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Sinh-arcsinh distributions:
a broad family giving rise to

powerful tests of normality and symmetry

M.C. Jones

The Open University, UK

and Arthur Pewsey

University of Extremadura, Spain

Summary. We introduce the ‘sinh-arcsinh transformation’ and thence, by
applying it to random variables from some ‘generating’ distribution with no
further parameters beyond location and scale (which we take for most of the
paper to be the normal), a new family of ‘sinh-arcsinh distributions’. This
four parameter family has both symmetric and skewed members and allows
for tailweights that are both heavier and lighter than those of the generating
distribution. The ‘central’ place of the normal distribution in this family
affords likelihood ratio tests of normality that appear to be superior to the
state-of-the-art because of the range of alternatives against which they are
very powerful. Likelihood ratio tests of symmetry are also available and
very successful. Three-parameter symmetric and asymmetric subfamilies of
the full family are of interest too. Heavy-tailed symmetric sinh-arcsinh dis-
tributions behave like Johnson SU distributions while light-tailed symmetric
sinh-arcsinh distributions behave like Rieck and Nedelman’s sinh-normal dis-
tributions, the sinh-arcsinh family allowing a seamless transition between the
two, via the normal, controlled by a single parameter. The sinh-arcsinh fam-
ily is very tractable and many properties are explored. Likelihood inference
is pursued, including an attractive reparametrisation. A multivariate version
is considered. Options and extensions are discussed.

Keywords: Heavy tails; Johnson’s SU distribution; Light tails; Sinh-normal
distribution; Skew-normal distribution; Skewness; Transformation.
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1. Introduction

Families of distributions with four parameters, accounting for location, scale
and, in some appropriate senses, skewness and tailweight, cover many of the
most important aspects of any unimodal distribution on R. They can be used
to accommodate the random parts of regression-type models where, typically,
they allow potentially complex modelling of the location (and perhaps scale)
parameters while acting robustly with respect to asymmetry and weight of
tails. Subsets of the Pearson and Johnson families of distributions are famous
examples (Johnson et al., 1994, Chapter 12); stable laws (Samorodnitsky and
Taqqu, 1994), generalised hyperbolic distributions (Barndorff-Nielsen, 1978),
two-piece distributions (Fernandez and Steel, 1998), generalised distributions
of order statistics (Jones, 2004) and a very popular class of skew distributions
in which a symmetric density is perturbed by a rescaled symmetric distri-
bution function (Azzalini, 1985, Genton, 2004) are among other examples.
Many more families live on finite or semi-infinite support.

Broadly speaking, most of these families of distributions have the normal
distribution as a special, often a limiting, case with other members of the
families having heavier tails than the normal. In this paper, we propose a
novel relatively simple and tractable four-parameter family of distributions
on R with the normal distribution ‘situated centrally’ and other members
having both lighter and heavier tails. This has practical benefits especially in
affording excellent tests of the appropriateness of the normal distribution.

To describe the new distributions, consider their canonical case in which
location µ ∈ R and scale σ > 0 are removed; they can be reinstated for
practical work in the usual way by utilising σ−1fǫ,δ(σ

−1(x−µ)) where fǫ,δ(x)
is the density of a member of the new family. Here, ǫ ∈ R will turn out
to be a skewness parameter and δ > 0 will control tailweight. Associate
random variables Z and Xǫ,δ with the standard normal density φ and fǫ,δ,
respectively. Then, we propose to define fǫ,δ by what we shorthandedly call
the ‘sinh-arcsinh transformation’

Z = Sǫ,δ(Xǫ,δ) ≡ sinh{ǫ + δ sinh−1(Xǫ,δ)}. (1)

It follows that the density of the ‘sinh-arcsinh distribution’ is given by

fǫ,δ(x) =
1√
2π

δCǫ,δ(x)√
1 + x2

exp

{

−1

2
S2

ǫ,δ(x)

}

, (2)
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where Cǫ,δ(x) = cosh(ǫ + δ sinh−1(x)) =
√

1 + S2
ǫ,δ(x). Of course, f0,1(x) =

φ(x). Examples of densities (2) can be seen in Fig. 1 to follow. We note in
passing that, unlike some other families of distributions, no special functions
appear in the definition of the density of the sinh-arcsinh distribution above.

Properties of the full family (2) are considered in Section 2 and further
properties of the three-parameter symmetric subfamily thereof (correspond-
ing to ǫ = 0) in Section 3. A considerable degree of tractability is evident
in the provision of distribution and quantile functions, unimodality and mo-
ments. Tailweights are also considered. It is shown that ǫ (Section 2.2) and δ
(in the symmetric case; Section 3.1) are skewness and kurtosis parameters in
the sense of van Zwet (1964). A three-parameter subfamily of ‘skew-normal’
distributions is briefly described in Section 2.5. In Section 3.3 it is shown
how, in the symmetric case, the small δ (heavy-tailed) members of family (2)
behave like Johnson’s (1949) SU distributions while the large δ (light-tailed)
members behave like Rieck and Nedelman’s (1991) sinh-normal distributions.
In this sense, the symmetric sinh-arcsinh distributions form a seamless com-
bination of the two, the single-parameter δ controlling the transition from
one to the other via the normal distribution (δ = 1).

Likelihood fitting of the sinh-arcsinh distribution in the form of (2) with
location and scale parameters introduced is considered in Section 4. Asymp-
totic properties are considered in Section 4.1, leading to a useful reparametri-
sation in Section 4.2. Although these subsections concentrate on the three-
parameter symmetric subfamily of sinh-arcsinh distributions, we employ (and
recommend) the same reparametrisation for use in fitting the full four-
parameter family (Section 4.3). An example illustrating the modelling flexi-
bility of the full sinh-arcsinh family is presented in Section 4.4.

Likelihood ratio tests (LRTs) of normality are immediately available with-
in the sinh-arcsinh family: H0 : ǫ = 0, δ = 1. The performance of these
tests is investigated in a substantial simulation study reported in Section
5. We actually consider testing for normality against either symmetric or
asymmetric alternatives and against alternatives both within and beyond
the sinh-arcsinh family. We compare performance with that of seven of the
best performing omnibus tests of normality and conclude that our LRTs
appear to provide the best tests of normality.

A similar large simulation study of the sinh-arcsinh LRT for testing sym-
metry (H0 : ǫ = 0) was undertaken and is reported in Section 6. Again, we
observe excellent performance and show that it outperforms two competing
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omnibus tests chosen as representing the ‘state-of-the-art’.
There is an immediate and straightforward extension of the univariate

distributions above to the multivariate case by marginal transformation of
a multivariate normal distribution. The resulting multivariate distributions
are considered relatively briefly in Section 7 with some emphasis on their
dependence properties.

In Section 8, we consider three ways in which the sinh-arcsinh distribution
(2) might be/have been formulated differently. In Section 8.1, we discuss the
choice of transformation function within the class of transformations of the
form H(ǫ + δH−1(X)). In Section 8.2, we investigate alternative options to
the normal for the role of the ‘central’ symmetric distribution in the family.
And in Section 8.3, we explore a different approach to skewing the (same)
symmetric members of the family. While there prove to be a number of
interesting considerations and alternatives, the end result is a justification
— for most general use — of the choices made in (2).

We close with discussion in Section 9.

2. Properties of family (2)

2.1. Basic properties

We begin by noting several equivalent formulations of transformation (1):

Sǫ,δ(X) =
1

2

{

eǫ exp(δ sinh−1(X)) − e−ǫ exp(−δ sinh−1(X))
}

,

=
1

2

{

eǫ(
√

X2 + 1 + X)δ − e−ǫ(
√

X2 + 1 + X)−δ
}

(3)

=
1

2

{

eǫ(
√

X2 + 1 + X)δ − e−ǫ(
√

X2 + 1 − X)δ
}

. (4)

Also, sinh−1(Z) = ǫ + δ sinh−1(Xǫ,δ) or Xǫ,δ = sinh[δ−1{sinh−1(Z) − ǫ}].
Random variate generation is immediate using the latter formula.

Second, the distribution function associated with density (2) is readily
written as

Fǫ,δ(x) = Φ(Sǫ,δ(x)),

where Φ is the standard normal distribution function.
Third, since S−1

ǫ,δ (z) = S−ǫ/δ,1/δ(z), the quantile function associated with
density (2) is

Qǫ,δ(u) = S−ǫ/δ,1/δ(Φ
−1(u)), 0 < u < 1. (5)
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In particular, the median of the distribution is − sinh(ǫ/δ).
Fourth, density (2) is always unimodal. To see this, the first derivative

of log fǫ,δ(x) is of the form

− x

1 + x2
−

δS3
ǫ,δ(x)

√
1 + x2 Cǫ,δ(x)

.

Any point x0 for which this derivative is zero satisfies

δS3
ǫ,δ(x0)

√

1 + S2
ǫ,δ(x0)

= − x0
√

1 + x2
0

.

But the left-hand side of this equation is a monotonically increasing function
of x0 taking all real values while the right-hand side is a monotonically de-
creasing function of x0 taking values from 1 to −1. It follows that there can
only be one crossing point and so the density is unimodal. Of course, when
ǫ = 0, x0 = 0, else x0 6= 0.

2.2. Skewness

First, in this subsection, let us note that f−ǫ,δ(x) = fǫ,δ(−x).
We can show that, for fixed δ, ǫ acts as a skewness parameter in the sense

of van Zwet’s (1964) skewness ordering. This ordering defines G1 ≤2 G2 if
G−1

2 (G1) is convex for all x. So now let G1 = Fǫ1,δ and G2 = Fǫ2,δ for ǫ1 > ǫ2.
Then F−1

ǫ2,δ(Fǫ1,δ(x)) = Sc,1(x), where c = (ǫ1 − ǫ2)/δ > 0, and

d2F−1
ǫ2,δ(Fǫ1,δ(x))

d2x
=

√

1 + S2
c,1(x)

1 + x2





Sc,1(x)
√

1 + S2
c,1(x)

− x√
1 + x2



 ,

which is positive because Sc,1(x) > x for c > 0. Note that distribution (2)
is parametrised in such a way that, while the absolute value of skewness
increases with increasing |ǫ|, positive skewness corresponds to negative ǫ.

This attractive result about monotonicity of skewness allows us to cal-
culate the limits to the achievable range of skewness values in family (2).
Consider the Bowley skewness (e.g. Bowley, 1937) defined by

Bǫ,δ ≡
Qǫ,δ(3/4) − 2Qǫ,δ(1/2) + Qǫ,δ(1/4)

Qǫ,δ(3/4) − Qǫ,δ(1/4)
.
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(a) (b)

0.0 0.25 0.5 0.75 1.0 1.25 1.5 -4 -3 -2 -1 0 1 2 3 4

(c)

-4 -3 -2 -1 0 1 2 3 4

Figure 1: (a) densities f−∞,δ for, reading from left to right, δ =
0.5, 0.625, 0.75, 1, 1.5, 2, 5; (b) normalised densities σǫ,1fǫ,1(σǫ,1x + µǫ,1) for,
in increasing degree of skewness, ǫ = 0,−0.25,−0.5,−0.75,−1; (c)
scaled densities σ0,δf0,δ(σ0,δx) for, in decreasing value of σ0,δf0,δ(0), δ =
0.5, 0.625, 0.75, 1, 1.5, 2, 5.

This measure is monotone in ǫ because the distribution follows van Zwet’s
skewness ordering (Groeneveld and Meeden, 1984) and, in general, can take
any values between −1 and 1. It is easy to show that, as ǫ → ±∞, Bǫ,δ →
∓(kδ − 1)/(kδ + 1) where kδ ≡ exp(sinh−1(Φ−1(3/4))/δ) ≈ exp(0.6316/δ).

It is possible to identify the limiting densities fǫ,δ as ǫ → ±∞. For con-
creteness, let us work with negative ǫ (positive skewness) and call the limiting
densities f−∞,δ. Employing suitable normalisation of mean and location, the
limiting densities turn out to be

f−∞,δ(y) =
1√
2π

δ cosh(δ log 2y)

y
exp

{

−1

2
sinh2(δ log 2y)

}

,
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with support y > 0. These are the densities of Y = exp(sinh−1(Z)/δ)/2,
where Z is standard normal, and are plotted in Fig. 1(a) for a range of values
of δ. (The reader might prefer to look first at the less extreme members of
family (2) shown in Fig. 1(b) and Fig. 1(c).) Note that all the densities in
Fig. 1(a) have median 1/2! Density f5,−∞ — which we shall shortly confirm
is associated with very light tails — is not very skew, but most of the others
are. Any limitations associated with the range of available skewness values
determined above seem mild.

Similar consideration of the kurtosis role of δ is delayed until consideration
of the symmetric subfamily in Section 3.1.

2.3. Tailweight

As |x| → ∞, Sǫ,δ(x) ∼ 2δ−1sgn(x) exp(sgn(x)ǫ)|x|δ and Cǫ,δ(x) ∼
2δ−1 exp(sgn(x)ǫ)|x|δ. It follows that, retaining the position of ǫ (but not
other constants) in asymptotic formulae even though it does not affect rates,

fǫ,δ(|x|) ∼ exp(sgn(x)ǫ)|x|δ−1 exp(−esgn(x)2ǫ|x|2δ). (6)

Such tails are closely related to Weibull and ‘semi-heavy’ tails for small δ,
being heavier than exponentially decaying tails and lighter than tails decreas-
ing as a power of |x|. We also see the effect of ǫ, through exp(±ǫ), on the
relative scales of the tails of the distribution. This is a major contributory
factor to the way in which ǫ controls skewness.

2.4. Moments

The moments — which necessarily all exist as a consequence of the tail
behaviour given by (6) — are available for family (2). Using the version of
(3) associated with the inverse sinh-arcsinh transformation, we have

E(Xr
ǫ,δ) =

1

2r
E

[{

e−ǫ/δ
(

Z +
√

Z2 + 1
)1/δ

− eǫ/δ
(

Z +
√

Z2 + 1
)

−1/δ
}r]

=
1

2r

r
∑

i=0

(

r

i

)

(−1)i exp
(

(r − 2i)
ǫ

δ

)

P(r−2i)/δ

where

Pq = E
{(

Z +
√

Z2 + 1
)q}

=
1√
2π

∫

∞

−∞

(

x +
√

x2 + 1
)q

e−x2/2dx

7



=
1√
8π

∫

∞

0

wq

(

1 +
1

w2

)

exp

{

−1

8

(

w − 1

w

)2
}

dw

=
e1/48(q+1)/2

√
32π

∫

∞

0

z(q−1)/2

(

1 +
1

8z

)

exp

{

−
(

z +
1

64z

)}

dz

=
e1/4

√
8π

{

K(q+1)/2(1/4) + K(q−1)/2(1/4)
}

,

using (3.471.12) of Gradshteyn and Ryzhik (1994). A property of the modi-
fied Bessel function is that K−ν(z) = Kν(z). It follows that P−q = Pq, which
confirms that odd moments of X are, indeed, zero in the symmetric case
where ǫ = 0.

In particular, we have for the mean

µǫ,δ ≡ E(Xǫ,δ) = − sinh(ǫ/δ)P1/δ

= − sinh(ǫ/δ)
e1/4

√
8π

(

K(1+δ)/(2δ)(1/4) + K(1−δ)/(2δ)(1/4)
)

and for the variance,

σ2
ǫ,δ ≡ Var(Xǫ,δ) =

1

2

(

cosh(2ǫ/δ)P2/δ − 1
)

− µ2
ǫ,δ

= cosh(2ǫ/δ)
e1/4

√
32π

(

K(2+δ)/(2δ)(1/4) + K(2−δ)/(2δ)(1/4)
)

− 1

2
− µ2

δ,ǫ.

When ǫ = 0, δ = 1, it can be readily checked that Var(X0,1) = 1.

2.5. An asymmetric subfamily

There may also be some specific interest in the particular three-parameter
subfamily of (2) in which δ = 1. In this case transformation (1) has, through
(4), the attractively simple form

Sǫ,1(X) = sinh(ǫ)
√

1 + X2 + cosh(ǫ) X.

These densities, some of which are displayed in Fig. 1(b), are true ‘skew-
normal’ distributions in the sense of admitting normality as well as asym-
metry and, by (6), retaining two normal-like tails. They share this property
with ‘two-piece’ normal distributions (Fechner, 1897, Fernandez and Steel,
1998, Mudholkar and Hutson, 2000) in which two differentially scaled halves
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of a normal distribution are joined together. However, unlike the two-piece
normal, density (2) is infinitely differentiable at all x ∈ R. The current and
two-piece densities differ from the popular skew-normal distribution with
density 2φ(x)Φ(λx) (Azzalini, 1985, Genton, 2004) for which a side-effect of
introducing the skewness parameter λ is a change to the weight in one of the
tails.

3. The symmetric subfamily

When ǫ = 0 in transformation (1), density (2) is symmetric about 0. The
properties discussed in Section 2 translate to the current special case in a
straightforward way. (Inter alia, the mean, median and mode, of course, all
reduce to 0 in this case.) In addition, computations strongly suggest that
the tails of f0,δ are sufficiently light for f0,δ to be log-concave for all δ ≥ 1.

3.1. Kurtosis

We can show that, for ǫ = 0, δ acts as a kurtosis parameter in the sense of
van Zwet’s (1964) ordering, which defines G1 ≤S G2 for distributions G1 and
G2 symmetric about zero if the function G−1

2 (G1) is convex for x > 0. In our
case, let G1 = F0,δ1 and G2 = F0,δ2 for δ1 > δ2. Then F−1

0,δ2
(F0,δ1(x)) = S0,δ(x)

where δ = δ1/δ2 > 1. Then

d2F−1
0,δ2

(F0,δ1(x))

d2x
=

δ
√

1 + S2
0,δ(x)

1 + x2





δS0,δ(x)
√

1 + S2
0,δ(x)

− x√
1 + x2



 ,

two d’s have been changed to δ’s here which is positive because δ > 1 and,
correspondingly, S0,δ(x) > x for x > 0.

From Section 2.4, we find

E(X4
0,δ) =

e1/4

√
512π

{

K(4+δ)/(2δ)(1/4) + K(4−δ)/(2δ)(1/4)

− 4
(

K(2+δ)/(2δ)(1/4) + K(2−δ)/(2δ)(1/4)
)}

+
3

8
.

It can be checked that E(X4
0,1) = 3. Given that f0,δ obeys van Zwet’s or-

dering, the classical kurtosis measure β2 = E(X4
0,δ)/σ

4
0,δ must be monotone

decreasing in δ.
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3.2. Graphs of density

A range of symmetric members of family (2) is plotted in Fig. 1(c). The
densities have been scaled to unit variance by use of the formula for the
variance in Section 2.4 (with ǫ = 0). Because of this, the densities are
in the reverse order at 0 to what they would have been unscaled, for then
f0,δ(0) = δ/

√
2π. Unimodality, tailweight and kurtosis properties from above

are well illustrated by this picture. Notice how the densities vary from the
heavy tailed when δ is small, through the normal when δ = 1, to ‘wide-
bodied’/light tailed densities when δ is large.

3.3. Links to Johnson SU and sinh-normal distributions

Consider again transformations of a standard normal random variable Z of
the form Z = Tδ(X) for some odd function Tδ generating symmetric distri-
butions for X also on R. Again, δ controls tailweight. This paper, of course,
concerns the transformation Tδ(X) = S0,δ(X) = sinh(δ sinh−1(X)). The two
‘component parts’ of transformation S0,δ(X), the sinh and arcsinh transfor-
mations, have each previously been employed separately in the same manner.
First, when Tδ(X) = δ sinh−1(X), we have the symmetric members of John-
son’s (1949) SU distributions, part of the famous family of transformation-
based distributions which also have members on R

+ and [0, 1]. See Johnson et
al. (1994, Section 12.4.3). These distributions all have tails that are heavier
than those of the normal. Second, when Z is normal and Tδ′(X) = δ′ sinh(X),
we have Rieck and Nedelman’s (1991) sinh-normal distributions. These sym-
metric distributions all have tails that are lighter than those of the normal.
Indeed, as noted by Rieck and Nedelman (using different notation) the sinh-
normal distribution is log-concave for δ′ ≥ 1, but there is a problem for
δ′ < 1: the distribution is then bimodal. This is unattractive both because
of the form of the bimodality which seems unlikely to be of practical inter-
est and because we feel it better to model bi- and multi-modality through
interpretable mixtures of unimodal components.

Now, when δ is small, it is immediate from (2) that

f0,δ(x) ≃ 1√
2π

δ√
1 + x2

exp

[

−1

2
{δ sinh−1(x)}2

]

.

This is precisely the symmetric Johnson SU density. It can also be shown
that, suitably scaled, the limiting form of f0,δ when δ → ∞ is

f0,∞(x) =
1√
2π

cosh(x) exp

{

−1

2
sinh2(x)

}

.
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This is the unimodal special case of the sinh-normal distribution with δ′ = 1.
These results are very gratifying. They show that by the use of trans-

formation sinh(δ sinh−1(X)), we have achieved a ‘seamless’ family of dis-
tributions which ‘centre on’ the normal distribution, behave very much like
Johnson’s SU distributions for tailweights heavier than normal, and like Rieck
and Nedelman’s sinh-normal distributions for tailweights lighter than normal.
Furthermore, recalling that the normal distribution corresponds to ‘δ′ = ∞’,
the correspondence with the sinh-normal distribution only goes ‘down as far
as’ Rieck and Nedelman’s δ′ = 1, i.e. automatically stopping just before
bimodality kicks in!

Similar reasoning shows why the dual transformation Tδ′′(X) =
sinh−1(δ′′ sinh(X)) is not to be recommended for further investigation. For
small δ′′, Tδ′′(X) ≃ δ′′ sinh(X) which, again, affords Rieck and Nedelman’s
(1991) sinh-normal distributions. However, these correspond to small δ′ = δ′′

cases of the sinh-normal distribution and hence to bimodality.

4. On maximum likelihood estimation

For fitting to one-sample data, family (2) is expanded to a four-parameter
family by the addition of location, µ, and scale, σ, parameters in the usual
way i.e. by fitting σ−1fǫ,δ(σ

−1(x − µ)). The theoretical work to follow in
Sections 4.1 and 4.2 concentrates specifically on the symmetric, ǫ = 0, case.
However, this work informs our fitting of the full model also, as described in
Section 4.3. Note also that one-sample considerations generalise readily to
the important wide class of regression situations in which the sinh-arcsinh
distribution can be used to provide a general family of response conditional
distributions and location (and possibly one or more other parameters) is
modelled as a simple parametric, e.g. linear, function of covariates.

4.1. Maximum likelihood asymptotics in the symmetric case

Manipulations to derive the score equations and elements of the observed
information matrix are standard if tedious, and are not given here. We move
straight to consideration of the expected information matrix which is n times
the matrix made up of values of ιηξ = E {−(∂2ℓ/∂η∂ξ)(Y )}, η, ξ = {µ, σ, δ}.
We find we have the special structure

ιµµ = fm(δ)/σ2, ιµσ = 0, ιµδ = 0,

ισσ = fs(δ)/σ
2, ισδ = fc(δ)/σ, ιδδ = fd(δ),
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Figure 2: The asymptotic correlations between σ̂ and δ̂ (solid line) and be-
tween σ̂δ and δ̂ (dashed line) in the symmetric case, plotted as a function of
log10 δ.

say, where the f functions are all independent of µ and σ. This structure is
a consequence of the symmetry of the fitted model. In fact, we have

fm(δ) = E

[

δ2Z2(3 + 2Z2)

C2
0,1/δ(Z)(1 + Z2)

− δS0,1/δ(Z)Z3

C3
0,1/δ(Z)

√
1 + Z2

+
{1 − S2

0,1/δ(Z)}
C4

0,1/δ(Z)

]

,

fs(δ) = E

[

S2
0,1/δ(Z)

{

δ2Z2(3 + 2Z2)

C2
0,1/δ(Z)(1 + Z2)

− δS0,1/δ(Z)Z3

C3
0,1/δ(Z)

√
1 + Z2

+
{1 − S2

0,1/δ(Z)}
C4

0,1/δ(Z)

}]

+1,

fc(δ) = −E

[

S0,1/δ(Z)Z2

C0,1/δ(Z)(1 + Z2)

{

Z
√

1 + Z2 + (3 + 2Z2) sinh−1(Z)
}

]

,

and

fd(δ) =
1

δ2

(

1 + E

[

Z2(3 + 2Z2)

(1 + Z2)
{sinh−1(Z)}2

])

,

where Z ∼ N(0, 1).
It is immediately clear that the location and scale parameters are asymp-

totically independent as are the location and shape (δ) parameters. How-
ever, because ισδ 6= 0, the scale and shape parameters are not asymptotically
independent. In fact, Corr(σ̂, δ̂), which does not depend on (µ or) σ asymp-
totically, equals

− ισδ√
ισσιδδ

= − fc(δ)
√

fs(δ)fd(δ)
.
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Figure 3: Log10 of the asymptotic standard deviation plus 1
2
log10 n for δ̂

(solid line), µ̂ (dot-dashed line) and σ̂ (dashed line) in the symmetric case
plotted as a function of log10 δ. The solid curve is actually the log standard
deviation minus log10 δ while the other two curves depict the log standard
deviation minus log10 σ.

It is clear that ισδ < 0 and hence that the asymptotic correlation between
σ̂ and δ̂ is positive. This correlation can be plotted as a function of δ (solid
line in Fig. 2). The correlation is very high for almost all δ. At first, this
is disappointing, but it proves to be a standard property of scale/tailweight
families of symmetric distributions and reflects the fact that one cannot really
tell the difference between changing scale and changing tailweight at all easily
in practice.

It is also the case that the asymptotic variance of δ̂ does not depend on
σ; it is given by n−1 times

ισσ

ισσιδδ − ι2σδ

=
fs(δ)

fs(δ)fd(δ) − f 2
c (δ)

.

The logged relative asymptotic standard deviation (plus 1
2
log10 n) is plot-

ted as the solid curve in Fig. 3; it is necessarily rather large. (See Section 4.3
for comments on the practical effect of this.) While the location parameter
µ is in the happy position of being estimated asymptotically independently
of σ and δ, the asymptotic variances of the estimates of each are of the form
n−1σ2hi(δ) where i = µ, σ. So, reasonably enough, both standard deviations
increase in direct proportion to the value of σ. We have that

hµ(δ) =
1

fm(δ)
and hσ(δ) =

fd(δ)

fs(δ)fd(δ) − f 2
c (δ)

.
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These two functions are also shown, square rooted and logged, in Fig. 3 as
dotted and dashed lines, respectively.

4.2. Reparametrisation

In principle, at least, it is possible to provide an orthogonal parametrisa-
tion of the form (µ, σF (δ), δ). Since the correlation between σ̂F (δ̂) and δ̂
is proportional to (log F )′(δ)fs(δ) − fc(δ), this would be achieved by set-
ting (log F )′(δ) = fc(δ)/fs(δ). Unfortunately, this is insufficiently tractable
to provide a workable formula. However, as shown in Fig. 2, the asymptotic
correlation between σ̂ and δ̂, which we are trying to alleviate via reparametri-
sation, is highest for large δ. This suggests seeking a large δ approximation
to the above.

To this end, we find that, for large δ, fc(δ) ≃ −(C+S)/δ and fs(δ) ≃ 1+S
where

C = E

{

Z3 sinh−1(Z)√
1 + Z2

}

and S = E

[

Z2{sinh−1(Z)}2(3 + 2Z2)

1 + Z2

]

.

Numerically, we find that C ≈ 1, at least correct to 7 decimal places (we have
been unable to prove exact equality to unity). We then find that F (δ) ≃ δ−1,
so suggesting a simple reparametrisation in which σ is replaced by σδ ≡ σ/δ.
The asymptotic correlation between σ̂δ and δ̂ is

− δfc(δ) + fs(δ)
√

fs(δ){δ2fd(δ) + 2δfc(δ) + fs(δ)}
.

This is plotted as the dashed line in Fig. 2. It is clear that we have achieved
a general lowering of the asymptotic correlation to less extreme values. We
have not achieved the very small correlation for large δ that might have been
expected because the variance of σ̂δ tends to zero alongside the covariance for
large δ. However, the reduction in correlation that we have achieved proves
to make a considerable difference in practice.

4.3. Practical implementation in the general case

We employ (and recommend) the reparametrisation just derived in fitting
the full four-parameter sinh-arcsinh distribution (as well as its symmetric
subfamily) to data, i.e. utilising {µ, σδ, ǫ, δ} and then setting σ̂ = σ̂δ δ̂. This
solved severe numerical problems encountered in the original parametrisa-
tion when δ > 1. We made use of the Nelder and Mead (1965) simplex
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Figure 4: Histogram of the snow depth data together with the fitted densities
for family (2) (solid line) and its symmetric subfamily (dashed line).

algorithm to perform maximisation of the log-likelihood. Using this direct
search approach, it proves helpful to optimise over µ/

√

1 + µ2 ∈ (−1, 1),
σδ/(1 + σδ) ∈ (0, 1), ǫ/

√
1 + ǫ2 ∈ (−1, 1) and δ/(1 + δ) ∈ (0, 1) and then

back-transform. In practice, we have not come across examples of multiple
maxima occurring on the log-likelihood surface. However, as is generally the
case when using numerical optimisation techniques, it is advisable to try a
range of different starting values in an attempt to ensure that the global
maximum is identified. We find that each of µ, σδ and ǫ is estimated well
but large δ-values are not estimated so precisely. The log-likelihood surface
remains flat when δ is large, corresponding to the large asymptotic variance
of δ̂ shown in Fig. 3.

4.4. Example

In order to briefly illustrate the modelling flexibility of family (2), we present
an analysis of n = 114 measurements of the depth of snow (in cm) taken
on an ice floe in the eastern Asmundsen Sea, Antarctica, in March 2003.
See Banks (2006, Chapter 6) for details, noting that these data pertain to
“Floe 2” and Banks’s analysis included preliminary use of a symmetric sinh-
arcsinh distribution. A histogram of the data appears in Fig. 4. Results
for the maximum likelihood fits of family (2) and its normal (δ = 1, ǫ = 0),
normal-tailed (δ = 1) and symmetric (ǫ = 0) submodels are given in Table
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Table 1: Parameter estimates for the fits to the snow depth data of, reading
from right to left, family (2) and its symmetric (ǫ = 0), normal-tailed (δ = 1)
and normal (δ = 1, ǫ = 0) submodels. The maximised log–likelihood (lmax),
AIC and BIC values, and p-value for the chi–squared goodness-of-fit test, are
included as fit diagnostics.

Model
Parameter Normal Normal tails Symmetric Family (2)

µ 39.24 24.66 40.49 -52.91
σ 20.20 17.88 349139.3 34.27
δ (1) (1) 14028.5 3.99
ǫ (0) -0.52 (0) -6.75

lmax -504.39 -502.50 -497.72 -494.98
AIC 1012.78 1011.00 1001.44 997.96
BIC 1018.25 1019.21 1009.65 1008.90

p-value 0.016 0.004 0.228 0.213

1. All three likelihood-based diagnostics in Table 1 indicate that the fit
for the full family, with its lighter than normal tails (δ > 1) and positive
asymmetry (ǫ < 0), is best, followed by that for its symmetric subfamily. The
p-values of likelihood-ratio tests for normality, normal tails and symmetry,
calculated using the usual asymptotic chi-squared approximation, are 0.000,
0.000 and 0.019, respectively. So, the fit for the full family appears to offer a
significantly better fit than any of its three submodels. Table 1 also contains
the p-values for the chi-squared goodness-of-fit test performed using the class
intervals of the histogram shown, some of which were combined to obtain
expected values of at least 5. The p-values support the adequacy of the two
best fits and rule out the normal and normal-tailed submodels. The densities
of the two best fits are superimposed on the histogram in Fig. 4. Comparing
them with the histogram, there is perhaps some indication of multimodality
in the data. However, this could be an artifact of the binning used and the
rounding of the data to the nearest whole cm during measurement. It would
certainly be difficult to conceive of a better unimodal fit to the data.

In the next two sections we present a substantial practical investigation
of the use of sinh-arcsinh distributions in testing normality and symmetry.
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5. Testing normality

The central position of the normal distribution within family (2) allows test-
ing of normality within the family via standard likelihood ratio tests (LRTs).
However, since family (2) is sufficiently broad to, at some level, provide an
approximation to any unimodal distribution, we propose that sinh-arcsinh-
based LRTs of normality also be used as general purpose tests of normality.
To that end, in this section, we explore the size and power of sinh-arcsinh-
based LRTs of normality both within and beyond the sinh-arcsinh family of
distributions.

5.1. Testing normality against symmetric alternatives I: size

It is probably most usual to test for normality in a situation where one is
willing to assume symmetry of the distribution of interest. In that case,
the appropriate LRT is a statistic of the form L = −2 log(ℓ0/ℓ1) where ℓ0

represents the maximum of the log-likelihood function for an assumed nor-
mal distribution and ℓ1 the maximum of the log-likelihood function assuming
that the sample was drawn from a symmetric sinh-arcsinh distribution i.e.
σ−1f0,δ(σ

−1(x − µ)) where fǫ,δ(x) is given by (2). ℓ1 has to be calculated
numerically. This being a regular problem, the asymptotic distribution of
L is, of course, χ2

1 (the single degree of freedom being associated with set-
ting δ = 1 in the symmetric subfamily to achieve normality). For testing
normality against asymmetric alternatives, see Section 5.3.

We investigated the distribution of 10,000 values of L based on samples
generated from the standard normal distribution. The χ2 approximation to
the sampling distribution of L is, as expected, poor for small sample sizes,
rapidly improving with increasing n such that for n ≥ 50 it would appear to
provide a very good approximation to the true sampling distribution. How-
ever, the tails of the χ2 approximation to the simulated sampling distribution
are in reasonably close agreement even for small n. Indeed, in addition to
being adequate for large n, the asymptotic critical values for the test are
closest to the simulated critical values in certain cases associated with small
n! Overall, we consider it reasonable, as well as simplest, to use the critical
values of the asymptotic χ2

1 distribution when analysing samples of any size.
This is further vindicated in the studies that follow in the next section.
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5.2. Testing normality against symmetric alternatives II: power

There exists a well-established literature addressing the problem of testing
univariate data for normality. Renewed recent interest in this inferential
problem can be found in the papers of Zhang and Wu (2005) and Thadewald
and Büning (2007), amongst others. In the light of the findings presented
in those two papers, we conducted a simulation study designed to compare
the performance of the LRT of normality with those of the following seven
competitive tests for a nominal significance level of 5% (the description of
each test is preceded by the abbreviation we will use when referring to it):

JB. The (one-sided) test of Jarque and Bera (1980), the test statistic of
which is a function of the coefficients of skewness and kurtosis. We used the
corrected critical values for this test presented in Table 2 of Thadewald and
Büning (2007).

D. The (two-sided) test of D’Agostino (1971, 1972). Up to a constant, the
test statistic is the ratio of Downton’s (1966) linear estimator of the standard
deviation to the sample standard deviation. The critical values for this test
are given in D’Agostino’s papers.

AD. The (one-sided) empirical distribution function (EDF)-based test of An-
derson and Darling (1952). We used the corrected critical values for this test
presented under the name CMW in Table 2 of Thadewald and Büning (2007).
(Those authors do not seem to realise that their CMW statistic is in fact the
A2 statistic of Anderson and Darling.)

CM. The (one-sided) Cramér-von Mises EDF-based test with statistic identi-
fied as CM in Thadewald and Büning (2007). We used the corrected critical
values given in their Table 2.

SW. The (one-sided) test of Shapiro and Wilk (1965). We used Algorithm
AS R94 of Royston (1995) to compute the test statistic and its p-value.

ZA and ZC. The (one-sided) nonparametric likelihood-ratio-based tests with
test statistics ZA and ZC of Zhang and Wu (2005). We used the corrected
critical values for these tests given in Tables 1 and 2, respectively, of that
paper.

Our power simulations concern two sets of alternative distributions; here
is the first. For each combination of n = 10, 20, 50, 100, 200 and δ = 0.2, 0.4,
0.6, 1, 2, 10, 10, 000 random samples of size n were simulated from the sym-
metric subfamily of (2) with ǫ = 0. All eight tests were then applied to
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each simulated sample. (Setting µ = 0 and σ = 1 throughout is appropriate
since all tests are location/scale invariant.) In Fig. 5, the proportion of the
10,000 samples for which the null hypothesis of normality was rejected in a
nominally 5% test is plotted against λ = δ/(1 + δ). Remember that δ = 1,
i.e. λ = 0.5, corresponds to a normal distribution, so this figure provides
information concerning both the true size and power of the different tests.

Considering the content of Fig. 5, we can draw the following conclusions.
Firstly, all seven rival tests maintain the nominal significance level of 5%
very closely. So does the LRT, in general, although it is slightly conservative
for n = 10 (size ≃ 0.03) and slightly liberal for n = 50 (size ≃ 0.08).
Secondly, the LRT and D tests have the best overall power characteristics;
the LRT and CM tests are the most powerful against alternatives with 0 <
λ < 0.45 (i.e. distributions with tails that are far heavier than normal),
and, for n ≥ 20, the LRT is the most powerful against alternatives with
lighter than normal tails (λ > 0.5). D has second best power for these latter
alternatives; it also has high power for λ-values in the region of 0.6–0.8, as
does JB. However, for alternatives with lighter than normal tails, JB has the
worst power signature. Indeed, even for samples as large as 100, its power
generally lies below the nominal significance level. As is to be expected, the
power of all eight tests generally increases with n for fixed δ. The increase in
power with n is particularly noteworthy against the alternatives with lighter
than normal tails (λ > 0.5). Note that these results provide interesting
further information concerning the relative performance of the competing
test to complement the findings of Zhang and Wu (2005) and Thadewald and
Büning (2007), particularly concerning the ZA and ZC tests in the former
and the Jarque-Bera test in the latter.

Of course, testing within the symmetric sinh-arscinh family, as just con-
sidered, is the situation for which our LRT was designed and for which it
must be expected to be particularly strong as, gratifyingly, it proved. The
second set (of three) alternative distributions are not members of class (2).
These are: (i) the very heavy-tailed t distribution on two degrees of freedom
(t2); (ii) the fairly-heavy-tailed logistic distribution; and (iii) a light-tailed
distribution due to M.L. Tiku with density 16(1 + x2/4)2φ(x)/27 (e.g. Tiku,
Islam and Selcuk, 2001). The results of our power simulations against these
alternative distributions are given in Fig. 6.

From Fig. 6(a), corresponding to the t2 alternative distribution, it can be
seen that all eight tests are relatively powerful. For larger values of n there is
little difference in their powers; for n = 20, 50, JB and D tend to dominate.
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Figure 5: The proportion of samples for which the null hypothesis of normal-
ity was rejected in a nominally 5% test, plotted against λ = δ/(1 + δ). The
proportions were calculated using 10,000 random samples from alternative
sinh-arcsinh distributions with ǫ = 0, δ = 0.2, 0.4, 0.6, 1, 2, 10 and sample
sizes of: (a) n = 10; (b) n = 20; (c) n = 50; (d) n = 100; (e) n = 200. The
solid lines connect the results of the LRT, and the dashed lines those for the
other seven tests: JB (solid square); D (solid triangle); AD (solid diamond);
CM (open square); SW (open circle); ZA (open triangle); ZC (open inverted
triangle). The dotted line is at the nominal level of 0.05.
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Figure 6: The proportion of samples for which the null hypothesis of normal-
ity was rejected in a nominally 5% test plotted against n. The proportions
were calculated using 10,000 random samples of size n = 10, 20, 50, 100, 200
from the: (a) t2; (b) logistic; and (c) Tiku short-tailed distributions. The
solid lines connect the results of the LRT, and the dashed lines those for the
other seven tests: JB (solid square); D (solid triangle); AD (solid diamond);
CM (open square); SW (open circle); ZA (open triangle); ZC (open inverted
triangle). The dotted line is at the nominal level of 0.05.
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Fig. 6(b) portrays the equivalent results for the logistic distribution. Clearly,
none of the tests is very powerful against this alternative. The JB test has
the best overall performance. D also performs relatively well, particularly
for larger values of n. The LRT performs relatively poorly for samples of
size n ≤ 50 but its relative performance improves with increasing n. The
performance of CM is worst overall. Finally, the results for Tiku’s short-
tailed distribution are displayed in Fig. 6(c). Again, none of the tests is
particularly powerful. Indeed, for samples of size 10 and 20 the power lies
below, and bobs around, respectively, the nominal level of the tests. LRT is
clearly the most powerful, followed by D. The powers of five of the other six
tests are very similar, with the JB test being very poor.

Overall, the LRT seems very competitive in most symmetric situations
with the best of existing tests which would appear to be D’Agostino’s test
D.

5.3. Testing normality against asymmetric alternatives

If one is not willing to assume symmetry, testing for normality can still be
accomplished from within the full four-parameter sinh-arcsinh family. The
appropriate LRT now compares the maximised log-likelihood function for
an assumed normal distribution with the maximum of the log-likelihood as-
suming the sample was drawn from σ−1fǫ,δ(σ

−1(x− µ)), the asymptotic dis-
tribution of the LRT statistic now being χ2

2. Simulations from the normal
distribution yielded results in keeping with the test’s ability, as in the sym-
metric case, to maintain its nominal significance level using its asymptotic
sampling distribution.

Because symmetry is no longer being assumed in constructing the test
statistic, the power of the ‘asymmetric LRT’ is necessarily a little lower than
that of the previous ‘symmetric LRT’ when normality is tested within a truly
symmetric situation. The effect is quite small and the overall performance
of the asymmetric LRT remains excellent. For example, if the powers of the
symmetric LRT in Fig. 5 were replaced by those of the asymmetric LRT:
(a) for large δ (light tails), the previous superiority of the symmetric LRT is
reduced to a performance essentially on a par with the second-based method,
namely D; (b) for very small δ (the heaviest tails), the LRT remains almost as
good as the (otherwise best) CM test; (c) for other δ < 1 (tails heavier than
normal), the LRT continues to have a quality of performance which is in the
middle of the pack of tests considered. These observations are also reflected
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for the non-sinh-arcsinh symmetric alternatives of Fig. 6 in accordance with
their relative tail weights.

Fig. 7 shows simulated powers for the asymmetric LRT and the same set of
seven competing tests for normality within a set of asymmetric distributions,
namely sinh-arcsinh densities with ǫ = 1. Overall, the LRT is best. Indeed,
the ordering of the power performances of the tests is by and large the same as
in Fig. 7’s symmetric counterpart (Fig. 5) with two notable exceptions: (i) the
D test, which was previously competitive with the LRT, is very badly affected
by the presence of asymmetry; and (ii) the LRT maintains its ‘first place’
even for alternatives with slightly heavier tails than those of the normal.
The performance of D is particularly poor for a middle range of values of δ
including fairly heavy tails when n is small, normal tails when n is small and
moderate, and fairly light (but not the lightest) tails even when n = 200.
We note also that, for small n, the combination of non-light tails (δ ≤ 1) and
skewness makes for a greater disparity in power performance between the best
and the poorest tests. In further experiments with a number of asymmetric
alternatives outside the sinh-arcsinh class, the relative performances of tests
described here — including the mostly leading performance of the LRT and
the many poor performances of the D test — were upheld, again in accordance
with their levels of tail weight.

5.4. Conclusion

Taking both symmetric and asymmetric alternatives into account, the LRT
seems to be the best of the options considered here (and its competitors have
been chosen because of claims of leading performance elsewhere).

6. Testing symmetry

We can also test for symmetry (about an unknown centre) by employing an
LRT within the full sinh-arcsinh family of the null hypothesis that ǫ = 0.
The asymptotic null distribution of the test, which we shall use, is, again,
χ2

1.
We will compare the size and power performance of our LRT of symmetry

(again, for a nominal significance level of 0.05) with those of two other general
tests of symmetry. These particular tests were chosen because they were
found to perform well in extensive simulation comparisons reported in Cabilio
and Masaro (1996). They are:
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Figure 7: The proportion of samples for which the null hypothesis of normal-
ity was rejected in a nominally 5% test, plotted against λ = δ/(1 + δ). The
proportions were calculated using 10,000 random samples from asymmetric
sinh-arcsinh distributions with ǫ = 1, δ = 0.2, 0.4, 0.6, 1, 2, 10 and sample
sizes of: (a) n = 10; (b) n = 20; (c) n = 50; (d) n = 100; (e) n = 200. The
solid lines connect the results of the LRT, and the dashed lines those for the
other seven tests: JB (solid square); D (solid triangle); AD (solid diamond);
CM (open square); SW (open circle); ZA (open triangle); ZC (open inverted
triangle). The dotted line is at the nominal level of 0.05.
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SK. The test of Cabilio and Masaro (1996), the test statistic of which is the
simple function SK =

√
n(X̄ − m)/s where X̄, m and s denote the sample

mean, median and standard deviation (with divisor n), respectively. We used
the critical values for this test presented in Table 1 of Cabilio and Masaro
(1996) which were calibrated against the normal distribution.

TN. The second test statistic was the more involved one of Boos (1982) which
is based on the Hodges-Lehmann estimator. We used the critical values for
this test presented in Table 1 of Boos (1982) which were calibrated against
the logistic distribution.

6.1. Testing symmetry I: size

In Fig. 8, simulated values of the size of each of the LRT, SK and TN tests are
presented for a variety of symmetric members of the sinh-arcsinh family. It
can be seen that the LRT is by far the best test in terms of its overall ability
to maintain the nominal significance level. SK tends to be very liberal when
the distribution is either heavy- or light-tailed. TN is extremely liberal when
the distribution is heavy-tailed and marginally liberal when it is light-tailed.
When the underlying distribution is normal (λ = 0.5), all three tests maintain
the nominal level increasingly well with increasing n.

We also computed the size of the tests of symmetry for data simulated
from the t2, logistic and Tiku distributions used above as symmetric alterna-
tives to the normal distribution in Fig. 6. Summarising our results: (a) for
the heavy-tailed t2 distribution, SK holds the nominal level best, whilst the
LRT and especially TN are markedly liberal; (b) for the logistic distribution,
TN holds the nominal level well, SK is marginally conservative and the LRT
marginally liberal; and (c) for Tiku’s light-tailed distribution, all three tests
hold the nominal level pretty well, with the LRT and TN holding it best,
SK being rather liberal. These results collectively chime with earlier obser-
vations: Cabilio and Masaro (1996) observed that the size of their test, SK,
is inflated when the underlying distribution is uniform or Cauchy, while both
Boos (1982) and Cabilio and Masaro (1996) noted that TN can be extremely
sensitive to heavy-tailed distributions, tending to mistakenly confuse such
tails with asymmetry.

6.2. Testing symmetry II: power

We start this section by investigating the power of the LRT, SK and TN tests
against alternative, asymmetric, distributions taken from the sinh-arcsinh
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Figure 8: The proportion of samples for which the null hypothesis of symme-
try was rejected in a nominally 5% test, plotted against λ = δ/(1 + δ). The
proportions were calculated using 10,000 random samples from symmetric
sinh-arcsinh distributions (ǫ = 0), with δ = 0.2, 0.4, 0.6, 1, 2, 10 and sample
sizes of: (a) n = 10; (b) n = 20; (c) n = 50; (d) n = 100; (e) n = 200.
The solid lines connect the results of the LRT, and the dashed lines those
for the other two tests: SK (square); TN (triangle). The dotted line is at
the nominal level of 0.05. The results for TN are missing from panel (e)
as the computational burden (in terms of storage) proved too much for our
programs to handle.
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Figure 9: The proportion of samples for which the null hypothesis of symme-
try was rejected in a nominally 5% test, plotted against λ = δ/(1 + δ). The
proportions were calculated using 10,000 random samples from asymmetric
sinh-arcsinh distributions with ǫ = 1, δ = 0.2, 0.4, 0.6, 1, 2, 10 and sample
sizes of: (a) n = 10; (b) n = 20; (c) n = 50; (d) n = 100; (e) n = 200.
The solid lines connect the results of the LRT, and the dashed lines those for
the other two tests: SK (square); TN (triangle). The dotted line is at the
nominal level of 0.05. The results for TN are again missing from panel (e).
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Figure 10: The proportion of samples for which the null hypothesis of sym-
metry was rejected in a nominally 5% test plotted against n. The proportions
were calculated using 10,000 random samples of size n = 10, 20, 50, 100, 200
from the log F distribution with: (a) 4 and 2; (b) 16 and 2; and (c) 64 and
2 degrees of freedom. The solid lines connect the results of the LRT, and
the dashed lines those for the other two tests: SK (square); TN (triangle).
The dotted line is at the nominal level of 0.05. The results for TN are again
missing for n = 200.
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family with ǫ = 1. See Fig. 9 for results. It can be seen that, overall,
the LRT is the most powerful of the tests. For the smallest-sized sample
from the heaviest-tailed distribution, TN has higher power but it should be
recalled that this test is unable to maintain the nominal level for heavy-
tailed symmetric distributions within family (2). The LRT also performs
quite poorly against extremely light-tailed alternatives, but all three tests
have very low power in such cases.

We also made extensive investigations of the power of these three tests to
detect asymmetry outside the sinh-arcsinh family. To this end, we investi-
gated — in order of increasing tail weight — the extreme value distribution
and a range of skew-normal (Azzalini, 1985), log F (e.g. Baghdachi and Bal-
akrishnan, 2008) and skew t (Jones and Faddy, 2003) distributions. Results
for each distribution were broadly similar: the LRT was most powerful, fol-
lowed by the TN test and then the SK test. Fig. 10 shows these results
for a range of log F distributions, those for extreme value and skew-normal
alternatives looking very similar. Only in the case of the heavy-tailed skew t
distributions was the power performance of the LRT closely matched by that
of TN.

6.3. Conclusion

The sinh-arcsinh-based LRT clearly outperforms two omnibus tests for sym-
metry that we chose for comparison as being ‘state-of-the-art’, both (unsur-
prisingly) within the sinh-arcsinh family but also (much less necessarily) in
a wide range of situations outside the sinh-arcsinh family too.

7. The multivariate case

Multivariate extensions of the univariate distributions arise naturally and
immediately by transforming the univariate marginals of a standardised (but
correlated) multivariate normal distribution. By so doing, we choose to model
skewness and/or tailweight variations directly on the original scales of the
variables. So, in d dimensions, let R be a correlation matrix and define the
vector X by Zi = Sǫi,δi

(Xi), i = 1, ..., d, where Z ∼ Nd(0, R), so that

fǫ,δ(x) =
1

√

(2π)d|R|

d
∏

i=1

{

δiCǫi,δi
(xi)

√

1 + x2
i

}

exp

(

−1

2
Sǫ,δ(x)′R−1Sǫ,δ(x)

)

. (7)

In an abuse of notation, the vector z has been written Sǫ,δ(x).
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Figure 11: The correlation between X and Y in the symmetric marginals
case, plotted as a function of log10 δ1 and log10 δ2: here, ρ = 0.7.

The univariate marginals of this distribution are sinh-arcsinh distribu-
tions by construction. If z is partitioned into (z1, z2) and x, X and R are
partitioned conformably, X1|x2 is the distribution of S−1

ǫ1,δ1
(Z1)|z2 = Sǫ2,δ2(x2)

where Z1|z2 ∼ N(R12(R22)
−1z2, R11 − RT

12(R22)
−1R12). Notice that now the

transformation is applied to an unstandardized normal distribution, which
means that conditional distributions are members of a wider (and not very
tractable) family of distributions that will not be pursued further. The main-
tenance of unimodality in univariate distributions augurs well for the uni-
modality of the multivariate case, and we have no counterexamples from our
limited experience with these distributions. All moments of the distribution,
of course, exist.

The covariance between any two elements of X is not generally tractable.
It is, however, plotted in the symmetric marginals (ǫ1 = ǫ2 = 0) case
in Fig. 11 as a function of δ1, the parameter in the x-direction, and δ2,
the parameter in the y-direction, for ρ = 0.7. A number of properties of
the multivariate distribution are illustrated by this plot. First, the sign of
ρ12 = Corr(S−1

ǫ1,δ1
(Z1), S

−1
ǫ2,δ2

(Z2)) is the same as the sign of ρ for all ǫ1, δ1, ǫ2, δ2.
This follows because of the positive (negative) quadrant dependence of the
bivariate normal distribution with ρ > (<) 0 and the strictly increasing na-
ture of the marginal transformations (see, for example, results in Joe, 1997).
Second, |ρ12| ≤ |ρ|. This inequality can be found in literature stemming
from Gebelein (1941), see, for example, Koyak (1987) and references therein.
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Figure 12: The bivariate sinh-arcsinh density with ρ = 0.7 and (a) δ1 = 0.135,
δ2 = 1, (b) δ1 = δ2 = 0.27.

Concentrating on the symmetric marginals case as in Fig. 11, we note that:
(i) the value of the correlation is ρ = 0.7 only at the point δ1 = δ2 = 1 and is
lower elsewhere; (ii) the value of the correlation remains close to ρ = 0.7 for
all δ1, δ2 ≥ 1 i.e. lighter tails; and (iii) the absolute value of the correlation
decreases as one or both tails get heavier. In particular, this makes sense
in the case δ1 < 1, δ2 = 1 where the density is spread much more in the x-
direction than in the y-direction. For an illustration of this, see the density
plotted in Fig. 12(a); (iii) this last effect is reduced somewhat if both tails
get heavier. The density for δ1 = δ2 = 0.27 is plotted in Fig. 12(b).

It may also be of interest to consider the local dependence function de-
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fined as γ(x, y) = ∂2 log fǫ,δ(x, y)/∂x∂y. This was introduced as a continuous
analogue of the local log odds ratio by Holland and Wang (1987) and alter-
natively justified as a localised correlation coefficient by Jones (1996). Either
directly, or by noting that γ(x, y) = ρ/(1 − ρ2) for the normal distribution
and that γ transforms in the same way as density functions, in our case we
have

γ(x, y) =
ρ

1 − ρ2

δ1Cǫ1,δ1(x)√
1 + x2

δ2Cǫ2,δ2(y)
√

1 + y2
.

Note that γ(x, y) has the same sign as ρ for all x, y. The way that ρ affects
only the overall size of local dependence and is otherwise divorced from the
influence of the other parameters is a nice feature of this transformation
approach. Also, x- and y-dependence are separated out, so we consider, say,
Lǫ,δ(x) ≡ δCǫ,δ(x)/

√
1 + x2 only. In the symmetric case, L0,δ(0) = δ and it

can readily be shown that L0,δ symmetrically decreases (increases) towards
zero (infinity) if δ < (>) 1. In the general case, Lǫ,δ(0) = δ cosh ǫ, while
both ‘tails’ of Lǫ,δ still go to zero (infinity) if δ < (>) 1.

8. Options and extensions

Readers may be discomfited by some of the specific choices that have been
made in this paper so far. In particular, a question that we have been
asked more than once is: “why is the sinh function at the heart of this
methodology rather than some other monotone function?” Second, it is
clear that the normal distribution is only one of a number of possible choices
for the ‘central distribution’ in this approach. And there is a third, perhaps
less obvious, question that concerns the way in which skewness has been
introduced into our model. In this section, we address each of these issues in
turn.

8.1. Which transformation function?

Introduce a one-to-one onto function H : R → R with H(0) = 0 and write
h(x) = H ′(x) > 0 ∀x. Consider transformations of the form

Z = Tǫ,δ(Xǫ,δ) ≡ H{ǫ + δH−1(Xǫ,δ)}. (8)

This formulation, involving both H and H−1, is key to setting the normal
distribution at the centre of the transformed family and allowing both heavier
and lighter tails. This is most easily seen when ǫ = 0: for small δ, T (X) ∼
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δh(0)H−1(x), and for large δ, T (X/δ) ∼ H(x/h′(0)), division of X by δ being
the ‘suitable scaling’ employed in Section 3.3.

Anticipating the main consideration of Section 8.2, replace the normal
density as the object of transformation by a generic simple symmetric distri-
bution with distribution function G. Apply the ‘H-arcH’ transformation to
obtain the transformed family of distributions with distribution function

G(x) ≡ G(H(ǫ + δH−1(x))). (9)

The following result concerns the conditions required on H so that ǫ and δ
act as skewness and kurtosis parameters in the sense of van Zwet (1964).

Theorem. The parameters ǫ (for fixed δ) and δ (for ǫ = 0) in (9) act as a
pair of skewness and kurtosis parameters in the sense of van Zwet (1964) if
and only if log h is either a convex or a concave function of x.

Proof. Let Gi denote G when the parameters are ǫi, δi, i = 1, 2. Then

G−1
2 (G1(x)) = H(c + dH−1(x))

(independently of G) where c = (ǫ1 − ǫ2)/δ2 and d = δ1/δ2. Then,

tc,d(x) ≡ d2G−1
2 (G1(x))

dx2
= p(x)

{

d(log h)′(c + dH−1(x)) − (log h)′(H−1(x))
}

where p(x) = dh(c + dH−1(x))/h2(H−1(x)) > 0 ∀x. For fixed δ, i.e. d = 1,
consider the case c > 0 i.e. ǫ1 > ǫ2; then tc,1(x) > 0, the requirement for ǫ
to act as a skewness parameter, corresponds precisely to (log h)′(x) > 0 for
all x. Likewise, c < 0 requires (log h)′(x) < 0 for all x. Now fix c = 0 for
the symmetric case ǫ1 = ǫ2 = 0. For δ to be a kurtosis parameter we need
t0,d(x) > 0 for x > 0 and for this it is certainly also sufficient that logh is
increasing if d > 1 or that log h is decreasing if d < 1. �

Another requirement that potentially further narrows the field of poten-
tial H ’s is unimodality of all members of the resulting family of distribu-
tions. We are keen on this since we believe that we are in the business of
providing ‘component’ unimodal distributions which can be combined, in-
terpretably, by mixture modelling if multimodality is present in one’s data.
Unfortunately, unimodality seems to require verification on a case-by-case
basis (though it was used to disqualify H(x) = sinh−1(x) for normal G in
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Section 3.4). That said, it reinforces the requirement that h(x) > 0 ∀x else,
if h(x0) = 0 for some x0, the density associated with distribution (9) will be
zero at x = H((x0−ǫ)/δ) and nonzero to either side; this removes candidates
of the form H(x) = |x|γ, γ > 0.

Other considerations include explicit invertibility of H , differentiability
(perhaps), and the type and breadth of effect on tails. We have not been
able to come up with any viable alternative to H(x) = sinh(x).

8.2. Which central density?

The normal distribution is, of course, but one particular choice for the ‘cen-
tral’ simple symmetric distribution mentioned in Section 8.1; let this dis-
tribution have density g. Then the transformed family of distributins has
densities of the form

gǫ,δ(x) =
δCǫ,δ(x)√

1 + x2
g {Sǫ,δ(x)} . (10)

Several of the properties developed for the normal distribution hold immedi-
ately for other g too: examples include its distribution and quantile function
(in terms of G and G−1), skewness and kurtosis ordering properties, etc;
some properties need to be investigated on a case-by-case basis. A sufficient
condition for unimodality is that

1 + x(1 + x2)(log g)′(x) + (1 + x2)2(log g)′′(x) < 0 ∀x

which has been satisfied for all the g we have considered.
A major reason for choosing a different g would be if testing for some

other simple symmetric distribution, such as the logistic, were of interest.
We would expect likelihood ratio testing within a g-based family to perform
as well as it does for the normality case in Section 5.

A second consideration might be the tailweight properties of g-based fam-
ilies. For small δ, and ignoring all constants,

gǫ,δ(|x|) ∼ |x|δ−1g(|x|δ) as |x| → ∞;

for example, simple exponential tails like those of the logistic lead to ‘Weibull-
type’ tails, |x|δ−1 exp(−|x|δ), while power tails, of the form g(|x|) ∼ |x|−(α+1),
α > 0, lead to ‘t-type’ power tails for gǫ,δ of the limiting form |x|−(ν+1)
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where ν = αδ. The Cauchy distribution as g leads to the particularly simple
expression

gǫ,δ(x) =
δ

π

1√
1 + x2 Cǫ,δ(x)

.

But centring the family of distributions at such a heavy-tailed case has conse-
quences for the lightness of tails as δ → ∞. In the symmetric case, ǫ = 0, the
Cauchy-based family tends to the hyperbolic secant density {π cosh(x)}−1,
which is both intriguing and indicative of relatively heavy ‘light’ tails; they
are of simple exponential form.

Again, aside from distributional testing requirements, it is difficult to see
beyond the normal-based family as the most useful general tool.

8.3. Which method of introducing skewness?

Formulae (3) and (4) suggest an alternative method of introducing skewness
into the symmetric sinh-arcsinh transformation. Instead of Sǫ,δ(X) as defined
there, consider

Sδ,γ(X) ≡ 1

2

{

exp(δ sinh−1(X)) − exp(−γ sinh−1(X))
}

, (11)

where δ, γ > 0. Then define Xδ,γ by Z = Sδ,γ(Xδ,γ), Xδ,γ having density fδ,γ,
not shown to save space. Note that (the same) symmetric cases now arise
from setting γ = δ. In fact, δ now controls the weight of the right-hand
tail of the distribution, while γ controls the left-hand tail in the same way.
Skewness arises implicitly from the imbalance between the tails when δ 6= γ:
if δ < γ, the left-hand tail is lighter than the right and the resulting skewness
is positive, if δ > γ, negative skewness ensues. This can be contrasted with
the way in which skewness in (2) is introduced and controlled by differential
scaling of tails. It is clear that fγ,δ(x) = fδ,γ(−x).

Many properties of these skew sinh-arcsinh distributions can also be deter-
mined although the family is a little less tractable than is that based on Sǫ,δ.
Briefly, the distribution function and quantile functions associated with (11)
— in the normal case — are Fδ,γ(x) = Φ(Sδ,γ(x)) and Qδ,γ(u) = S−1

δ,γ (Φ−1(u));
the latter is not explicitly invertible in general although its inverse is easy to
compute. A nice property of the family based on (11) is that its median is
always zero. We have much numerical evidence that fγ,δ remains unimodal
for all values of δ, γ > 0, but have been unable to prove it. Plots of the Bow-
ley skewness (not shown) indicate that the entire range of Bowley skewness
values, from −1 to +1, is achieved within this family.
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Tests of normality and symmetry can, of course, be based on fitting fγ,δ

in the same way as they were in Sections 5 and 6 for fǫ,δ. We repeated
all the simulations reported there for the alternative skewness family too.
Much the most striking feature of the results is their extreme similarity; in
almost all cases, results like those shown in Figs 5 to 10 provide excellent
approximations to the equivalent results for the alternative family. In terms
of testing normality, and from the viewpoint of the alternative family, we
might claim a slightly better holding of size for n ≥ 100 but slightly worse for
n ≤ 50, with slightly lower power for heavy-tailed distributions and slightly
higher power for lighter-tailed distributions. But emphasis here is on the
word ‘slightly’. Something similar was observed in the context of testing
symmetry save for one exceptional case: the test based on fγ,δ was rather
less able to maintain size than was the test based on fǫ,δ for the (heavy-tailed)
t2 distribution. (A nominal 5% test exhibited significance levels around 10%
for the LRT based on fǫ,δ, rising to 20% and more for the test based on fγ,δ.)

All told, however, there is relatively little to choose between fǫ,δ and fγ,δ

in many respects. We have focussed on the former in this paper primarily
because of its greater tractability and secondarily because of minor practical
advantages.

9. Discussion

We would like to argue that, far from being ‘just another’ four-parameter
family of distributions on the real line with rather similar properties, the dis-
tributions of this paper fill a niche that is currently very sparsely populated.
On the one hand, many if not most families of distributions on R concentrate
on providing tailweights heavier than those of the normal (often with the nor-
mal distribution as their lightest tailed limit). Examples include stable laws
and various ‘skew-t’ distributions which include Student’s t distributions as
their symmetric special cases; see, for example, Jones and Faddy (2003) and
Azzalini and Genton (2008). On the other hand, few families of distribu-
tions on R have much in the way of light-tailed membership. An exception
is the exponential power distributions (Box and Tiao, 1973, Tadikamalla,
1980) and their natural two-piece skew counterparts. The new distributions
fill something of a gap between these two sorts of distributions. Like skew-t
distributions, they allow tails considerably heavier than the normal, although
their tails are not quite as heavy as the t’s power tails can be, but unlike
skew-t distributions they allow lighter than normal tails also. Like exponen-
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tial power distributions, the new distributions allow much lighter tails than
normal (though not as light as the uniform limit of the exponential power)
and heavier tails than the normal, but in the latter case escape the purely
exponential nature of the exponential power tails. We reiterate that the
sinh-arcsinh distributions achieve these properties in a manner something
like an amalgamation of Johnson SU and sinh-normal distributions. Indeed,
the sinh-arcsinh distribution can be seen as a generalised Johnson distribu-
tion where the sinh transformation (as in Johnson, 1949) is applied not to
the normal distribution but to the sinh-normal distribution!

It is also especially appealing, in our view, to have such a family of dis-
tributions ‘centred’ on the normal distribution in order, as exemplified in
Section 5, to allow standard likelihood ratio testing for normality against
skew and light- and heavy-tailed distributions within the sinh-arcsinh fam-
ily. This is in contrast to families in which the normal distribution is a
limiting case. Moreover, the resulting tests are widely applicable: they turn
out to compete with, and essentially outperform, existing omnibus tests of
normality against alternatives not in the sinh-arcsinh family. (Essentially,
of course, the tests work by approximating the distribution of the data by
a member of the sinh-arcsinh family, which proves to be an adequate ap-
proximation at least for most unimodal densities.) Similar remarks apply to
testing for symmetry via LRTs within this class.

Finally, this paper has been rather long in gestation and the first author
has talked on the topic a number of times, including Jones (2005). It is
therefore the case that the sinh-arcsinh distribution has already been im-
plemented (under the acronym ‘shash’) in the GAMLSS software package
(Stasinopoulos and Rigby, 2007).
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Thadewald, T. and Büning, H. (2007) Jarque-Bera test and its competitors
for testing normality – a power comparison. J. Appl. Statist., 34, 87–
105.

Tiku, M.L., Islam, M.Q. and Selcuk, A.S. (2001) Non-normal regression II:
symmetric distributions. Commun. Statist. Theory Meth., 30, 1021–
1045.

Zhang, J. and Wu, Y. (2005) Likelihood-ratio tests for normality. Comput.

Statist. Data Anal., 49, 709–721.

van Zwet, W.R. (1964) Convex Transformations of Random Variables. Am-
sterdam: Mathematisch Centrum.

40




