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Abstract— We exploit a novel geometric method to construct
the global isochrones of relaxation oscillators and the asso-
ciated phase response curve. This method complements the
classical infinitesimal (local) phase response curve approach by
constructively predicting the finite phase response curve near
the singular limit of infinite timescale separations between the
oscillator variables. We illustrate the power of our construction
on the FitzHugh-Nagumo model of neuronal spike generation.
Because of its global and constructive nature, not requiring
extensive numerical simulations, the proposed approach is
particularly suited to control design applications.

I. INTRODUCTION

The phase response curve (PRC) characterizes the input–

output behavior of oscillatory systems [1], [2]. It has wide

applications ranging from oscillator control [3], [4] to the

analysis of oscillator network synchronization [5], [6]. Sys-

tematic and analytic prediction of an oscillator phase response

curve is a hard task in general and it can be accomplished

only in very specific cases. This usually leads to intense case-

specific numerical investigations, which might weaken the

relevance of phase response curve approach in control design.

The classical approach relies on numerically computing

the infinitesimal, that is, linearized, phase response curve and

then use convolution to compute the phase response curve for

generic inputs [7]. Whereas this linearized approach provides

accurate predictions when the oscillatory behavior is quasi-

harmonic or when inputs are weak, its predictive power breaks

down when the oscillatory behavior becomes highly nonlinear

due to timescale separation between the oscillator variables,

corresponding to the relaxation oscillation limit [8].

To overcome these limitations, we use a fully nonlin-

ear approach to study geometrically the global structure of

relaxation oscillator isochrones. Our main analysis tool is

geometric singular perturbation theory [9], [10]. Based on

this analysis we derived semi-analytic formulas to predict the

finite phase response curve to arbitrary inputs in the highly

nonlinear relaxation regime. As opposed to the infinitesimal

phase response curve approach, our method ensures that the

error between the real and the predicted phase response curve

goes to zero as the time-scale separation increases, indepen-
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dently of the input size, and its constructive nature makes it

particularly useful in control design applications.

Although we do not provide rigorous proofs, the method

is thoroughly illustrated by constructing the singular phase

response curve of a generic relaxation oscillator to impulses

and square pulses of finite duration. (Rigorous proofs will

be developed in future works). This methodology was firstly

presented in the first author Ph.D. dissertation [11] and was

subsequently adapted in [12] to study the phase response

curve of a specific class of hybrid reset oscillators. These

results are a first step toward a geometric theory for finite

phase response curves of singularly perturbed oscillators,

including three-timescale bursters [13].

II. RELAXATION OSCILLATORS AND THEIR GEOMETRY

We consider a two-dimensional fast-slow dynamical system

of the form

ẋ = f(x)− z + u, (1a)

ż = ǫ g(x, z), (1b)

where ˙ denotes differentiation with respect to the time t,
(x, z) ∈ R

2, u ∈ R, and 0 < ǫ ≪ 1. The solution at

time t to the initial value problem (1) from the initial condition

(x0, z0) ∈ R
2 at time 0 is denoted by φǫf (t, (x0, z0), u(·)),

with φǫf (0, (x0, z0), u(·)) = (x0, z0). In the slow time scale

τ := ǫ t, dynamics (1) become

ǫ x′ = f(x)− z + u, (2a)

z′ = g(x, z), (2b)

where ′ denotes differentiation with respect to the slow time τ .

For ǫ 6= 0, (1) and (2) are equivalent. We call (1) the fast

dynamics and (2) the slow dynamics. In the singular limit ǫ→
0, we obtain from (1) and (2) the layer dynamics

ẋ = f(x)− z + u, (3a)

ż = 0, (3b)

describing the fast evolution far from the critical manifold

S0 :=
{
(x, z) ∈ R

2 : f(x)− z + u = 0
}

, and the reduced

dynamics

0 = f(x)− z + u, (4a)

z′ = g(x, z), (4b)

describing the slow evolution along S0.

Under some mild technical assumptions [10, Theorem 2.1],

in particular that the critical manifold S0 is S-shaped, the

zero-input system (1) has a unique periodic orbit γǫ sliding

along the stable branches of S0 and shadowing the singular

periodic orbit γ0 illustrated in Figure 1. The singular periodic
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Fig. 1. Geometry of relaxation oscillators. The critical manifold S0 is
a S-shaped curve. Under some technical assumptions [10], the system (1)
in the singular limit (ǫ → 0) admits a singular periodic orbit γ0 defined
as the union of two pieces of the critical manifold associated with a slow
evolution (green solid arrows) and two critical fibers associated with jumps
(green dashed arrows).

orbit γ0 is defined as the union of two pieces of the critical

manifold associated with a slow evolution and two critical

fibers associated with jumps. Many notations used in this

paper about the geometry of relaxation oscillators are defined

in Figure 1.

Remark 1: In the slow time scale, the singularly perturbed

period T ǫ
s converges towards the singular period T 0

s , which is

equal to the finite time required to slide along both portions

of the critical manifold (jumps are instantaneous), that is,

limǫ→0 T
ǫ
s =: T 0

s . In the fast time scale, the singularly

perturbed period T ǫ
f blows up to infinity, that is, limǫ→0 T

ǫ
f =:

T 0
f , with limǫ→0 T

ǫ
f = limǫ→0 T

ǫ
s /ǫ = +∞. The corre-

sponding angular frequencies are denoted ωǫ
f = 2π/T ǫ

f and

ωǫ
s = 2π/T ǫ

s .

III. PHASE MAP AND PHASE RESPONSE CURVES

In this section, we introduce the concepts of phase map

and phase response curves following the terminology of [1]

and [2]. The interested reader is referred to [7] for details.

A. Phase map and isochrons

Because of the periodic nature of its steady-state behavior,

it is appealing to study the oscillator dynamics on the unit

circle S
1. The key ingredients of this phase reduction are the

concepts of phase map and isochrons.

The (asymptotic) phase map Θǫ : B(γǫ) ⊆ R
2 → S

1 is a

mapping that associates to every point in the basin of attrac-

tion B(γǫ) a phase on the unit circle S1. It is defined in such a

way that the phase variable θ(t) := Θǫ(φǫf (t, (x0, z0), u(·))),
that is, the image of the flow through the phase map, linearly

increases with time in the case of zero inputs, u(·) ≡ 0.

The isochron Iǫ(θ) is the set of all points in B(γǫ) that are

mapped to the same phase θ by the phase map Θǫ(·), that is,

isochrones are level sets of the phase map. Points on the same

isochron asymptotically converge to the same trajectory on the

periodic orbit.

B. Phase response curves

An input u(·) is phase-resetting if the solution of (1) forced

by u(·) asymptotically converges to the periodic orbit.

The (finite) phase response curve Qǫ(θ;u(·)) : S
1 →

[−π, π) associates to each phase the asymptotic phase shift

of system (1) in response to a phase-resetting input u(·).
The infinitesimal phase response curve qǫ(θ) : S1 → R is

the relative asymptotic phase shift of system (1) in response

to an infinitesimal phase-resetting impulse (Dirac δ function),

that is, qǫ(θ) := limα→0Q
ǫ(θ;α δ(·))/α.

IV. LIMITATION OF THE INFINITESIMAL APPROXIMATION

FOR FINITE PHASE RESPONSE CURVES

We now briefly recall the limitation of the infinitesimal

(local) approximation for finite (global) phase response curves

of relaxation oscillators.

In the classical approach [1], [2], [14], the (finite) phase

response curve is approximated by the “convolution” between

the infinitesimal phase response curve and the input

Qǫ(θ;u(·)) =

∫ +∞

0

qǫ(ω s+ θ)u(s) ds

︸ ︷︷ ︸

:=Qǫ

inf
(θ;u(·))

+O(‖u(·)‖2)

(see [7] for details about the derivation of this expression).

Because of its local/linearized nature, this approximation is

only valid for inputs that are much smaller than the singular

perturbation parameter, that is, 0 < ‖u(·)‖ ≪ ǫ ≪ 1 (see [8]

for details). In other words, the domain of validity of this

approximation vanishes in the singular limit (ǫ→ 0).

Intuitively, this limitation comes from the fact that, the

singular trajectory forced by the input u(·) might jump instan-

taneously from one branch of the critical manifold to the other.

This behavior involves a global phenomenon that cannot be

captured by a local approximation.

V. SINGULARLY PERTURBED PHASE RESPONSE CURVE

The main idea of our approach is to take advantage of time-

scale separation to construct the finite phase response curve in

the singular limit. For a sufficiently small singular parameter

0 < ǫ ≪ 1, the singularly perturbed finite phase response

curveQǫ(θ;u(·)) can naturally be approximated by a singular

finite phase response curve Q0(θ;u(·)), that is,

Qǫ(θ;u(·)) = Q0(θ;u(·)) +O
(
ǫβ
)
,

for any phase-resetting input u(·) and with 0 < β ≤ 1. The

singular phase response curve Q0(θ;u(·)) is to the singularly

perturbed phase response curve Qǫ(θ;u(·)) what the singular

periodic orbit in Figure 1 is to the relaxation oscillator limit

cycle. In both cases, geometric singular perturbation argu-

ments let β ∼ 2/3 [10]. A rigorous proof of this claim is

out of the scope of this paper and will be developed in future

works. To fix the ideas, the resulting trade-off between the

infinitesimal approximation and the singular approximation as
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infinitesimal approximation

singular approximation

Fig. 2. Qualitative trade-off between the infinitesimal approximation and
the singular approximation as a function of the time-scale separation ǫ.
Errors between the actual phase response curve and its approximations are
measured using the Hausdorff distance distH(·, ·).

a function of the time-scale separation ǫ is sketched qualita-

tively in Figure 2.

The remainder of the section is devoted to geometrically

construct the singular phase response curve for a relax-

ation oscillator in the two important cases in which the

input is given by (i) impulses, that is, u(t) = α δ(t),
and (ii) square pulses of finite duration, that is, u(t) =
ū [1+(t)− 1+(t−∆)].

A. Singular phase map and isochrons

A first step towards the prediction of singular (finite) phase

response curves is the geometric construction of the phase

map and isochrons for the system (1) in the singular limit.

The construction (sketched in Figure 3) relies on the fast-slow

limiting dynamics (3)–(4), in full analogy with geometric

singular perturbations methods.

The singular phase map is the phase map of the singular

periodic orbit. Since the singular periodic orbit γ0 is a one-

dimensional piece-wise smooth curve in R
2, it is naturally

parameterized in terms of a single scalar phase on the unit

circle S
1. As in the nonsingular case, the singular phase map

is chosen such that the phase variable linearly increases with

time.

We choose to associate the zero-phase reference position on

the singular periodic orbit with the lower fold (x−, z−), that

is Θ0(x−, z−) =: θ− = 0. As jumps are instantaneous in the

singular limit, all points of the (weakly) unstable critical fiber

joining (x−, z−) to (b+(z−), z−) are also associated with a

phase equal to zero.

For points on the singular limit cycle, the phase θ associated

with a point (x, z) is the normalized fraction of (slow) time

ω0
s ∆τ needed to reach this point along the reduced dynam-

ics (4) flow from the reference initial condition. For a point

(x1, z1) on the upper branch, the phase will be given by

Θ0(x1, z1) := ω0
s ∆τ1.

For a point (x2, z2) on the lower branch, the phase will be

given by

Θ0(x2, z2) := ω0
s ∆τ+ + ω0

s ∆τ2 ,

where the first term corresponds to the flowing time on the

upper branch (up to the upper fold) and the second term

Fig. 3. Geometric construction of singular phase map. The phase map
associates with each point on the periodic orbit a phase which corresponds
to the normalized time ω0

s ∆τ required to reach this point from the reference
position (x−, z−). For points on the lower branch, it is convenient to
measure the normalized time from (x+, z+) and to add the phase θ+ :=
ω0

s ∆τ+. Because all points on a same vertical ray (in the bistable region)
and converging to the same branch instantaneously jump on the branch in
the singular limit, the phase map associates them with the same phase. In
addition, other vertical lines (outside the bistable region) are associated with
the same phase because these points converge in the same ∆τ (mod T 0

s )
to (x+, z+). This vertical ray and these other vertical lines join ‘virtually’
at infinity. This is conceptually illustrated by the dotted line joining ray and
lines associated with the same asymptotic phase.

corresponds to the remaining flowing time on the lower

branch. To simplify notation, it is convenient to denote by

Θ0(x+, z+) =: θ+ = ω0
s ∆τ+ the phase associated with the

upper fold (and all points of the (weakly) unstable critical fiber

joining (x+, z+) to (b−(z+), z+)).

The notion of singular phase map can be extended to any

point (x, z) in the basin of attraction of the singular periodic

orbit. Because, in the singular limit, any singular trajectory

starting from (x, z) instantaneously jumps from its initial

condition to a branch of the critical manifold, all points on

the same vertical line (that is, with the same value of slow

variable z) that jump to the same branch are associated with

the same phase.

• All points on the line z = z− (resp. z = z+) are

associated with the phase θ− (resp. θ+).

• For points with a slow variable in the bistable range, the

asymptotic phase θ1 of a point (x1, z1) belonging to the

basin of attraction of the upper (resp. lower) branch is

thus given by the phase θ1 of the point at the intersection

between the line z = z1 and the upper (resp. lower)

branch of the singular periodic orbit γ0.

• In addition, all points outside the bistable range that

converge to the upper fold in the same time interval
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∆τ (mod T 0
s ) as (x1, z1) are also associated with the

asymptotic phase θ1.

An elegant way to summarize the definition of the singular

phase map is

Θ0(x, z) =

{

θ− + ω0
s ψ+(z−, z, 0) (mod 2π), if (C1),

θ+ + ω0
s ψ−(z+, z, 0) (mod 2π), if (C2),

with

(C1) ≡ (x, z) ∈ B(Sa
+) ∪ F+,

(C2) ≡ (x, z) ∈ B(Sa
−
) ∪ F−,

where ψ•(z0, zτ ,0) (with • standing for + or −) are functions

that measure the time needed to travel along the critical man-

ifold from the initial condition z0 to final condition zτ , and

B(Sa
•
) is the set of points that jumps to the stable branch Sa

•

of the critical manifold along the layer dynamics (3).

Singular isochrons are thus vertical lines for values of z
outside the bistable range and vertical rays for values of z in-

side the bistable range. In the bistable region, vertical rays are

separated by the repulsive branch Sr of the critical manifold.

The vertical ray and the vertical lines associated with the same

phase join ‘virtually’ at infinity (see Figure 3).

For constant inputs u(·) ≡ ū, the function ψ•(z0, zτ , ū) can

easily be computed by integrating the reduced dynamics (4)

on the stable branches of the critical manifold and they read

ψ•(z0, zτ , ū) =

∫ zτ

z0

1

g(b•(ξ − ū), ξ)
dξ,

i.e., the attractor is horizontally shifted by −ū.

Remark 2: We intentionally do not consider the unstable

branch of the critical manifold Sr as being part of the basin

of attraction of the singular periodic orbit. For small ǫ, this

repulsive branch is perturbed into a repulsive set which has

zero Lebesgue measure.

Remark 3: The singular periodic orbit γ0 is parameterized

by the map xγ : S
1 → γ0 that associates with each phase

θ ∈ S
1 on the unit circle a point (xγ(θ), zγ(θ)) on the singular

periodic orbit.

B. Singular (finite) phase response curves

We derive the singular (finite) phase response curve for two

inputs: impulses, that is, u(·) = α δ(·), and square pulses of

finite duration, that is, u(·) = ū [1+(·)− 1+(· −∆)].
1) Impulse: An impulse u(·) = α δ(·) induces a jump

of the fast variable x in the fast-slow dynamics (3)–(4). The

singular (finite) phase response curve is thus given by

Q0(θ;α δ(·)) = Θ0(xγ(θ) + α, zγ(θ))− θ.

As illustrated on Figure 4, if the impulse lets the state

cross the unstable branch of the critical manifold (case 1), it

produces a phase shift. In the opposite case (case 2), the state

converges back to the initial condition almost instantaneously.

For simplicity, we assume monotonicity of this separatrix

in the bistable region (that is, (∂br/∂z)(z) > 0).

Given a positive impulse of amplitude α, there exists a

critical value zc(α) of the slow variable such that a trajectory

case 2

no phase shift

case 1

phase shift

Fig. 4. Effect of positive impulses in the fast-slow dynamics (3)–(4).
(Case 1) Close enough to the lower fold (on the lower branch), the reset
state crosses the separatrix (red curve) and converges toward the upper
branch instantaneously. The phase shift corresponds to the phase difference
corresponding to the skipped portions of the singular periodic orbit (green).
(Case 2) Far from the lower fold (on the lower branch) or on the upper
branch, the reset state converges back to the initial state instantaneously. As
a consequence, no phase shift is produced.

starting on the lower branch crosses the separatrix under the

effect of the impulse for all z, such that z− ≤ z < zc(α). The

critical value zc(α) is given by

zc(α) = {z ∈ R : b−(z) + α = br(z)}.

The asymptotic phase associated with this critical point

(b−(zc(α)), zc(α)) on the stable branch is denoted θc(α).
The phase shift ∆θ induced by an impulse corresponds to the

portion of singular periodic orbit skipped due to the impulse.

The phase response curve is given by

Q0(θ;α δ(·)) =

{

θ− + ω0
s ψ+(z−, z

γ(θ), 0)− θ, if (C3),

0, o/w,

where (C3) stands for θc(α) < θ ≤ θ−.

Following a symmetric reasoning for negative impulses,

that is, u(·) = −α δ(·), the phase response curve is given by

Q0(θ;α δ(·)) =

{

θ+ + ω0
s ψ−(z+, z

γ(θ), 0)− θ, if (C4),

0, o/w,

where (C4) stands for θc(α) < θ ≤ θ+ and zc(α) = {z ∈ R :
b+(z)− α = br(z)}.

2) Square pulse of finite duration: A square pulse of finite

duration u(·) = ū [1+(·)− 1+(· −∆)] induces a behavior in

the fast-slow dynamics (3)–(4) that is less trivial.

The phase response curve is given by

Q0(θ;u(·)) = Θ0(x∆(θ), z∆(θ))− (θ + ω0
s ∆

0
s ), (5)

where (x∆(θ), z∆(θ)) is the state at time ∆0
s for the reduced

dynamics starting from (xγ(θ), zγ(θ)) where ∆0
s is the pulse

duration in the slow time scale and in the singular limit. It is
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case 1 case 2

Fig. 5. Effect of positive square pulses of finite duration in the fast-slow
dynamics (3)–(4). The state (x∆, z∆) of the trajectory starting from initial
condition (x0, z0) (under a pulse of duration ∆) is graphically determined
using functions ψ• in order to predict the phase response associated with
this pulse. The effect of a positive pulse is to shift temporally the critical
manifold along the z-axis to the right. The singular trajectory starting from
(x0, z0) evolves as follows: (1) jumps instantaneously on the shifted critical
manifold, then (2) evolves around the shifted hysteresis (for a duration
∆ = ∆a +∆c), and finally (3) jumps back to the initial critical manifold.
The main difference between case 1 and case 2 is that during step (1) the
trajectory converges to the opposite branch (with respect to the initial point)
of the shifted critical manifold (in case 1) or to the same branch (with respect
to the initial point) of the shifted critical manifold (in case 2).

thus necessary to compute the state (x∆, z∆) of the trajectory

at the end of the pulse in order to compute the reset phase

associated with its initial condition.

In the following, we describe how we can compute the state

(x∆, z∆) using only the information contained in the func-

tions ψ−(z+ + ū, z, ū) and ψ+(z− + ū, z, ū) (see Figure 5).

Starting from the initial condition (x0, z0) on the critical

manifold, the trajectory evolves as follows (see Figure 5).

(1) Under a constant input ū, the critical manifold of the

system is shifted along the z-axis. The singular trajec-

tory jumps thus instantaneously to the branch of the

“shifted critical manifold” corresponding to the basin

of attraction to which the initial state belongs.

(2) Then, the trajectory evolves on the “shifted critical

manifold”, sliding slowly on branches and jumping

instantaneously when it reaches “shifted folds”.

(3) Finally, the trajectory jumps instantaneously back to the

critical manifold at the end of the pulse.

Because the slow variable z is one-dimensional, the evolution

of a trajectory under constant input ū on an attractive branch

is fully characterized by the functions ψ−(z+ + ū, z, ū) and

ψ+(z− + ū, z, ū) during the flowing time. The total flowing

time has to be equal to the duration ∆s.

In Figure 5, we differentiate between two cases. In case 1,

the initial condition on the lower branch of the critical mani-

fold jumps directly to the upper branch of the shifted critical

manifold. In case 2, the initial condition on the lower branch

of the critical manifold jumps on the lower branch of the

“shifted critical manifold”. Case 1 produces larger phase shift

than case 2.

Remark 4: The duration ∆ is expressed in the fast time

scale, that is, ∆ǫ
f = ∆. In the slow time scale, the duration

is given by ∆ǫ
s = ǫ∆ǫ

f . We assume the duration of the

pulse ∆ǫ
s (in the slow time scale) do not tend to zero in the

singular limit and thus that the duration ∆ǫ
f tends to infinity.

This assumption is motivated by the fact that the duration of

the pulse is often a fraction of the period. So we may have

limǫ→0 ∆
ǫ
f = +∞ and limǫ→0 T

ǫ
f = +∞, and a finite ratio

limǫ→0 ∆
ǫ
f /T

ǫ
f = C (with C 6= 0 and C 6= ∞).

VI. APPLICATION TO A NEURAL OSCILLATOR MODEL

We illustrate our geometric approach on a simple neural os-

cillator model developed by FitzHugh [15] and Nagumo [16].

This model is a popular two-dimensional simplification of the

Hodgkin-Huxley model of spike generation

v̇ = v − v3/3− w + I + u ,

τ ẇ = a− bw + v ,

where v is the voltage variable, w is the recovery variable, and

ǫ := 1/τ is a small parameter.

A. Phase response curves for impulses

Figure 6A illustrates the (finite) phase response curve of

the FitzHugh-Nagumo model for excitatory impulses u(·) =
α δ(·), with α > 0. The solid line is the geometric prediction

computed in the singular limit. Dots represent the phase

response computed through numerical simulations of trajec-

tories of the model for different values of the parameter ǫ.
The singular phase response curve is equal to zero except

in one region of the periodic orbit which corresponds to

the region right before the initiation of the upper part of

the periodic orbit for an excitatory impulse. In this region,

an impulse advances the initiation of the upper part of the

periodic orbit. The phase advance decreases monotonically to

zero until the phase corresponding to the lower fold.

For small values of ǫ, the geometric prediction matches

very well the numerical phase response curves. For larger

values of ǫ, the prediction still matches (qualitatively) the

larger phase shifts arising before the lower fold but do not

capture the small phase shifts arising before the upper fold.

B. Phase response curves for square pulses of finite duration

Figure 6B illustrates the (finite) phase response curve of

the FitzHugh-Nagumo model for excitatory square pulses of

finite duration. The solid line is the geometric prediction com-

puted in the singular limit. Dots represent the phase response

computed through numerical simulations of trajectories of the

model for different values of the parameter ǫ.
The singular phase response curve is equal to zero except

in two regions of the periodic orbit. The first region which

exhibits the highest phase shifts corresponds to same region

as for the impulse case. The phase shifts in this region fol-

low a piecewise law: the breaking point in the phase shifts

corresponds to the separation between initial conditions that

continue to evolve on the shifted initial branch and those that

directly jump to the opposite branch. The second region cor-

responds to point close to the other fold (see case 1 and case 2

in Figure 5). An excitatory pulse may delay the termination of

the upper part.

Once again, for small values of ǫ, the geometric prediction

matches very well the actual phase response curves. For larger
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ImpulseA

PulseB

Fig. 6. (A) Phase response curves for excitatory impulses (|α| = 1.5):
singular geometric prediction (solid line) and numerical simulations (dots).
(B) Phase response curves for excitatory pulses of finite duration (|ū| =
0.25, ∆ = 0.1T ): singular geometric prediction (solid line) and numerical
simulations (dots). (Parameter values: a = 0.7, b = 0.8, I = 1)

values of ǫ, the prediction matches qualitatively both non-zero

regions of the phase response curve.

The main difference between the phase response curve for

an impulse and for a pulse is that, close to the singular limit,

a positive pulse may delay the termination of the behavior on

the upper branch, while a positive impulse may not.

VII. CONCLUSION

We have introduced a novel methodology to construct glob-

ally the isochrons of relaxation oscillators close to the singular

limit of infinite timescale separation between the oscillator

variables. Based on this construction, we can approximate

up to an order of the singular perturbation parameter the

finite phase response curve of the relaxation oscillator for any

perturbing input. We have illustrated this result for impulses

and square pulses of finite duration.

The proposed construction complements the local approach

of the classical infinitesimal phase response curve, which

breaks down under too large timescale separation. On a more

general bases, it allows to constructively predict the qualita-

tive shape of the phase response curve of relaxation oscillators

without the need of extensive numerical simulations. This

property makes the proposed approach particularly appealing

for control design.

Future work will aim at extending this analysis to more

complex (higher dimensional) singularly perturbed oscilla-

tors, like bursters [13] or oscillators in circadian rhythms [17],

and to oscillator synchronization studies, linking this result to

fast threshold modulation phenomenon [18]. Also, we plan to

provide rigorous persistence results based on the normal-form

analysis contained in [12].
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