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Moore 's  approximation method,  first formulated for vortex sheets, is generalized and applied to axi-symmetric flow 

with swirl and with smooth initial data. The approximation preserves the forward cascade of energy but neglects any 

backflow of energy. It splits the Euler equations into two sets of equations: one for u .  = u+(r, z, t) containing all 

non-negative wavenumbers (in z) and the second for u = ~i+. The equations for u+ are exactly the Euler equations but 

with complex initial data. Traveling waves solutions u+ = u+(r, z - io-t) with imaginary wave speed are found numerically 

for this problem. The asymptotic properties of the resulting Fourier coefficients show a singularity forming in finite time at 

which the velocity blows up. 

I. Introduction 

In three-dimensional inviscid, incompressible 

flow, the vorticity can grow through vortex 

stretching, and it is possible that singularities 

(infinite vorticity) may develop in finite time 

from smooth initial data. The interest in these 

possible singularities is mathematical, numerical 

and physical: Singularities in any solutions of the 

three dimensional Euler equations would pre- 

vent establishment of global existence theorems. 

Special numerical methods would be required for 

singularities or nearly singular behavior in nu- 

merical solutions. Finally, singularity formation 

may be a primary mechanism for transfer of 

energy from large to small wavelengths and thus 

an essential ingredient in the onset of turbu- 

lence. Moreover  singularities, which can be de- 
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scribed through a small number of parameters, 

may provide the simplest possible description of 

a complex flow. 

The main analytic result on singularity forma- 

tion in 3D is that of Beale, Kato and Majda [7], 

who showed that 

Hu(. ,  t ) [ l s -  < q~(l lu( . ,  0)Its, f s u p  IoJ(x, t')l d t ' )  
x " 

0 

(1.1/ 

for some smooth function q~ and for any Sobolev 

norm I1" IIs with s -> 3. This establishes that if any 

smoothness is lost at time t , ,  then in fact So maxx 

1o~ I dr' = ~. A similar result, that loss of analyti- 

cally implies blow-up of vorticity, was proved by 

Bardos and Benachour [6]. For inviscid, incom- 

pressible flow in two dimensions, an initially 

smooth velocity field u (x, 0) will stay smooth for 

all time due to the conservation of vorticity. 

The numerical search for singularities was star- 

ted on the Taylor -Green  flow [10], for which the 
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results indicatc a singularity for a complex value 

o f t  but not for real t. Experimental  results 

showing vortex reconnection for high-Reynolds 

number  flows inspired a study of singularities for 

a filament model of two interacting vortex tubes 

bv Siggia [381 . The singularities in this model 

equat ion arc smoothed out however due to fiat- 

tening of the vortex cores, as seen in computa-  

tions of Anderson and Greengard  [21 , Pumir and 

Siggia [311 and Shelley, Meiron and Orszag [36]. 

More recently Kerr [231 presented a new set of 

computat ions  for this problem which exhibit in- 

tensification of w)rticity that may indicate singu- 

larity formation.  Several related studies of singu- 

larity formation arc in [8 ,9 ,16-18 ,39] .  

Swirl in axi-symmetric flows amplifies vorticity 

by stretching, and the axi-symmetry may prevent 

core flattening, so that such flows seem a likely 

candidate for singularities. Grauer  and Sideris 

[20[, Meiron and Shelley [26] and Pumir and 

Siggia [32] have performed computat ions of axi- 

symmetr ic  flow with swirl that show significant 

w~rtex stretching but no singularities within the 

computat ional  time. In [32] however,  an adap- 

tive numerical method,  with nonlinear scaling of 

x and t, was used on an asymptotically reduced 

cquat ion to produce singularities for axi-symmet- 

ric flow with swirl. Some critical remarks on the 

results of [32] are presented in [43]. 

The present study of axi-symmetric flow with 

swirl is motivated by the computat ions of ( 'a-  

tlisch, Li and Shelley [12] for axi-symmetric, 

swirling vortex sheets, with w~rticity mainly m 

the ,; direction. The sheet is destabilized by 

adding a vortex line on the axis of symmetry with 

vorticity in the ~ direction. This basic flow is 

drawn figuratively in fig. la. Nonlinear computa-  

tions in [12] then show reconnection of the sheet 

with itself and with the vortex line. 

The basic flow in the present study is a 

smoothed  version of that vortex sheet problem. 

To avoid geometric  singularities at r - 0  and 

r ~ the flow is put in an annulus I < r < 3. The 

w~rtex line is included through an azimuthal 

velocity u,  - F/2"rrr, which can also be thought 

Fig. I. (a) An ax i - symmct r ic ,  swir l ing vor tex sheet  x~ith :t 

vor tex  line on the s y m m e t r y  axis. (b) Sn loo lh  swir l ing flow in 

an annu lus ,  fo rmed  by s m o o l h i n g  out  the vor tex s h c e l  

of as w)rticity on the boundary r = 1. The w~rtex 

sheet is replaced by a smooth rotational shear 

layer of small amplitude, so that the resulting 

basic flow is 

.t,-t ( )0 
~"lT r 

(1.2) 

with vorticitv 

~ ) ( r ) -  r la (rul(r)) ,~, ( I .3) 

which is primarily in the +~ direction to make 

the flow unstable. The geometry of this flow is 

sketched in fig. lb and determined in section 4 

below. 

The Eulcr solution found here consists of a 

c o m p l e x  va lued  velocity field u that is a small 

per turbat ion of ti. The velocity field u is periodic 

in z and contains inward and outward radial jets 

accompanied by rolls in the r - z  plane. The 

determinat ion of these perturbations is described 

in section 4, and the real part of the flow is 

drawn in fig. 2. The singularities found in this 

study correspond to infinite values of the radial 

and axial velocity and occur at the centers of 

these rolls. In contrast the singularities of Pumir 

and Siggia [32] occur at the tips of the outward 

jet. 
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Fig. 2. Streamlines in the r-z plane for the unstable mode. 
Singularities in complex Euler solutions are found at the 
centers of these rolls. 

numerical method that is very accurate but ex- 

tremely unstable; growth of round off error is 

controlled by using a multi-precision package 

MPFUN developed by Bailey [3,4] which allows 

precision of arbitrarily high order. Round off 

error levels of 10 -64 and 10 ~28 were employed in 

the computations described below. 

The computation is performed for fk(r) ,  the 

k-wavenumber (in z) component of the radial 

velocity. There is no singularity in fk(r) for finite 

k; rather singularities are detected through the 

asymptotic properties of fk as k--* 00, as in [40]. 

This procedure is described in section 6. 

The resulting singularity in the radial velocity 

u r has the form 

Ur ~ ( 2  __ 7" q- i~') -1/3 , (1.4) 

The motivation for considering complex- 

valued velocity fields comes from a generaliza- 

tion of Moore's approximation. Derived by 

Moore for the Kelvin-Helmholtz problem 

[27,28], this method has been generalized to 

additional fuid  interface problems by Caflisch, 

Orellana and Siegel [15], and in section 2 it is 

formulated as a general approximation for singu- 

larity formation. When applied to the Euler 

equations for axi-symmetric flow with swirl, the 

velocity u is split into two complex velocities u+ 

and u = t/+, in which u+ consists of the non- 

negative wavenumber components of u. The 

complex velocity u+ (as well as u ) evolves 

according to the Euler equations (without any 

changes), so that Moore's approximation leads to 

the same Euler equations for axi-symmetric flow 

with swirl but with complex initial data. 

The special solution u+(r, z,  t) found here is a 

traveling wave u+ = u+(r, z - i o ' t )  with an im- 

aginary wave speed, which is motivated by the 

traveling wave solutions discovered by Siegel 

[5,37] for Moore's approximation to the 

Rayleigh-Taylor problem. Singularities move in 

from the complex z-plane at speed io- and occur 

physically when they hit the real z line at finite 

real time t. The solution is found through a 

in which 7/ and ,~ are orthogonal spatial coordi- 

nates and 7- is a scaled time coordinate, all 

centered at the singularity. The simplicity of this 

singularity form may indicate that it is generic 

for this problem. 

The complex-analytic approach to singularities 

used here follows similar earlier investigations on 

a variety of simpler problems; including the 

Kelvin-Helmholtz problem [14,25,27,28,35], the 

Rayleigh-Taylor problem [5,29,30,42], the 

Hele-Shaw problem [22,41], and nonlinear hy- 

perbolic or elliptic systems with exactly 2 speeds 

[11]. For the first two problems, Moore's approx- 

imation was shown to give excellent predictions 

for the time, location and type of singularity 

formation. For nonlinear hyperbolic (or elliptic) 

systems, a method was developed for "unfolding 

singularities" and the generic (stable) types of 

singularities were found in [11]. 

2. Moore's approximation 

As presented here, Moore's approximation is 

a general method that can be applied to singu- 

larity formation problems. It is based on the 

following consideration of energy cascade and 
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invcrsc cascade due to non-linearitics. Since e ~k: 
il: i ( /  ~ k  ) :  

c = e . the action of nonlinearity on 

wavenumbers  k and 1 is to add them to get 

wavenumber  k + 1. Decompose  these interac- 

tions into two groups: 

(i) energy outflow (forward cascade). If 

sgn(k) = sgn(l) (2.1) 

then Ik + l[ > max(lk[ ,  Ill) so that energy is flow- 

ing out to higher wavenumbers .  

(ii) energy baekflow (inverse cascade). If 

approximat ion is 

AIuI~A[+,,I  + AIr, I. (2.5) 

The neglccted terms all arc nonlinearities involv- 

ing both u+ and u , i.e. both positive and nega- 

tive wavcnumbcrs .  

More generally it 

u u ~ + u +  + ++ (2.6) 

in which u~, is constant in z, then Moore 's  ap- 

proximation is 

sgn(k) - s g n ( l )  (2.2) 

then Ik + I I  < max(lkl ,  lit) so that energy is flow- 

ing back to a smaller wavenumber .  

A smooth function (analytic in a finite strip) 

u(z) has very little energy at high wavenumbers .  

As a singularity forms, however,  energy flows 

out to high wavenumbers .  Thus we expect the 

singularity formation to be dominated by energy 

outflow which is much stronger than the energy 

backftow. The approximation here is to neglect 

energy backflow. This cannot be valid for a 

steady state, in which outflow and backflow must 

balance,  but it is expected to be at least quali- 

tatively correct for the transient problem of sin- 

gularity formation.  

According to the classification (ii) above,  

Moore ' s  approximation then amounts to neglect- 

ing interactions between positive and negative 

wavenumbers .  This can be formulated mathe- 

matically as follows: Suppose that 

u(z)  = u , ( z )  + u ( z ) ,  (2.3) 

k .o  

u ( z ) =  ~ l~ e 'k: (2.4) 
k II 

assuming at first that u has no constant term. If 

A is an opera tor  (linear or non-linear) which is 

analytic in u and with A[0] = 0, then Moore ' s  

A[u I ~ A[u~ + ",,I + A[u e ", ,1 AIu,,I- 

(2.7) 

This will be applied to thc equations for axi- 

symmetr ic  flow with swirl in the next section. 

Note that the notation u+ is used sometimes for 

the sum of all the positive wavenumbers  (not 

including u~) and other times for the sum of all 

the non-negative wavenumbers  (including u,,). 

The validity of this approximation for singu- 

larity formation problems has not been rigorous- 

ly established. For the Kelv in-Helmhol tz  {351 

and Rayle igh-Taylor  [5] problems,  however,  

comparisons between solutions of Moore 's  ap- 

proximation and of the full problem show excel- 

lent agreement  for the time. location and type of 

singularity, as well as the overall shape of the 

solution. Moreover  in the latter problem,  the 

singularities occur at times when the solution has 

large per turbat ions in its shape and is fully non- 

linear. A related approximation method has 

been used in a variety of other problems [19.21]. 

On the other hand Moore ' s  approximation can 

be easily used to show that singularities do not 

form in the original problem if they do not form 

for Moore ' s  approximation,  since ignoring the 

energy backflow biases the problem in favor of 

singularity formation.  For example in 1131, the 

solution of the B i rkhof f -Ro t t  equation for the 

Ke lv in -He lmhol tz  problem was shown to remain 

smooth as long as the solution of Moore 's  ap- 

proximation remains smooth.  
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3. Axi-symmetric  flow with swirl 

In this section, the equations for axi-symmetric 

flow with swirl are formulated, Moore 's  approxi- 

mation is applied to them and, finally, traveling 

wave solutions with imaginary wave speed are 

investigated. 

In primitive variables u = (Ur, UO, Uz) and p 

the equations for axi-symmetric flow with swirl 

are 

1 
Ozu z + r Or(rUt) = 0 ,  (3.1) 

O,U z + u ' V u z  = - O ~ p ,  (3.2) 

O,Ur 4- U ' V U  r --  r - l u ~  = - - O r p ,  (3 .3)  

O,U o + u ' V u  o + r  IUrU o = 0 ,  (3.4) 

in which u .V=  u.Oz + UrO r. The vorticity is 

, o  = (o~r, ,o0, , o . )  

= ( - - O z U o ,  Ozl~l r -- Orl~z, r- 'Or(rUo) ) . ( 3 . 5 )  

3.1. M o o r e ' s  approximat ion 

Denote  the system (3.1)-(3.4)  as 

E[u] = 0 (3.6) 

and set 

u = u + + u  + u  o (3.7)  

in which 

u+ = u+(r,  z,  t) = ~ ,  gtk(r, t) e ikz (3.8) 
k > 0  

u_ = u  ( r , z , t ) =  ~ ,  t i k ( r , t )  e ikz (3.9) 
k < 0  

uo -- a ( r )  = a o ( r )  o . (3.10) 

Moore 's  approximation is to replace (3.6) by 

E[u+ + u o ] + E [ u  + U o ] - E [ u o ] = O .  (3.11) 

Since E[uol, E[u+ + u o l - E [ u 0 ]  and E[u_  + 

uo] - E[uo] consist of all zero, all positive and all 

negative wavenumbers respectively, then each of 

them must be zero separately, i.e. 

E[u+ + uo] = 0 ,  (3.12) 

E[u_  + u0] = 0 ,  (3.13) 

E[u0] = 0 .  (3.14) 

The equation (3.14) for u 0 is satisfied for any u o 

of the form in (3.10). Moreover  if u is real, then 

u 0 is real and u = ti+, so that it suffices to solve 

(3.12) for u+. The corresponding real velocity 

field is then 

U =  U o + U +  4 - U _  

= u 0 + 2 R e ( u + ) .  (3.15) 

3.2. Traveling wave solutions 

For simplicity redefine the notation so that 

u = u o + u+ = ~ ti~(r, t) eik: (3.16) 
k = 0  

Following Siegel [37] look for a traveling wave 

solution with an imaginary wave speed 

u = u ( r ,  z - io-t) 

oc 

= ~ tik(r ) e i~z+~k' (3.17) 
k = 0 

Such solutions can also be thought of as consist- 

ing of pure growing modes and are partly moti- 

vated by a set of solutions for the Hele -Shaw 

problem derived by Saffman [22, 34]. Such solu- 

tions are only possible if u is complex. For such a 

traveling wave the Euler equations (3.1)-(3.4)  

become 

- 1  
a zU z 4- r O r ( r U r )  = O , 

- iO'3zU z + u . V u  z = - O z p  , 

-1  2 
- i~rOzu r +  u ' V u  r -  r u o = - O r p  , (3.18) 
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icrO:u o + u " ~ u ,  + r luou , . = 0 .  (3.19) 

Since u will be a per turba t ion  of  the basic flow 

u(r)  write 

oo; i K u ' ,  . 

[ - t 
~o: r d r ( r U  o ) . 

w'~ iK '(Ku' + D ) .  (3.27) 

u = K + u ' ,  p f i + p ' .  
(3.2(I) Expand  u '  r in a Fourier  series as 

Also  to r emove  the i's denote  

u ' . = i U '  , K =  ii~,. (3.21) 

The  equat ions  for u '  are then 

r L O , ( r u ' )  - KU' ,  = 0 , 

c r K U '  + K p '  = A , 

¢ r K u  I - 2 r  ll~ol4' " + O r p '  = B , 

crKu 0 + w:u ;  - C ,  (3.22) 

in which the nonl inear  terms are 

a - ( U ' K  - u;Or)U' :  , 

B = ( U i K -  u ; O r ) u ;  + r 'u;,'-, 

C = ( U ' . K  U ; O r ) l : l ;  - -  r IU;14[; 

= U : K u ;  c o : u ; .  (3.23) 

The  system (3.22) can be simplified to a single 

second  order  equat ion  for u:  as 

O~[r 1Or(rtA:) ] [ K :  + K(r) lu;  = D , (3.24) 

in which 

2 u  o w .  
K(r) 2 (3.25) 

or  r 

D =  ~r l ( O r A - -  K B ) -  2t7°, C .  (3.26) 
O" r 

The  remaining  componen t s  of  velocity and vor- 

ticity are expressed in terms of  u'r as 

u', = i U '  = i K  l((~rlZl' r -~ r 'U'r) , 

U; -- cr I K  I(--ff) U; + C ) ,  

.;(r, z) = (" L(r) e'* (3.28) 
k = o  

The  equat ions  for J~ are then f rom (3.24) 

I 
L k f k - = i % l r  r,.(r]k)] ( k e + K ) L  Da (3.29) 

for  k = 1,2 . . . .  and 1 -<- r ~ 3, in which D,  is the 

k th  Four ier  coefficient of  D. The boundary  con- 

dit ions are 

j ~ , ( r = l ) = j ~ ( r  3) 0 .  (3.31)) 

The  infinite system of  O D E ' s  (3.29), (3.3(t) are 

the equat ions  that will be solved numerical ly to 

p roduce  a solution of  the axi-symmetric  Euler 

equa t ions  with swirl. 

Several significant advantages  have been 

gained by restricting at tent ion to solutions with 

only non-negat ivc  wavenumbers  k and to travel- 

ing wave solutions: 

(i) The  original equat ions  in three space and 

one t ime variable,  have been reduced to one 

space and one wavenumber .  

(ii) Since D is purely quadrat ic  in u I and since 

the wavenumber s  in u '  r are all positive, then 

* " . . . .  ) . ( 3 . 3 1 )  

This shows that the coupl ing between the equa- 

t ions in (3.29) is only in one direction. Therefore  

any finite number  of  componen t s  )~ . . . . .  J~ can 

be c o m p u t e d  without  reference to ,f) for l > k ,  

i.e. wi thout  t runcat ion error.  

(iii) As  a special case of (ii), D~ = 0 ,  so that J; 

satisfies 

L1J'l = 0 . (3.32) 
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This  is exact ly  the equa t ion  for  a l inearly un- 

s table  m o d e  u r ( r , z ,  t ) = f l ( r ) e  iz+~' a round  the 

s teady  swirling flow u = Uo(r ) 0 with growth  rate  

0-. A sui table  s teady flow and growing m o d e  will 

be  d e t e r m i n e d  in the next  section.  

(iv) The  t ravel ing wave  speed 0. is thus de- 

t e rmi ned  f rom the l i near  eigenvalue  p rob l em 

(3.32) and is i ndependen t  of  the ampl i tude  of the 

t ravel ing wave.  This  r e m a r k a b l e  p rope r ty  of  

u p p e r  analyt ic  t ravel ing waves  was d iscovered  by 

Michael  Siegel [37] and is in m a r k e d  contrast  to 

usual  non l inear  t ravel ing wave  p rob lems ,  for  

which the de t e rmina t ion  of the wave  speed  is the 

mos t  non l inear  part .  

(v) Since u = u( r ,  z - i0.t) is a t ravel ing wave 

with imaginary  wave  speed,  singularities t ravel  in 

the complex  z p lane  at speed i0.. Thus  a singu- 

lari ty with imaginary  c o m p o n e n t  p = - I m ( z )  at 

t = 0  will hit the real z line at t = p/0..  The  

singulari t ies posi t ion should also depend  on r, 

i.e. P = p ( r ) ,  and the first singularity will occur  

for  r which minimizes  p ( r ) ,  as indicated in fig. 3. 

Thus  a singulari ty will occur  at a real ,  finite 

space  and  t ime point ,  if the c o m p u t e d  initial data  

u ( r ,  z )  has a singulari ty at any complex  value of  

Z .  

-0.1 

-0.2 

-0.3 

-04 

-0.5 

-0.6 

-0 7 

-0.8 
I 2 3 4 5 6 

Real z 

Fig. 3. Singularity positions in the complex z plane. For each 
value of radius r, there is a symmetric pair of singularities on 
these curves. 

4. The steady flow and its unstable mode 

T h e  e igenvalue  p r o b l e m  (3.32) for  fl and 0. 

m a y  be difficult to solve in general .  H e r e  we 

fo rmu la t e  a special direct  p rocedure  by which f l ,  

o- and the s teady state ~o(r)  are de t e rmined  with 

a m i n i m u m  of  numer ica l  approx imat ion .  Rewri te  

(3.32) and (3.25) as 

(L  - 1)f~ 
K f~ (4.1)  

and 

2 1 
K = ~ Uo¢O z = ~ Or(rtto) , (4.2) 

0 . r  c r r  

- I  
in which L = Or(r Off). Then  

t~o(r ) = r -1 0. 2 r3K(r)  d r  + [ r l u o ( r , ) ]  2 

rl 
2 

0. rK 

d ~ z ( r ) -  2 a  ° (4.3) 

T h e r e f o r e  if f l ( r  ) and or are specified, then  (4.1) 

de t e rmines  K in t e rms  of f1  and (4.3) de te rmines  

ti 0 and o3. T h e  only restr ict ion is that  the quant i -  

ty inside the square  root  for  t~ 0 must  be  posit ive.  

T o  insure this a special choice of  fl and 0- is 

made :  The  uns table  m o d e  f l  is a smoo thed  ver-  

sion of the  uns table  m o d e  3~ for  a vor tex  sheet  

p r o b l e m ,  and 0- is the cor responding  growth  rate.  

Cons ide r  the p r o b l e m  of a cylindrical swirling 

vor t ex  sheet  at r = r 0 and with a background  

ro ta t ing  flow inside an annulus r 1 < r < r 2. The  

circulat ion is F 1 inside the sheet  and F 2 outs ide 

the  sheet ,  i.e. 

~ F 1 / 2 n r  ' rl  < r < r° ' (4.4) 
Uo = [ F z / 2 n r  ' r o < r < r 2 .  

Accord ing  to Rayle igh ' s  cr i ter ion,  if IFI[ >IF21 

this swirling flow is unstable ,  and the k = 1 un- 

s table  m o d e  has radial  veloci ty 

~r ( r ,  z ,  t )  = a f ( r )  e iz+~` (4.5) 
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The  ampl i tude  a is arbi trary,  and the velocity 

profile f ( r ) ,  derived in appendix B, is given by 

{ b l l l ( r ) - b 2 K l ( r ) "  r l < r < r ° "  (4.6) 

f ( r ) =  b~l~(r)  b 4 K , ( r  ) r o < r < r , ,  

in which 11 and K~ are the modified Bessel 

funct ions [1 ], 

bl _ c r K l l ( K l l l l t  I _ I I I K , I  ) i 

h~ - ( rKI : (KI~I I I  , -  I teKio  ) 1 

b ~ -  b l l l l / K i i  , 

b 4 - b ~ l l ~ / K  I. , (4.7) 

and the nota t ion 

11i-- ] l ( r i )  , K l i =  ! , ( r , )  (4.8) 

is used. The  growth rate for this mode  is given 

by 

q S ( r l ) - - - 1 ,  & ( r ~ ) - I  . (4.13) 

If & is m o n o t o n e ,  then j~ > 0 for r t < r < r~ since 

f > O .  

In order that the ratio ( L - 1 ) J l / j  ~ makes 

sense,  several condit ions must be met. Using 

a , l  I - 1 ,  r J l  1 , 

a~K I -  K, r tK I ,  (4.14) 

calculate 

( L  l ) J ~ - ( & ~ , . -  r ~&,) 

x ! l ( b ~  - t , , ) l ,  (b~ - b ~ ) K , l  

+ q S r l ( b ; - b , ) l , , + ( b 4  b~)K,,I  . 

(4.15) 

Since j~ vanishes at r -  r I and r = r~, also L 1J't 

must  be zero there:  it suffices to require 

Cv= _+ ~ k / ~ ~ ,  (4.9) ~ , r = q 5  = 0  at r = r  I a n d r = r , .  (4.16) 

in which 

b - - ( K , , l , , ,  I, IK , , , ) (K I : I , ,  , -  I l z K , , , ) ,  

c -  K l l 1 1 2 - 1 1 1 K w _ ,  

G = (F~ - F - ] ) / ( 2 ~ r f .  (4.10) 

For  the unstable mode  in the smooth  problem,  

take f~ to be a s m o o t h e d  version of  j7 i.e. 

/ ) ( r )  - e~(r) l l ( r  ) - / 3 ( r )  K , ( r )  (4.11) 

in which ~ goes smooth ly  f rom b 1 to b s and /3 

goes smooth ly  f rom b~ to b 4. Set 

~ ( r )  ' ~ ( b , + b s ) +  ½(bs - b , )ch( r )  , 

/3(r) = ~(b 2 + b4) + ½(b 4 b2)ch(r ) , (4.12) 

in which 4~ goes smoothly from -1  to 1 as r goes 

from r, to r~, i.e. 

A function 4~ satisfying (4.13) and (4.16) can 

be chosen,  in terms of  an odd function tO,,. as 

dp(r)= c d k o ( p )  (c~p + c2p~)  . (4.17) 

in which p E (  1,1)  for r E ( r ~ . r ~ )  and 

G , - ( t ) 0 ( 1 ) -  tO/,(1)+ ',t01',(l)) ' 

c ,  = c , , ( + [ , ( 1 ) -  ! # , i ; ( 1 ) ) ,  

c, = G , ~ ; ( 1 ) / 6 .  (4.18) 

A suitable choice for p(r )  and 4to(p) is 

( r - r , )  r r o r -  r 2 + (4.19) 
p ( r ) -  r,  r~ . r  l -- r ,  r,  r .  

0o(P) = tanh( p / 6  ) .  (4.2(i) 

so that 
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q,; = ( 1  - 4 , ~ ) / a ,  

q/o = - 2 qJo Oo/ 6 , 

Off = - 2 ~ ( 1  - 3 0 2 ) / a  2 , 

q/o' = - 2 ( - 8 g ' o  + 12q '3)q 'o /6 '  (4.21) 

following computat ions,  the modified Bessel 

functions are evaluated through a series expan- 

sion, and the integral in (4.3) is evaluated using 

4th-order accurate finite difference-like for- 

mulas. 

with the arbitrary paramete r  6 representing the 

thickness of  the rotational shear layer (smoothed 

vortex sheet) at r = r 0. 

In particular the limiting values of 

K = ( L  - l ) f l / f l  at r = r 1 , r 2 are computed from 

l 'H6pi ta l ' s  rule as follows: Using (Kl Io  + 
) (  ) --1 

KoI  1 r = r , 

5. Numerical method 

The numerical method for solving the system 

of 2-point boundary value problems (3.29), 

(3.30) is summarized as follows: 

5.1. Discre t i za t ion  

{ b l ( K l l r ~ )  -1 i = 1 , 

O r f l ( r =  r s ) =  b3(K~2r2)_l ' i = 2  

O, (L  - 1) f  I 

{ K~21b3, 
m l ~ t ) r r r ( K 1 2 1 1 1  - -  l 1 2 K l l  ) g l l l b l  ' 

i = 1 ,  

i = 2 ,  

so that 

K(rl ) = 1 ~rlgarrr(K,21,1 - I 1 2 K l l ) K ,  lb3/ (K12b1)  

K ( r 2 )  = l ~r2~rrr(K12I~ -- I12K11)KI2bl / (K11b3)  , 

(4.22) 

in which 

(~rrr = ~JttrDt3 ( 4 . 2 3 )  

a t  r = r 1 o r  r = r 2. 

To summarize,  for any choice of the parame-  

ters rl ,  r0, r2, ~I, /2, • and a, satisfying r I < r 0 < 

r 2 and IF 1 I >  ]F2I, there is an unstable mode fl 

and growth rate o-given by (4.11) and (4.9). The 

corresponding steady flow fro(r) can be computed 

through a single integration from (4.3), in which 

the function K(r) = ( L  - 1)L/fl is given by (4.15) 

for r~ < r <  r 2 and by (4.22) at the endpoints 

r = r 1 or r = r 2. There  is a restriction that ti 0 is 

real, i.e the quantity inside the square root in 

(4.3) must be non-negative,  which is the case for 

the choice of parameters  used below. In the 

A 4th-order finite difference method is used 

for the r -dependence,  with centred differences in 

the interior and one-sided differences at the 

boundaries.  The extra terms near  the edges are 

first removed  by Gaussian elimination, so that 

the resulting linear system can be solved with a 

pentadiagonal  solver. The number  N r of points in 

r is 512, 1024 or 2048 in the computat ions pre- 

sented here. 

The computat ion is for a finite number  N z of 

wavenumbers ,  with N z = 64 in the computations.  

The  nonlinear terms D k on the right side of 

(3.29) are evaluated by an accelerated method 

involving both direct and pseudospectral  sums, 

as described in appendix C. As pointed out in 

section 3, there is no truncation error in the 

restriction to finite N z. Also since D is quadratic, 

anti-aliasing (i.e. padding with enough zeroes) 

completely  eliminates aliasing error from the 

pseudo-spectral  part  of the computat ion.  The 

resulting complexity of the algorithm is 

Nr N3/2 log N z. 

5.2. R o u n d - o f f  error  

The k-dependence  of the system (3.29) turns 

out to be extremely unstable so that roundoff  

error  is amplified and may ruin the computation.  

This is similar to the amplification of roundoff  

error  found in vortex sheet computat ions by 
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Krasny,  where the computa t ion  was stabilized by 

filtering [25] or  smooth ing  [24]. Filtering is inef- 

fective here because the problem is not periodic 

in r (this could perhaps  be ove rcome  using a 

Chebyshev  representa t ion) :  smooth ing  is too 

crude to allow detect ion of  singularities. 

The  roundof f  er ror  problem was ove rcome  

th rough  high precision computa t ion  using the 

mult iple precision package M P F U N  developed 

by David  Bailey at N A S A  A m e s  Research Cen-  

ter  [3,4]. This package allows arbitrary spec i fed  

precision and includes a t ranslator  that converts  

a s tandard  For t ran  p rogram into one that calls 

special subrout ines  for multiplication and other  

built-in functions.  For  N, = 512, quadruple  preci- 

sion with roundof f -e r ro r  ~-,. ~ 10 >, available on 

an IBM 3090 running A I X  was found to be 

sufficient. For  N,. = 1(124 and 2048, roundof f  

e r ror  e, = 10 ~,4 and 10 12s respectively was used. 

The  instability with respect  to k, as well as its 

e l iminat ion for sufficiently small a,., is illustrated 

in fig. 4. This graph shows max,j~.(r) vs. k 

c o m p u t e d  with N, = 5 1 2  for single precision 

(s, ~ 10 7), double  precision (,', ~ 10 ~4), quad-  

ruple precision ( ~ , ~  10 -'~) and multiple preci- 

sion using M P F U N  with 10 ,~4, the last two of  

which are indistinguishable.  

5.3. Choice q['parameters 

The computa t iona l  results here are for the 

fol lowing choice of parameters  in the basic flow 

z~, (0th mode)  and 1st mode  .ft. as described in 

section 4: 

1] = - 1 . 0 ,  / i - ( ) . 1  , 

0 . 3 ,  a-- 0 .028,  

r I : 1 , r , , - 2 ,  r , - 3 .  

This put the singularity time close to () to give a 

g o o d  range for the Fourier  coefficients. 

6. C o m p u t a t i o n a l  resul t s  and  s ingular i t i e s  

The  numerical  computa t ion  described above 

for the traveling wave determines  the solution at 

a fixed time t -  0.(I. From lhese results, a singu- 

larity t imc t* is found through the singularity 

detec t ion me thod  described in section 6.2 below. 

Moreove r .  the solution can bc reconstructed at 

any time t,, f rom the numerical  data  at time t -- () 

th rough  the traveling wave formula  in (3.17):  

i .e. .  th rough  multiplication of the kth Fourier  

coefficient by a factor  e ''k' 

1U t 6.1. Spatial t'elocitv proliles 

i 
! 

i 
ma× 
6 ( k ) i i 

i !I 

~C, 1} 

[ 

( ' 

1:' z" !0  2E' ]:] 40 " 5 ~  - ~5',5 10 

k 

[ " i g .  4 .  E f f e c t  o f  r o u n d o f f  e r r o r  o n  t h e  s o l u t i o n  f o r  N a = S "~ 

Graph is ""~ single (-); double preci- max u (k) for precision 
sion ( • ); quadruple precision ( ); precision 10 ~4 (..). 
The last two are indistinguishable, showing sufficient accura- 
cy for this value of N,. 

Fig. 5 shows thc velocity profilc at a timc 

t I ,  I.(l before the singularity. The radial and 

axial velocities u, and u (poloidal  componcn t s )  

are illustrated through the level surfaces of  the 

real part  of s t ream function & satisfying 

1 
R e ( u , , u  ) =  Re( -- &, , q,, ) (6.1) 

r 

in fig. 5a. This shows an outward  radial jct 

a ccompan ied  by r -z  rolls that are tilted toward 

the center  of  the jet. In figs. 5b and 5c, con tour  

plots of  the cor responding  real functions .(2 ru,, 

and s r - - r w ,  are drawn. 

The  profile of  thc solution at (approximate ly)  

the singularity time t = t ,  is presented in fig. 6 in 
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-3 
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r 

(b) 

.E 
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-I 

2 

-3 
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-3 
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r 

Fig. 5. C o n t o u r  plots  of  (a) O, (b)  /2, (c) r at t = t* - 1.0, in 

w h i c h  t* is the numerica l ly  de termined  singularity t ime.  

I 

2.76 

(c) 

y 9 

12 1 4 1.6 18 2 2.2 2,4 2.6 2 8 

r 

Fig. 6. S a m e  as fig. 5, but at the singularity t ime t = t*. 
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the same way. This shows that the singularities 

occur  at the centers  of  the rolls, which will also 

be verified th rough  analysis of  the Fourier  co- 

efficients. This is in contrast  to the computa t ions  

of  Pumir  and Siggia [321 and of  Graue r  and 

Sideris [20], in which the greatest  amplification 

of  vorticity and possible singularities occur at the 

tip of  the ou tward  jet. 

The  funct ions ~ and ~" are odd while £2 is even. 

The  max imum values of  l~" I and I~Q{ are plot ted 

versus t ime in fig. 10. These  values are approxi-  

mate ,  since they are fo rmed  through a sum of 

the 64 Four ier  modes ,  as de te rmined  in this 

computa t ion ,  each multiplied by e '~k' to get the 

correc t  I dependence .  As a result, the values 

cannot  grow faster than e ~4'~' and are necessarily 

finite at the singularity time t . .  Nevertheless ,  

over  a time interval of  length 2.0, the value of  

the azimuthal  vorticity % is seen to increase by a 

fac tor  of  more  than 20, while the circulation ~Q 

increases by a factor  of  less than 3. This suggests 

that  ~o,, blows up, while ,(2 remains bounded .  

Clean evidence for the b lowup of w0 follows f rom 

the singularity analysis of  the next two subsec- 

tions. A similar asymptot ic  fit to the Fourier  

coefficients of  ~2, which could provide clean evi- 

dence  that  it does not blow up, was not suc- 

cessful. 

6.2. Numer ica l  detection o f  singularities 

Following the results for the spatial profiles of  

velocity and the general  formula t ion  of  section 3, 

two singularities are expected to occur  at posi- 

t ions 

z + ( r ) -  ipi +_pe. (6.2) 

Nea r  each of  these singularities the structure of 

the radial velocity u, is sought  in the form 

totic form 

]~, ~ c~k " 'e  '''~ sin(c 3 + a ,  log k + p , k )  /6.4) 

for k > 1. In (6 .2 ) - (6 .4 )  the parameters  (c~, ~'~, 

a~, %,  p~, P3) depend  on r, i.e. 

( e l ,  C2" {gl, ¢t2, t°i , P_" ) 

(c i , c ~ , ~ l ,  a~, Pl" p : ) ( r ) .  (~.5) 

Following [5,29,3(1], (c' I, %. ~tt, % ,  Pt, P:) are 

de te rmined  through a sliding fit: i.e. for each k,  

the parameters  are chosen to exactly fit the 6 

values .1~, .1~+ ~ . . . . .  .l~ .,- The asymptot ic  lit is 

successful if the values (c~, c_,. %.  % ,  p~. p~_) arc 

(nearly)  independent  of  the starting index k, as 

well as independent  of  the discretization size 

d r -  21v/N,. 

Fig. 7 shows these 6 parameters  as functions of 

k at r - 2  for two values N , -  1024 and 2(148. 

This shows convergence  as N - - , - x  as well as a 

successful fit with pa ramete r  values that arc in- 

dependen t  of  k. Note  that lila~ is plot ted so thai 

the variat ions in a ,  on the graph are actually 

quite small. The fit is equally good  for o ther  

values of  r. 

Thc  r -dependence  of  the parameters  (c~. a , .  

111) and (c 2, ¢~, P3) is plot ted in tigs. 8a and 8b. 

The  parameters  a~ and o~ are given by ~ : 

+- 0.01 and c~, 0.0_+ 0.01 independent  of r. 

The  ampl i tude  term c~ is also nearly constant :  

while the phase c~ and the real position p, arc 

approximate ly  linear in r. 

As poin ted  out in section 3, the lirst singularity 

in time cor responds  to the min imum value of  the 

complex  posit ion Pt(r) for r -  rm, ,. This is seen 

to occur  at approximate ly  r - - 2 .  The deriwitive 

d p t / d r  is p lot ted in fig. 9 which shows that Pt is 

quadra t ic  in r at r ...... . 

u , ( z ,  r) ~-- c, ei'~-(z - z~ ) ' ~'~' i<~, (6.3) 6.3. Local  analysis o f  the singularities 

for z near  z + .  A s  shown in [40], this implies that 

the Four ier  coefficients fk will have the asymp- 

Now the time dependence  is included by re- 

placing z with z -  i~rt. Using the above results, 

localadmin
Note
replace exponent by 1+(alpha1-i alpha2)
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Fig. 7. Resul ts  f rom sliding fit for Fourier  coefficients at 

r = 2.0 as a funct ion  o f  k. In (a) the graphs are of  5pl ( - ) ,  a~ 

( - - ) ,  and 5c t ( . . ) .  In (b) the graphs are of  JOe (--), 10~2 (----), 
and c 2 ( . . ) .  For each parameter  the shorter  curve is for 

N,  = 1024, whi le  the longer  is for IV, = 2048. The  fit is judged 

to be successful  since the results are nearly independent  of  k 

and N .  

for r near rmi n and z near z+ + io-t w e  approx- 

imate  

C1 = C 1 ,  C2 = C2 ' 

P l  ~-- JO1 -}- JOll ( r  - -  r m i  n ) 2  

P 2  = ~E~2 -I- ~E)21 ( r  - -  r m i n )  , 

Or, - -  i ~  2 --  _~ . (6 .6 )  

D e f i n e  n e w  or thogonal  variables centered  at the 

real singularity pos i t ion and t ime  by 

1 (a) 
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Fig. 8. Singulari ty  parameters  as a funct ion of  r f rom the 

sl iding fit. In (a) the graphs are of  5p, ( - ) ,  e~ ( - - ) ,  and 5 G 

( . . ) .  In (b)  the graphs are of  P2 ( - ) ,  10% ( - - ) ,  and c 2 ( . . ) .  

For  each parameter  the shorter  curve is for N r = 1024, whi le  

the longer  is for N = 2048. N o t e  that % = 0 . 0 - +  0 . l .  

d~ l  0 
d r  

05 

1 

] 5  

-2 

2 

15 

Y 

175 l 8 ].85 19 ] 95 2 2.05 2 1 2 15 2.2 225 

r 

Fig. 9. dpl/dr as a function of r, showing that p~ is a 

nondegenerate quadratic at its minimum. 
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T ~ ( . r l - -  Pl " 

£ = ( z  P2) Pc,( r rmi~)" 

r/ ~ [(r rmi.) + p2,(z - ¢S~) I . (6.7) 

The spatial variable r / runs in the direction of the 

major  semi-axis of the (nearly) elliptic rolls in 

the spatial profile of figs. 5 and 6; while ,~ runs in 

the direction of the minor semi-axis. The form of 

the singularity in (6.3) is then 

Ur(Z, r, t ) ~ c ~  ~3 (6.S) 

in which the singularity variable ~ is 

: r / : - r  iff. (6.9) 

This remarkably simple form for the singularity 

may indicate that the results are generic for the 

Euler  equations. 

The corresponding stream function is 

&(z ,  r ,  t )  ~ c~- '  +~ . ( 6 . 1 0 )  

This shows that singularity occurs at the centers 

of oval-shaped rolls which are flattening as the 

singularity forms. 

7 .  C o n c l u s i o n s  

The computations and analysis presented 

above demonstrate development of singularities 

from smooth initial data for complex-valued 

Euler  solutions. A clean analysis of the singulari- 

ty is possible because of the unusual nature of 

the computation: The degrees of freedom have 

been reduced by looking for a traveling wave, 

and computational errors are minimized since 

there are no truncation or aliasing errors in the 

computat ion of a finite number of Fourier com- 

ponents. Most important,  the computation is for 

the Fourier coefficients, none of which blow up 

at the singularity. Instead, the singularity is 

found by analyzing the asymptotics of the 

Fourier  coefficients. 

Although the motivation for considering such 

solutions is through Moore's approximation, the 

complex-valued velocity fields constructed here 

arc solutions of the usual Euler equations. On 

the other  hand, there is no evidence that the 

singularities in these complex solutions have any 

relevance for real solutions; i.e., the singularities 

found under Moore's approximation could be 

spurious. 

The significance of these results is that they 

provide simple examples of solutions with singu- 

larities, as well as a reasonable conjecture for the 

location and structure of singularities in real 

flows. We also conjecture that errors in Moore's 

approximation are small, so that the combination 

u = u , + 2  R e u ,  (which is real) will be an ap- 

proximate solution of the Euler equations. 

Although this conjecture has not been ver- 

ified, several consistency conditions arc met by 

the complex solutions: First, although the real 

energy f lul ~ dx is not conserved for a complex 

solution, it is finite at the singularity computed 

here. Second for a traveling wave solution, time t 

and axial position z are linearly related. The 

time integral of vorticity is thus related to a 

spatial integral of vorticity, which is a velocity. 

Therefore  the Bea l e -Ka to -Ma jda  result 17] that 

J" m a x l w l d t - - , ~  at a singularity should imply 

[u[---+ :~ at this singularity, in agreement with the 

results above. Third the circulation ,2 remains 

bounded,  as indicated in fig. 10. 

11 . . . . . . . . . . . .  ii 

I 
L i 
t i 
I 

2 l g  1 ~  ] a  1 2  I 0 8  0 6  ta4 ' 2 LJ 

t t  0 

Fig, 10. Max imum wdues  of £ ( ) and g2 ( ) as a function ol 

f. compu ted  using the Four ier  sum ~)f (~4 modes.  
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Appendix A. Alternative formulations of the 

Euler equations 

The Euler  equations (3.1)-(3.4)  for axi- 

symmetric flow with swirl can be written in two 

other  useful representations. 

_ _1 (ar18z _ Ogzl~r ) ' [a ,  t8] = r 

which satisfies the Jacobi identity 

[[~, 181, 3,1 + [[~, 3,1, ~1 + [D, ~l , /~1 = 0 .  

(A.5) 

(A.6) 

A .  1. S t r e a m  f u n c t i o n  a n d  vor t ic i ty  

Define circulation a2 = ru o, azimuthal vorticity 

= - r w  o and stream function ~b with 

(Ur, Uz) = r - ' ( - O z q ,  , Or4, ) . (A.1) 

Denote  

U ' V  = Ur3 r + UzO z , 

- 1 2 (A.2) O 2 = rOr(r  Or) + 0 z . 

Then (3 .1)- (3 .4)  is equivalent to 

(0, + u . V ) O  = 0 ,  

(0, + u "V)(r-2~ ") = - - r  4 0 z ( a 2 )  , 

D2~b = ~" . (A.3) 

If Moore 's  approximation is applied to this sys- 

tem and a traveling wave solution is sought, the 

equation for the Fourier coefficients qt(~ r)= 

- i tp( r ,  k) is 

d ~ d 
r drr r drr ~o'k - -  (k2 + K)q-tk = E k '  ( a . 4 )  

in which K is defined by (3.25) and E~ is a 

nonlinear function of q t0 , . . . ,  q*,-1 and their de- 

rivatives. 

Denote  p = g22, ~" = - r w  o and let D 2 and ~b be 

defined as above. Suppose that ~" can be ex- 

pressed as 

= - r 2 [ a ,  p] (A.7) 

for some function a ( r ,  z ) .  If this is true initially it 

will remain true, and the Euler equations (3 .1)-  

(3.4) for axi-symmetric flow with swirl are equiv- 

alent to the following system: 

o, = [,/,, p ] ,  

1 
a , =  [q,, ~ ]  + - -  

2r 2 ' 

D 2 0  = -r2[a, srl. (A.8) 

If the initial data for such a flow is smooth, then 

a will stay bounded for all time. 

The 1 / 2 r  2 term in the equation for a intro- 

duces an artificial time dependence which may 

be removed by setting a =/3 + t% The equations 

for p, fl, 3' and th are then 

p , = [ q , ,  p ] ,  

1 
t~, = [ 0 , / ~ ] -  3, + - 2r 2 , 

D2~  = - - r 2 [ / ~ ,  P l ,  (A.9)  

A . 2 .  C l e b s c h  var iab les  with the condition that 

For a restricted class of axi-symmetric initial 

data, the flow can be described through a special 

form of Clebsch variables, as pointed out to us 

by M. Shelley and M. Vishik. Define a bracket 

[ . , . ]  by 

[% p] = 0 .  (A.10) 

Since 

d 
d t  [% p] = [0, [% P]] (A.11) 
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the condi t ion (A. IO) is mainta ined by the evo- 

lution. 

A traveling wave ( p ,  f i ,  Y, gO( r, z - i~rt) solves 

the equa t ions  

i(r& : I4', O],  

- i o w :  14,, " / I ,  

i o - &  = [ 0 , / ~ l  - - / +  - -  

DeC, = r-'[/3, P ] .  

1 

2 r  2 , 

(A.12) 

Use of  the Jacobi identity (A.5)  shows that 

i 
1~, P] = - - -  0,[ ' / ,  p] (A. 13) 

o-r  

so that  [% p] = 0 as required.  

The  s teady swirling flow d in section 3 corre-  

sponds  to 

Clebsch solution with gp = () at some point,  then 

small per turba t ions  of  u need not be Clebsch. 

First if Vp = 0 but ~ # 0 (which will general ly be 

t ruc after a small per turbat ion) ,  then clearly 

therc  can be no such solution ~ of  (A.7).  The 

o ther  solvability condi t ion for (A.7)  is an inte- 

gral condi t ion a round  closed loops of the vector 

field ( - p , ,  p~) in (r. z). Inside such a loop there 

must  be a singular point of  the field at which 

Vp : 0. 

The lack of  structural stability implies that if a 

real flow ~ can be const ructed  f rom the present 

complex  flow as 6 ~  u 0 + 2 R e ( u ,  ). then it need 

not be Clebsch. This is significant since for a 

Clebsch flow with O ~ c~-" ¢, as in (6.10), either p 

or  ~ must  blowup.  Since thesc are both bounded  

for an initially smooth  Clebsch solution, a real 

flow ff can be close to u .  -~ 2Re(u~ ) only if li is 

not  Clebseh. 

p : p ( r )  = [ r u . ( r ) l  e , 

y = 9 ( r )  (2r  e) ' 

(A.14) 

The  e q u a n o n  for a traveling wave O = iq-'(r, z 

i¢rt) as in section 3 is then,  after some manipu-  

lation, 

r a , r  ~ O , ~ P - ( K - ' + K ) q t = A ,  (A.15) 

in which K = - i a  and the A is quadrat ical ly 

nonl inear  in ~ .  In part icular  the k = 1 Fourier  

c o m p o n e n t  ~v satisfies 

r a r  ] a r l / ~ - ( l  + K ) I / * = 0  ( A . 1 6 )  

which is identical to (3.32) for fl = r - l ~ .  Since 

both  the solution u of  section 3 and the Clebsch 

solut ion tp are de te rmined  by their 0th and first 

Four ier  modes  and since these can be chosen to 

coincide,  then every upper  analytic traveling 

wave solution u as in section 3 has a Clebsch 

representa t ion .  

On  the o ther  hand the class of  Clebsch solu- 

t ions is not  structurally stable, i.e. if u is a 

Appendix  B. IAnear instability of  an axi- 

s y m m e t r i c  vortex sheet with swirl  in an annulus 

Consider  the steady flow genera ted  by an axi- 

symmetr ic  vortex sheet r -  r,, with a background  

rotat ion in an annulus r~ < p .... r , .  The circula- 

tion is taken to be F~ inside the sheet and / \  

outside the sheet.  The potential  for the un- 

pe r tu rbed  flow is then 

q ~ = O I ; / 2 v  r I ,  r<  r . ,  

q ) ~ = O l \ / 2 ~ r ,  t',~< r < r , .  ( B. l )  

For  the pe r tu rbed  flow there is a free surface at 

r =  r,, + 8(z, l) and the potential  is 

q~l O F l / 2 r r + & l ( r . z . t ) .  r~ r <  r,, + e .  

q), = Ol\/2q-r + O~(r.  z .  t)  . i,, + ~ < r < r ,  . 

(B.2) 

Fol lowing [12,33], the linearized equat ions  for 

&,, &2 and ~ are V2&t V2d)2 0 (in cylindrical 

coordina tes)  with linearized free boundary  condi- 

t ions 
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( ] ) l r  = ~92r = ~ t '  

~bl, - ro3(F~/2~r)2~ = &2, -  ro3(F2/2"rr)2~ (B.3) 

on r = r o and 

&1,(r = r l )  = ~be,(r = r2) = 0 .  (B.4) 

The  kth mode  for these equations is 

t r l  z l  x l  i k z + c r t  

~ ) 1  = [ bllo( kr) + 02IkoI,  K r ) J e  

r ~  z ~  x l  i k z + ~ t  

62 = [b3Io(kr) + o41X-oI, Kr)Je , 

= e ikz+~' , (B.5) 

in which the coefficients are 

b l = o r k  1 K l l ( K l l I 1 o - I u K l o  ) 1, 

b 3 = ~ k  IK12(KI2110 - I12K10)  I , 

b 2 = b l l l l / K l l  b 4 = b3112 /K12  , (B.6) 

with 110 = I i(kro),  etc. The growth rate is 

or = +_V(b/c)G/r~ , (B.7) 

in which 

k - I  

Dk ~ ~(~) ~(k) (C.1) 
l = l  

in which al ~) is linear in fl for each k. A direct 

computat ion of the sums (C.1) for each k <-N z 

would require N~ operations.  Since this is not an 

initial value problem a standard pseudo-spectral  

formulat ion does not work. Here  we formulate 

an accelerated method using N 3/z operations. 

Choose an increasing sequence of number  M 1, 

M 2 . . . .  ,Mn,  with M n = N  z. Suppose that the 

computat ion of the modes k-< M~ have been 

completed.  For M i < k <-M~+ 1 split the sum D k 

in (C.1) into two parts D k = D ~ I ) + D ~  2) in 

which D~ 1) includes all terms with both l - M i  

and k -  l-< M i and D~ 2) contains the remaining 

terms. For  each i the terms in D~ 1) involve only 

k '<-Mg so are already known. Thus D~ 1) for 

M~ < k -< M i+ ~ can all be computed  together by a 

pseudo-spectral  method,  requiring only 

M~+ 1 log Mz+ 1 operations.  The remaining terms 

D~ 2) must be determined sequentially in k and 

are computed  by direct sums, requiring (Mi+ l - 

Mi) 2 steps. The total operat ion count is 

Nov = ~ Mi log M i + ( M i +  1 - M , )  2 . (C.2) 
i = 1  

9 
c : k - (K11112  - I l l K 1 2  ) , 

b = - ( K l l I ,  o -  1 ,1Klo)(Kl2I lo-  I12K10), 

G = (r21 -- F 2 2 ) / ( 2 ~ )  2 . (B.8) 

Since K is decreasing and I is increasing, then 

c > 0, and b > 0. Therefore  the steady flow is 

unstable exactly if G > 0 ,  which is precisely 

Rayleigh's  criterion for this flow. 

Appendix C. An accelerated method 

The nonlinear terms D k in (3.29) are the 

Fourier  components  of the function D defined in 

(3.26). Since D is quadratic and k is non-nega- 

tive, D~ is a finite convolution 

An optimal  choice is M i = i 2, n = N~/2 for which 

Mop = {~(N~/2 log Nz). 
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