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Abstract: In this paper, we give the parametric equation of the Bishop frame for a timelike sweeping
surface with a unit speed timelike curve in Minkowski 3-space. We introduce a new geometric
invariant to explain the geometric properties and local singularities of this timelike surface. We derive
the sufficient and necessary conditions for this timelike surface to be a timelike developable ruled
surface. Afterwards, we take advantage of singularity theory to give the classification of singularities
of this timelike developable surface. Furthermore, we give some representative examples to show the
applications of the theoretical results.
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1. Introduction

Singularity theory of curves and surfaces is an efficient area of research in various
branches of mathematics and physics. In the view of differential geometry, curves and
surfaces are performed by functions with one variable and two variables, respectively.
In recent years, singularity theory for curves and surfaces has become a paramount tool for
different interesting fields such as medical imaging and computer vision (see, e.g., [1–4]).

As we know, a sweeping surface is the surface traced by the movement of a plane
curve (the profile curve or generatrix) whilst the plane is moved through space in such a
way that the movement of the plane is always in the direction of the normal to the plane.
Sweeping is a very important, powerful, and widespread method in geometric modelling.
The basic concept is to select some geometrical object (generator) that is then swept along a
spine curve (trajectory) in the space. The result of such evolution, consisting of movement
through space and intrinsic shape deformation, is a sweep object. The sweep object kind
is determined by the choice of the generator and the trajectory. Thus, sweeping a curve
over another curve generates a sweeping surface. There are several names of sweeping
surfaces that we are familiar with, such as tubular surface, pipe surface, string, and canal
surface. In [5], J. Suk and D.W Yoon initiated the study of a tube in Euclidean 3-space,
satisfying some equation in terms of the Gaussian curvature, the mean curvature, and
the second Gaussian curvature. The kinematic geometry of circular surfaces with a fixed
radius based on Euclidean invariants was defined by L. Cui et al. in [6]. RA. Abdel-Baky
in [7] considered the study of developable surfaces through sweeping surfaces in Euclidean
3-space. S. Izumiya et al. in [8] examined some corresponding properties of circular
surfaces with classical ruled surfaces. A survey of the principle geometric features of canal
surfaces has been defined by Xu et al. in [9]. Furthermore, the authors presented sufficient
conditions for canal surfaces without local self-intersection. Moreover, they derived a
simple expression for the area and Gaussian curvature of canal surfaces.

One of the most suitable methods to analyzing curves and surfaces in differential
geometry is the Serret–Frenet frame, but it is not unique; there are also other frame fields
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such as the rotation minimizing frame (RMF) or the Bishop frame [10]. Some applications of
the Bishop frame can be found in [11–14]. Corresponding to the Bishop frame in Euclidean
space, there exists a Minkowski version frame that is called a Minkowski–Bishop frame as
applied to Minkowski geometry. When we investigate a space curve, it is more convenient
for us to use the Minkowski–Bishop frame along the curve as the basic tool than the Serret–
Frenet frame in Lorentzian space. There are several papers about the Minkowski–Bishop
frame; for example, [1,7,15].

In this paper, we present the notion of timelike sweeping surfaces with rotation
minimizing frames in Minkowski 3-space. Thus, by applying singularity theory, we classify
the generic properties and present q new invariant connected to the singularity of this
timelike sweeping surface. The main generic singularities of this sweeping surface are
the well-known cuspidal edge and swallowtail, and they are characterized by this new
invariant. Furthermore, from the viewpoint of singularity theory, we present the singularity
properties of timelike sweeping surfaces in Minkowski 3-space. In this way, we take
advantage of some classical and well-known results in singularity theory as evidence to
prove our main results in this paper. Moreover, this paper gives the necessary and sufficient
conditions to characterize when the timelike sweeping surface is a timelike developable
ruled surface and discusses further conclusions. Regarding the timelike developable
surfaces, we studied the uniqueness properties. Furthermore, this paper also focuses on
the singularity properties of the timelike developable surfaces. Finally, to illustrate the
main results, two examples are given and investigated in detail. Our plans for the future
research are to conduct interdisciplinary research because it can provide valuable new
insights, but synthesizing articles across disciplines with highly varied standards, formats,
terminology, and methods requires an adapted approach. Therefore, we find some of the
latest related studies in [16–66]. One possible way to achieve the interdisciplinary research
goal of obtaining more singularity and symmetry properties of timelike sweeping surfaces
is to apply a mix or a blend of the techniques in [16–66] combine them the methods of
this paper.

2. Preliminaries

We introduce in this section some basic notions on Minkowski 3-space. For basic
concepts and properties, see [67,68].

Let R3 = {(a1, a2, a3) |, ai ∈ R (i=1, 2, 3)} be a 3-dimensional Cartesian space. For any
a =(a1, a2, a3), and b =(b1, b2, b3) ∈ R3, the pseudo-scalar product of a and b is defined by

< a, b > = −a1b1 + a2b2 + a3b3. (1)

We call (R3,<,>) Minkowski 3-space. We write E3
1 instead of (R3,<,>). We say that

a non-zero vector a ∈E3
1 is spacelike, lightlike, or timelike if < a, a >>0, < a, a > = 0 or

< a, a > < 0. The norm of the vector a ∈E3
1 is defined to be ‖a‖ =

√
|< a, a >|. For any

two vectors a, c ∈ E3
1, we define a vector a× c by

a× c =

∣∣∣∣∣∣
−e1 e2 e3
a1 a2 a3
c1 c2 c3

∣∣∣∣∣∣ = (−(a2c3 − a3c2), (a3c1 − a1c3), (a1c2 − a2c1)), (2)

where e1, e2, e3 is the canonical basis of E3
1. We can easily check that

det(a, c, b) =< a× c, b >, (3)

so that a× c is pseudo-orthogonal to any b =(b1, b2, b3) ∈ E3
1. The Lorentzian unit sphere

with center in the origin of E3
1 is defined by

S2
1 = {x ∈E3

1 |< x, x > = 1}. (4)
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Let β = β(s) be a unit speed timelike curve; by κ(s) and τ(s), we denote the natural
curvature and torsion of β(s), respectively. Let {T(s), N(s), B(s)} be the Serret–Frenet
frame associated with β(s). For each point of β(s), the corresponding Serret–Frenet formu-
lae read:  T

′

N
′

B
′

 =

 0 κ(s) 0
κ(s) 0 τ(s)
0 −τ(s) 0

 T
N
B

 = ω×

 T
N
B

, (5)

where ω(s) = τT + κB is the Darboux vector of the Serret–Frenet frame. In this paper,
dashes denote the derivatives with respect to the arc-length parameter s. It is easy to
see that

T×N = B, T× B = −N, N× B = −T. (6)

Definition 1. A pseudo -orthogonal moving frame {ξ1, ξ3, ξ3} along a non-null space curve α(s)
is a rotation minimizing frame (RMF) with respect to ξ1 if the derivatives of ξ2 and ξ3 are both
parallel to ξ1, or its angular velocity ω satisfies < ω, ξ1 >= 0. An analogous characterization
holds when ξ2 or ξ3 is chosen as the reference direction [11].

According to Definition 1, we observe that the Serret–Frenet frame is an RMF with
respect to the principal normal N, but not with respect to the tangent T and the binormal B.
Although the Serret–Frenet frame is not an RMF with respect to T, one can easily derive
such an RMF from it. New normal plane vectors (N1,N2) are specified through a rotation
of (N,B) according to  T1

N1
N2

 =

 1 0 0
0 cos ϑ sin ϑ
0 − sin ϑ cos ϑ

 T
N
B

, (7)

with a certain spacelike angle ϑ(s) ≥ 0. Here, we call the set {T1, N1, N2} an RMF or
Bishop frame. The RMF vector satisfies the relations

T1 ×N1 = N2, T1 × N2 = −N1, N1 ×N2 = −T1. (8)

Therefore, we have the alternative frame equations T
′
1

N
′
1

N
′
2

 =

 0 κ1(s) −κ2(s)
κ1(s) 0 0
−κ2(s) 0 0

 T1
N1
N2

 = ω̃×

 T1
N1
N2

, (9)

where ω̃(s) = κ2N1 + κ1N2 is the RMF Darboux vector. Here, the Bishop curvatures are
defined by κ1(s) = κ cos ϑ and κ2(s) = κ sin ϑ. One can show that

κ(s) =
√

κ2
1 + κ2

2, and ϑ = tan−1
(

κ2
κ1

)
; κ1 6= 0,

ϑ(s) = −
s∫
s0

τ(s)ds + ϑ0, ϑ0 = ϑ(0).

 (10)

Comparing Equation (4) with Equation (8) we observe that the relative velocity is

ω̃(s)−ω(s)=τ(s)T. (11)

Consequently, the Serre–Frenet frame and the RMF are identical if and only if β(s)
is a planar, i.e., τ(s) = 0. Now we define the spacelike Bishop spherical Darboux image
e : I → S2

1, by

e(s) =
ω̃(s)
‖ω̃(s)‖ =

κ1√
κ2

1 + κ2
2

(
κ2

κ1
N1 + N2

)
. (12)
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Therefore, we consider a new geometric invariant ρ(s) = κ1κ
′
2 − κ2κ

′
1.

We denote a surface M in E3
1 by

M : R(s, u) = (x1((s, u), x2((s, u), (x3((s, u)), (s, u) ∈ D ⊆ R2. (13)

Let U be the standard unit normal vector field on a surface M defined by U = Rs×Ru
‖Rs×Ru‖

where Ri =
∂R
∂i . Then, the metric (first fundamental form) I of a surface M is defined by

I = g11ds2 + 2g12dsdu + g22du2,

where g11 = < Rs, Rs>, g12 = < Rs, Ru>, g22 = < Ru, Ru >. We define the second
fundamental form I I of M by

I I = h11ds2 + 2h12dsdu + h22du2,

where h11 =< Rss, N >, h12 =< Rsu, U >, h22 =< Ruu, U >.

3. Timelike Sweeping Surface

The concept of a sweeping surface is obtained kinematically by a planar curve moving
such that the motion of any point on the surface is constantly orthogonal to the plane. Then,
the sweeping surface along β(s) is [13,14]:

M : R(s, u) = β(s) + T(s)r(u) = β(s) + r1(u)N1(s) + r2(u)N2(s), (14)

where β(s) is called the C1-continuous. r(u) is the planar profile (cross-section) curve
given by parametric representation r(u) = (0, r1(u), r2(u))t. The symbol ’t’ represents
transposition, with another parameter u ∈ I ⊆ R. The semi orthogonal matrix A(s) = {T1,
N1, N2} specifies the RMF along β(s). Geometrically, the sweeping surface R(s, u) is
generated by moving the profile curve r(u) along the spine curve β(s) with the orientation
as specified by A(s).

Without loss of generality, we can suppose the profile curve r(u) is a unit speed
spacelike curve, that is,

.
r2

1 +
.
r2

2 = 1. In the following, “dot” denotes the derivative with
respect to the parameter u of the profile curve r(u). From now on, we shall often not write
the parameters s and t explicitly in our formulae. Therefore, from the derivative formulas
of RMF, partial differentiation with respect to s and u is as follows:

Rs(s, u) = (1 + r1κ1 − r2κ2)T1,
Ru(s, u) =

.
r1N1 +

.
r2N2.

}
(15)

By simple calculations, we have the following:

g11 = −(1 + r1κ1(s)− r2κ2)
2, g12 = 0, g22 = 1, (16)

and
U(s, u) = − .

r2N1 +
.
r1N2. (17)

Note that ‖U(s, u)‖2 = 1 means that M is a timelike surface. Furthermore, we have:

Rss = (r1κ
′
1 − r2κ

′
2)T1 + (1 + r1κ1 − r2κ2)(κ1N1 − κ2N2),

Rsu = (
.
r1κ1 +

.
r2κ2)T1,

Ruu =
..
r1N1 +

..
r2N2.

 (18)

Then, we can compute

h11 = −(1 + r1κ1 − r2κ2)(
.
r2κ1 +

.
r1κ2),

h12 = 0,
h22 = − .

r2
..
r1 +

.
r1

..
r2.

 (19)
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Hence, the u-and s curves of M are curvature lines; that is, g12 = h12 = 0.

Corollary 1. Let M be the sweeping surface defined by Equation (14). Then:

(1) The s-parameter curve is also a geodesic on M if

.
r1κ1 −

.
r2κ2 = 0, and κ

′
1r1 − κ

′
2r2 = 0;

(2) The s-parameter curve is also an asymptotic curve on M if
.
r2κ1 +

.
r1κ2 = 0.

Proof. Since the u-and s curves of M are curvature lines, from Equations (17) and (18),
we have:

(1) The s-parameter curve is a also geodesic if Rss ×U(s, t) = 0; that is,

(1 + r1κ1 − r2κ2)(
.
r2κ2 −

.
r1κ1)T1+

−(r1κ
′
1 − r2κ

′
2)(

.
r1N1 +

.
r2N2) = 0.

}
Since T1, N1 and N2 are linearly independent unit vectors, we have the desired
equation system;

(2) The s-parameter curve is also an asymptotic curve on M if < U, Rss >= 0; that is,( .
r2κ1 +

.
r1κ2

)
(1 + r1κ1 − r2κ2) = 0.

Since 1 + r2κ − r3τ 6= 0 (See Equation (15)), it follows that
.
r2κ1 +

.
r1κ2 = 0 = 0 as

claimed.

Corollary 2. Let M be the sweeping surface represented by Equation (14). Then:

(1) The u−parameter curve cannot be also a geodesic on M;
(2) The u−parameter curve is also an asymptotic curve on M if

.
r1

..
r2 −

.
r2

..
r1 = 0.

Proof. Since the u and s curves of M are curvature lines, from Equations (17) and (18), we
have:

(1) Since
.
r2

1 +
.
r2

2 = 1 and Ruu × U(s, t) =
(
− .

r1
..
r1 +

.
r2

..
r2
)
T1, the u−parameter curve

cannot be also a geodesic on M;
(2) The u−parameter curve is also an asymptotic curve on M if < U, Ruu >= 0; that is,

.
r1

..
r2 −

.
r2

..
r1 = 0

as claimed. In this case, h22 = 0, so M is a developable ruled surface, that is, its
Gaussian curvature is identically zero.

The aim of this work is the following theorem:

Theorem 1. Let β: I → E3
1 be a unit speed timelike curve with κ1 > 0. Then, for any fixed x ∈S2

1,
one has the following:

A—(1) e(s) is locally diffeomorphic to a line {0}×R at s0 if and only if ρ(s0) 6= 0;
(2) e(s) is locally diffeomorphic to the cusp C×R at s0 if and only if ρ(s0) = 0, and ρ

′
(s0) 6= 0.

B—(1) M is locally diffeomorphic to cuspidal edge CE at (s0, u0) if and only if x = ±e(s0)
and ρ(s0) 6= 0;

(2) M is locally diffeomorphic to swallowtail SW at (s0, u0) if and only if x = ±e(s0), ρ(s0) =

0 and ρ
′
(s0) = 0.
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The proof will appear later. Here,

C×R =
{
(x1, x2)|x2

1 = x3
2

}
×R,

CE =
{
(x1, x2, x3)|x1= u, x2= v2, x3= v3

}
,

W =
{
(x1, x2, x3)|x1 = u, x2 = 3v2 + uv2, x3 = 4v3 + 2uv

}
.

The pictures of C×R, CE, and SW are presented in Figures 1–3.

Figure 1. C×R.

Figure 2. CE.

Figure 3. SW.

3.1. Lorentzian Height Functions

Next, let us introduce two different families of Lorentzian height functions that will be
useful to study the singularities of M as follows [1,11,67]: H : I × S2

1 → R, by H(s, x) =<



Symmetry 2022, 14, 1996 7 of 17

β(s), x >. We call this the Lorentzian height function. We use the notation hx(s) = H(s, x)
for any fixed x ∈ S2

1. We also define H̃ : I × S2
1 ×R→ R as H̃(s, x, w) =< β, x > −w. We

call it the extended Lorentzian height function of β(s). We denote that h̃x(s) = H̃(s, x).
From now on, we shall often not write the parameter s. Then, we give the following
proposition:

Proposition 1. Let β: I → E3
1 be a unit speed timelike curve with κ1 6= 0. Then, the following

holds:
(A).

(1) h
′
x(s) = 0 if and only if x = a1N1 + a2N2 and a2

1 + a2
2 = 1;

(2) h
′
x(s) = h

′′
x(s) = 0 if and only if x = ±e(s);

(3) h
′
x(s) = h

′′
x(s) = h

′′′
x (s) = 0 if and only if x = ±e(s) and ρ(s) = 0;

(4) h
′
x(s) = h

′′
x(s) = h

′′′
x (s) = h(4)x (s) = 0 if and only if x = ±e(s) and ρ(s) = ρ

′
(s) = 0;

(5) h
′
x(s) = h

′′
x(s) = h

′′′
x (s) = h(4)x (s) = h(5)x (s) = 0 if and only if x = ±e(s) and ρ(s) =

ρ
′
(s) = ρ

′′
(s) = 0.

(B).
(1) h̃x(s) = 0 if and only if there exist < β, x >= w;
(2) h̃x(s) = h̃

′
x(s) = 0 if and only if there exist a1, a2 ∈ R such that x = cos uN1 + sin uN2

and < β, x >= w;
(3) h̃x(s) = h̃

′
x(s) = h̃

′′
x(s) = h̃

′′
x(s) = 0 if and only if x = ±e(s), < β, x >= w,

and ρ(s) = 0;

(4) h̃x(s) = h̃
′
x(s) = h̃

′′
x(s) = h̃

′′
x(s) = h̃

′′′

x (s) = 0 if and only if x = ±e(s), < β, x >= w,
and ρ(s) = ρ

′
(s) = 0;

(5) h̃x(s) = h̃
′
x(s) = h̃

′′
x(s) = h̃

′′
x(s) = h̃

′′′

x (s) = h̃
(4)

x (s) = 0 if and only if x = ±e(s),

< β, x >= w, and ρ(s) = ρ
′
(s) = ρ

′′
(s) = 0.

Proof. (A). (1) Since h
′
x(s) =< T1, x >, and {T1, N1, N2} is RMF along β(s), then there

exists a1, a2 ∈ R such that x = a1N1 + a2N2. Moreover, in combination with x ∈ S2
1, we

obtain a2
1 + a2

2 = 1; it follows that h
′
x(s) = 0 if and only if x = a1N1 + a2N2 and a2

1 + a2
2 = 1.

(2) When h
′
x(s) = 0, the assertion (2) follows from the fact that h

′′
x(s) =< T

′
1, x >=<

κ1N1 − κ2N2, x > = 0. Thus, we have a1κ1 − a2κ2 = 0. It follows from the fact a2
1 + a2

2 = 1

that a1 = ±κ2/
√

κ2
1 + κ2

2 and a2 = ±κ1/
√

κ2
1 + κ2

2. Thereby, we have

x =

∓ κ1√
κ2

1 + κ2
2

(
κ2

κ1
N1 + N2

)(s) = ±e(s). (20)

Thus, we obtain h
′
x(s) = h

′′
x(s) = 0 if and only if x = ±e(s).

(3) Under the condition that h
′
x(s) = h

′′
x(s) = 0, h

′′′

x (s) =< T
′′

1 , x >=<
(
κ2

1 + κ2
2
)
T1 +

κ
′
1N1 − κ

′
2N2, x > = 0, and by Equation (20), we have

± κ1√
κ2

1 + κ2
2

(
κ2κ

′
1 − κ1κ

′
2

κ1

)
(s) = ± κ1√

κ2
1 + κ2

2

(
ρ

κ1

)
(s) = 0.

Since κ1 6= 0, we obtain h
′′′

x (s) = 0 if and only if x = ±e(s) and ρ(s) = 0.
(4) Since

h
(4)

x (s) =< T
′′′

1 , x >=< 3(κ1κ
′
1 + κ2κ

′
2)T1 +

(
κ
′′

1 + κ1
(
κ2

1 + κ2
2
))

N1

−
(

κ
′′

2 + κ2
(
κ2

1 + κ2
2
))

N2, x > = 0.
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Thus, making use of Equation (20) in the above, we have that

± κ1√
κ2

1 + κ2
2


(

κ2κ
′
1 − κ1κ

′
2

)′
κ1

(s) = 0.

This is equivalent to the condition ρ(s) = ρ
′
(s) = 0.

(5) Since h
(5)

x (s) =< T
(4)

1 , x >= 0, we have

<
((

κ2
1 + κ2

2
)2

+ 4
(

κ2κ
′′

2 + κ1κ
′′

1

)
+ 3
(

κ
′2
1 + κ

′2
2

))
T1+(

κ
′′′

1 + 5κ1

(
κ
′
1κ1 + κ

′
2κ2

)
+ κ

′
1
(
κ2

1 + κ2
2
))

N1−(
κ
′′′

2 + 5κ2

(
κ
′
2κ2 + κ

′
1κ1

)
+ κ

′
2
(
κ2

1 + κ2
2
))

N2, x >= 0.


Similarly, by Equation (20) in the above, we have

± 1√
κ2

1 + κ2
2

κ2κ
′′′

1 − κ1κ
′′′

2 +
(

κ2κ
′
1 − κ1κ

′
2

)(
κ2

1 + κ2
2
)

κ1

 = 0.

This is equivalent to the condition ρ(s) = ρ
′
(s) = ρ

′′
(s) = 0. (B). Using the same

computation as the proof of (A), we can obtain (B).

Proposition 2. Let β: I → E3
1 be a unit speed timelike curve with κ1 6= 0. Then, we have ρ(s) = 0

if and only if

e(s) =
κ1√

κ2
1 + κ2

2

(
κ2

κ1
N1 + N2

)
is a constant vector.

Proof. Suppose that κ1 6= 0. By simple calculations, we have

e
′
(s) =

ρ(s)(√
κ2

1 + κ2
2

)3 (κ1N1 + κ2N2).

Thus, e
′
(s) = 0 if and only if ρ(s) = κ2κ

′
1 − κ1κ

′
2 = 0.

Proposition 3. Let β: I → E3
1 be a unit speed timelike curve with κ1 6= 0. Then, we state

the following:

(a) β is a slant helix if and only if κ2/κ1 is constant;
(b) N2 is a part of a circle on S2

1 whose center is the spacelike constant vector e0.

Proof.

(a) Suppose that ρ(s) = κ2κ
′
1 − κ1κ

′
2 = 0. Hence, we can write

(
κ2

κ1

)′
=

κ1κ
′
2 − κ2κ

′
1

κ2
1

=
−ρ(s)

κ2
1

= 0.

This means that κ2
κ1

=constant; that is, β is a slant helix;
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(b) Suppose that κ1 6= 0. Since

< e, N2 >=
κ1√

κ2
1 + κ2

2

<

(
κ2

κ1
N1 + N2

)
, N2 >=

1√
1 + κ2

2/κ2
1

= const.

N2 is a part of a circle on S2
1 whose center is the constant spacelike vector e0(s).

3.2. Unfolding of Functions by One-Variable

Now, we use some general results on the singularity theory for families of function
germs [1–3]. Let F: (R×Rr, (s0, x0)) → R be a smooth function and f (s) = Fx0(s, x0).
Then, F is called an r-parameter unfolding of f (s). We say that f (s) has Ak-singularity
at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k, and f (k+1)(s0) 6= 0. We also say that f has
A>k-singularity (k > 1) at s0. Let the (k− 1)-jet of the partial derivative ∂F

∂xi
at s0 be

j(k−1)
(

∂F
∂xi

(s, x0)
)
(s0) = Σk−1

j=0 Lji(s− s0)
j (without the constant term), for i = 1, ..., r. Then,

F(s) is called a p-versal unfolding if the k× r matrix of coefficients
(

Lji
)

has rank k (k ≤ r).
Therefore, we write an important set about the unfolding relative to the above notations.
The discriminant set of F is the set

DF =

{
x∈Rr| there exists s with F(s, x) =

∂F
∂s

(s, x) = 0 at (s, x)
}

. (21)

The bifurcation set of F is the set

BF =

{
x∈Rr| there exists s with

∂F
∂s

(s, x) =
∂2F
∂s2 (s, x) = 0 at (s, x)

}
. (22)

Then, similar to [1,11,67], we state the following theorem:

Theorem 2. Let F: (R×Rr, (s0, x0)) → R be an r-parameter unfolding of f (s), which has the
Ak singularity at s0.

Suppose that F is a p-versal unfolding;

(a) If k = 1, then DF is locally diffeomorphic to {0}×Rr−1, and BF = ∅;
(b) If k = 2, then DF is locally diffeomorphic to C×Rr−2 and BF is locally diffeomorphic to

{0}×Rr−1;
(c) If k = 3, then DF is locally diffeomorphic to SW×Rr−3 and BF is locally diffeomorphic to

C×Rr−2.

Hence, we have the following fundamental proposition:

Proposition 4. Let β: I → E3
1 be a unit speed timelike curve κ1 6= 0. (1). If hx(s) = H(s, x)

has an Ak-singularity (k = 2, 3) at s0 ∈ R, then H is a p−versal unfolding of hx0(s0). (2). If
h̃x(s) = H̃(s, x, w) has an Ak-singularity (k = 2, 3) at s0 ∈ R, then H̃ is a p−versal unfolding of
h̃x0(s0)

Proof. (1) Since x =(x0,x1, x2) ∈ S2
1 and β(s)=(β0(s),β1(s), β2(s)) ∈ E3

1. Without loss of

generality, suppose x2 6= 0. Then, by x2 =
√

1 + x2
0 − x2

1, we have

H(s, x) = −x0β0(s) + x1β1(s) +
√

1 + x2
0 − x2

1β2(s). (23)
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Thus, we have that

∂H
∂x0

= −β0(s) +
x0β2(s)√
1+x2

0−x2
1
, ∂H

∂x1
= β1(s)− x1β2(s)√

1+x2
1−x2

2
,

∂2 H
∂s∂x0

= −β
′
0(s) +

x0β
′
2(s)√

1+x2
0−x2

1
, ∂2 H

∂s∂x1
= β

′
1(s)−

x1β
′
2(s)√

1+x2
1−x2

2
.


Therefore, the 2-jets of ∂H

∂xi
at s0 (i = 0, 1) are as follows. Let x0 = (x00, x10, x20) ∈ S2

1
and assume x20 6= 0; then

j1
(

∂H
∂x0

(s, x0)
)
=

(
−β

′
0(s) +

x00β
′
2(s)

x20

)
(s− s0),

j1
(

∂H
∂x1

(s, x0)
)
=

(
β
′
1(s)−

x10β
′
2(s)

x20

)
(s− s0),

 (24)

and
j2
(

∂H
∂x0

(s, x0)
)
=
(
−β

′
0(s) +

x00β2(s)
x20

)
(s− s0)

+ 1
2

(
−β

′′

0 +
x00β

′′
2 (s)

x20

)
(s− s0)

2,

j2
(

∂H
∂x1

(s, x0)
)
=

(
β
′
1(s)−

x10β
′
2(s)

x20

)
(s− s0)

+ 1
2

(
β
′′

1 (s)−
x10β

′′
2 (s)

x20

)
(s− s0)

2


(25)

(i) If hx0(s0) has the A2-singularity at s0, then h
′
x0
(s0) = 0. Therefore, the (2− 1)× 2

matrix of coefficients
(

Lji
)

is:

A =
(
−β

′
0(s) +

x00β
′
2(s)

x20
β
′
1(s)−

x10β
′
2(s)

x20

)
. (26)

Suppose that the rank of the matrix A is zero; then, we have:

β
′
0(s) =

x00β
′
2(s)

x20
, β

′
1(s) =

x10β
′
2(s)

x20
. (27)

Since
∥∥∥β
′
(s0)

∥∥∥ = ‖T1(s0)‖ = 1, we have β
′
2(s0) 6= 0 and the contradiction as follows:

0 = <
(

β
′
0(s0), β

′
1(s0), β

′
2(s0)

)
, (x00,x10, x20) > (28)

= −β
′
0(s0)x00 + β

′
1(s0)x10 + β

′
2(s0)x20

= −
x2

00β
′
2(s0)

x20
+

x2
10β

′
2(s0)

x20
+ β

′
2(s0)x20 (29)

=
β
′
2(s0)

x20

(
−x2

00 + x2
10 + x2

20

)
=

β
′
2(s0)

x20
6= 0.

Therefore, rank(A) = 1, and H is the (p) versal unfolding of hx0 at s0.

(ii) If hx0(s0) has the A3-singularity at s0 ∈ R, then h
′
x0
(s0) = h

′′
x0
(s0) = 0 and by Proposi-

tion 1:

e(s0)=
κ1√

κ2
1 + κ2

2

(
κ2

κ1
N1 + N2

)
, (30)
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where ρ
′
(s0) = 0, and ρ

′′
(s0) 6= 0. Therefore, the (3− 1)× 2 matrix of the coefficients

(
Lji
)

is

B =

(
L11 L12
L21 L22

)
=

 −β
′
0(s) +

x00β2(s)
x20

β
′
1(s)−

x10β
′
2(s)

x20

−β
′′

0 +
x00β

′′
2 (s)

x20
β
′′

1 (s)−
x10β

′′
2 (s)

x20

. (31)

For the purpose, we also require the 2× 2 matrix B to be non-singular, which always
holds true. In fact, the determinate of this matrix at s0 is

det(B) =
1

x20

∣∣∣∣∣∣∣
−β

′
0 β

′
1 β

′
2

−β
′′

0 β
′′

1 β
′′

2
x00 x10 x20

∣∣∣∣∣∣∣ (32)

=
1

x20
< β

′×β
′′
, x0 >

= ∓ κ1

x20

√
κ2

1 + κ2
2

< β
′×β

′′
,
(

κ2

κ1
N1 + N2

)
> . (33)

Since β
′
= T1, we have β

′′
= κ1N1 − κ2N2. Substituting these relations for the above

equality, we have

det(B) = ∓

√
κ2

1 + κ2
2

x20
6= 0. (34)

This means that rank(B) = 2.
(2) Under the same notation as in (1), we have

H̃(s, x,x2) = −x0β0(s) + x1β1(s) +
√

1 + x2
0 − x2

1β2(s)− x2. (35)

We require the 2× 3 matrix

G =

 −β
′
0(s) +

x00β2(s)
x20

β
′
1(s)−

x10β
′
2(s)

x20
−1

−β
′′

0 +
x00β

′′
2 (s)

x20
β
′′

1 (s)−
x10β

′′
2 (s)

x20
0

,

to have the maximal rank. By case (1) in Equation (30), the second raw of G does not vanish,
so rank(G) = 2.

Proof of Theorem 1. (1) By Proposition 1, the bifurcation set of H(s, x) is

BH =

 κ1√
κ2

1 + κ2
2

(
κ2

κ1
N1 + N2

)
|s ∈ R|s ∈ R

. (36)

The assertion (1) of Theorem 1 follows from Proposition 1, Proposition 4, and Theorem 2.
The discriminant set of H̃(s, x) is given as follows:

DH̃ = {x0 = β + cos uN1 + sin uN2|s ∈ R}. (37)

The assertion (1) of Theorem 1 follows from Proposition 1, Proposition 4, and Theorem 2.

Example 1. Given the timelike helix:

β(s) = (
√

3 sinh s,
√

2s,
√

3 cosh s), − 1 ≤ s ≤ 1,
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It is easy to show that

T(s) = (
√

3 cosh s,
√

2,
√

3 sinh s),
N(s) = (sinh s, 0, cosh s),

B(s) = (−
√

2 cosh s,−
√

3,−
√

2 sinh s),
κ(s) =

√
3, and τ(s) = −

√
2.


Taking θ0 = 0, we have θ(s) =

√
2s. Using the Equation (9), we obtain

κ1(s) =
√

3 cos
√

2s, and κ2(s) =
√

3 sin
√

2s.

Hence, the geometric invariant is

ρ(s) =
√

6.

The transformation matrix can be expressed as T1
N1
N2

 =

 1 0 0
0 cos

√
2s sin

√
2s

0 − sin
√

2s cos
√

2s

 T
N
B

.

From this, we have

N1 =

 N11
N12
N13

 =

 sinh s cos
√

2s−
√

2 cosh s sin
√

2s
−
√

3 sin
√

2s
cosh s cos

√
2s−

√
2 sinh s sin

√
2s

,

N2 =

 N21
N22
N23

 =

 − sinh s sin
√

2s−
√

2 cosh s cos
√

2s
−
√

3 cos
√

2s
− cosh s sin

√
2s−

√
2 sinh s cos

√
2s

.

Hence, the timelike sweeping surface is (Figure 4)

M : R(s, u) =
(√

3 sinh s,
√

2s,
√

3 cosh s
)
+ cos u

 N11
N12
N13

+ sin u

 N21
N22
N23

.

The Bishop spherical Darboux image is

e(s) = sin
√

2s

 N11
N12
N13

+ cos
√

2s

 N21
N22
N23

.

Figure 4. Timelike sweeping surface.
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3.3. Timelike Developable Surfaces and Singularities

In this subsection, we analyze the case that the profile curve r(u) = (0, r1(u), r2(u))t

degenerates to a spacelike straight line; that is, r(u) = (0, u, 0)t. Then, we can give the
following timelike developable surface

M : D(s, u) = β(s) + uN1(s), u ∈ R. (38)

Similarly, we have the following timelike developable surface

M⊥ : D⊥(s, u) = β(s) + uN2(s), u ∈ R. (39)

It is easy to show that D(s, 0) = γ(s) (resp. D⊥(s, 0) = β(s)), 0 ≤ s ≤ L; that is, the
surface D⊥ (resp. D) interpolates the curve β(s). Furthermore, we have

∂D

∂s
× ∂D

∂u
= (1− uκ1)N2(s), (40)

and
∂D⊥

∂s
× ∂D⊥

∂u
= −(1− uκ2)N1(s). (41)

Hence, we have that M (resp. M⊥) is non-singular at (s0, u0) if and only if 1 −
u0κ1(s0) 6= 0 (resp. (1− u0κ2(s0) 6= 0). We designate µ(s) to represent κi(s) (i = 1, 2);
based on the Theorem 3 in [69], we can give the following corollary:

Corollary 3. For the timelike developable ruled surfaces D(s, u) and D⊥(s, u), we have the following:

(1) D(resp. D⊥) is locally diffeomorphic to the cuspidal edge CE at (s0, u0) if µ(s0) = 0,
and µ

′
(s0) 6= 0;

(2) D(resp. D⊥) is locally diffeomorphic to the swallowtail SW at (s0, u0) if µ(s0) 6= 0

and µ
′
(s0)

µ2(s0)
6= 0.

Example 2. By using Example 1, the timelike developable surfaces, respectively, are

M : D(s, u) =
(√

3 sinh s,
√

2s,
√

3 cosh s
)
+ u

 sinh s cos
√

2s−
√

2 cosh s sin
√

2s
−
√

3 sin
√

2s
cosh s cos

√
2s−

√
2 sinh s sin

√
2s

,

and

M⊥ : D⊥(s, u) =
(√

3 sinh s,
√

2s,
√

3 cosh s
)
+ u

 sinh s sin
√

2s−
√

2 cosh s cos
√

2s
−
√

3 cos
√

2s
cosh s cos

√
2s−

√
2 sinh s cos

√
2s

.

The singular loci of M, and M⊥, respectively, are

D(s) =
(√

3 sinh s,
√

2s,
√

3 cosh s
)
+

1√
3

 sinh s−
√

2 cosh s tan
√

2s
−
√

3 tan
√

2s
cosh s−

√
2 sinh s tan

√
2s

,

and

D⊥(s) =
(√

3 sinh s,
√

2s,
√

3 cosh s
)
+

1√
3

 sinh s−
√

2 cosh s cot
√

2s
−
√

3 cot
√

2s
cosh s−

√
2 sinh s cot

√
2s

.
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We consider a local part of this curve when π
6
√

2
≤ s ≤ π

3
√

2
. We see that κ−1

1 (s) =

1√
3 cos

√
2s
6= 0 and κ

′
1(s) = −

√
6 sin

(√
2s
)
6= 0 for π

6
√

2
≤ s ≤ π

3
√

2
. This means that M is

locally diffeomorphic to a CE and its singular locus is locally diffeomorphic to a line (the
green line); see Figure 5. For M⊥, when π

6
√

2
≤ s ≤ 5π

6
√

2
, we see that κ−1

2 (s) = 1√
3 sin

√
2s
6= 0,

κ
′
2(s) =

√
6 cos

(√
2s
)
= 0 gives one real root s = π

2
√

2
. This means that M⊥ is locally

diffeomorphic to SW and the singular locus is locally diffeomorphic to a line (the green
line) at s = π

2
√

2
; see Figure 6.

Figure 5. CE timelike developable surface.

Figure 6. SW timelike developable surface.

4. Conclusions

This paper is concerned with the study of a special kind of timelike tube surface, called
the named timelike sweeping surface in Minkowski 3-space. It is traced by a spacelike plane
curve moving through a timelike curve such that the movement of any point on the surface
is constantly orthogonal to the plane. Then, the problems of singularity and convexity of
such a timelike sweeping surface are discussed. In particular, we derived the sufficient and
necessary conditions for this timelike sweeping surface to be a timelike developable ruled
surface. Afterwards, the problem of singularity of a timelike developable ruled surface is
investigated. We also illustrated our main results by giving some representative examples.
Hopefully, these results will be useful to physicists and those studying the general relativity
theory. There are several opportunities for further work. An analogue of the problem
addressed in this paper may be consider for 3-surfaces in 4-space. We will study this
problem in the future.
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29. Gür, S.; Şenyurt, S.; Grilli, L. The Dual Expression of Parallel Equidistant Ruled Surfaces in Euclidean 3-Space. Symmetry 2022, 14,
1062.
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41. Antić, M. A class of four-dimensional CR submanifolds in six dimensional nearly Kähler manifolds. Math. Slovaca 2018, 68,

1129–1140. [CrossRef]
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