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SINGULARLY PERTURBED ELLIPTIC SYSTEMS
AND MULTI-VALUED HARMONIC FUNCTIONS

WITH FREE BOUNDARIES

L. A. CAFFARELLI AND FANG-HUA LIN

1. Introduction

The purpose of this paper is to study the solutions uε = (uε
1, . . . , u

ε
m) of a family

of singularly perturbed systems of elliptic equations and their asymptotic limits.
The common characteristic of these problems is that in the singular limit, the

components of the solutions of these systems group in different blocks and the
supports of the different blocks become disjoint. In a special case [CLLL, CR] the
limit gives rise to a multiple scalar-valued harmonic function, and a free boundary
problem between components.

To illustrate the basic problems involved and our main results we start with two
examples.

Example A. The simplest example, which appears in population dynamics and
particle systems, concerns the case in which each component segregates from the
other; see [BS, CR]. In this case the ε-system reads as follows: In the domain
Ω ⊂ Rn, we consider the following system of equations:

(1.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∆uε

i =
1
ε

∑
j �=i

uiuj ,

uε
i = fi ≥ 0 in ∂Ω,

fifj = 0 for i �= j.

As ε goes to zero, we expect the vector uε to converge to a nonnegative solu-
tion vector (i.e., each component is nonnegative) u = (u1, . . . , um) that satisfies
(sup ui)0∩ (sup uj)0 = ∅ and ∆ui|(sup ui)0 = 0 (see [CR]). If we have only two com-
ponents u1, u2, then ∆(uε

1 − uε
2) ≡ 0 and hence also for the limit ∆(u1 − u2) ≡ 0.

That is, we can recover u1, u2 as ω+, ω− where ω is the harmonic function with
data f1 − f2 along ∂Ω.

If the number of variables is larger (say three), then we may have u1 extending
into −u2, −u2 into u3, and u3 into −u1, and hence we need to repeat the cycle
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848 L. A. CAFFARELLI AND FANG-HUA LIN

once more in order to again reach u1. That is the case for the solution

r3/2 cos
3
2
θ = Re(z3/2)

that goes around the origin twice.
In general, in R

n, what we should expect for the scalar-valued two-components
limiting case is that one has an n− 2 dimensional filament replacing the origin and
a double-valued harmonic function that lives in the “two leaves” Riemann surface
that goes around the “filament.”

This is what we plan to prove in this paper, at least in the measure theoretical
sense: There is a closed “singular set” S of Hausdorff dimension n − 2, where
|u| decays of order |u(x)| ≤ [d(x, S)]3/2; and outside of S, if |u(x0)| = 0, in a
neighborhood of x0 there are exactly two nonzero components, (u1, u2), and u1−u2

is harmonic.

Example B. A more interesting and delicate problem occurs when the grouping
is nontrivial. Such a problem arises in the theory of harmonic maps into singular
spaces and also in a more general segregation of competing species; see [CLLL,
CTV3, CTV4].

In this case the limiting map (u1, . . . , um) is supposed to be a map from Ω into
a special set in Rm, which is not all of Rm but is a disjoint family of orthonormal
subspaces Rk1 , Rk2 , . . . , Rk� of Rm with⊕

Rkj = Rm

(e.g., a line and a plane). We expect that as before the different groups (u1, . . . , uk1),
(uk1+1, . . . , uk1+k2), etc., will have disjoint supports.

The corresponding ε-system is the Euler-Lagrange equations for singularly per-
turbed variational integrals. For example, uε’s are minimizers of

(1.2)
∫

Ω

[
|∇uε|2 + 2Fε(uε)

]
dx,

where Fε(u) =
∑

i<j
βij

ε u2
i u

2
j with βij ≥ 0 and uε = f on the boundary of Ω such

that each component of f is nonnegative. We should point out that the nonnega-
tivity of the components of f immediately implies the nonnegativity of each of the
components of uε. For most of the discussion in this article, we do not need this
nonnegativity assumption, but it simplifies part of the arguments for the regularity
of free boundaries between supports of components (or blocks of components) of a
vector-valued solution uε. Otherwise, the zero set of each component of uε, which,
as we shall see, at the limit becomes a nodal set of the corresponding components,
also enters the picture, since at the limit each component of the solution is a har-
monic function on the domain of its definition. Its structure and its geometric
measure were studied much earlier; see [L3].

For the above problem, the picture we now have in mind is still pretty much the
same as before: There is an (n − 2) dimensional closed filament S where at least
three supports of disjoint components converge, outside of which, near any other
point x0 for which u(x0) = 0, there are exactly two subdomains that are supports of
two components (or two blocks) of the limiting solution u, say Ωki

, Ωkj
, separated

by a smooth free boundary.
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The main result of this paper states roughly that, away from this closed subset
S ⊆ Ω of the Hausdorff dimension ≤ n − 2, the free interfaces between various
components (or blocks of components) of u are, in fact, C1,α smooth hypersurfaces.

We point out that M. Conti et al. in [CTV, CTV2] studied similar singularly per-
turbed systems related to some optimal partition problem for nonlinear eigenvalues
and Nehari type problems. Besides the case of two components, the behavior of
solutions as well as the regularity of free interfaces were, however, not settled. One
can easily apply our results to those problems studied in [CTV, CTV2]. Recently
in [CTV3, CTV4] the Lipschitz regularity of the limiting solutions as well as the
regularity of the free boundaries in the case of two dimensions were also established.

We also point out that, due to the special forms of the equations in Example A,
we find that using the maximum principle and the viscosity solutions method is
more effective for Example A, and that will be discussed in more detail in a forth-
coming article [CL2]. The present article will be focused on Example B for which
we use the variational method. For a special case of the limiting problem, each
component becomes a scalar-valued function (no nontrivial grouping; the limits
of these systems have already been studied, e.g., in [CLLL]), and it becomes an
optimal partition problem; see [BBH, CTV, CTV2]. For this latter problem, the
authors have recently proved in [CL] the regularity of free interfaces of optimal
partition problems for the eigenvalues of the Laplacian operator on Ω with the
Dirichlet boundary conditions; see [CL].

Organization of the paper. This paper is organized as follows. We shall dis-
cuss only problems of the type from Example B. Problems of the type described
in Example A will be studied in [CL2]. We start with some uniform estimates for
a solution uε of singularly perturbed systems, and they are discussed in Section 2.
These estimates allow one to pass to the limits to obtain the limiting free boundary
problems. In Section 3 we introduce the Almgren monotonicity formula and discuss
a few easy consequences. It gives some preliminary control on the vanishing order
of the solutions as well as the Lipschitz continuity of solutions. We discuss homoge-
neous blow-ups and classifications of homogeneous degree 1 blow-ups in Section 4.
This leads to the flatness of free boundaries. The main regularity theorem for free
boundaries is described in Section 4 and proved in Section 5.

2. Uniform estimates for uε

For problem (1.1), the uniform Hölder continuity of uε (and in some cases uniform
Lipschitz estimates) was established in [CR]; see also [CTV, CTV2] for related
discussions. Here we present some uniform estimates for the minimizers of (1.2)
that would be sufficient to allow us to pass to the limit.

Let uε be a solution of −∆uε + grad Fε(uε) = 0 in Ω ⊆ R
n. Here uε =

(u1
ε, . . . , u

m
ε ),

Fε(u) =
1
ε

∑
i<j

βij(uiuj)2, u ∈ R
m, ε > 0, 0 ≤ βij ≤ β < ∞,

F−1
ε {0} =

�⊕
j=1

Rkj =
∑

.

We shall call the vector formed by components of u with image in one of Rkj the
kj

th block of u.
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Lemma 2.1. Let

E(r) =
1

rn−2

∫
Br(x0)

(
|∇uε|2 + 2Fε(uε)

)
dx.

Then E(r) ↑ in r, for all Br(x0) ⊂ Ω.

Proof. Let x0 = 0. It suffices to verify that

(2.1)
d

dr
E(r)

∣∣∣
r=1

≥ 0

whenever B1(0) ⊆ Ω. Note that by a scaling the general case r > 0 can be reduced
to this particular case, and it suffices to show that (2.1) with Fε may be replaced
by Fλ, for some λ > 0.

Let ur
ε(x) = uε(rx); then

E(r) =
∫

B1

[
|∇ur

ε(x)|2 + 2r2Fε(ur
ε)

]
dx.

Thus
d

dr
E(r)

∣∣∣
r=1

=
∫

B1

[
2∇uε · ∇u̇ε + 4Fε(uε) + 2F ′

ε(uε) · u̇ε

]
dx

where u̇ε = d
dr |r=1u

r
ε = x · ∇uε(x). Using the equation −∆uε + F ′

ε(uε) = 0 and
integrating by parts, one has

d

dr
E(r)

∣∣∣
r=1

=
∫

∂B1

2u2
εr +

∫
B1

4Fε(uε) ≥ 0.

�

Let eε(x) = |∇uε|2 + 2Fε(uε).
We note that if we use Remark 2 below, then (set uε = u below to simplify the

notation)

0 ≤ ∆
u2

i

2
= |∇ui|2 +

∑
j �=i

βij

u2
i u

2
j

ε
.

Since the energy bounds, we have uε = u ∈ L∞
loc(Ω). This combined with the

above inequality implies, for any B2R(x) ⊂ Ω,

(2.2)
∫

BR(x)

eε(y)
|x − y|n−2

dy ≤ C(R)‖uε‖2
L∞(B2R(x)) < ∞.

From (2.2), one deduces that∫ R

0

E(r)
r

dr ≤ C(R)‖uε‖2
L∞(B2R).

Here E(r) is the normalizer energy defined in Lemma 2.1. Hence, for a suitable
small r0 one has E(r0) ≤ δ(n, C0)  1. One can choose such r0 uniformly on each
compact subset of Ω.

Suppose one has the following Bochner type inequality: ∆eε(x) ≥ −c0 e2
ε in

Ω. Then via an argument such as that in [Sc] or [L, p. 77], one could derive
the uniform Lipschitz estimate for uε. But at present, we are not able to verify
the above Bochner type inequality. In other words, the uniform (in ε) Lipschitz
continuity of solutions to singularly perturbed systems remains unknown, and the
uniform Hölder estimates as presented in [CR] still seem to be the best uniform
regularity result for the solutions uε in general. Similar issues also exist for the
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case Fε(u) = 1
ε

∑
i �=j uiuj (ui ≥ 0), but that will be discussed in [CL2] where a

different method is used as we mentioned in the Introduction.

Remark 1. As ε goes to zero, since

∆u+
i ≥ 1

ε

∑
j �=i

u+
i βiju

2
j ≥ 0,

one deduces that∫
Br

∑
j �=i

u+
i βiju

2
j

ε
=

∫
Br

∆u+
i ≤ Cr−2

∫
B2r

u+
i dx, for all B2r

⊂ Ω.

Note the final quantity remains bounded independently of ε.

Remark 2. As in Remark 1, since

0 ≤ ∆u2
i

2
= (∇ui)2 +

∑
j �=i

u2
i u

2
jβij

ε
,

we have that ∫
Br

[
(∇ui)2 +

∑
j �=i

u2
i u

2
jβij

ε

]
is locally uniformly bounded by

Cr−2

∫
B2r

(ui)2 dx, for all B2r
⊂ Ω.

Lemma 2.2. Let v, w be two nonnegative subharmonic functions in B1. Assume
that 0 ≤ v, w ≤ 1 and ∫

B1(0)

vw < ε.

Then v(0) or w(0) < εθ.

Proof. Suppose not, i.e., vw(0) > Cεθ. In particular both v(0), w(0) > Cεθ. On
the other hand, we must have the Lebesgue measure of the sets to satisfy∣∣{v > ε1/4} ∩ {w > ε1/4}

∣∣ < ε1/2.

In particular, for any ring Γk = B2−k \ B2−(k+1) for which 2−nk > Cε1/2, we have
that either ∣∣{v > ε1/4}

∣∣ or
∣∣{w > ε1/4}

∣∣ <
3
4
|Γk|.

Therefore, in each of these rings, if we start from the bound v, w ≤ 1 on B1, the
maximum of (v − ε1/4)+ or (w − ε1/4)+ decreases by a fixed constant (from the
mean value theorem) multiple from B2−k to B2−(k+1) . But there are |log ε| of these
rings, therefore either v(0) or w(0) < εθ for some small θ. �

If we apply the above lemma to the square of components of the solutions uε,
we obtain the following.

Corollary 2.3. uε
i u

ε
j converge uniformly to zero, i.e.,

(u+ε
i u+ε

j ) ≤ εθ

whenever βij is positive.
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Corollary 2.4.
∫

Br

Fε(uε) dx converges to zero.

Proof. Since either |ui| or |uj | ≤ εθ,

1
ε

∑
i<j

u2
i u

2
jβij ≤ Cεθ

∑
i<j

(u±
i u2

j + u±
j u2

i )βij

ε
.

Therefore, by Remark 1, one has∫
Br

Fε(uε) ≤ Cεθ.

�
Corollary 2.5. The limiting vector u satisfies

(a) uiuj ≡ 0 if i �= j and βij is positive.
(b) ui is harmonic in the interior of the set Di = {uj = 0 for βij > 0}.

3. Almgren’s monotonicity formula and its consequences

We start by discussing a classical monotonicity formula for multiple-valued har-
monic functions due to Almgren [A]. In the simplest case, that of a harmonic
function, it reads: Let u be harmonic in B1, u(0) = 0; then

N(r) =
r D(r)
H(r)

↗ in r

where
D(r) =

∫
Br

|∇u|2 and H(r) =
∫

∂Br

u2.

Note that a similar fact remains true for solutions to a much wider class of second
order elliptic equations; see [GL].

In our case, we must substitute u2 = |u − 0|2 by the distance in the singular
space

∑
≡ F−1

ε {0} ≡
⊕�

j=1 Rkj where u lives; i.e., dΣ(p, q) = |p− q|2 if both p and
q are in the same Rkj , and dΣ(p, q) = |p| + |q| if p and q are in different Rkj ’s.

Suppose u : Ω ⊆ R
n → Σ is a finite energy minimizing harmonic map and let

p = u(x0); then

D(r) =
∫

Br(x0)

|∇u|2 dx, H(r) =
∫

∂Br(x0)

d2
Σ(u(x), p).

Lemma 3.1.

N(r) =
r D(r)
H(r)

↗ in r

for r ∈ (0, d(x0, ∂Ω)).

Proof. We follow the same proof as for the harmonic functions case; see [GL].
The usual energy monotonicity formula for harmonic maps (say energy minimiz-

ing) says that

(3.1)
d

dr

( ∫
Br

|∇u|2 dx
/

rn−2

)
=

2
∫

∂Br
u2

ρ

rn−1
≥ 0

(see [Sc]). Next, by a direct calculation, one has

(3.2) ∆xd2
Σ(u(x), p) ≥ 2|∇u|2(x).
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Integrating by parts, one derives from (3.2) that

(3.3)
d

dr
H(r) =

n − 1
r

H(r) +
∫

∂Br

d

dρ
d2
Σ(u(x), p) ≥ n − 1

r
H(r) + 2D(r).

(3.1) and (3.3) imply that N ′(r) ≥ 0. �

An important feature of Almgren’s monotonicity formula is that it controls the
“degree” at the origin of the “first” homogeneous term in the Taylor expansions.
For instance, if u is a homogeneous harmonic polynomial P of degree k, then

N(r) ≡ k.

So the monotonicity of N(r) implies on one hand that oscillation “increases with”
r, but on the other, since, in the case of a harmonic function N(0) = N(0, x0)
corresponds to the degree of the leading Taylor polynomial of u at x0, this implies
semicontinuity: If for instance

N(r, x0) ≤ k +
1
2
,

since N(r, x) is continuous in x, we have N(r, x) ≤ k + 3
4 for x close to x0, and

thus N(0, x) ≤ k + 3
4 for x near x0 (see [GL]). That is, the order of a zero x0 of a

harmonic function is upper-semicontinuous in x0.
The following corollary was proved in some cases in [CTV3] and [CTV4] for such

limiting problems; also see [CL2] for a different proof.

Corollary 3.2. u is Lipschitz.

Proof. We have that u is approximate differentiable almost everywhere in the L2

sense [L2, p. 36]. At any such point x, where u is approximate differentiable,
N(0, x) ≥ 1; hence by the upper-semicontinuity of the vanishing order, N(0+, x0) ≥
1 for any x0. But

d

dr
log

(
H(r)
rn−1

)
≥ 2N(r)

r
≥ 2N(0+)

r
,

therefore
H(r)
rn−1

≤ H(R)
Rn−1

( r

R

)2

.

However, for R = 1,

H(1) =
∫

∂B1

d2(u(x), p) ≤ C.

Since d2 is subharmonic, this implies

d2
∣∣
Br/2(p)

≤ H(r)
rn−1

≤ Cr2.

�

Lemma 3.3. The set where all ui’s vanish has empty interior unless u ≡ 0.

Proof. It is an easy consequence of a much stronger result that could be drawn
from the Almgren monotonicity formula; see [GL]. �
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4. Flatness of the phase transition

In the previous sections we verified the convergence of energy minimizers of the
variational integrals ∫

Ω

(|∇uε|2 + 2Fε(uε))dx

with given Dirichlet boundary condition uε

∣∣
∂Ω

= f as ε → 0. Here f is a map
from ∂Ω into Σ. The limits are energy minimizing harmonic maps u : Ω → Σ with
the same Dirichlet boundary condition u

∣∣
∂Ω

= f such that u is locally uniformly
Lipschitz continuous inside Ω. Our aim in this section and the next is to study the
set Γ = {x ∈ Ω : u(x) = 0}. As we noted in Lemma 3.3, one can deduce that the
Lebesgue measure of Γ is zero unless u ≡ 0.

To avoid some additional complications from the nodal sets of harmonic functions
given by various components of u, we should simply consider the case when each
component of u is nonnegative. Note that this is the case for various applications;
see [CR, CLLL, CTV, CTV2]. Such nonnegativity of components of u can be easily
deduced when the Dirichlet boundary value f also verifies such conditions.

We first want to establish a gap in the values of the vanishing order function
N(x) for x ∈ Γ; that is, as pointed out before, the smallest possible value of N(x)
is 1, which we shall show corresponds to the linear behavior of each component
of u near x, and the next one is N(x) = 1 + δn for some positive dimensional
constant δn. Here for convenience, we let N(u, x0, r) be as defined in Lemma 3.1,
and N(u, x0) = limr→0+ N(u, x, r). In the case where the dependence of u is clear,
we should simply drop u in the above notation; instead we have have N(x0) and
N(x0, r).

Lemma 4.1. For each x0 ∈ Γ, let

N(x0) = lim
r→0

N(x0, r).

Then either N(x0) = 1 or N(x0) ≥ 1 + δn for a positive dimensional constant δn.

Proof. Let x0 ∈ Γ; thus u(x0) = 0 ∈ R
m. Define

uλ(x) =
u(x0 + λx)

‖u(x0 + λx)‖L2(B1)
, x ∈ B1(0) ⊆ R

n, λ is a positive small number.

It is easy to check that the corresponding function N(uλ, x0, r) for uλ satisfies
N(uλ, 0, r) = N(u, x0, λr). Thus as λ → 0+, one has uλ(x) = u(x) weakly in
B2(0) up to a subsequence; see [L3]. For u, which is an energy minimizing har-
monic map from B1 into Σ, one has N(u, 0, r) ≡ N(x0) ≥ 1. We remark that the
minimum value of N(x) is 1, because that is the case in a dense set (in fact, at
all differentiable points of u, which is a.e. by Rademacher’s theorem), and N(x) is
upper-semicontinuous.

It is now easy to check (from the proof of Lemma 3.1) that u is homogeneous of
degree N(x0); that is, u(x) = rαg(ω), where ω = x

|x| ∈ S
n−1 and α = N(x0). Hence

we want to show that either α = 1 or α ≥ 1 + δn for some δn > 0. We consider two
possibilities:

(i) If the image of g(Sn−1) lies in at least three distinct components (those R
kj ’s)

in Σ, then S
n−1 would divide into at least three subdomains (the pre-images of these

distinct components of Σ). There is at least one such subdomain A that has the
volume A ≤ 1

3 volume of S
n−1. Since u is a homegoneous harmonic map from
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Bn
1 (0) into Σ, g(ω) must be an eigenfunction (vector) of the Laplacian ∆Sn−1 on A

with zero Dirichlet boundary condition; that is,

∆Sn−1g + λg = 0 ∈ A and g = 0 on ∂A.

By the separation of variables, one has α2 + (n− 2)α− λ = 0. A simple eigenvalue
estimate (using symmetrization) yields λ ≥ λn ≥ n − 1 + ηn for some positive
dimensional constant ηn. Thus α ≥ 1 + δn follows.

(ii) If the image g(ω) is contained in the union of at most two components of
Σ, then if g(ω) is always contained in one component of Σ, u is simply a harmonic
function (may be vector valued). Thus the vanishing order N(x0) is either 1 or not
less than 2.

If the image of g(ω) lies in exactly two components of Σ, then S
n−1 would divide

into exactly two components A1 and A2 so that g(ω) would be an eigenvector of
∆Sn−1 on A1 and A2, respectively, with zero Dirichlet boundary conditions; that is,{

∆Sn−1g + µjg = 0 in Aj ,

g = 0 on ∂Aj ,
for j = 1, 2.

One must have µ1 = µ2 since both give the characteristic exponent α (the homo-
geneity of u).

We note that we only consider the case when each component of u is nonnegative
(and hence would be true for each component of u and g). Suppose gj , 1 ≤ j ≤ k,
are components of g supported in A1, and gj , k + 1 ≤ j ≤ �, are those components
of g supported in A2. Then, using the nonnegativity (and the simplicity of the first
eigenfunctions of ∆Sn−1 on subdomains of S

n−1), we may conclude that gj = λjg1

for 1 ≤ j ≤ k, and gj = λjgk+1 for k + 1 ≤ j ≤ �. For convenience, we assume that
g1 and gk+1 are not identically zero.

Sub-Lemma 4.1. The function v1 = (
∑k

j=1 λ2
j)

1/2u1 extends crossing ∂Ω1 ∩ ∂Ω2

harmonically into −v2 = −(
∑�

k+1 λ2
j )

1/2uk+1. Here Ω1 and Ω2 are cones over A1

and A2 with vortex at the origin 0.

The proof of the lemma follows simply from the fact that v1 and v2 are harmonic,
respectively, in Ω1 and Ω2. Moreover, since u = rαg(w) is an energy minimizing
harmonic map from B1 = Ω1 ∪ Ω2 into Σ, and the image of g(Sn−1) is contained
in two half-line segments, the first variation calculation leads to |∂v1

∂ν |2 = |∂v2
∂ν |2 on

∂Ω1 ∩ ∂Ω2 in the pointwise sense. Thus if one defines

v =

{
v1 in Ω1,

−v2 in Ω2,

v is harmonic in B1 in a weak sense.
From Sub-Lemma 4.1 one concludes that α must be 1, and thus Ω1 and Ω2 are

half-balls in Bn
1 . �

Remark. If S
n−1 is divided into two subdomains A1 and A2 such that ∆Sn−1 has the

same first eigenvalues on both A1 and A2 with respect to the Dirichlet boundary
conditions, that is, µ1 = µ2, and if the corresponding characteristic values are the
same α = 1, that is, µ1 = µ2 = first eigenvalue on the hemisphere of ∆Sn−1 with
respect to the zero Dirichlet boundary conditions as in our case, then A1 and A2

are hemispheres. This follows by a symmetrization argument.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



856 L. A. CAFFARELLI AND FANG-HUA LIN

Corollary 4.2. If N(x0) > 1 for x0 ∈ Γ, then N(x0) ≥ γ0, the eigenvalue of the
spherical cap of volume ≤ 1

3 volume of S
n−1; in particular, γ0 ≥ 3

2 .

Corollary 4.3. If N(x0) = 1, components of u are simply given by

uj = λjx
+
1 (1 ≤ j ≤ k),

uj = λjx
−
1 (k + 1 ≤ j ≤ �),

with
k∑

j=1

λ2
j =

�∑
k+1

λ2
j .

We define Γ∗ = {x ∈ Γ : N(x) = 1}. We start with the following observation. If
xo ∈ Γ∗, then N(x0) = 1, and then there is a δ0 > 0 such that for all x ∈ Bδ0(x0)∩Γ,
one has N(x) ≤ 1 + δn/2. This follows from the upper-semicontinuity of N(x) in
Ω. By Lemma 4.1, one must have N(x) ≡ 1 for all x ∈ Γ ∩ Bδ0(x0); that is,
Γ ∩ Bδ0(x0) ⊆ Γ∗ or equivalently Γ∗ is relatively open in Γ.

Next we want to investigate the property of Γ∗ near a point x0 ∈ Γ∗. Since
N(x0) = 1, each homogeneous blow-up of u at x0 (that is a subsequential limit of
uλ(x) as λ → 0+) is of degree 1. However, such homogeneous blow-ups may not be
unique.

For each
⇀
e ∈ S

n−1, we let T (e, ε) be the ε-strip in the
⇀
e -direction passing the

origin 0, that is,
T (

⇀
e , ε) = {x ∈ Bn

1 (0) : |x · ⇀
e | ≤ ε}.

Lemma 4.4 (Flatness of the free boundary). Let u : B2 →
∑

be an energy
minimizing map with

∫
−∂B2 |u|2 = 1. Then for every ε ∈ (0, 1), there is a δ(ε) > 0

such that if N(0, 2) ≤ 1 + δ(ε), 0 ∈ Γ∗, then u can be well-approximated by linear
functions in Bn

1 |T (e, ε) for some
⇀
e ∈ S

n−1 (cf. Corollary 4.3). Here u is well-
approximated by linear functions in Bn

1 (0)|T (e, ε) means

|u(x) − �±ε (x)|C1 ≤ ε for x ∈ B±
1 (0) \ T (e, ε),

B±
1 (0) = {x ∈ B1(0) : x · ⇀

e ≶ 0}, and for some

�±ε (x) =
⇀
a
±
ε (x · ⇀

e ) where
⇀
a

+

ε = (λ1, . . . , λk),
⇀
a
−
ε = (λk+1, . . . , λ�).

Proof. The conclusion of the above lemma follows easily by a contradiction argu-
ment. One notes that the homogeneous degree 1 map u : Bn

2 (0) → Σ must be given
by a two-component linear map (see the proof of Corollary 4.3). �

We note that due to normalization one can assume 1 ≤ |⇀a
±
ε | ≤ 3.

Remark. (a) Let u : Bn
2 (0) → Σ be an energy minimizing harmonic map such

that N(0, 2) ≤ 1 + δ, 0 ∈ Γ∗. Then for all x ∈ Γ ∩ Bn
2/3(0), one has

N(x, 1) ≤ 1 + c(δ). Here c(δ) → 0+ as δ → 0+.
(b) From (a) one concludes: If u : B2 → Σ is energy minimizing with N(0, 2) ≤

1 + δ, 0 ∈ Γ∗, then for any x ∈ Γ ∩ Bn
2/3(0), 0 < r < 1, one has N(x, r) ≤

1 + c(δ). In particular, when δ is sufficiently small, a proper scaled of u
at every point x ∈ Γ ∩ Bn

2/3(0), and for every scale λ, 0 < λ < 1, can
be well-approximated by two linear functions in Bλ(x) \ {x + T (eλ, ελ)};
cf. Corollary 4.3.

More precisely we have the following.

Corollary 4.5. For any ε > 0, there is a δ(ε) > 0, such that if u : B2 → Σ is
harmonic and N(0, 2) ≤ 1 + δ(ε), then for any 0 < r < 1, the function ux,r(y) =
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u(x+ry)
‖u(x+ry)‖L2(B1)

, x ∈ B2/3, can be well-approximated by two linear vector-valued
functions

�±r (y) =
⇀
a
±
r y · ⇀

e r

in y ∈ B1(0) \ T (er, ε), for some
⇀
e r ∈ S

n−1, and
⇀
a
±
r are as given in Lemma 4.4

with 1
3 ≤ |a±

r | ≤ 3. Here ‖ux,r(y)‖L2(B1) = 1.

Theorem 4.6. Under the same assumptions as those in Lemma 4.4, there is θ0 =
θ0(n) ∈ (0, 1) such that Γ ∩ Bθ0(0) is a bi-Hölder embedded topological (n − 1)
dimensional ball.

Proof. It is clear from the conclusion of Lemma 4.4 and the remark above that, for
all x ∈ Γ ∩ B2/3(0), 0 < r < 1, Γ ∩ Br(x) is contained in a strip T (

⇀
e r, εr) passing

the point x, for some ε = ε(δ)  1, so long as one assumes δ is sufficiently small.
Moreover, for each pair of points Y1, Y2 in B+

r (x)\T (
⇀
e r, εr) and B−

r (x)\T (
⇀
e r, εr),

respectively, so that πe(Y1) = πe(Y2), where πe : R
n → {x ∈ R

n : x · ⇀
e = 0}

is the orthogonal projection, there is a point on the Y1 Y2 segment which is in
Br(x) ∩ Γ (cf. Lemma 4.1). Therefore, the Hausdorff distance between Γ ∩ Br(x)
and T (

⇀
e r, εr) ∩ Br(x) is less than 2εr. In other words, Γ ∩ B2/3(0) satisfies the

Reifenberg condition (see [M]). Reifenberg’s topological disc theorem implies that
Γ ∩ Bθ0(0), for some θ0(n) > 0, is a bi-Hölder image of Bn−1

θ0
(0). �

In the next section we shall show a “clean-up lemma” that says, mainly, that if
N(0, 1) ≤ 1+δ for a small enough δ, then on B1/2 there are exactly two components,
say Ω1 and Ω2, separated by a C1,α surface S = ∂Ω1 ∩ ∂Ω2.

We are now ready to show the interface regularity. Our main theorem is the
following:

Theorem 4.7. (a) If N(0+) = 1 at x0, then in a neighborhood of x0, Br(x0),
there are exactly two components Ω1, Ω2, and ∂Ω1 ∩ ∂Ω2 is a C1,α hyper-
surface.

(b) The closed set where N(0+) > 1 has Hausdorff dimension n − 2.

Proof of Part (b). Let Γ = {x ∈ Ω : u(x) = 0}, Γ∗ = {x ∈ Γ : N(x) = 1}. Then we
have shown that for any x ∈ Γ | Γ∗, N(x) ≥ 1 + δn for some δn > 0. Since N(x)
is upper-semicontinuous in x, it is then easy to see that Γ | Γ∗ is closed in Ω. We
want to show that the Hausdorff dimension of Γ | Γ∗ ≤ n − 2.

For this purpose, we shall adopt the notions N(x, u) = N(x), Γu, Γ∗
u, etc., to

represent their dependence on u. We first note that, for a ball BR(x0) ⊂ Ω, the set
of all harmonic maps ( �= constant) u from BR(x0) into the singular space Σ with
N(u, x0, R) ≤ N0, for some N0 ∈ R+, is compact in the following sense. If {ui} is a
sequence of such harmonic maps from BR(xi) into Σ with N(ui, x0, R) ≤ N0 < ∞,
then there is a subsequence {u′

i} such that u′
i ↪→ u∞ weak* in W 1,∞

loc (BR(x0)) ∩
H1

loc(BR), such that u∞ : BR(x0 → Σ is a harmonic map with N(u∞, x0, R) ≤ N0.
In particular u∞ �= constant.

Next, we consider the family of relative closed subsets of BR(x0), Su ≡ Γu \
Γ∗

u ≡ {x ∈ BR(x0) : N(x, u) ≥ 1 + δn}, for u : BR(xi) → Σ harmonic and
N(u, x0, R) ≤ N0. From the compactness of such harmonic maps, we see that this
family F = {E closed, E ⊂ Su} is compact in the Hausdorff metric (see, e.g., [L2,
pp. 56–57]).
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We are now in the position to apply the Federer dimension reduction principle
to show that Su has Hausdorff dimension ≤ n − 2, for each Su ∈ F .

We assume, without loss of generality, that R = 1 and x0 = 0 (via a suitable
normalization). Then we easily observe that F has the following two properties:

(i) If E ∈ F , Ex,λ = E−x
λ ∩ B1(0) ∈ F for all x ∈ B1 and 0 < λ < 1.

(ii) Let Ei ∈ F and Ei → E∗ in the Hausdorff distance; then E∗ ∈ F (see, e.g.,
[L2, pp. 56–58]).

Finally we check that for n = 1, F = {∅}. Indeed, if there is a solution of
uxx = 0 on an interval with u(a) = ux(a) = 0, for some a in this interval, then
u ≡ 0. Therefore, by applying the dimension reduction principle (see [L2, pp. 49–
52]), we conclude that for n = 2, each Su ∈ F consists of isolated points, and for
general n ≥ 3, the Hausdorff dimension of Su ≤ n − 2. �

Remark. One can also show directly that for n = 2, each Su ∈ F consists of isolated
points as follows. Consider the measurable function g(ζ) = (u2

x − u2
y) − 2iux · uy;

then it is well-known (see [Sc]) that g is holomorphic in B1. Thus either g ≡ 0 or
the zeros of g are isolated. The case g ≡ 0 would imply that u is conformal. The
conclusion that Su is isolated follows. In fact, using the compactness of F , one can
locally bound the number of points of Su in Ω.

5. Proof of Theorem 4.7(a)

The proof is divided into two key steps.
Step 1. If N(0+) is close to 1 (hence it has to be 1), then there is an r0 > 0

such that Br0(0) = Ω1 ∪ Ω2 with u(Ωj) are contained in some R
k′

j component of∑
=

⊕�
j=1 Rkj for j = 1, 2.

This step is accomplished by the so-called “clean-up” lemma below. From this
step and discussions in the previous section (in particular Corollary 4.5 and Theo-
rem 4.6), one can easily verify that both Ω1 and Ω2 are the so-called NTA domains;
see [JK].

Step 2. To show that the quotient ∂ui

∂ν /
∂uj

∂ν is Hölder continuous for any two
nonvanishing components of the limiting map u supported in a given Ω� (� = 1, 2).
Moreover, we can renormalize the jump conditions of |∂v1

∂ν | and |∂v2
∂ν | in such a

way that they are almost equal to 1 in a geometrically decaying sequence of balls
B2−k(x0) for all x0 in Br0/2(0), rendering the free boundary a C1,α graph.

In some sense Step 2 would be a consequence of the boundary Harnack inequality
(for NTA domains) and some other facts for which we shall offer a more direct
argument.

Lemma 5.1 (Clean-up). Let 0 ∈ Γ∗ and let u be as in Lemma 4.4. Then u maps
B1(0) into at most two different components of Σ. In other words, one may assume
that uj(x) ≡ 0 for all uj in other components of Σ.

Proof. Since 0 ∈ Γ∗ and N(0, 2) ≤ 1 + δ, Lemma 4.4 implies that there are exactly
two distinct components L1, L2 in Σ such that u(B3/2(0) \ T (

⇀
e , ε)) ⊆ L1 ∪ L2,

for an ε = ε(δ) → 0+ as δ → 0+. Moreover, for every x ∈ Γ ∩ B1(0), one has
u(B1/2(x) \ T (

⇀
e , ε)) ⊆ L1 ∪ L2.
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Thus, to verify the conclusion of Lemma 5.1, it suffices to show the following
statement: If 0 ∈ Γ∗, N(0, 1/2) ≤ 1 + δ̃ for a sufficiently small δ̃, and

u(B1/2(0) \ T (
⇀
e , ε)) ⊆ L1 ∪ L2

for some ε = ε(δ̃) and
⇀
e ∈ S

n−1, where L1 and L2 are two distinct components in
Σ, then for any r ∈ (0, 1/2),

u(Br(0) \ T (
⇀
e , εr)) ⊆ L1 ∪ L2

for the same two components L1 and L2 in Σ.
The above fact follows easily from the following observation. For each r ∈ (0, 1),

there will be two distinct lines Lr
1 and Lr

2 in Σ, such that u(Br(0) \ T (
⇀
e , εr)) ⊆

Lr
1 ∪ Lr

2. The problem is, of course, that such Lr
1 and Lr

2 may be dependent on r
in general. However, it is obvious that Lr

1 and Lr
2 depend on r continuously. There

are finitely many choices of such Lr
1 and Lr

2 in Σ, thus the choice of Lr
1 ∪ Lr

2 will
be fixed for all 0 < r < 1 by the continuity. The conclusion of the clean-up lemma
follows. �

Remark. As a consequence of the above proof, one also has the “uniqueness of
images of homogeneous blow-up maps of degree 1”. That is, for each x ∈ Γ∗, let
u∗ be a homogeneous blow-up of u at x, and suppose u∗(B1(0)) ⊆ L1 ∪ L2 for two
distinct components L1, L2 in Σ. Then for any homogeneous blow-up ũ of u at x,
ũ(B1) ⊂ L1 ∪ L2.

Remark. There is another way to look at the clean-up lemma, Lemma 5.1. In
fact, from Lemma 4.4 and Corollary 4.5, it is not hard to see that there are two
components Σ1, Σ2 in Σ, and two subdomains Ω1 = Ω+, Ω2 = Ω− of B1(0) such
that for any x0 ∈ B1/2(0) with u(x0) = 0 and 0 < r < 1

2 ,

D±
r ≡ Br(x0) ∩ {〈x − x0, ν〉± ≥ εr} ⊂ Ω±

for some unit vector ν = ν(x0, r), where u(Ω1) ⊆ Σ1, u(Ω2) ⊆ Σ2. We want to
show that there is no such Ω3 ⊆ B1(0), that u(Ω3) ⊆ Σ3 (another component of
Σ), and that Ω3 ∩ B1/2 �= ∅. Otherwise we would be able to find 0 ≤ v ≤ 1
subharmonic in B1 so that v ≡ 0 on the set {|〈x−x0, ν(x0,

1
2 )〉| ≥ ε}∩B1/2(x0) for

any x0 ∈ B1/2 with v(x0) = 0; thus in B1/4(x0), 0 ≤ v ≤ e−c/ε. In particular, for
a very large M , v ≤ 2−M on B1/4(x0). As a consequence, for any x0 ∈ B1/2 with
v(x0) = 0 one has

sup
B2−k (x0)

v ≤ 2−Mk

via a simple iteration, and the properties of Ω1, Ω2 described above. Therefore∫
B2−k−1 (x0)

∆v dx ≤ c02(−M+2)k,

and since we may assume (M − 2) > n + 1, we have that ∆v ≡ 0 in B1/2(0). Thus
v ≡ 0 in B1/2(0) by the maximum principle.

From the “clean-up” lemma and Theorem 4.6, one see that Bn
1 (0) = Ω1 ∪ Ω2,

Ω1 and Ω2 are separated by Γ which satisfies the Reifenberg flatness condition. It
is then relatively easy to check that Ω1 and Ω2 are NTA domains in the sense that
they satisfy both corkscrew and Harnack chain conditions; see [JK].
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Proof of Step 2. We adapt some of the notation introduced in the proof of Sub-
Lemma 4.1. In particular, we denote the support of uj by Ω1 for 1 ≤ j ≤ k and
the support of uj by Ω2 for k + 1 ≤ j ≤ �. Here B1(0) = Ω1 ∪ Ω2. By [JK],
one concludes that uj1

uj2
is Hölder continuous in Ω1 (respectively, in Ω2) whenever

1 ≤ j1, j2 ≤ k (k + 1 ≤ j1, j2 ≤ �, respectively).
From Corollary 4.3, we can define, for x0 ∈ ∂Ω1(= ∂Ω2) ∩ B1(0), the quantities

λj(x0), j = 1, . . . , �, such that

k∑
j=1

λ2
j(x0) =

�∑
j=k+1

λ2
j(x0).

Similarly, we can define u+ = v1, u− = v2 as in Sub-Lemma 4.1. After a normal-
ization we can assume |∂u+

∂ν |2 = |∂u−

∂ν |2 = 1 at a given point x0 (say the origin) on
Γ = ∂Ωj (j = 1, 2). Moreover,∣∣∣∣∣∣∣∂u+

∂ν

∣∣∣ − ∣∣∣∂u−

∂ν

∣∣∣∣∣∣∣(x) ≤ c|x − x0|α

for x ∈ Γ ∩ B1/2(x0), by [JK] and Corollary 4.3.
Our final goal is to prove that in the balls, for some 0 < r0 < 1, Brk

0
(x0),

k = 2, 3. . . . , u+ − u− becomes geometrically close to its harmonic replacements{
∆hk = 0 in Brk

0
(x0),

hk = u+ − u− on ∂Brk
0
(x0).

This latter statement further implies that the measurements of the flatness of ∂Ω±

decrease geometrically, and hence the C1,β regularity of Γ = ∂Ω±.
To begin, we consider a harmonic function in B1 so that |h− tx1|L∞(B1) ≤ ε for

some 1
2 ≤ t ≤ 1. Then, in B1/2,

• |∇h − t
⇀
e 1|(x) ≤ cε ∀x ∈ B1/2.

• |D2h|(x) ≤ cε ∀x ∈ B1/2.
• The level set {h = 0} ∩ B1/2 is analytic.
• In Br0 (for a suitably small r0 > 0) for some linear function �, |h− �|(x) ≤

cεr2
0.

• After a renomalization to a ball of radius 1, |h̃ − �̃|L∞(B1) ≤ cεr0 ≤ ε
4 .

In the last step the renormalization from Br to B1 of a function f is simply the
function f̃(x) = 1

r f(rx).
Keeping these simple observations in mind, we proceed with our proof of Step 2.
We note that in Bk = Brk

0
(x0) the function σ+ = (1 + crkα

0 )u+ − u− is sub-
harmonic. This follows from the facts that both 0 ≤ u± are harmonic in Ω±
and |∂u−

∂ν | ≤ |∂u+
∂ν | + crkα

0 with u± = 0 on Γ = ∂Ω±. Similarly the function
σ− = (1+ crkα

0 )u− −u+ is also subharmonic in Bk. Therefore the harmonic exten-
sion hk of u+ − u− on Bk satisfies

|hk − (u+ − u−)|L∞(Bk) ≤ crkα
0 ‖u±‖L∞(Bk).

In particular, |hk+1 − hk|L∞(Bk+1) ≤ crkα
0 ‖u±‖L∞(Bk). The Lipschitz regularity of

u implies that ‖u±‖L∞(Bk) ≤ crk
0 . Thus ‖h̃k+1 − h̃k‖L∞(Br0 ) ≤ c∗r

kα
0 after the

renormalization, which makes the ball Bk become the unit ball.
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It is now clear that if h̃k differs from a linear function �̃k by εk on B1, then h̃k+1

differs from a linear function �̃k+1 on B1 (where we consider all functions being
renormalized to be defined on B1/r0) by the amount cεkr0 + crkα−1

0 ; that is,

|h̃k+1 − �̃k+1|L∞(B1) ≤ cεkr0 + crkα−1
0 .

Since one may initially assume that |h−�|L∞(B1) ≤ ε for any given positive ε > 0,
one concludes from the iterative estimates above that, for any given ε0 > 0, one
may find r0 and ε sufficiently small so that one has for h0 = h, �0 = �, hk, �k, k ≥ 1,
as above,

|h̃k − �̃k|B1 ≤ ε02−k, k = 1, 2, . . . .

Here h̃k, �̃k are renormalizations from Brk
0

to B1/r0 .
We therefore conclude that

|v − �k|L∞(Bk+1
r0 ) ≤ rk

0 [ε02−k + crkα
0 ] where v(x) =

{
u+(x), x ∈ Ω+,

−u−(x), x ∈ Ω−.

Thus the measurements of the flatness of Γ = {x : v(x) = 0} decrease geometrically
on balls Brk

0
(x0), k = 1, 2, . . . , for every x0 ∈ B1/2(0) ∩ Γ; hence Γ is of class C1,β

for some β > 0, and our proof is complete.
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[Sv] Šverák, V. On optimal shape design. J. Math. Pures Appl. (9) 72 (1993), no. 6, 537–551.
MR1249408 (94j:49047)

[Z] Ziemer, W. P. Weakly differentiable functions. Sobolev spaces and functions of bounded
variation. Graduate Texts in Mathematics, 120. Springer, New York, 1989. MR1014685
(91e:46046)

Department of Mathematics, University of Texas at Austin, Austin, Texas 78712

E-mail address: caffarel@math.utexas.edu

Department of Mathematics, Courant Institute of Mathematical Sciences, New York

University, 251 Mercer Street, New York, New York 10012

E-mail address: linf@cims.nyu.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2146353
http://www.ams.org/mathscinet-getitem?mr=2146353
http://www.ams.org/mathscinet-getitem?mr=2151234
http://www.ams.org/mathscinet-getitem?mr=2151234
http://www.ams.org/mathscinet-getitem?mr=833393
http://www.ams.org/mathscinet-getitem?mr=833393
http://www.ams.org/mathscinet-getitem?mr=676988
http://www.ams.org/mathscinet-getitem?mr=676988
http://www.ams.org/mathscinet-getitem?mr=1437152
http://www.ams.org/mathscinet-getitem?mr=1437152
http://www.ams.org/mathscinet-getitem?mr=2030862
http://www.ams.org/mathscinet-getitem?mr=2030862
http://www.ams.org/mathscinet-getitem?mr=1090434
http://www.ams.org/mathscinet-getitem?mr=1090434
http://www.ams.org/mathscinet-getitem?mr=0202511
http://www.ams.org/mathscinet-getitem?mr=0202511
http://www.ams.org/mathscinet-getitem?mr=765241
http://www.ams.org/mathscinet-getitem?mr=765241
http://www.ams.org/mathscinet-getitem?mr=1249408
http://www.ams.org/mathscinet-getitem?mr=1249408
http://www.ams.org/mathscinet-getitem?mr=1014685
http://www.ams.org/mathscinet-getitem?mr=1014685

	1. Introduction
	Example A
	Example B
	Organization of the paper

	2. Uniform estimates for u
	3. Almgren's monotonicity formula and its consequences
	4. Flatness of the phase transition
	5. Proof of Theorem 4.7(a)
	Proof of Step 2

	Acknowledgement
	References

