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During the motion of a fluid interface undergoing Rayleigh-Taylor instability, 
vorticity is generated on the interface baronclinically. This vorticity is then subject to 
Kelvin-Helmholtz instability. For the related problem of evolution of a nearly flat 
vortex sheet without density stratification (and with viscosity and surface tension 
neglected), Kelvin-Helmholtz instability has been shown to lead to development of 
curvature singularities in the sheet. In this paper, a simple approximate theory is 
developed for Rayleigh-Taylor instability as a generalization of Moore's approxi- 
mation for vortex sheets. For the approximate theory, a family of exact solutions is 
found for which singularities develop on the fluid interface. The resulting predictions 
for the time and type of the singularity are directly verified by numerical computation 
of the full equations. These computations are performed using a point vortex method, 
and singularities for the numerical solution are detected using a form fit for the Fourier 
components at high wavenumber. Excellent agreement between the theoretical 
predictions and the numerical results is demonstrated for small to medium values of the 
Atwood number A ,  i.e. for A between 0 and approximately 0.9. For A near 1, however, 
the singularities actually slow down when close to the real axis. In particular, for A = 1, 
the numerical evidence suggests that the singularities do not reach the real axis in finite 
time. 

1. Introduction 

The classical manifestation of the Rayleigh-Taylor instability occurs when a heavy 
fluid lies above a lighter fluid in the presence of gravity. Sharp (1984) gives a general 
review of many experimental and theoretical studies. When the fluids are immiscible, 
a sharp interface exists between them which deforms into a pattern containing rising 
bubbles of lighter fluid and falling spikes of heavier fluid. A strong shearing flow 
develops on the sides of the spike as the lighter and heavier fluid pass by each other. 
This part of the interface is then susceptible to the Kelvin-Helmholtz instability. When 
the fluids are considered inviscid and incompressible, the shear flow region coincides 
with the interface, which may be represented as a vortex sheet whose strength changes 
by the baroclinic generation of vorticity. The growth rate for small disturbances subject 
to Kelvin-Helmholtz instability is much higher than for those subject to Rayleigh- 
Taylor instability. Consequently, the vortex sheet rolls up, so that the appearance of 
the spike changes to that associated with a falling plume of fluid in an ambient fluid. 

Based on a vortex sheet representation, a set of evolution equations for the location 
of the interface has been derived by Baker, Meiron & Orszag (1982) (see also Moore 
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1982). Their numerical calculations ran into the traditional difficulties associated with 
the computation of the rollup of vortex sheets (Saffman & Baker 1979). By employing 
some regularization, Kerr (1986) and Tryggvason (1988) suppressed these difficulties 
and showed rolled-up interfaces at late times. 

However, recent studies of the evolution of vortex sheets in homogeneous fluid have 
shed new light on their behaviour. For periodic disturbances from a flat sheet, the 
evidence is now quite strong that sheets with non-zero mean vorticity develop a 
curvature singularity in finite time. Asymptotic studies by Moore (1979, 1985) and by 
Caflisch, Orellana & Siegel (1990) show how singularities in the complex circulation 
plane move towards and reach the real axis in finite time, at which point a curvature 
singularity is observed physically. Numerical calculations by Baker (1 990) confirm the 
formation and motion of these complex singularities for the aysmptotic equations. 
Numerical calculations for the full equations show direct evidence of the presence of 
singularities in the complex circulation plane, but in order to run the calculations up 
to the singularity time it is necessary to employ a spectral filter, first used by Krasny 
(1986b), and subsequently by Shelley (1992) to gain detailed information about the 
nature of the singularity. Subsequent numerical studies by Ely & Baker (1993), done in 
arbitrary precision to eliminate the effects of round-off errors, show that the spectral 
filter can be used reliably up to the time of singularity formation. However, no 
convergence in the shape of the vortex sheet occurs after the singularity time as the 
truncation error is reduced with higher resolution. A different numerical calculation by 
Meiron, Baker & Orszag (1982) that generated terms for the Taylor series expansion 
in time of the vortex sheet location also shows the formation of a curvature singularity 
in finite time. There is not much doubt that a curvature singularity occurs in finite time, 
but what is less certain is the precise nature of the sheet after the singularity time. 
Rigorous theory (Diperna & Majda 1987; Delort 1991) allows the existence of 
measured-valued solutions corresponding to vortex sheets for Euler’s equations, but 
the theory does not address the question of smoothness of the sheets. 

This paper will show that there is analogous singularity formation during 
Rayleigh-Taylor instability. Numerical evidence for singularities has already been 
supplied by Pugh (1989) for the Boussinesq limit. Our work will consider the full range 
of Atwood ratios, A .  A related investigation of singularities for Boussinesq bubbles 
was performed by Pugh & Cowley (1993). These singularities in general are believed to 
immediately precede the rollup of the interface and are thus closely related to the rate 
of fluid mixing. In addition, these singularities and their dependence on the Atwood 
number appear to be the source of many of the numerical difficulties that have been 
experienced in numerical simulations of Rayleigh-Taylor instability. It is only by 
introducing some form of regularization that the singularities in the complex physical 
plane are prevented from reaching the real axis. Then numerical calculations have been 
able to proceed beyond the singularity time and show the formation of rolled-up vortex 
sheets. Krasny (1986a) employs a vortex ‘blob’ method for the Kelvin-Helmholtz 
instability, and Kerr (1986) adapts this approach for the Rayleigh-Taylor problem. 
Tryggvason (1988) uses a ‘cloud-in-cell’ technique, and Baker, Meiron & Orszag 
(1980) consider two interfaces with a flaid of intermediate density between them. 

Our study of singularity formation during Rayleigh-Taylor instability is by two 
complementary approaches : an analytic theory that derives asymptotic equations and 
a set of numerical solutions for the full equations. Thus we are able to comment 
directly on the conditions for the reliability of the asymptotic approach, as well as 
address another interesting aspect of the behaviour in Rayleigh-Taylor instability, 
namely the behaviour when the lighter fluid is a gas whose motion is negligible. Under 
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these conditions, the Kelvin-Helmholtz instability is inoperable, and the expectation is 
that no singularity will occur. 

First a simple approximate theory is developed for the Rayleigh-Taylor instability 
as a generalization of Moore’s approximation for the Kelvin-Helmholtz instability. 
The approximate equations were first derived by Siegel (1989), and are obtained by 
considering the variable a which parameterizes the interface to be a complex-valued 
variable. The excellent agreement of this theory with the numerical results of Pugh 
(1989) in the Boussinesq case motivated the present study over the full range 
0 < A < 1. Siegel (1989) shows that the approximation is asymptotically valid for a in 
a strip containing the real axis when the deformation of the interface is small and 
singularities are far from the real axis. For the related Kelvin-Helmholtz instability, 
Cowley et al. (1993) have established that the approximation is also asymptotically 
valid in those regions of the complex plane where Im {a} % 1 and the interface has O(1) 
deformation. In particular, these regions include the immediate neighbourhood of 
singularities. 

In the present study, this theory is applied for large deformations and for 
singularities that are near to the real axis, which is beyond the range of its formal 
validity. Nevertheless explicit predictions for the time t, and location of singularity 
formation and the type of singularities follow from a set of exact solutions for the 
approximate equations. These exact solutions consist of pure growing modes and can 
be found as travelling waves with complex speed. These predictions agree well with the 
results from numerical calculations of the full equations when the Atwood ratio is not 
too close to 1. When the Atwood ratio is close to 1, some aspects of the agreement 
break down. For unit Atwood ratio, the approximate equations predict the existence 
of a new type of singularity which is stronger than the singularities for A =t= 1 and which 
reaches the real axis in finite time. The numerical calculations indicate that this 
singularity does indeed exist in the complex plane and that it moves towards the real 
axis. However, the singularity slows down, suggesting that it may not reach the real 
axis in finite time. Since the time of this study, Tanveer (1992) has looked further at 
singularities for A = 1 and has given evidence that no real singularities do occur. 

2. The equations of motion 

We are concerned with the two-dimensional motion due to gravity of a fluid of 
density p1 lying under a fluid of density p, with p1 < pz. For simplicity the fluids are 
assumed to be incompressible and inviscid, as well as irrotational (away from the 
interface), and the surface tension at the interface between the fluids is negligible. The 
interface between the two fluids may be described by a complex function 
z(a, t )  = x(a, t)+iy(a, t) in which a is a real parameter. 

Define the velocities u, and u, as the limiting values at the interface of the fluid 
velocity in the lower and upper fluid. Conservation of mass requires that they have 
equal normal components, i.e. 

In the absence of viscosity, however, the tangential components can be discontinuous. 
Thus the fluid interface is a slip line, or in other words a vortex sheet. 

n.ul = nsu,. (1) 

The vortex sheet strength along the interface, 7, is defined by 

p = ( U 1 - U z ) . s ^ ,  

where s^ is the unit tangent vector pointing to the right relative to the direction from 
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lower to upper fluid. It is also convenient to define the un-normalized vortex sheet 
strength y by 

where s, = JzJ. 

The parameter a is chosen to be ‘ Lagrangian ’, although, since the fluid velocity has 
a discontinuity along the interface, the choice of velocity U for boundary points is not 
unique. Following Baker et al. (1982), we choose U to be a weighted average of lil and 
u,, 1.e. 

Note that /3 = - 1 corresponds to U = u2, the velocity of the upper fluid, and p = 0 
corresponds to U = +(u, + uz), the average velocity. In our numerical calculations /3 is 
chosen as 

where A is the Atwood number 

y = p,, (3) 

u= ; ( l + / ? ) u l + f ( l - / ? ) U , .  (4) 

/ ? = - A ,  ( 5 )  

Note that the definition of A follows the convention used in studies of the 
Rayleigh-Taylor instability, while for internal waves with p1 > pz, A is usually given 
the opposite sign. The choice ( 5 )  is equivalent to defining 

P1 Ul+ Pz u, 
P1+ Pz 

This choice of /3 also simplifies the analysis given in $4. 
The motion of the interface and the baronclinic generation of vorticity on it are 

described by the following integro-differential equations, derived by Baker et al. (1982), 

U =  

yt = 2 A  Re qtz,--& +gIm{z,} +-- __ [ { 2z,} ] A : 2 p 3 $ ) 7  

in which Re and Im denote the real and imaginary parts, and where q is the complex 
velocity which is given by the Birkhoff-Rott principal value integral, 

&a, t) = -PV 
2x1 i z(CY, y(a’,t) t )  - z ( d ,  t )  da‘. (9) 

Subscripts CY and t refer to differentiation, and the bar over a variable indicates its 
complex conjugate. A similar set of equations was derived by Moore (1982). 

A simple solution for (7) and (8) is 

z(a, 0 = + ;/?yo(, y ( 4  0 = yo, (10) 

for any constant yo. The motion of the points corresponds to a translation along a flat 
interface with uniform vortex sheet strength yo, and so this motion would be an 
equilibrium solution in an Eulerian frame of reference. Usually in studies of the 
Rayleigh-Taylor instability, yo is taken to be zero, but we leave it arbitrary for now. 
The linearized version of (7) and (8) about the flat interface (10) permits solutions of 
the form 

> ( l la ,  b) 
i ka_ fn (k ) t  z(a, t )  = ~ ~ + ~ / ? y ~ t + A e ~ ~ ~ * ~ ( ~ ) ~  , y(., 0 = ?,+Be 
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where (12) 

There is an additional branch to the dispersion relation, a = 0, which is an artifact of 
the Lagrangian approach. It signals the ability to translate points along the interface 
without change of shape, and is usually termed a labelling mode. The result (12) is 
consistent with the results obtained by a linear analysis in the Eulerian frame (Kelvin 
1871). We are unaware of any previous publication of the stability results in the 
Lagrangian frame for this problem, but the results may be obtained in a straightforward 
fashion. 

The dispersion relation (12) has several features : 
(i) The choice /3 = - A  in (12) removes the imaginary part of a;  i.e. it removes the 

translational component of a. This fact provides additional justification for this 
choice of /3 in numerical calculations. 

(ii) For yo =l= 0, the real part of a, which is the growth (or decay) rate of the linear 
modes, is proportional to Ikl for large k .  This growth rate is an indication of 
Kelvin-Helmholtz instability. 

(iii) For yo = 0, the growth rate is proportional to JkJ;, for large k.  This growth rate 
is an indication of Rayleigh-Taylor instability. 

(iv) When A = 1, the Kelvin-Helmholtz instability does not occur even if yo $. 0. 
This reflects the fact that the Kelvin-Helmholtz instability is activated only 
when two fluids stream past each other. 

The Kelvin-Helmholtz growth rate cr(k) = lkl allows the possibility for singularity 
development. Consider a superposition of the linear growing modes in (1 1) 

Z(U, t )  = a + +Byo t + 2 a, e"'"' eika. 
k 

(13) 

Assume that la,! - ce-Klkl, (14) 

for large k, which corresponds to analytic initial data. Then at time t ,  the amplitude of 
the kth Fourier mode is of size exp{ - ( K  - yo t )  Jkl}. Decay of the Fourier components, 
and thus analyticity, is lost for t = K / Y ~ .  This prediction by linear analysis of 
singularity formation for vortex sheets was first discussed by Birkhoff (1962) and since 
then much effort has been expended to verify that nonlinear effects do not prevent 
singularity development. Analytic studies by Moore (1979, 1985), Caflisch & Orellana 
(1986), and Duchon & Roberts (1988), and numerical studies by Meiron et al. (1982), 
Krasny (1986 b) and Shelley (1992) all support the conclusion that singularities form in 
finite time. In particular, the calculations of Baker & Shelley (1990) and Shelley (1992) 
point out that it is the advection of vorticity along the sheet towards an accumulation 
point that signals the occurrence of singularities. Pugh (1989) was the first to show that 
these singularities also occur on free surfaces between immiscible liquids with different 
densities. 

If yo = 0, the argument based on linear analysis for singularity development fails. On 
the other hand, baronclinic generation of vorticity on the interface creates regions 
along the sheet where there is a mean level to the vortex sheet strength locally. 
Moreover, the region along the sides of the spikes contains vorticity advecting 
downwards from the bubble and upwards from the spike. The conditions are right for 
the nonlinear development of singularities. We show in this paper, by a simple analytic 
theory and by extensive computations, that singularities do occur. 
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3. The localized approximation 

Siegel (1989) applied the ideas behind the approximate theory for vortex sheets, 
developed first by Moore (1979) and then extended by Caflisch et al. (1990), to the 
Rayleigh-Taylor instability. For completeness, we repeat the main points in the theory. 

The approximation method is most easily described by extending the parameter a to 
be complex. The Rayleigh-Taylor equations are analytically extended to complex a as 

a,z* = q* +py/2z,, ( 1 5 4  

in which z*(a, t )  = z(z ,  t )  (16) 

is the analytic extension of the conjugate function. In other words, z* is an analytic 
function of a which equals z for real values of a. The complex velocity is given by 

q*(a, t )  = -PV s" d<. 2xi --co z(a, t )  - z(a+ 5, t )  

Decompose y and z as 

in which s+, y+ contain the positive wavenumber components of s, y respectively and 
s-, y- contain the negative wavenumbers, i.e. 

s+(a, t )  = 2 i k ( t )  eikor, s_(a, t )  = C ik(t) eika, 

y+(a, t )  = C f k ( t )  eikn, ?-(a, t )  = C f k ( t )  eikn. 

(194 b) 

(19c7 4 

The constant term in z is represented by sO(t), but it plays no role in the resulting 
equations. The constant term in y is the mean vortex sheet strength yo, which we set 
to zero since our interest is in the classical Rayleigh-Taylor instability. 
Note that 

k z o  k i O  

k>O k < O  

(i) The *-operator switches +components to -components, i.e. 

(s*)+ = (s-)*, (s*)- = (s+)*. 

(ii) Since y is real when a is real, f P k  = Yl, so that 

(?+I* = 7- .  

The analytic equations (15) can be written as 

z: = 4(za ,  z:, Y7 Y*>? Yt = Wa, z:, y7 ?*I. (224 b) 

The approximate theory is based on the following physical argument. Nonlinear 
interactions cause wavenumbers to add so that energy flows back and forth among 
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wavenumbers. However, the process of singularity development primarily involves 
flow of energy from low wavenumbers to high wavenumbers. Our approximation keeps 
this flow of energy to higher wavenumbers, but ignores all flow of energy from high to 
low wavenumbers. In other words, interactions of wavenumbers k ,  and k ,  to form 
wavenumber k ,  + k ,  are neglected if (k ,  + k,/ c max(k,, kz).  This is equivalent to saying 
that interactions between positive k and negative k are neglected. Mathematically this 
is the same as retaining interactions of s+ with s, and of s- with s-, but neglecting 
interactions of s+ with s-. For any function or operation A[s], the approximation is 
then 

A[s] * A[s+] + A[s-]. 

If s has a constant term, i.e. s = s+ +s- +so, the corresponding approximation is 

A[s] - A[s+ +so] + A[s- + so] - A[s0].  

The neglected terms are just the interactions of s, and s-. 
We employ this approximation for both s and y .  Therefore (22) becomes 

.I“ = ma+, (z*),+, Y+, (Y*)+) + Zl(Z,-, (z*>,-, Y-3 (Y*)-), 

Yt = ZZk+? (z*),+, Y+, (Y*)+) + w - 9  (z*),-, 7 - 7  (y*)-). 

(23 4 

(23 b) 

The difference between (22) and (23) consists only of terms containing products of + 
and - components, such as 

z,+ z,-, z,+ y- or z,+(z*),-. 

The advantage of this approximation is that now the integral in Zl can be evaluated 
by a contour deformation, resulting in a purely local term coming from a residue. By 
using this evaluation, then taking + and - components of (23) and using (y*)- = y+ 
we obtain the following system (for more details of the derivation see Appendix A): 

in which s* = (s-)* = (s*)+. Mathematical analysis of (24) is simplified further if it is 
written as a quasi-linear system. Denote 

$?l = 1 +s,+, $b = 1 +s,*_, w = y+, (25) 

and differentiate (24a, b) to obtain 

The localized equations (26) are much simpler than the full equations (7) and (8), 
mainly in that they are purely local; i.e. they are differential equations rather than 
integro-differential equations. However, there is a defect to the approximate system 

3 FLM 2 5 2  
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concerning the role of p. For the full equations (7) and (8), the solution for one choice 
of p is equivalent to the solution for any other choice of p; that is not the case for the 
approximate system. The source of this defect is simple. Different choices of /3 
correspond to different parametrizations by a for the motion. The approximation 
involves Fourier transformation to make the decomposition into upper and lower 
analytic functions. Since changes of variables are not easily expressed through the 
Fourier transform, there is no simple relation between solutions of the approximate 
system for different choices of p. Nevertheless, we can establish that the solutions for 
various /3 are asymptotically close to the exact solution when the deformations of the 
interface are small and the singularities are far from the real axis (Siegel 1989; S. J. 
Cowley, private communication). Consequently, the nature of the singularities are 
predicted reliably by the approximate system independently of p. Some evidence for 
the generic nature of the singularities is given in $6. 

The approximate system (26) is a first-order system with the characteristic speeds 

A, = 0, (27 4 

These characteristics speeds are complex in general, and so information can move 
towards the real a-axis and reach it in finite time. Baker (1990) shows diagrams of the 
characteristics for the Kelvin-Helmholtz instability and, in particular, he confirms that 
the motion of singularities may be described as the envelop of breaking characteristics 
as predicted by Moore (1985). Note that the characteristic speeds are proportional to 
o so that as vorticity is created baronclinically, information moves with increasing 
speed towards the real a-axis. We will construct solutions that have singularities which 
move with constant speed towards the real a-axis and reach it at some time I,, at which 
time a curvature singularity appears on the fluid interface. 

As expected, the linearized version of (26) has the same dispersion relation as (12). 
The characteristic speeds A are the limiting phase speeds A = limk+a cT(k)/k. Note that 
(12) is purely real when p = - A ;  in other words the choice p = - A  puts the system in 
a natural moving frame. 

Furthermore, at A = 1, and p = - 1 the localized approximation equations simplify 
to a linear system, 

4 t =0 ,  , wt=-iAg(q5-$). (28 a-c) 

In particular q5 is independent of time and is thus known from the initial data. The 
remaining equations for $ and w are then linear, with coefficients that depend on a. An 
obvious consequence is that there is no singularity development in ($, $, y )  for a in the 
complex plane when is constant and the initial data are entire. If there are 
singularities in the lower half-plane, then it can be shown from (28) that these 
singularities do not move toward the real a-axis and consequently are not physically 
realized. 
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4. Travelling wave solutions 

We follow previous studies of singularity formation on vortex sheets by seeking 
solutions that are 2n-periodic in space. A class of exact solutions to the localized 
equations (26) which take the form of periodic travelling waves in the complex plane 
was found by Siege1 (1989). The solutions are significant since they provide explicit 
information about singularity formation in the localized approximation equations. 
Consequently, the need for a second asymptotic analysis like that employed by Moore 
(1 979) is unnecessary. 

The travelling wave solutions can most easily be obtained by looking for solutions 
to (26) of the form 4 = $(t), @ = @(g and w = w ( 0  with 5 defined by t = i(a + ct). 
Substitution of these forms into (26) gives the following system of ODES: 

The first two equations can be integrated directly, yielding 

By the definitions (25), the constant part in the Fourier expansions for both 4 and @ 
is equal to one, whereas there is no constant part in the Fourier expansion of w. 

Consequently, the right-hand sides of (30) must have a mean value of 1, and this 
implies that following relationships must hold : 

With these values, (30) becomes 

In order to integrate (29c), we use (31) to express q5 and 11. in terms of Q = w / c ;  

24 = 1+Q+[1+2pQ+Q2]f, 211. = 1-Q+[1+2/3Q+Q2]~. (32a, b)  

Here the branch of the square root is also selected by the requirement that the constant 
parts in the expansions of 4 and @ equal one. Upon substituting (32) into (29c) we 
obtain 

3 - 2  
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As we have pointed out earlier, the choice / ? = - A  selects a convenient 
parametrization, and here we find that this choice allows a closed-form solution for 
(33). The more difficult analysis for /? =l - A  will be given in $6. For /? = - A ,  the 
resulting equation is 52, = - ( A g / a 2 )  52. The requirement that 52 is upper analytic and 
2~-periodic in a forces A g / v 2  = -n  for integer n. We choose n = 1, resulting in the 
solution 

where o(0) is the complex amplitude. The speed of the travelling wave is in the 
imaginary a-direction, and corresponds to a growing mode in the linear analysis. 

Surprisingly, the speed of the nonlinear travelling wave solution is independent of 
the amplitude and is identical to the speed given by a linear analysis. It can be shown 
that this is a general property of periodic travelling wave solutions to upper analytic 
systems of PDEs, under the condition that the system of ODES resulting from the 
substitution of the travelling wave variable is autonomous. 

Several properties of the travelling wave solutions (32) ,  (34) are immediately 
apparent. One is that these solutions contain exclusively growing or decaying modes 
depending on whether the sign of Im (a) is negative or positive, respectively. Obviously, 
we shall be interested in the behaviour of the growing modes, so v = -i(Ag)a. These 
solutions also correspond to a special choice of initial condition for the sheet position 
and sheet strength given by 

w = w(0)  ef, cr = +i(Ag)t, (34 a, b) 

x, = 1 + Re {s,+ + s,-> = Re {[ 1 + 2Ay + y2]i>, (35 a) 

y ,  = Im{sa+ +s,J = -Im{y}, 

y = 2Re{w} = 2Re{-ay}, 

where y = - (w(O)/a) exp (ia). Notice, in particular, that y = H -  (w(O)/a) cos (a), so 
that w(O)/v is a measure of the amplitude of the initial perturbation. We choose 
- w(O) /a  = E to be real, so that the rising bubble of lighter fluid is centred at a = 0 and 
the falling spike of heavier fluid at a = 7c. The parameter H is chosen so that the 
interface has zero mean height ; 

1; (H  + E cos (a))  Re {[ 1 + 2A eia + eZia]i} da = 0. 

The nature of the singularity is easily deduced from the travelling wave solution (32) 
and (34). We deal first with the case A =+ 1 .  While w remains analytic for all time, q5 and 
$ have square-root singularities whenever w / n  = A f i[ 1 - A2]t.  Since w = - €a e5, we 
find that the singularities move along the straight lines 

a = i ( ~ g ) t t - i 1 n ( - ~ + i [ l - ~ ~ ] 1 ) + i l n e  (37) 

a, = n tan-' ([I - A ~ ] ; / A ) ,  (38) 

in the complex a-plane, and reach the real axis at positions corresponding to 

and at time (39) 

Notice that when E < 1, the singularities lie below the real axis, which is consistent with 
the assumption that q5 and $ are analytic in the upper half-plane, and that they move 
vertically upwards until they reach the real axis at a,. 



Singularity formation during Rayleigh-Taylor instability 61 

In terms of the physical variables, the solution takes the form of (35) but where 
7 = E exp (ia + (Ag)r t). The singularities in x occur as two complex-conjugate pairs, 
lying on either side of x. There are no singularities in y or 7. The fact that x, has a 
square-root singularity at t ,  indicates that x,, + cc and consequently the curvature will 
blow up. A simple calculation of the curvature K = (x,y, - y ,  x,,) (x: +yf)-i shows 
that K - It - t,l-i for a = a, and K - la- a,l-i for t = t,. 

Another quantity of interest is the vortex sheet strength 7 = y/(lz,l). This quantity 
remains bounded in a for all Atwood numbers. Moreover, for A < 1 ,  

remains bounded at the singularity positions given by (38), since, although x,, + co at 
these positions, x,+O such that x,x,, remains bounded. However, ?,,+ co at these 
singularities. 

Now we take note of the positioning for the trajectories of the singularities in the 
complex a-plane. When A = 0, the trajectories lie along the lines a = and a = ix. 
This case has been studied before by Pugh (1989) in the Boussinesq limit. For 
0 < A < 1 ,  the trajectories lie symmetrically on either side of a = n, and the larger A 
is, the closer to a = x they occur. In terms of physical variables, the location of the 
curvature singularities at t = t ,  is symmetrically on either side of the tip of the spike. 
As A + 1, the singularities get closer to the spike tip. 

When A = 1, the trajectories coalesce and cancel. The mathematical nature of the 
singularity cancellation is clearly seen from (32). At A = 1 (and /l = - A )  the equations 
(32) for qi and @ become 

2$ = 1 + 5 2 + [ ( 1 - 5 2 ) 2 ] +  = 2, 

2$ = 1 -52+[(l -0)”lt = 2-52, 

and the square-root singularity is removed. This is a solution to the A = 1 ,  p = - 1 
system (28) in the special case that $(a, t )  = $(a, 0)  = 1. Note that this solution is linear 
in the sense that it satisfies a linear system with constant coefficients and therefore 
contains only wavenumbers present in the initial perturbation. However, this solution 
is nonlinear in the Eulerian sense since a mode in the Lagrangian parameter a does not 
correspond to a perturbation that is sinusoidal in x,y space. 

From ( 3 9 ,  we have for A = 1 

z ,  = x, + iy, = 1 + E exp git e+. (40) 

While z remains analytic in a, there is a failure in the conformal map from a to z since 
z, vanishes along the line (37). Note that this singularity would be observable if w: 
consider the arclength as a complex variable instead of a. In fact, when t = -(log E)/gT 
and a near x, x, - +(a - x ) ~  and y ,  - (a - x) so that y - (:): (x - x); locally near the tip 
of the Rayleigh-Taylor spike. This geometric singularity in the travelling wave solution 
(32) of the localized approximation equations with A = 1 differs from the singularities 
for A < 1. For example, the curvature blows up differently, having behaviour 
K - ( t -  t J 2  for a = a, = 71: and K - (a-n)-’ for t = t,. The derivative of the vortex 
sheet strength 7 blows up at the singularity. On the other hand the numerical results 
presented in the next section show that this geometric singularity does not occur in 
solutions of the full equations. The nonlinear terms neglected in the asymptotic 
analysis slow down the approach of the zero in z ,  to the real axis. 
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5. Numerical results 

The behaviour of the solutions to the approximate equations gives precise predictions 
on the formation of singularities on the interface in finite time. In this section, 
numerical calculations are performed to verify these predictions and test the validity of 
the approximate equations. The agreement is remarkably good for values of A not near 
one, but we find a divergence in the behaviour of the numerical solutions from those 
predicted by the approximate equations for A + 1. The results show that the speed by 
which the singularities approach the real axis slows down when A is near 1, and they 
may not reach the real axis in finite time when A = 1. Since it is very difficult to 
calculate the numerical solution close to the singularity time, such conclusions are not 
absolutely certain, and so we have reported the results for both the asymptotic model 
and the full simulations as an encouragement for further study. 

Equations (7), (8) may be rewritten in terms of the dipole sheet strength p, which 
satisfies pa = y ;  see Baker et al. (1982) for details. The calculation of the complex 
potential, @, parallels (9) : 

The complex velocity is given by Q = @,/z,. The motion of the interface is governed by 

z, = Q+/3y/2za. (42) 

The evolution of the dipole sheet strength is given by 

This alternative form for the equations offers several computational advantages, and 
has been used successfully to study several different free-surface flow problems (Baker 
1983; Baker, Meiron & Orszag 1984; Baker et al. 1987; Baker & Moore 1989). The 
numerical method used to solve the equations is essentially the same as in these 
previous studies, so we provide just a short summary of it. 

At some time t ,  we assume that we know the location of the free surface and the 
dipole sheet strength at equally spaced points in a. Derivatives of z are found by the use 
of quintic splines. In fact, all differentiation is performed numerically through the 
use of quintic splines. The complex potential along the interface is calculated by the use 
of an alternate point trapezoidal rule (see Baker 1983) to approximate (41), and the 
complex velocity is obtained by differentiating the complex potential. The evolution 
equation for the dipole strength is then solved by iteration; the solution is considered 
converged when the absolute difference in the iterates is less than By knowing the 
velocity at the interface and the rate of change of the dipole strength, we can update 
the position of the interface and the dipole strength through a standard solver. In 
particular, we use the fourth-order Adams-Moulton predictor-corrector. The initial 
condition (35) must be integrated in order to specify both the initial position of the 
interface and the dipole strength. The integrands are represented by a truncated 
Fourier series and then integrated analytically. Details are available in Appendix B. 

5.1. A < 1 

Since the motion of the interface is susceptible to the Kelvin-Helmholz instability, 
small perturbations, in particular those introduced as a consequence of round-off 
errors, grow very rapidly and soon destroy the accuracy of the calculation. 



Singularity formation during Rayleigh-Taylor instability 63 

Consequently, we employ the spectral filtering technique of Krasny (19866) at each 
time step to suppress the rapid growth of round-off errors. However, even in double 
precision on a CRAY-YMP computer, the number of expressions that must be 
evaluated drives up the round-off error so that we could not set it as low as Shelley 
(1992) could for his detailed study of the singularity formation on a vortex sheet 
undergoing Kelvin-Helmholz instability. Unfortunately, the higher the spatial 
resolution of our calculations, the higher the filter level must be set. We kept the filter 
level as low as possible to get accurate results close enough to the singularity time so 
that we could make useful comparisons with asymptotic theory. For the resolutions 
given by N = 128, N = 256 points along the interface, the lowest value that the filter 
level could be set is lo-’’, respectively. With a time step of 0.00625 (Ag)-i, 
numerically generated profiles of the interface shown in this paper have an accuracy of 
at least lo-’. 

In figure 1 ,  we show the profiles of the interface as calculated by several methods for 
three choices of the Atwood number. The equations of motion preserve the symmetry 
x( -a) = x(a) and y( -a) = y(a) ,  so that only one half of a symmetric wave pattern 
needs to be shown. In the first column we show the predictions of linear theory 
conducted in the Eulerian frame, and of linear theory conducted on (7) ,  (8), in other 
words, in a Lagrangian frame. The right-hand plots contain the predictions of the 
aysmptotic theory of this paper and the results of the numerical calculations. All the 
profiles use ( 3 9 ,  (37)  as an initial condition with 8 = 0.1. Details of the calculations for 
the profiles based on linear and asymptotic theory are available in Appendix B. The 
profiles are shown at time t = 2.0(Ag)-t; asymptotic theory predicts singularity 
formation at t ,  = 2.3 (Ag)-l. The linear theories show the overall trend in the profile, 
but agreement is not quantitative nor do the linear theories predict singularity 
formation. The asymptotic theory is very good for the range 0 < A < 0.9, but, as we 
show later, the agreement deteriorates as A -+ 1.0. Note further that the profiles are 
shown quite close to the time of singularity formation, but they show no strong 
variation in height. The Kelvin-Helmholtz singularity occurs as a consequence of 
vorticity accumulation along the interface. 

We turn now to the major part of our numerical study, the detection of singularities 
in the complex a-plane of the full solutions to (42), (43). We assume that the singularity 
closest to the real axis has the form, 

x(a) = (a-a,+id)””’ f,(a>+(.-2n+a,+id)”-”f,(a), (44) 

where f,(a) and f2(a) are analytic in the neighbourhood of the singularities. We have 
placed the singularities symmetrically about a = n as required by the symmetry of the 
initial conditions. This assumption dictates that the singularities will occur on either 
side of the spike. Also, we show the position and nature of the singularities in the lower 
half-plane; there will be a corresponding pair in the upper half-plane. The singularity 
pair in the lower half-plane influences the coefficients in the Fourier series for x, 

~ ( a )  = p + C a, eika, 
k 

for positive k values. In fact, for large k, 

ia 
a, - -e-$k kVfl sin (ka, + 7 Ink + $), 

(45) 

where a, $ are two real constants related to the strength and phase of the singularity. 
This form for the Fourier transform was also used by Pugh (1989). 



64 G .  Baker, R. E. CaJEisch and M .  Siege1 

1 1  

3.14 
-1  I 

0 3.14 0 

0 3.14 0 3.14 

(c) 

1 -  1 -  

Y 

, - 1  -1 

0 3.14 0 
X 

3.14 
X 

FIGURE 1. A comparison of the interfacial profiles determined by linear theories, our asymptotic 
theory, and numerical simulations, for (a)  A = 0.1, (b) A = 0.5, (c) A = 0.9. Only half of the periodic 
pattern is shown. The left-hand profile for each choice of A shows the results of a Lagrangian linear 
stability analysis (solid) and an Eulerian linear stability analysis (dashed). The right-hand profiles give 
the results of the numfrical simulation (solid) and our asymptotic theory (dashed). All profiles are 
shown at t = 2.O(Ag)-z. 

Numerical solution to (42) and (43) provides discrete points zi representing the 
location of the interface and discrete values pi of the dipole sheet strength at these 
points. Standard fast-Fourier-transform methods may be used to get approximate 
Fourier coefficients. We seek a form fit of the numerically determined Fourier 
coefficients with (46) by techniques similar to those used by Pugh (1989) and Pugh & 
Cowley (1993). We take six sequential values of the numerical Fourier coefficients, 

ak-4, ak+, ak-2,ak-, ,  ak,  say, where 6, = Im(ak}, and equate them to the form in 
(46) to generate six equations for the unknowns, a, 4, ar, 6, v, and T .  We solve these 

- * - * _ *  
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FIGURE 2.  Variation of the parameters in the form fit to (49, performed locally on the Fourier 
coefficients of x(a). The data are taken from numerical simulations with N = 128 points (dashed) and 
N = 256 points (solid). The results are shown for A = 0.5 at time t = 2.1875(Ag)-?. 

equations by Newton’s method. The solution is considered a local fit and labelled with 
the index k .  In this way, we generate profiles for the coefficients in the form fit as k is 
varied. 

Of course we need good starting guesses for the coefficients in the form fit in order 
for Newton’s method to converge. For A = 0.1, and at time t = 1.9(Ag)-;, we use a 
variety of approximations in order to get the first data to converge, including local fits 
to simpler forms, least-squares fits and adjustments by hand on graphical output. This 
process leads to initial guesses for the coefficients that converge under Newton 
iterations. Pugh (1989) also experienced difficulty in obtaining good first guesses. He 
used different methods to get Newton’s method to converge. Once a solution has been 
found for a certain A and certain t ,  embedding may be employed to obtain solutions 
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FIGURE 3. The real part, a,, of the singularity trajectory for various A as a function of time, (Ag); t .  

The solid lines up to t ,  = 2.3(Ag)-r are the predictors of asymptotic theory. The symbol x is the 
extrapolated value at the singularity time determined numerically. 

for other values of A and t .  In particular, for each A ,  we use the results of the previous 
time level to give the first guesses in Newton’s methods for the current time level. 
Similarly, for a new value of A ,  we use the data from the previous value of A as a first 
guess. Thus we are able to generate profiles of the coefficients determined locally over 
six adjacent values of k at fixed values of A and t .  

In figure 2, we show how the coefficients of the form fit vary typically with k for two 
different spatial resolutions. Following Pugh (1989), we find this approach more useful 
in assessing the form fit than an approach based on nonlinear least-squares fit covering 
a range in k .  Spatial resolution is the most important factor in revealing the asymptotic 
form of the Fourier coefficients. Increasing the filter level by two orders of magnitude, 
or doubling the timestep, make no changes to the profiles in figure 2. Four of the 
profiles show clear tendencies of being constant at large values of k before errors 
contaminate the results. In particular, the position of the singularity, a, - is, is 
determined quite reliably. Since 7 appears to be zero, the singularity is a branch point 
with a real exponent. Unfortunately, the value of this exponent is not determined 
reliably. Higher resolution is needed, but the computer costs became prohibitive. Both 
the amplitude, a, and the exponent, v, show a decay to constant values, similar to that 
observed by Pugh (1989) and Shelley (1992) in their studies of singularities in vortex 
sheet motion. Our asymptotic theory predicts the motion of branch point singularities 
with v = 1.5. The decay in v is certainly consistent with this prediction. However, the 
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F I G ~ R E  4. The imaginary part, 6, of the singularity trajectory for various A as a function of time, 
(Ag)2 t .  The solid line is the prediction from asymptotic theory. The dashed lines are a linear least- 
squares fit to the numerical results. Symbols as figure 3. 

asymptotic theory with the special travelling waves predicts a singularity in x(a, t )  only. 
In fact, we find companion singularities in both y(a,  t )  and y(a, t )  that occur in the same 
place in the complex a-plane, but they have amplitudes that are much lower. It seems 
reasonable to interpret them as depending parasitically on the singularity in x(a, t ) .  

As a result of the form fit, we obtain a good approximation to the location of the 
singularity by taking the average value of a, and 6 over a range of k. For A = 0.5, 
shown in figure 2, the range we choose is 30 < k < 40. Slightly different ranges for 
other values of A are sometimes used, depending on the appearance of the profiles 
corresponding to figure 2. Consequently, we are able to track the singularity in time for 
various A .  However, practical considerations impose some constraints. The singularity 
must be close enough to the real axis of a so that sufficient Fourier coefficients have 
values above the filter level. Since the amplitude in the form fit (46) is @I), we must 
have eBk > k2.5 x lo-'', where we assume v = 1.5 and we set the filter level at lo-'*. For 
the first 30 or 50 Fourier coefficients to be above the filter level, we must have S < 1.1 
or S < 0.6 respectively. On the other hand, when the singularity is very close to the real 
axis, the location of the interface and the dipole sheet strength develop small-scale 
oscillations which prevent convergence in the iterative solution of (43). 

In figures 3 and 4, we show the real and imaginary parts of the trajectory of the 
singularity for various A .  Asymptotic theory predicts that the real part of the trajectory 
should remain constant in time. These constants are drawn as solid lines in figure 3 up 
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FIGURE 5 .  Estimates from the numerical calculations for singularity time, t ,  (squares), and the 
location on the real axis, a, (triangles), compared to predictions from asymptotic theory. The dashed 
curve gives the prediction for t,, the solid curve for ac. 

to the critical time t ,  = 2.3(Ag)-; predicted by asymptotic theory. The numerical results 
show that the real parts of the trajectory are almost constant, but have a slight 
tendency to move away from the spike tip at a = n. 

In figure 4, the approach of the singularity to the real axis is shown by a time 
sequence of symbols for several values of A .  The solid straight line is the prediction 
from asymptotic theory for all A .  For values of A close to 1, we observe a tendency 
in the trajectories to slow down as they approach the real axis. When the singularities 
are more than 0.5 away from the real axis, then the trajectories are close to asymptotic 
prediction. The dashed lines show a least-squares fit to a straight line. For A 6 0.9, the 
fit is over all the data shown, but for A = 0.96 and 0.99, the fit is only over the closest 
six points to the real axis. For A 6 0.96, the close fit of the straight lines to the data 
indicate strongly that the singularity will hit the real axis at a time that can be estimated 
by extrapolation. Extrapolated values of the location on the real axis where the 
singularity will occur are also shown in figure 3 as an x at the end of each time 
sequence. Unfortunately, we are unable to continue the calculations for A = 0.99 for 
later times. The interface forms a long thin spike and we need more points to resolve 
its motion. We make no attempt to estimate t ,  for this case. 

We have conducted a range of calculations for various A .  In each case we determine 
extrapolated values for the times, t,, at which the singularities reach the real axis at 
positions, a,. In figure 5 ,  we show how t, and a, vary with A ,  except that we give no 
results for A > 0.96 since we are unable to run our calculations long enough. Also 
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FIGURE 6. Profiles of the vortex sheet strength for A = 0.5 at times (Ag)ht = 1.925, 2.000, 2.075, 
2.1 50, 2.225, 2.300. Profiles with increasing amplitudes correspond to later times. 

shown are the predictions of asymptotic theory. The predictions are very good for 
small values of A .  The loss in accuracy at larger values of A is related to the more 
deformed profile of the interface when the singularity reaches the real axis. The 
interaction between modes in the Fourier spectrum of opposite sign in wavenumbers 
are no longer negligible. 

In figure 6, we show the vortex sheet strength, 7, along the sheet for a sequence in 
time shortly before the singularity formation. We choose A = 0.5, but this case is 
representative. The vortex sheet strength is forming two cusps, consistent with the 
asymptotic theory, and similarly to those found in vortex sheets. 

5.2. A = 1 

When A = 1, we are able to run our code without the need for the spectral filter. 
Eventually, lack of resolution terminates the code. In agreement with the asymptotic 
theory, no singularity was detected near a, = TC during the times for which the 
calculations could be done. On the other hand, the maximum curvature, as shown in 
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FIGURE 7. The growth in the logarithm of the maximum curvature (a = R).  

sat 

figure 7, grows less slowly than exponential. bxamination of the spectrum tor the 
curvature shows that the zero in z, approaches (40), but does not reach the real axis 
in finite time. 

The absence of singularities when A = 1 is explained in the asymptotic theory as a 
coalescence and annihilation of the singularity trajectories (37). This effect is a 
consequence of the choice /? = - A  in the travelling wave solutions. The question arises 
as to the behaviour of the singularities if they are present in the initial conditions when 
A = 1. The next section considers this case specifically 

6. Additional travelling wave solutions 

The travelling wave solutions for the approximate system were found explicitly 
under the choice p = - A  in 94. In this section additional travelling waves are analysed 
for other values of p. For /? =I= - A ,  we must solve (33) to determine the travelling wave 
solution. As remarked earlier, the speed of the travelling wave is identical to the speed 
given by a linear analysis. When w is small, (33) can be written as v 2 w g  = - Agw + O(w2). 
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Once again the requirement that w is upper analytic and 2n-periodic in a implies that 
= -i(Ag)i (or an integer multiple of this) and w - w(0) et as c+ - co. As before, we 

choose w(0) = -m.  
After defining 52 = w / w ,  (33) can be written as 

where 

(48) 
2 + 3pQ + Q 2 +  (2 +pQ) [I + 2pQ+ Q’J; 

F(Q) = l-(A+P)Q 
[1+2pQ+Q~]~(1+pQ+[1+2pQ+Q2]~ )2 ’  

The solution to (47) is then uniquely determined by the condition that Q - --sef for 
c+-Co .  

The equations (32) which express q5 and I) as functions of 52 are still valid when 
p =+= - A .  However, the square-root terms in (32) no longer produce singularities 
when 1 +2pQ+Q2 = 0. The analyticity of these terms in a neighbourhood of 
1 + 2pQ +a2 = 0 can be verified by rewriting (47) as a differential equation in the 
function u = [1+ 2pQ + Q2]i. This results in an equation of the form u5 = g(u), where 
g(u) is analytic in a neighbourhood of u = 0 provided p += - A .  The analyticity of u near 
u = 0 immediately follows. Since Q is also analytic near u = 0,2$ = 1 +Q+u and 
2$ = 1 - Q + u must also be analytic. 

Although singularities are no longer present when 1 + 2pQ + Q2 = 0, other 
singularities can occur in Q(c) when F(Q) = 0, Q = 00, or Q/F(Q) = 0. We now 
examine each of these possibilities : 

(i) F(Q) = 0: For A $. 1 there are two simple roots of F(Q) which occur 

The sign of the root depends on the particular branch of [ 1 -t 2/3Q + Q2]4 i.e. given A 
and p the root Q+ will correspond to one choice of branch and Q- to the other. A 
method for determining the locations [+ of these roots will be given below. Since the 
roots are simple, it can be shown that the behaviour of SZ5(lJ near c+ is given by 
Q, - c(f-c+)-;.  From (32) we see that the singular behaviour of Q, near [+ leads to 
similar behiviour for Qlf and kf. As a consequence the interface z(Q possesses a 
curvature singularity of the form zs5 - c,(c-c+)-;. As P + - A , Q ,  +Ai-i(l-A2)i, 
which is the location of the singularities found in $4. Note also that the two roots Q, 
and Q- become infinite as A --f 1. At A = 1 there are no zeros of F(Q) for finite 0. 

(ii) Q = co : For Q near 00, 

for A =k= 1, and 

for A = 1. The above limits have been calculated assuming the positive branch of the 
square root; choosing the negative branch leads to similar results. For A =b 1 infinite 
values of 52 only occur at infinite values of E ;  while for A = 1 equation (47) is 
approximately 

dQ - 2Q3 

-ig - F p ‘  
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This equation allows singularities of the form a(() - d((-(,)-;, and leads to singular 
behaviour in zg given by z5 - d,(<-<,J;. 

(iii) Q/F(Q)  = 0: As Q+O, F(52) approaches a constant which depends on the 
branch of [ 1 + 2p52 + 52’1; but which is not equal to zero. Consequently, 52, - CQ for 52 
near zero and this in turn implies that 52 = 0 only for finite values of 6. Alternatively, 
F(52) can become infinite for finite values of Q when 

1+2/352+52* = o  (52) 

or when l+p52+[1+2p52+Q2]f=o. (53) 

We have seen that the former situation does not affect the analyticity of the solution. 
The latter situation can only occur when the negative branch of the square root is 
chosen. In that case, (53) has a solution 52 = 0;  however, this value of 52 can only be 
reached for infinite values of 6. Thus, there is no loss of analyticity which is attributable 

In summary, for A += 1 and /3 =k - A ,  singularities arise only where F(52) = 0. The 
singularities correspond to infinite curvature at the interface and have the same form 
as the curvature singularities for /3 = - A ,  A += 1. For /3 + - A ,  the asymptotic theory 
predicts that singularities begin away from the real (physical) axis and move towards 
it with constant speed u, just as in the case, /3 = - A .  

For A = 1, singularities of a different type arise due to S2-t 00. Again the 
asymptotics predict that these singularities move with speed c and eventually reach the 
real axis. 

We can determine the location ( of the singularities for a given value for 52 = 52(Q 
by integration of (47) with the requirement, 52 - - e e-5 as ( + - co. In general, 

to S2/F(Q) = 0. 

c(52) = p m d 5 2 ’  + <(Q,) 
52‘ 

Qo 

F(52’) 1 
= lo, ( 7 - p )  dQ’+ In 52 + (((52,) - In 52,). (54) 

As 52, + 0 the corresponding behaviour of ((52,) is given by ((a,) - 7ci + In 52, -In e so 
that (54) becomes 

((52) = 1, (F-p)d52’+ln52+ni-lne. F ( P )  1 

We choose A = 1, p = - 0.9 as a specific case to compare the asymptotic predictions 
for the behaviour of the singularities with direct numerical solution of the full 
equations. In particular, the location ts of the singularity associated with 52 = 00 is 
found as 

tS = lirn lo (n_--&)dQ’+lnL+ni-lne. F(S2‘) 

L-*m 

Romberg integration is applied to the integral for L = 10,20,40, and we find 
tS + In e = in - 0.1577. Consequently, the trajectory of this singularity, which is an 
inverse square-root singularity in y ,  in the complex a-plane is given by 

a = n + i(0.1577 + In e +&). (55) 

Our code was run with 256 points and a timestep of 0.0125. The tolerance level for 
convergence in the interated solution of the Fredholm integral was kept at lo-’*; there 



Singularity formation during Rayleigh-Taylor instability 7 3  

0.5 

0.4 

0.3 

8 

0.2 

0.1 

a 
I 2.0 2.5 3 .O 

g+ 

FIGURE 8. The distance of the singularity from the real axis when A = 1, p = -0.9. The solid line 
shows the asymptotic prediction ; the circles give the numerical values. 

was no need to filter. Since the singularity moves along a, = n, the form fit is much 
easier to implement. In figure 8, we show the distance 8 of the singularity away from 
the real axis. Also shown is the predicted trajectory. Clearly the singularity is slowing 
down dramatically as it approaches the real axis. It is quite plausible that the 
singularity never reaches the real axis in finite time. 

7. Conclusions 

The asymptotic theory predicts the existence of singularities in the complex plane of 
the Lagrangian variables. A special family of solutions contains singularities that move 
steadily towards the real axis and reach it in finite time. When p = - A ,  this family may 
be expressed in simple terms. Numerical calculations of the full equations confirm this 
behaviour for A < 0.9. However, as A + 1, the singularities slow down as they get close 
to the real axis. Additional nonlinear effects, neglected by the asymptotic theory, come 
into play. Also, the profiles are quite deformed by the time the singularities get close 
to the real axis. 

For A = 1, the special travelling wave solution contains a zero in z, instead of 
singularities through a loss in analyticity. A zero in z, indicates a failure in the 
conformal map between CL and z .  When the zero reaches the real axis, a geometric 
singularity in the interface will occur. Although such a singularity would not be 
revealed in the Fourier spectra or affect the ability of the computations to proceed, it 
would cause a blow up in curvature (cusp) on the interface. Our calculations show that 
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this does not occur. Instead the zero moves towards, but does not reach, the real axis 
in finite time. 

When p =k - A  and A = 1, a travelling wave solution can be found that contains a 
singularity. This singularity moves downwards to a, = x until it reaches the real axis 
in finite time. Once again, numerical calculations show a slow down in the motion of 
the singularity when it gets close to the real axis. 

When A is near or equal to 1, our numerical calculations do not indicate whether the 
singularities reach the real axis in finite time. Nevertheless, we are led to the following 
speculation. For A < 1, the singularity does reach the real axis in finite time, but the 
closer A is to 1, the longer the time. When A = 1, the singularity does not reach the real 
axis in finite time. 
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Appendix A 

We present a brief derivation of the system of localized approximation equations 
appearing in (24). Let z(a, t )  = a + $(a, t )  and write the analytically extended equations 
(15) in the form 

where fls,y](a, r )  = q* = ?(a+g dc, 
z(a, t )  - z(a + c, t )  

G[q,q*,s,s*,y](a,t) = A  

Assume that s and y are analytic in the strip IIm{a}l < p and decompose as in (17), (18) 
so that 

(A 5) 

with s+, s-, y+ and y- defined in (18). 
We first show how the approximation is applied to (A 1). Write the term I[s,y] as 

4% 0 = s+b, t )  + s-(a, 0,  ?(a, 0 = Y+(", t )  + y-(a, 0,  

I[$, Y1 = fls+, ?+I + I[SL 7-1 + as+> s-, Y+, 7-1, (A 6 )  

with 

and a similar expression for I[$-, y-1. Equation (A 6) may be regarded as the definition 
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of the error term E. The assumptions in our approximation imply that the term E is 
negligible. Thus, 

f i s ,  YI - fis,,  Y+l + 4s-7 7-1. (A 8) 

We assume that Is,+(a)l < 1 for Im {a} 2 0. Consequently, Is+(a) - s+(a + 81 < for 
Im {a} 2 0, so that in the upper half-plane of a the only singularity of the integrand in 
q* is at f; = 0. Thus we can equate the principal value integral (A 7) to the sum of two 
contour integrals as 

The first integral vanishes as R + co (see Siege1 1989 for details). The second integral 
can be evaluated by using the residue theorem: 

The factor o f f  comes from integration over a half-circle. 

over a contour in the lower half-plane, yielding 
Similarly, if Is,-(a)l < 1 for Im {a> < 0 then I[s-, 7-1 can be evaluated by integration 

Under the assumptions of our approximation, the other term in (A 1) may be 
decomposed as 

By combining the results (A lo), (A 1 l), (A 12), we find that (A 1) can be approximated 

by 
a P-1 Y+ P + l  Y- -($(a) +s*(a)) = __ ___ +--. 
a t  2 l+s,+ 2 

The projection of this equation onto the space of functions analytic in the upper half- 
plane leads directly to (24a),  namely 

as: - p-1 Y+ 

at  2 i+s,+ 

The other equation may be obtained by projecting onto the space of functions analytic 
in the lower half plane, and by applying the *-operator. Recall that the *-operator 
switches + components to - components (20), and that 7: = y -  (21). Thus, 

The approximation to (A 2) is derived in a similar fashion. First, we write 

* * * G[q, q*, S, s*, Y ]  = G+[q+, 4-3 s+, s l ,  Y+I + W q - 7  q+, s-9 s+, ?-I, 
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G+[q+, q*, s+, s*, y+l = A &( l+  s,+) + qt+( 1 + s,*_) 

where 

- ig(s,+ - sz-)]+ 

G-[g_, q+*, s-, sT, y-] is defined similarly. 
We may differentiate (A lo), (A 11) with respect to t ;  

In addition, we differentiate (A 14), (A 15) with respect to a, and the results, combined 
with (A 17), may be used to obtain the intermediate result 

Finally, by substituting (A 18), (A 19) into (A 16), and simplying, we obtain 

Equation (24c) follows by projecting this result onto the space of functions analytic in 
the upper half-plane. Since y- = y:, an equation for dy-/dt is unnecessary. 

Appendix B 

First we describe the numerical construction of the initial profiles (35)  to the 
travelling wave solutions (32), (34). By expanding the square root with the help of the 
software package MATHEMATICA, we obtain 

[1+2A7f72]t= 1+c akrk ,  (B 1) 
k=l 

where the first few values of the coefficients are 

1-A2 A(l - A 2 )  

(1-A2)(l-5A2) A(1 -A2)(3-7A2) 

2 '  
a , = A ,  a 2 = -  , a s = -  

8 
7 a5 = a = -  

8 4 

Since 7 = 6 exp (ia) determines the initial profiles, we obtain 

ekak 
4%) = a + C sin (ka), y(a)  = H +  ~ C O S  (a)  

k = l  

y(x) = pa(.) = - 2e(~g)a sin (a). 

From (36), we find H = -0.5e2A. 

I 
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Unfortunately, close to 30 terms are necessary to specify the initial profile with the 
accuracy available in double precision on a CRAY YMP computer. Consequently, we 
determined the initial conditions by spectral techniques. The Fourier coefficients for 
x,,y,,p, may be determined directly by use of the fast Fourier transform. Their 
integrals may then be performed analytically, and evenly spaced points along the 
interface determined through the inverse fast Fourier transform. Typically, the number 
of points used in the discrete transforms was the same number used in the calculations 
of the evolution of the interface. Since a filter level no lower than lo-'' was used in the 
evolution of the interface, only about 18 terms are truly necessary. In fact we observed 
no significant changes in the results if only two terms were used. In conclusion, the 
initial condition was determined sufficiently accurately for the purposes of our study. 

The series representation (B 3 )  did prove useful in determining the profile predicted 
by linear analysis of (7), (8) and shown in figure 1 ; 

etak . 
x = a + A E  exp ((Ag); tj sin (a) + C -sin (ka), 

y = - ; E ~ A  + E exp {(Ag); t} cos (a). 

k=2 k 

Only a few terms in the sum are needed for plotting accuracy. 
To obtain the profiles for the predictions of standard linear theory in the Eulerian 

frame, we first determine the values of a that give evenly spaced values for x. 
Then we evaluate y ,  y at these values of x, and by using the discrete Fourier 
transform, we obtain their Fourier coefficients. According to the linear theory, if 
y = Ccos (kx ) ,  y = 2(Agk)iD sin (kx )  initially, then 

y = 0.5(C-D) exp {(Agk); t }  cos (kx)  + 0.5(C+ 0) exp { - (Agk); t }  cos (kx) .  

Consequently, the amplitude of each mode can be determined and the profile 
constituted by an inverse discrete Fourier transform. Plotting accuracy is obtained for 
t = 2.O(Ag)-a with 16 modes. 

To obtain the profiles for the predictions of the asymptotic theory in this paper, E is 
simply replaced by cexp{(Ag)a t }  in (55) .  It can be shown that the asymptotic equations 
(26) preserve the mean height of the interface. Consequently, H = - 0.52 exp (2(Ag)t t ]  
in (55) .  
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