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Abstract

The singularity subtraction technique described by Kantorovich and Krylov in [11] is
designed to reduce or overcome the effect of a weakly singular kernel in the numerical
solution of integral equations. First, the equation is rearranged in such a way that the
singularity of the kernel is at least partially cancelled by the smoothness of the solution,
and then numerical integration is applied. We present convergence results and error
bounds under general conditions on the nature of the singularity and the numerical
integration procedure. Numerical examples demonstrate the benefit of the singularity
subtraction technique.

1. Introduction and Summary

We describe the singularity subtraction technique in the context of a Fredholm

integral equation on C[0, 1],

x(s) - [lk(s, t)x(t) dt = y(s), (1.1)
•'o

where k(s, t) is singular along s = t. For example, k(s, t) might have a singular

factor \s — /|~1/2 or ln\s — t\. Precise hypotheses on k(s, t) will be formulated

later. They will imply that the integral operator in (1.1) maps C[0, 1] into C[0, 1]

and is compact.

Rearrange (1.1) in the form

(s, t) dt]x(s) + f\(s, t)[x(s) - x(0] dt = y(s). (1.2)

The continuity of x mitigates the effect of the singularity in the last integral. So

it should be more amenable for numerical integration than the integral in (1.1).
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12) Singularity subtraction technique 409

We shall use a numerical procedure on (1.2) which was developed first for the
numerical integration of weakly singular functions in [3] and then applied to
(1.1) in [2]. It is a double approximation scheme consisting of singularity
truncation and numerical integration. First, k(s, t) is approximated by bounded
kernels kn(s, t), n = 1, 2, . . . , which coincide with k(s, t) outside certain
neighborhoods of s = f. Then an appropriate quadrature rule is applied.

With this procedure, (1.1) and (1.2) are approximated respectively by
n

Us) - 2 wnJkn(s, tnJ)xn{tJ = y(s), (1.3)

and

+ 2 %,-*»(*. '«)[**(*) - UO] = y(s). (i.4)

An equivalent formulation of (1.4) is
n 1

£t ^m n\S> ni) I ^\*^> ' / "• l^nv1^/

n

The hypotheses will imply that the coefficient of xn(s) in (1.5) converges

uniformly to unity a.s n —> oo. Therefore, the equation for xn can be regarded as

a perturbation of the equation for xn when n is large. This fact will be exploited

in order to extend to xn results for xn derived in [2].

The equations for xn and xn reduce t o / i X n linear systems for xn(tm) and

Ulni)' ' = 1. • • • , « • If these systems are solved, then solutions xn and xn of

(1-3)—(1.5) are given by

n

/ \ / \ v ^ / \ / \

7 - 1 "
J
 ' "

J
 '

and

1+ E ^ , ( M , ) - Ck{s,t)dt
7 = 1 •'O

(1.7)

the latter for n sufficiently large. The replacement of k by kn makes the
calculations in (1.6) and (1.7) more tractable for s near some tN. The presence of
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kn(s, tnJ) in both the numerator and denominator in (1.7) has a stabilizing
influence which is absent in (1.6).

Conditions will be given which relate the unique solvability of the equations
for x, xn, and xn, and which imply uniform convergence xn -» x and xn -» x plus
error bounds. In general, the convergence xn -* x is faster than xn —» x. This will
be demonstrated both theoretically and numerically.

It has been assumed tacitly that the integral in (1.4) can be evaluated in closed
form. However, if this integral is approximated by means of a quadrature
formula of high order relative to n, perhaps order 2n, then some of the
advantage of the singularity subtraction technique remains. With this modifica-
tion, (1.4) still reduces to an n X n system and the subsequent analysis requires
only minor changes, which are left to the reader. Convergence results and error
bounds for the approximate solutions still follow.

The singularity subtraction technique will be compared with the singularity
factorization technique of Atkinson [4], [5]. Recent contributions to the numeri-
cal solution of weakly singular integral equations by Bechlars [6], [7], Borer [8],
Graham [10], Schneider [16], Sloan [17]-[2O], and Volk [21] will be mentioned
briefly.

2. The quadrature formula

Assume that the quadrature rule satisfies

j [ ( ' ) dt> x G C t 0 ' l ] ' (2-1)

with

0 < ' „ . < • • < ' « , < ! , "„, > 0. (2.2)

The last condition is a convenience rather than a necessity. Also assume either
of the conditions

HI: 2 wnj<^> E =[a,b) and {a, b], b-a<\<,

or
H 2 : »V w^-i < c(xnJ - *„;_,), j = 2 n,

with some constant c. Romberg rules and the usual compound rules satisfy both
HI and H2. Gauss and Fejer rules satisfy H2. For further details see [3] and [16].
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(4) Singularity subtraction technique 411

3. Singular kernels and bounded approximations

First, consider a kernel k(s, t) with a monotone symmetric singular factor:

k(s, t) = gQs - t\)h(s, t), (3.1)

* e C ( [ O , 1] X[0, l ] ) , (3.2)

gei'(0,i)nC(0,i], (3.3)

and
g > 0, g nonincreasing on (0, 5], (3.4)

for some 5 e (0, 1]. Examples include g(r) = ra~l with 0 < a < 1 and g(r) =
In c/r with c > 1.

For n = 1, 2, . . . , we introduce approximations gn for g and numbers 8B such
that

0 < 5 n < 5 , 8n-*0, (3.5)

a,eqo, 1], gn = gon[5 n , 1], (3.6)

0 < gn < g, gn nonincreasing on [0, 8n], (3.7)

&(0)>&,(0) for/ i>«, (3.8)

and, depending on whether H1 or H2 holds,

HI: ^«,(0)->0, (3.9)

or

H2: (max % , ) a , (0) ->0. (3.10)

When gn is constant or linear or is a completely monotone polynomial on [0, Sn],

(3.9) and (3.10) are satisfied if (see [3])

HI: 8m>p/n, (3.11)

or

H2: 8n > p max H^, (3.12)

for some p > 0. In any case, 8n should not converge too fast to zero.
Continuous approximations kn for the kernel k in (3.1) are defined by

kn(s, t) = & ( | j - t\)h(s, I)- (3.13)

Note that kn(s, t) = k(s, t) for \s - t\ > 8n.

More general kernels and kernel approximations are given next. Let

k(s, t) = f(s - t)h(s, t), (3.14)

/(/•) continuous for r ¥= 0, (3.15)
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and

|/(r)| <g(\r\) f o r O < | r | < 5 , (3.16)

where g and h satisfy (3.2)-(3.4). Approximate/by/„, n = 1, . . . , such that

/ B E C [ - 1 , 1 ] , /„(/•)=/(/•) for |r| > «„, (3.17)

and

\f(A\t:a(\r\\ fnrfl <L \r\ <. /5 tt. 1 81
\Jn\~ / I ~* © n V I ' 1 / *- ^ r t ^ ~n> v~ '

where gn and Sn satisfy (3.5)-(3.10).

Continuous approximations kn for A: in (3.14) are defined by

kn(s, t) = fm(s - t)h(s, t). (3.19)

As before, kn(s, i) = k(s, t) for \s — t\ > 8n. Assume henceforth that k and kn

are given by (3.14) and (3.19) or the special cases (3.1) and (3.13).

Discontinuous kernel approximations, for example with

kn(s, t) = 0, \s - t\ < Sn,
(3.20)

kn(s, t) = k(s, t), \s - t\ > Sn,

could be admitted. Merely replace C[0, 1] by the space R[0, 1] of bounded

Riemann integrable functions in the subsequent analysis (see [1], [3]).

4. Operator approximation theory

Let X = C[0, 1] with ||x|| = max|x(/)| and let [A'] be the space of bounded

linear operators on X. Equations (1.1), (1.3), and (1.4) have the operator forms

o n l :

(I-K)x=y, (I-Kn)xn=y, and (/ - Kn)xn = y. (4.1)

The operators K, Kn, and Kn are defined on X by

Kx(s) = [Xk(s, t)x(t) dt, (4.2)
•'o

j - i

+ Ck(s,t)x{s)dt. (4.4)
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The collectively compact operator approximation theory presented in [1] was

applied to K and Kn (and more general operators) in [2]. It was established that

Kn -» K, K compact, {Kn) collectively compact. (4.5)

Thus, Kn -» K pointwise on X, and the sets {Kx: \\x\\ < 1} and {Knx: \\x\\ < 1,

n > 1} are relatively compact (bounded and equicontinuous). Since K and Kn

are compact, (/ - K)~l G [A'] and (/ - Kn)~
l G [A'] whenever the inverses exist.

Conditions (4.5) imply

\\(Kn-K)K\\^0 and \\(Kn - K)Kn\\ ^ 0 . (4.6)

According to the theory in [1], if (/ - Kn)~* exists and ||(/ — A ,̂)"1 j|

\\(Kn - K)K\\ < 1 for some n, then (/ - AT)"1 exists. If (/ - K)'1 exists and n is

so large that | |(/ - Ar)~'|| ||(ATn - K)Kn\\ < 1, then there exist uniformly

bounded (/ — Kn)~
l and the unique solutions of (/ — K)x = y and (/ — Kn)xn

= y satisfy

IK - X | | < ||(7 - A;)"1!! \\Knx - Kx\\ -* 0. (4.7)

Other error bounds are given in [1].

Now consider Kn. From (4.2)-(4.4),

Kn = Kn - { K n u - Ku)I, u e C [ 0 , l ] , u = l. (4.8)

These operators are not compact unless Knu = Ku. By (4.8),

\\Kn- Kn\\ = \\Knu-Ku\\^0. (4.9)

It follows from (4.5) and (4.9) that Kn —* K and {Kn} is asymptotically compact,

that is, for any bounded sequence {xn}, {Knxn} has a convergent subsequence.

A study of (/ — K)x = y and (/ — Kn)xn = y can be based on these properties.

However we shall proceed along another path which yields more results.

Let n be so large that ||Kn - Kn\\ < 1. Then

(I - Kn + Kny
l

and

/ - kn =[i-Kn(i- kn + Kny
l](i-kn + Kn).

Since Kn(l - Kn + Kn)~
l is compact, it follows that ( / - A,)"1 e [X] if the

latter inverse exists. From Kn -» K, (4.6) and (4.9),

K. -> K, \\{Kn - K)K\\ -» 0 and ||(A; - AT)A;|| ^ 0. (4.10)

The conclusions for Kn and K given above extend to kn and K by means

of (4.10) and Theorem 1.10 of [1]. If (/ - £„)"' exists and ||(7 - A;)-' | |

\\(kn - K)K\\ < 1 for some n, then ( / - AT)"1 exists. If ( / - A^"1 exists and n is

so large that ||(7 - AT)-'|| ||(A^, - K)Kn\\ < 1, then there exist uniformly

bounded ( / - kn)~
x and the solutions of ( / - K)x = y and ( / — kn)xn = y
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satisfy

\\xn - x\\ < ||(7 - Kny
x\\ \\Knx - Kx\\^O. (4.11)

Other error bounds are available from [1].
Convergence results and error bounds for special cases of xn were obtained by

a different method, based on the collectively compact theory, by Borer [8].

5. Comparisons of convergence rates

Assume (/ — K)~x exists and n is so large that (/ — Kn)~
l and (/ — Kn)~

l exist.
Fix y e. X. Let x, xn, and xn be the unique solutions of (7 — K)x = y,

(7 - Kn)xn = y and (7 - Kn)xn = y. In view of (4.7) and (4.11), the conver-
gence rates of xn -» x and xn -* JC depend primarily on the convergence rates of
Knx -> Kx and Knx -+ Kx, where x = (7 - K)~]y.

From (4.2) and (4.3),

Knx(s) - Kx(s) = 2 wnjkn(s, /„)*(/„) - r'*(5, t)x(t) dt. (5.1)
y = l •'o

This is a numerical integration error for k(s, t)x(t) as a function of / for each s.

Since fc is singular, the convergence of Knx -> Ax and xn -» x is expected to be
slow.

From (4.2) and (4.4),

Knx(s) - Kx(s) = 2 ^ ^ ( J , <„)[*(/„) - x(*)]

jfV(5,/)[*(r)-x(5)]df. (5.2)

This is a numerical integration error for k(s, t)[x(t) - x(s)] as a function of t for
each j . Since the continuity of JC should reduce the effect of the singularity of k,

the convergence of Knx -» Kx and xn —» JC should be faster than Knx -> Ax and
xn —* x. More precise statements will depend on the nature of the singularity, the
smoothness of k(s, t) for s ¥= t, and the smoothness of the solution JC of
(7 - K)x = y.

The smoothness of solutions of weakly singular integral equations has been
studied by a number of authors. Earlier references include Giraud [9] and
Miranda [15]. More recent contributions have been made by Bechlars [7] and
Schneider [16]. The latter contains an extensive bibliography.

Let Ca, 0 < a < 1, denote classes of Holder-continuous functions on [0, 1]:

x G Ca if \ x ( s ) - x ( t ) \ < A \ s - t\a, 0 < a < l ,
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and

x G C, if \x(s) - x(t)\ <A\s- t\\n ^ - ^ p

with constants A and B which depend on x.

We define certain classes Ka, 0 < a < 1, of the kernels in (3.1):

k G Ka if k(s, t) = \s - t\"-lh(s> ')> 0 < a < 1,

and

k G AT, if k(s, t) = In ^ A(j, f), c > 1,

where A(5, /) satisfies (3.2) and the derivative hs G C[0, 1] as a function of s for

each f.

Let x = (/ - A");1. Then, for 0 < a < 1,

k G Ka, y G Ca => * G Q , (5.3)

and

A: G Aa, j G Ca n C'(0, 1) ̂  x G Ca n C'(0, 1). (5.4)

For proofs and further results, see [6] and [16]. As (5.4) suggests, x is typically

less smooth at the endpoints of [0, 1]. A quadrature formula with the nodes

denser near 0 and 1 could help compensate for this lack of smoothness (see [6]

and [16]).

In the situation of (5.4), the integrand in (5.2) satisfies

\k(s, t)[x(t) ~ *(s)]\ <A\s-t\2a~\ 0<a<l, (5.5)

and

|*(*. /)[*(/) - x(s)]\ < A\s - /|ln( J - A - J ) , « = 1, (5.6)

with some A and B. If \ < a < 1 then k(s, /)[*(') ~ x(s)] *s n o t singular. If

0 < a <\ then the singularity in (5.2) is weaker than the singularity in (5.1).

Hence, as already stated, the convergence of Knx -» Kx and xn —* x should be

faster than Knx —» Kx and xn —» x. Numerical examples are given in Section 7.

6. Comparisons with other approximation methods

With k(s, t) given by (3.14), (/ - K)x = y has the form

x(s) - [ f(s - t)h(s, t)x(t) dt = y(s). (6.1)
Jn
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In the singularity factorization technique of Atkinson [4], [5], (/ — K)x = y is

approximated by an equation (/ — K")x" = y of the form

x"(s) - jT'/(, - t)Pn[h(s, t)x(t)] dt = y(s), (6.2)

where Pn e [A'] is a projection which acts with respect to t, for example, spline

interpolation or approximation. Assume dim FnX = n and Pn -» / . Then K" and

K satisfy (4.5), so that x" -> x when (/ - K)-1 exists.

Equation (6.2) reduces to an n X n matrix problem. The entries are integrals

which can be evaluated explicitly if / , h and the functions in PnX are simple

enough. Then the singular factor is treated exactly, so x" -* x should converge

faster than xn —» x. Numerical examples in Section 7 demonstrate this. The

comparison of x " —> x and xn -> x is far from clear when the integrals involving

the singular factor/(.y, t) must be approximated. Then the derivation of each x"

requires much more machine time and the speed of convergence is reduced.

The singularity factorization method has been extended and sharpened by

Bechlars [6], [7]. His analysis covers singularities or discontinuities of k(s, t). It

includes Volterra equations.

The thesis by Volk [21] on the numerical treatment of integral equations by

means of spline functions contains applications to weakly singular equations.

The thesis by Schneider [16] presents a thorough and systematic study of the

numerical solution of weakly singular integral equations by a projection

method: (/ — K)x = y is approximated by (/ — KPn)xn = y, where Pn G [X] is

a projection with dim PnX < oo and Pn -» / . Smoothness properties of x =

(/ — K)~x are used in order to design particularly efficient spline projections.

The recent papers by Graham [10] and Sloan [17]-[20] further refine and

extend the effectiveness of singularity factorization.

7. Numerical examples

These results are adapted from Borer [8].

Example 1: x(s) + f$n\s - t\x(t) dt = y(s), x(s) = s.

Replace ln|s — t\ by ln(l//i) for \s — t\ < \/n and use Simpson's rule to

define approximations xn and xn for x as in Section 1. Table 1 compares xn, xn

and corresponding singularity factorization approximations x" at s =\, where

x ={.
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n

9

11

15

39

65

Example 2: x(s) + }k\s -

TABLE 1

Results for Example 1

X
n

1.24844
1.24886
1.24922
1.24953
1.24955

t\'l/2x(

.50356

.50292

.50106

.49641

.48155

0 dt = y(s), x(s)

x"

.50213

.50112

.49917

.50031

.50005

= s.

Define xn, xn, and x" in the same way as above. At s = \, where x =\, we
have the following computations.

TABLE 2

Results for Example 2

9 .98471 .52311 .53112
11 .94379 .51132 .51306
15 1.1247 .49371 .50972
39 1.1149 .48116 .50103
65 1.1236 .49612 .50033

In both examples, xn does not seem to converge, whereas both xn and x" are
quite accurate even for small n. As anticipated, x" is apparently more accurate
than xn since the simplicity of the kernels makes it possible to treat the
singularity exactly in the calculation of x".

Further numerical comparisons would be desirable, particularly for more
complicated singular integral equations.
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