 24Q,Q11/3Q52
+81/3Q4%Q3 — 8v/3Q2°Q1 +8Q2v/3Q:* =0

Besides, it turns out that the 3PS manipulator does not have any serial singularity
as matrixB is always invertible.

4.2 Singularitiesin the Workspace

The singularities of this mechanism can be representednmstef the pose vari-
ables. To this end, we need to eliminate the joint and passivables from Eq. (16)
and Egs. (5a)-(g). This can be achieved with methods bas€ddmer basis theory.
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4.2.1 Grbner basis for elimination

Let & be a set of polynomials in the variables.,y1,y2,2»,%3,23) and €x, ¢y, Cz,

Q2 ,Q3, Q4). Moreover, let¥” be the set of common roots of the polynomials in
2, and let” be the projection o/ on the workspace. It might not be possible to
represent”” by polynomial equations. Le#” be the smallest set defined by poly-
nomial equations that contait¥s. Our goal is to compute the polynomial equations
defining 7.

These polynomial equations are computed witbi@er-basis theory. A @bner
basis of a polynomial system is a polynomial system equitdtethe first one, and
satisfying some additional specific properties. Thélgher basis of a system de-
pends on an ordering on the monomials. In our case, if we ehanslimination
ordering eliminatingX, then the Gabner basis of” will contain exactly the poly-
nomials defining#. This theory is not the subject of this article and shall net b
further detailed here. An introduction on elimination w@nbbner basis is available
in [17, Chapter 3].

4.2.2 Equations of the parallel singularities in the workspce

We can now use the elimination of the previous paragraph diopooblem to ob-
tain the polynomial equations defining implicitly the p#ehlsingularities in the
workspace. Let us consider the polynomial set:

_ T
{F(X,T) =1[0,0,0,0,0,0,0] an

detA)=0

We compute a Gibner basis of system (17) with respect to elimination ander
eliminatingX. This computation yields directly the relation satisfiedy parallel
singularities in the orientation workspace, namely,

— Q22 +9Q2%Q4% +5Q* +9Q5%Q,?

+ 16Q3°Q2% + 44Q3% Q" + 32Q3°Q,° — 24Q3%Q,2

— 40Q3%Qx" + 16Q4°Q3? +28Q4" Q3 + 16Q4*Qs°

+ 16Q4°Q2% + 48Q4"Q3?Q2% + 72Q4%Q3" Q2% + 20Q4 Q"

+ 64Q4%Q32Q" + 8Qu2Qo° — 24Q4" Q3% — 24Q4°Q5*

— 48Q4°Q3%Q2% — 16Q4°Qx" +9Q4%Q3? + 16Q4%V/3Q3Q2

+ 40v/3Q4%Q3%Q, + 48v/3Q42Qs°Q2 + 40v/3Q47Q3Q2° + 80v/3Q4%Q3°Q,°
+ 32V/3Q4%Q3Q2° — 16v/3Q4*Q3Qz — 60v/3Q42Q3°Q2 — 52v/3Q4°Q3Q2°
— 8Q2°% +4Q® — 4v3Q,°Q; — 16v/3Q3°Q.°

— 24v/3Q3°Q,° - 8v/3Q3Q2" +20v/3Q5°Q2% + 12v/3Q5Q,°

— 24Q4%Q? =0 (18)
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We can notice that these equations depend only on the di@ntariables Qy, Qs,
Qa). This means that the parallel singularities do not depenthe position of the
centroid of the moving platform. As a matter of fact, the flatsingularities of the
3-PPPS manipulator can be represented in its orientation wadespnly, the latter
being characterized with variablé®,,Qz,Q4) as shown in Fig. 3.

Fig. 3 The parallel singularities of the 3FPS manipulator in the orientation workspace: given a

point M, vectorOM defines the orientation axis and its Euclidean nqﬁn is the sine of the
half-angle of rotation

Finally, note that Eq. (18) was also obtained from the gedmetndition for the
3-PPPS manipulator singularities given in Sec. 3.6.

5 Conclusions

The subject of this paper was the singularity analysis okalsf three-legged par-
allel mechanism to be used as a force-feedback interfaceofgtric condition for
the manipulator singularities was obtained by means ofsBrasn-Cayley algebra.
The parallel singularities of the manipulator were comgutsing the Jacobian and
Grobner bases. Consequently, the algebraic relations ofitigelarities satisfied
by the orientation variables were derived. Finally, theafial singularities of the
manipulator were plotted in its orientation workspace.
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