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SINGULARITY AT THE APEX OF PYRAMIDAL NOTCHES WITH THREE
EQUAL ANGLES*

By L. M. KEER anD K. S. PARIHAR** (Northwestern University, Evanston)

Northwestern University, Evanston

Abstract. A Green’s function approach is employed to study the potential theory
problem of determining the strength of singularity at the apex of a pyramid with three
equal angles. The problem is reduced to finding the eigenvalue of a singular integral
equation. Numerical results are obtained and compared with available literature.

Introduction. The potential theory problem of determining the strength of the sing-
ularity at the apex of a pyramid with three equal angles has been studied by Bazant [1].
The problem studied there was that of a harmonic function in a region with a pyramidal
boundary, with constant potential on the boundary. He developed a solution by use of a
general numerical (finite-difference) scheme for potential theory in which several lines of
singularity intersect. In particular, he found that when the pyramidal boundary was
reentrant to the space considered, the potential behavior with distance was O(p”) (0 < vy <
1) as p — 0, where p is the distance to the pyramidal apex. This means that the gradient of
the potential (flux) will have a singularity O(o” ') as p — 0. However, if the pyramid is not
reentrant, the paramenter vy will be greater than unity and will not produce any sing-
ularities in the flux.

In the present study a Green’s function method is employed to examine the title
problem. An advantage with the proposed method is that for a prescribed accuracy less
numerical effort is required than with the finite-difference scheme [1], although more
analysis is required to develop the equations into a form suitable for the numerical
analysis. Similar results have been noted in the authors’ earlier investigation [2] of the
problem of determining the strength of singularity at the corner of a wedge-shaped region.

Formulation of the problem. Consider the pyramid O4BC with the three edges 04,
OB, and OC oriented in such a way that the angle between any two consecutive edges is
the same, say, 28 (where 8 < w/3). The points A, B and C are taken anywhere on the semi-
infinite edges of the pyramid with apex O (the lengths of the edges of the pyramid are
immaterial for the present study, since an arbitrarily small neighborhood of the apex of
the pyramid is all that is of concern here). Introduce the cartesian coordinate system in a
way that 04 makes the same angle with either of the axes y and z as OB does with z and x.
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Then the three planes forming the pyramid are given by

x=(p+z)cosa, y=(z+x)cosa, z=(x+ y)cosa 1

where « > w/3. From these equations it is easily seen that
cos 28 = cos a2 — cosa)/(3 cos’a — 2 cosa + 1), 2)
c0s 26 = cosa(2 — cosa)/(l + 2cos?a), 3)

where 26 is the angle between any two consecutive planes of the pyramid. From (2)-(3)
one obtains the relation (cf. [1, p. 240])

2sind cosfB = 1. 4)

The potential  due to the surface charge densities A, , A, and A; on the planes 4B,
BC, and CA respectively is given by

P =0, + &, + &y, (5)
with
_ A& n) dE dn
| e ) = e Fooer ©
_ Bq(n, §) dn d¢
Py(x, p,2) = f clx—(+)cosalf+ (y —n)E + (z - P72 (7)

) AL E) d de
®x. .2 = || TG F D= + D cosal ¢ = OF (8)

where {1 denotes the area of projection of the planes AB, BC and CA on the coordinate
planes xy, yz and zx respectively. If a constant potential 7 is prescribed on the faces of the
pyramid we have

P(cosa(y + z),y,z) =71, 9
®(x,cosa(z + x),z) =1, (10)
®(x,y, cosa(x + y)) = 1. (1)

It is convenient to deal with the above equations in their polar forms. Consider

Qi(x, y) = ®4(x, y, cos a(x + y))

f A&, n) dt dn ’ (12)
2 [(x =€+ (=0 +{(x +y) = (£ + n)}* cos’a]'”?
and introduce the polar transformations
x = rcosé, y=rsinf (13)
E=pcoso, = psin¢ (14)

to get

b © .
Pi(rcosf, rsinf) = f 1o cos ¢.p sin ¢)o dp d
a 0

a<g<b, (15)

(PK = 2prL, + p*M]"?
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)

M=l+2coszacos"’<%—¢),

where

K=1+2cos?a cos”(

ENE]

L,=cos(0—¢>)+2¢oszacos(%— ) cos(%—qb),

and the limits a, b of integration for 6, ¢ are given by
cosa = (1 — cosa)[(l — cosa)® + cos® a] V2,
cosb = cosa[(l —cosa) + cos®a] V2.
From these relations it is easily seen that
a+b=mx/2
Differentiating (15) with respect to r gives

9 o _  [°[” Afpcosd,psing)rK —pL,)p dp dp
ar & = f . [PK — 2orL, + p?M]'” » a<f<b
Then setting (cf. [2])
Ai(p cos ¢, p sin¢) = p? 'fi(¢) (0 <y < 1),
and making use of the integral (see [3, p. 310])
@© s—1
fo = zxxcostfx+ T cosec (ms)Ps_(cos 1), |t| <7, 0<Res <1,
yields
9 — 2 _TY (14+7)/2 1/2
a—rQl——m Sin Ty M ()P, (—L,/(KM)'*) dp, a<8<b.

In the same way if one writes, in the notation of (6)-(8) and (13),
Qircosf, rsinf) = ®yx, y,cosalx +yp)), j=1,2,3

it can be shown that

2 0=~k O [T M) - L KM ) do,

sin 7r'y
Jj=1,2,3 a<6<b,
where K, M are given by (16), (17) and we have

L, =sinfcos ¢ + |2 cosa{cosﬂcos(— —¢>> + sinq‘)cos(% - 0)},

L, —cosﬁsm¢+\/2005a{smﬁcos <— —<¢>>+cos¢cos(%r —0)}'

In view of relations (5), (26) and (27) the condition (11) becomes
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(’[Fl(qﬁ)Pv{ — Ao, ¢) + Fx(0)P,{ = Bo(0, &)} + Fo(@)Py{ — Colf, )] dp = 0,

a<f<b, (30)

where
Fi(¢) = M= 72f (), j=1,2,3, (31)
Ao = Li/(KM)?, By = Ly/(KM)?, Co, = L3y/(KM)'? (32)

in which K, M, L, (j = 1, 2, 3) are given by (16)-(18) and (28)-(29). By means of a similar
analysis, Egs. (9)-(10) can be reduced to the same forms as that of (30). Indeed, due to
symmetry of the problem the other two equations can be obtained by the cyclic inter-

change of the unknown functions Fy(¢) (j = 1, 2, 3). Adding all the resulting three
equations and setting either F, = F, = F; = v or
Fi+ F+F=v (33)

leads to the eigenvalue equation

[ v@P =448, 00 + Poi=B0, 6) + P,(=Col6, 6)1d6 =0, a<0<b  (34)

a

where a, b are given by (19)-(20) and 4, , B, , C, by (32), (16)-(18) and (28)-(29). Note the
series representation (see e.g. [4, Appendix])

Py(x) = 7lr sin 7y ,2) (_7)'("(1:):_ Y )n |:log ( ! ;X> + Yn — v)

+¢(n+7+1)—2¢(n+1)}(’2")", (35)

where ¢ denotes the logarithmic derivative of the gamma function (see [5, p. 15]) and
h=1, Wa=hh+ 1) ---(h+n-—1). (36)

Then it can be easily seen that all the three terms in the kernel of (34) have logarithmic
singularity: the first at ¢ = 6, the second at § = b, ¢ = a and the third at § = a, ¢ = b.
Indeed, the leading terms in the kernel of (34) may be written

PW’(_AO) + Pv('"Bo) + P‘y(_Co) > 2 IOg lo - ¢’
+log{b—¢)p+ (0 —a)—2(b— ¢)0 — a) cos 26}
+ log{(b— 0 + (¢ —a)* — 2(b— 0)¢ — a)cos 26}, (37)

where 26, the angle between any two planes of the pyramid, is given by (3). In view of (37),
if (34) is differentiated once with respect to 6 it becomes a singular integral equation with a
generalized Cauchy kernel discussed by Erdogan, Gupta and Cook [6]. By using an
analysis similar to that of [6] one can show that the unknown function v(¢) in (34) is of the
form

v(d) = [(6 — ¢)¢ — a)I"'w(d), (38)

where w(¢) is a bounded function on [a, b] and

v =x/(mr — 0). (39)
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TABLE 1.
"
28/m Integral Equation Bazant
1/32 0.1283
1/16 0.1557
1/8 0.1976
1/4 0.2709 0.230
3/8 0.3497
1/2 0.4534 0.455
5/8 0.6580
21/32 0.8017

The nature of singularity (39) in the function v(¢) representing potential on the faces of the
pyramid is in agreement with that of Bazant ([1], p. 223).

Numerical solution. The eigenvalue equation (34) does not seem to admit a closed-
form solution. One can, however, use the procedure of Erdogan, Gupta and Cook [6] to
extract the root v for a fixed value of 23, the angle between any two consecutive edges of
the pyramid. In view of the relations (35)-(37), the differentiation of Eq. (34) once with
respect to the free variable leads to a singular integral equation with a generalized Cauchy
kernel. Also, the unknown function in (34) has the proper singularity given by (38)-(39) as
the end points are approached.

By using the Gauss-Jacobi integration formula for singular integral equations with
generalized Cauchy kernels [6], one obtains a system of N homogeneous simultaneous
algebraic equations in N unknowns from the differentiated (and appropriately manipu-
lated) Eq. (34). Thus, as in [2] one obtains the eigenvalue problem to be solved numer-
ically by setting the determinant, say, Ry(3, v ) of the coefficient matrix equal to zero, i.e.

RN(ﬁa ‘Y) = 0’ (40)

where 28 is the angle between any two consecutive edges of the pyramid and vy represents
the singularity strength at the apex. A numerical root search procedure is applied to Eq.
(40) with ¥ = 11, the number of collocation points. The results of the computation for
various § are given in Table 1, where Bazant’s results are also listed. His computations are
based on the finite-difference network of about eighty nodes which are not quite sufficient
for the four-digit accuracy presented here. It may be possible to match the present results
with a larger-size network using his method.
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