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0. Introduction

A real-valued stochastic process X (t, ) on a probability space (12, f, P)
and an interval D of the real line induces a probability measure z on the
measurable space (RD, ) where RD is the space of all real valued functions
x (t), e D, and is the smallest a-field of subsets of R" with respect to which
all real valued functions Y (t, x) x (t) defined on R with the parameter
ted are measurable. According to the Feldman-Hjek dichotomy two
Gaussian measures on (R, ), i.e. measures induced by Gaussian processes,
are always either equivalent or singular. A Brownian motion process X (t, )
on (12, f, P) and D [0, ) with non-stationary increments, which we shall
call for brevity a generalized Brownian motion process in the rest of the paper,
is a real valued stochastic process with independent increments ia which the
probability distribution ,. of the increment X (tr, ) X (t, ), , p’ D,
t’ < t", is a normal distribution N (0, b (t" ) b (t’ with the density function

e’Oq) {2r[b(t") b(t’)]l-exp l-r/2[b(t") b(t’)]}, ,eR,

where b () is a strictly increasing function on D with b (0) 0 andX (0, o) 0,
a.e. We emphasize that no continuity or smoothness condition on b (t) are
assumed unless otherwise stated. The results of this paper are the following
two theorems.

TI-IEOIEM 1. Let X (t, ), i 1, 2, be generalized Brownian motion processes
on a probability space (, !, P) and D [0, ) with strictly increasing b (t ).
If at some to e D, the derivatives M b (to) exist, O, and , then the
probability measures # induced on the measurable space (R), by X(t, )
are singular.

For cases with stationary increments, i.e. when b (t) , t, ), 0, M ,
the singularity of the two measures is well known and furthermore two
disjoint subsets of RD, E , satisfying the condition ,z (E) can be
found. Indeed an immediate consequence of R. H. Cameron and W. T.
Martin’s investigation (Theorem 1, [2]) is that when b (t) ), t, > 0,

),., every pair of disjoint subsets of R", E.r e , T > 0, defined by

E.r {x e R; lim_, (T, x) X; T}

Received August 30, 1968.
This research was supported in part by a National Science Foundation grant.

37



38 . YEH

where
r, (T, x) -1 {x(lcT/2’) x((]c 1)T/2")}

satisfies the condition/zx (Ej,) 8.. G. Baxter [1] extended Cameron and
Martin’s result to cover a wide class of Gaussian processes whose mean
and covariance functions satisfy certain smoothness conditions. Applying
Baxter’s results to generalized Brownian motion processes we obtain

THEOREM 2. If b(t), i 1, 2, exist and are continuous on [0, T] and
b (T) b (T) for some T } 0 then for the pair of disjoint subsets ofR), E, ,
defined by

E, {xR);lim_a,(T, x) b(T)l

we have tx (E,) .
These two theorems are proved in 4. In 1 we discuss the probability

space (R", , tx). J. I-Ijek’s results on the J-divergence on which the proof
of Theorem 1 is based are stated in 2 in a way Suitable for our purposes.
3 consists of lemmas concerning generalized Brownian motion processes.

1. Measures on function spaces induced by stochastic processes

Given a real-valued stochastic process X (t, o) on a probability space
(it, !, P) and an interval D of the real line. Let S be the transforhaation of
ft into the space RD of all real valued functions x(t), e D, defined by
S(o) X(., ) eRD, oef. Let gO {G c RD; S-I(G) e!} and
,’(G) P (S- (G)), G e @. Then (R), @, ) is a probability space.

For.h, t e D, t t, consider the projection of R" onto the
n-dimensional Euclidean space R defined by

Pt... t. (x) Ix (t), x (t)], x e R’

and the a-field of subsets of R

t,...t,., {p7:...t,, (B), Be

where ! is the a-field of Borel sets in R. The a-field generated by all the
a-fields a... is contained in @ and is independent of the stochastic process
X (t, ). We define tx 1 , i.e. the restriction of to . is the smallest
a-field of subsets of RD with respect to which the functions Y (t, x) x (t)
on R with the parameter teD are measurable. The stochastic process
Y (t, x) on (RD, , tx) and D is a realization of X (t, o) in the sense that for
any h, "", t e D, the two random vectors

[Y(tl, x), Y(t,, x)] and [X(h, o), Z(t,, )]

have the same probability distribution.
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2. J-divergence of measures in function spaces
We summarize the results on J-divergence by J. Hjek [5], [6] and state his

main theorems in a way suitable to measures in function spaces. Following
H. Jeffreys [7], S. Kullback and R. A. Leibler [9i and J. Hjek [5], [6] we define
the J-divergence of two probability measures as follows.

DEFINITION 1. Given two probability measures P and Q on a measurable
space (t, ) which are either equivalent (P Q), having Radon-Nikodym
derivates dP/dQ and dQ/dP, or singular (P Q). We define the J-divergence
of P and Q by

J (P, Q) E[log dP/dQ] + E[log dQ/dP] when P Q
(2.1)

when P Q

Thus defined, J (P, Q) is nonnegative. For an example of J (P, Q)
when P Q, see Footnote 3, p. 80, [9]. We note also that any .two n-dimen-
sional normal distributions on (/, !) are equivalent.

Let X(t, o), i 1, 2, be two stochastic processes on a probability space
(2, t, P) and an intervalD of the real line. Let be the probability measures
on the measurable space (/, ) induced by X(t, ) as we defined in 1.
Assume that for any t, t. D, t < < t, .... --- ...,,
the restrictions of to ..., i 1, 2, are either equivalent, or singular and
let J... denote their J-divergence. According to Hjek, Theorem 2, [4],
if sup J.... where the supremum is over all the finite strictly increasing
sequences of points from D is finite then t, i 1, 2, are equivalent on

and furthermore their J-divergence is equal to sup J.... (Actually
Theorem 2, [5] has a different setting from ours. HAjek considers one
stochastic process on two probability spaces (t, !, P) and (2, !, Q) and as-
sumes that the restrictions of P and Q to the a-field generated by a finite sub-
collection of random variables in the stochastic process are always either
equivalent or singular. Now unlike our .... and , this a-field and the
a-field generated by the union of all such a-fields depend on the given stochastic
process. However our modified statement of Theorem 2, [5] can be proved
exactly in the same way as the original version of Htijek by means of his
Theorem 1, [5].) When X(t, ) are Gaussian processes then the condition
that ,...., i 1, 2, be always either equivalent or singular is automatically
satisfied. Furthermore in this case, according to HAjek, Theorem [6],
sup J... implies the singularity of #x, i 1, 2.

3. Generalized brownian motion processes

We define generalized Brownian motion processes with slightly more
generality than we actually need and state some immediate consequences.
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DEFrNrTrOr 2. Let a(t), b (t) be real valued functions on D [to, )
and let b (t) be monotone increasing. For t’, t" e D, t’ < ’p let

Ct,. N(a(t") a(t’), b(t") b(t’))

i.e. the normal distribution with mean a (t’ a (t’) and variance b (t") b (’)
which, in case b (") b (t’) > 0, has the density function

1 ( [ [a(t") a(t’)]]eb,t.()
V’2r[b(g’) b(t’)] exp_- 2[b(g’) (t- ’ ,/e R,

and, in case b (t") b (t’) 0, is the unit distribution with the unit mass at
a ({’) a (t’). Let c e R. By a generalized Brownian motion process

Xta.b.c (t, ), e D, we mean a stochastic process X (t, ) on some probability
space (f, f, P) aud D with independent increments such that for t’, g’ e D,
t’ < ", the probability distribution of the increment X (t", X (t’, )
is given by ,. and X (t0, o) c, a.e.

Such a process exists according to the Kolmogorov Extension Theorem
(Hauptsatz p. 27, [8]). In fact since the convolution of any two normal dis-
tributions is again a normal distribution with mean and variance equal to the
sum of those of the two normal distributions our collection {,, t’, t" e D,
t’ < t"} has the property that

h, t, t D, tl < t < t = * I’t
The compatibility conditions in Kolmogorov’s theorem are satisfied by this
property and a generalized Brownian motion can be constructed.

LEMM 1. A generalized Brownian motion process

Xt,,b,,(t, .), t,D [to, )

is a Gaussian process with the mean and the covariance function given by

(3.1) re(t) E[X(t, .)] a(t) a(to) + c, tD,
(3..2) v(t’, t") Cov[X(t’,- ),X(t", )] b(min{t’,t"} -b(to), t’,t" D.

Proof. This lemma can be proved exactly in the same way as the cor-
responding statement for the standard Brownish motion process.

LMMX 2. Given ..., , R, # < <. and the matrix

(3.3) B [min{,fh},k,l= 1,2,...,n] [,t.t,k,l= 1,2, ...,n]

we have (1)

(3.4) det B (- f) (-/,_) _> 0

and in particular det B 0 ifand only if #+for some k 1, 2, ..., n 1.
(2) B is positive definite if and only if < +for all k 1, 2, n 1.
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(3.5)

When < +for all k 1, 2, n 1,

0 0 0

0 0 0

0 0

0 0

0 0

Proof. (1) is immediate. To prove (2) we quote the well known theorem
that an n X n matrixA [a,., i, j 1, 2, ..., n], a,. e R, is positive definite
if and only if for every k 1, 2, ..., n det A > 0 where

A [aa, i,j 1, 2, ..., k].

Then (2) follows from (1). Finally (3.5) can be verified by direct multiplica-
tion.

LEMMA 3. Given a generalized Brownian motion process

X.. (t, ), D [10, oo ),

where b () is sricly increasing. For o < < < t,, the probability distribu-
tion of he n-dimensional random vector IX (h ), X (& )] is a nonde-
generate n-dimensional normal distribution wih he density function

)-, _1/2 -i(3.6) ((2r) det V.,,...,, exp ,,v,,, ( m), m)}
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where

m [E[Z(t, .)], k 1, 2, ..., n]
(3.7)

[a(t) a(t0)-F c,/c 1,2, ...,n],

V,..., [Coy IX (t, ), X (t, )], , 1, 2, ..., n]
(3.8)

[b(min {t, tl) b(t0), k, 1, 2, ..., n]

(3.9) det V,..., {b(h) b(to)}{b(t) b(h)l Ib(t,) b(t,,_)}

(3.10) - B-V,... in (3.5) with replaced by b(t) b(to)

and finally the density function (3.6) can also be written as

{(2r) 1-I [b(tk) b(tk_l)]} -1/

(3.11)
.exp

with o =-- C.

Proof. It suffices to note that with strictly increasing b (t) the covariance
matrix (3.8) ofX (h, ), X (tn, is positive definite according to Lemma
2 so that the n-dimensional normal distribution of the random vector is non-
degenerate.

4. Proofs of the theorems

Proof of Theorem 1. (1) Let $1, tne D, t < < t We evaluate
J...,, the J-divergence of/z,..., =/ ...,, i 1, 2. Now for every
E e ... there exists a unique B e ! such that E p-g...t (B) and accord-
ing to (1.11), (3.6) and (3.8),

x,(E) P{ 12; [X(tl, ), ..., X(t,, )] eS}
(4.1)

((2r)det V,,...)-- J exp {-1/2(V’l,t...t,, )}m.(d)

where [, ] e m is the Lebesgue measure on (R, !’) and

(4.2) V,,t...t [b(min {t, t}, It, 1, 2, ..., hi.
Thus z.t...t, i 1, 2, are equivalent and their Radon-Nikodym derivatives
are given by

d: t ,,/dx t. t

(4.3) {det V,x...,/det V,...,I

From (2.I),

(4.4)
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Now it is well known that for any n n matrices A and B where A is sym-
metric and B is positive definite we have

(4.5) ((2r) det B)-llf, (A, ) exp /-1/2(B-I, )}m.(d) Tr (C)

where C ABandTr (C) c,for C [c.k, 1, 2, ...,n].
Substituting (4.3) in (4.4) and simplifying by (4.5) we obtain- 2I](4.6) Jtl..., 1/2 Tr [Vbl,...,Vb.,...t + Vb,t...,V..I...,-

Now assume that ), b (0) exist, X > 0, i 1, 2, and X1 ..(2)
Then

(4.7) b(t) Mt + Xo(t), O, i 1, 2.

Let n be fixed and t k/p, k 1, 2, n with an arbitrary positive integer
p. Then

b (t ) X{kip + o (l/p ) M{ kip -t" o (n/p)},
(4.8)

p--* , k- 1,2, ..., n,i 1,2,
and from (4.2)

V,,,,...,,, X[(1/p) min {k, II -t- o(n/p), k, 1, 2, ..., n],
(4.9)

i= 1,2.

Since b(t), i 1, 2, are strictly increasing and Vb.tl...t, as given by (4.2) are
positive definite, their inverses can be obtained by replacing f in (3.5) by
b (t ) M{ k/p + o (n/p)} according to (4.8) and (3.10). Then

1/ .-1 (p/M)[1 + p o (n/p )]- (p/M)[1 + p o (n/p )]_. X,[2/p + o (n/p )]

(,- ,-)/(f,-- f,-)(f,- ,-1) (p/M)[2 + p o(n/p)]

so that

(4.10) -1 1

a 0 0 0 0 0

0 0 0 0



with

(4.11) . 2p + p o (n/p ), . p + p o (n/p), . -p + p o (n/p )

From (4.9), (4.10), (4.11),

(4.12) Tr [V.... V.,...] n(,./k)[1 + p o(n/p)], i, j 1, 2,

and from (4.12) and (4.6),

(4.13) Jt,...tn (n/2){ (h/,)"’ (kl/k2)l/2} - np o(n/p)

Since n is fixed, np o (n/p) .-o 0 as p -- . For sufficiently large p chosen for
the given n, np o (n/p) is as small as we wish. Thus

(4.14) sup Ja....
This proves the singularity of x, i 1, 2, on

(3) Let us consider the case where ), b (t0) exist at some to > 0, ) > 0,
i 1, 2, and )w.. Let

X(t, oo) X,(t, o) X,(to, o), ted [to, ),i 1, 2.

Then i(t, w), i 1, 2, are generalized Brownian motion processes on
with 5 (t) 0, ; (t) b (t) b (to), strictly increasing, (to) 0 and

0 so that for to < t < < t,therandomvectors[J(t, .), ...,
/(t., )], i 1, 2, have normal distributions with cowriance matrices

,,t...t,, [(min {t, t}) $(t0), k, 1, 2, ..-, n]
(4.15)

[b(min{t, t}) b(to), k, 1, 2, ..., n]

in accordance with (3.8). From the independence of

X(to, .) nd [:(t, .), ...,:(t, .)]
for each i the probability distribution of [X(to, ), X(t, ), ..., X(t,, )]
is an (n + 1)-dimensional normal distribution with the density function at

[o, , ] given by

(2rb (to))- exp -o/b(to)} )--12 ,---1

((2r) det ?,tl exp {-1/2 (V,..., , )}

where [} o, ., .o]. Writing for simplicity in notation
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and

E,x log
dlix,to.

(4.17)
1 log b (t0) det W,

b(to) det W 4-
1

[(2r)’+lbj(t0) det W.]1/

(to)
I ] I W-i }

exp [-- 1/2 o/bj(to)} exp {-- 1/2 (WTl, )}m(d)
By the linear transformation 70 t0, , , 0, k = 1, 2, ..., n whose
Jacobian is equal to 1 and by (4.5) the above integral reduces to

(4.18) 1/2 Wr [W-Ws I] + 1/2{bj(to)/b(to) 1}.

By (4.4), (4.17), (4.18),

(4.19)
Jtl t,,

1/2 Tr [W-IW2-}- WIW- 2I]-t- 1/2[b2(to)/b(to) + bi(to)/b(to) 2].

Now since
b(t) b(to) M(t- to) + Mo(t to), t 0, i= 1,2,

if we choose tk to -4- k/p, k 1, 2, ..., n, with an arbitrary positive integer
p then

b(tk) b(to) + [I/p + o(n/p)]

so that W given by (4.16), (4.15) has exactly the same form as V.,...t
in (4.9). Consequently in this case also (4.13), (4.14) hold and gx, i 1, 2,
are singular on . This completes the proof of the theorem.

Proof of Theorem 2. When b (t), i 1, 2, exist and are continuous on
[0, T], T > 0, the conditions in the corollary in (1) are satisfied by X(t, )
on [0, T]. In particular the covariance functions are given by

v,(s,t) b(min{s,t}) b(s) if0_ s_ t<_ T

b(t)

Since the random vector [X(t’, ), Xdt", )1 on (t2, f3, P) and the random
vector Ix (t’), x (t")] on (R), , gx) have the same probability distribution we
conclude according to (4), [1] that for a.e. x e

lim_.1 {x(kT/2’) x((k 1)T/2)} b(t) dt b(T).

This completes the proof.
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