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ABSTRACT 

Land degradation has been recognized as one of the most adverse environmental impacts 

during the last century. The occurrence of sinkholes is increasing dramatically in many 

regions worldwide contributing to land degradation. The rise in the sinkhole frequency is 

largely due to human-induced hydrological alterations that favour dissolution and subsidence 

processes. Mitigating detrimental impacts associated with sinkholes requires understanding 

different aspects of this phenomenon such as the controlling factors and the spatial 

distribution patterns. This research illustrates the development and validation of sinkhole 

susceptibility models in Hamadan Province, Iran, where a large number of sinkholes are 

occurring under poorly understood circumstances. Several susceptibility models were 

developed with a training sample of sinkholes, a number of conditioning factors and four 

different statistical approaches: Naïve Bayes (NB), Bayes Net (BN), Logistic Regression 

(LR), and Bayesian Logistic Regression (BLR). Ten conditioning factors were initially 

considered. Factors with negligible contribution to the quality of predictions, according to the 

information gain ratio (IGR) technique, were discarded for the development of the final 

models. The validation of susceptibility models, performed using different statistical indices 

and ROC-curves, revealed that the BN model has the highest prediction capability in the 

study area. This model provides reliable predictions on the future distribution of sinkholes, 

which can be used by watershed and land-use managers for designing hazard and land-

degradation mitigation plans.  
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INTRODUCTION 
Land degradation is a major problem worldwide, especially in developing countries, due 

mainly to the improper use of land, soil and water resources (Jafari & Bakhshandehmehr, 

2016; Symeonakis et al., 2016). Land degradation is generally attributed to human activities 

that cause detrimental effects upon the land, typically involving reduction in its productive 

capacity (Minaei et al., 2018). Sinkholes are considered as the most characteristic landform in 

karst terrains, which represent around 20% of the continental surface (Ford & Williams, 

2013). Sinkholes, like other geohazards, are generally viewed as natural phenomena rather 

than as a land-degradation agent. However, extensive literature on the subject reveals that a 

large proportion of the new sinkholes are human-induced (e.g., Parise, 2013; Bui et al., 

2018b). Anthropogenic activities such as groundwater withdrawal, irrigation, dewatering for 

mining or diversion of river flow, are increasing the frequency of sinkholes in many regions 

worldwide (Filippi & Bosák, 2013; Parise, 2013; Vattano et al., 2013; Gutiérrez et al., 2014;  

Chen et al., 2017; Tien Bui et al., 2018). The formation of sinkholes involves the reduction of 

agricultural land, may significantly compromise safety, cause severe damage to 

infrastructure, and in extreme cases may result in the abandonment of agricultural areas and 

irrigation plans (Gunn, 2004; Hyland, 2005). Overall, the impacts associated with sinkholes 

are particularly severe in arid areas, where the exploitation of water resources for irrigation 

leads to rapid hydrological changes (e.g., water-table decline, sharp increase in water 

infiltration) that contribute to trigger sinkholes. In many of these areas, groundwater over-

exploitation and the consequent decline in the water table, together with the onset of 

irrigation plans, are triggering subsidence processes over pre-existing cavities (Youssef et al., 

2016). During the last two decades, groundwater over-exploitation in some regions of Iran, 

especially in plains with semi-arid climate, has resulted in the development of a large number 

of hazardous sinkholes (Heidari et al., 2011; Taheri et al., 2015). For instance, in the 

Hamadan central plain, which is the focus of this study, groundwater pumping has triggered 

the development of over 47 sinkholes between 1988 and 2006, creating a high risk scenario 

for some sensitive areas and infrastructure (Heidari et al., 2011). 

In order to mitigate the detrimental consequences of sinkholes, it is of great importance to 

develop approaches aimed at quantitatively assessing the factors that control the subsidence 

phenomena and predicting their spatial distribution. Sinkhole susceptibility maps (SSMs) 

developed and validated through statistical approaches provides a spatially continuous and 

easily accessible tool for managing sinkhole hazards (Galve et al., 2009). Recently, several 

statistical approaches have been applied to the development of SSMs in a GIS environment, 
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including analytic hierarchy processes (Taheri et al., 2015), frequency ratio (Yilmaz, 2007), 

logistic regression (Papadopoulou-Vrynioti et al., 2013; Ciotoli et al., 2016), artificial neural 

networks (Yilmaz et al., 2013), and conditional probability (Yilmaz et al., 2013). These 

methods provide susceptibility assessments that are objective, reproducible and may reach a 

high spatial resolution (Chen et al., 2014). Moreover, high prediction rates have been 

demonstrated in some regions (Shirzadi et al., 2017b). However, it is highly necessary to 

explore new approaches for sinkhole susceptibility mapping and assess comparatively the 

performance of different methods, since any increment in the reliability of the predictions 

would have a positive impact on the effectiveness of mitigation plans.  

Various machine learning algorithms (MLAs) have been recently developed for analyzing 

complex environmental problems that entail land degradation such as sinkholes. The main 

advantage of the MLAs is their ability to analyze complex relationships among large datasets. 

Additionally, the MLAs can deal with spatial patterns of data at various scales (Kanevski et 

al., 2004). The application of these new machine learning predictive models has been 

explored in different geoscience fields including landsides (Chen et al., 2015; Chen et al., 

2016; Chen et al., 2017a; Hong et al., 2017), groundwater qanat potential (Naghibi et al., 

2017), or land subsidence (Pradhan et al., 2014). However, their application to sinkhole 

susceptibility modelling is still very limited. MLAs have a high computational efficiency, 

despite the fact that the models produced with these statistical approaches may have limited 

prediction capability and utility related to multiple factors such as the quantity and quality of 

the data (epistemic uncertainty) and the inherent spatial-temporal patterns of the phenomenon 

and controlling factors (aleatory uncertainty) (Bui et al., 2018a; Bui et al., 2018b; 

Shafizadeh-Moghadam et al., 2018). Therefore, identifying the algorithm that allows 

developing the best-quality susceptibility models is a critical issue to effectively manage risk 

and land-degradation problems associated with sinkhole activity. Hence, the main target of 

this study is to evaluate and compare the performance of Naïve Bayes (NB), Bayes Net (BN), 

Logistic Regression (LR), and Bayesian Logistic Regression (BLR) classifier models for 

sinkhole susceptibility mapping in the northern plains of Hamadan province, Iran. To our best 

knowledge, these algorithms have not been applied to sinkhole susceptibility mapping before.  

 

STUDY AREA 

The study area includes the Kabudar Ahang and the Razan-Qahavand subcatchments (KRQ) 

of the Hoz-e-soltan of Qom watershed, in the northern Hamadan Province, western Iran 

(Figure 1). It covers an area of 6,532 km2, of which 3,402 km2 (52%) correspond to alluvial 



 

This article is protected by copyright. All rights reserved. 

plains and piedmonts. Mean elevation is 1715 m and climate is semi-arid, with 300 mm 

average annual precipitation and a mean temperature of 10.5°C (Sabziparvar, 2003). 

 

(Figure 1) 
 

From the geological perspective, the Zagros orogenic belt consists of four main NW-SE 

trending structural zones, from NE to SW: Urumieh-Dokhtar Magmatic Assemblage, 

Sanandaj-Sirjan, High Zagros Belt, and Zagros Simply Folded Belt (Ghasemi & Talbot, 

2006). The study area is situated within the Sanandaj-Sirjan structural zone, in which the 

rocks show the highest degree of deformation of this active orogene (Figure 2). The exposed 

bedrock consists of a thick Jurassic to Miocene succession including sedimentary and 

volcanic rocks affected by folds and thrusts with a dominant NW-SE trend. The Jurassic 

succession is made up of recrystallized limestone, shales, sandstones, marls with limestone 

intercalations and conglomerates. The Cretaceous units also include limestones, dolostones 

and detrital formations. The Eocene Karaj Formation mainly consists of volcanic rocks 

(andesite, dacite, green tuff). The so-called “lower red formation” of Oligocene age is made 

up of marls and some sandstones and limestones. The main aquifer is the Oligo-Miocene-age 

Qom Formation, which is dominated by limestone as well as volcanic rocks (andesite, tuff, 

basalt). This karstified limestone is best exposed around Hamakasi village and the Mount 

Qoli Abad. The Miocene “upper red formation” is dominantly a detrital unit. The area also 

includes sparse outcrops of late Pliocene and probably Pleistocene lava flows that record 

recent volcanic activity in the area. Sinkholes in Hamedan area mainly occur in Quaternary 

alluvial deposits underlain by the karstified Qom limestone (Heidari et al., 2011; Taheri et 

al., 2015). Interestingly, according to borehole and geophysical data, the Quaternary alluvium 

in areas affected by recent sinkhole development reaches as much as 150 m in thickness. The 

alluvium shows an overall thickness increase towards the central parts of the synclinal basins, 

indicative of syntectonic deposition. Borehole data show that the alluvial cover is dominated 

by cohesive fine-grained facies, although they grade into coarser deposits (proximal facies) 

towards the mountain ranges. 

Previous investigations demonstrate that the recent occurrence of numerous sinkholes in the 

area is related to groundwater over-exploitation and the associated water table decline (e.g., 

Khanlari et al., 2012). This anthropogenic change in the local hydrological conditions has 

favored the internal erosion of cover deposits into significant pre-existing cavities. This 

process results in the progressive upward stopping of voids through the thick and cohesive 
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overburden and the development of sudden cover-collapse sinkholes, which is the main 

sinkhole type in the area. Some authors also propose that limestone karstification in the 

groundwater discharge areas is fostered by renewed aggressiveness due to the incorporation 

of deep magmatic fluids along fractures into the flow system. This is supported by the 

presence of CO2-rich springs that emerge from the Qom Formation in the vicinity of 

Hamakasi village. About 80% of the public-production wells in the area are located in 

alluvial deposits, and only 20% penetrate into the karst aquifer. The water balance for the 

KRQ alluvial aquifer indicates that around 95% of the recharge is related to irrigation. These 

are critical factors that govern groundwater level fluctuations over seasonal and long-term 

scales. 

 

(Figure 2) 

 
DATA AND METHODS 

Data acquisition 

Sinkhole inventory map (SIM)  

The SIM was constructed following two steps: (1) field-based sinkhole identification and 

recording of their locations, typology, chronology and morphometric parameters, such as 

major axial length (D) and depth, and (2) production of a georeferenced sinkhole map. The 

inventory includes 47 sinkholes occurred over a period of 22 years (1988-2010) reported by 

Taheri et al. (2015). Sinkholes were categorized as cover-collapse sinkholes (86%) and 

solution sinkholes (14%) (Karimi & Taheri, 2010).  

The major axial length ranges from 1.5 m to 100 m, with an average value of 14.4 m and a 

standard deviation of 16.7 m. Average depth is 6.2 m and sinkholes tend to be subcircular, 

although reach a maximum elongation ratio (major axial length/minor axial length) of 6. 

Maximum estimated volume is greater than 20,000 m3 and around 40% of the sinkholes 

exceed 1000 m3 in volume (Taheri et al., 2015). Size and frequency relationships of the 

sinkholes using the available chronological data indicate maximum recurrence intervals of 

1.2, 2.1 and 4.2 years for sinkholes with lengths of 10, 20 and 30 m, respectively (Taheri et 

al., 2015). For the development of susceptibility models, the 47 sinkholes were randomly 

divided into training (32 sinkholes) and validation (15 sinkholes) datasets. Furthermore, the 

same number of grid cells without sinkholes were randomly selected and partitioned into 

training and validation datasets. Table 1 shows the relevant information on the sinkholes 

inventoried in the study area.   
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 (Table 1) 
 

Field investigation 

In this study, initially we gathered information on the location of sinkholes from the 

Hamadan Regional Water Authority (HRWA) and each of these sites were checked in the 

field. The field surveys in the current study included (i) recording of sinkhole location and 

characteristics, (ii) sampling of deposits and bedrock units, and (iii) identification of features 

related to some conditioning factors (e.g., rock units, faults) (Taheri et al., 2015). 

 

Sinkhole conditioning factors 

The production of sinkhole susceptibility maps was based on the spatial relationships 

between the sinkholes of the training dataset and a number of potential conditioning factors. 

Thematic maps of ten conditioning factors were produced, which can be divided into three 

categories (Figure 3): (1) hydrogeological factors; (2) geological factors; and (3) 

anthropogenic factors. Hydrogeological factors include water level decline (WLD), 

penetration of deep wells into the karst aquifer (PKA), distance to deep wells (DDW), and 

groundwater alkalinity (GA). The geological factors refer to bedrock lithology (BL), alluvial 

thickness (AT), distance to faults (DF), and fault density (FD). Groundwater exploitation 

(GE) and land use (LU) are the anthropogenic factors considered in this study. Table 2 shows 

the factors used for sinkhole susceptibility assessment and data sources. We selected these 

factors based on data availability, literature reviews (mainly Taheri et al., 2015), and expert 

knowledge. 

Water level decline (WLD) 

WLD plays an important role in the formation of human-induced sinkholes (Newton, 1984; 

Gutiérrez et al., 2016). Data from 65 piezometers covering a 22-year record period (1988-

2010) were used to construct the WLD map by the inverse distance weighted (IDW) method 

and differentiating six categories of WLD in meters (Figure 3a). 

 
Groundwater exploitation (GE) 

GE accounts for the rate of groundwater pumping from wells in Mm3 per year. It provides 

information on the distribution of groundwater withdrawal points and their relative 

importance. The data base of the HRWA, including records from 3,850 wells, was utilized for 
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the preparation of the GE map using the IDW method and discretizing the variable into six 

categories (Figure 3b). 

 
Penetration of deep wells into karst aquifer (PKA) 

PKA indicates the vertical distance between the top of the bedrock and the bottom of deep 

wells. It seems to play a major role in the formation of sinkholes in the study area, especially 

in the vicinity of Hamadan Power Plant. The PKA map was produced by the IDW method 

and differentiated six categories (Figure 3c). 

 
Distance to deep wells (DDW) 

A significant proportion of the reported sinkholes are situated in the proximity of deep wells 

mainly drilled by local residents. The incorporation of this factor in the analysis relies on the 

hypothesis that the probability of sinkhole occurrence is inversely proportional to the distance 

of each point to the nearest deep well. The DDW map was constructed by a buffering method 

and discretizing the variable into six classes (Figure 3d). 

 
Groundwater alkalinity (GA) 

GA is defined as the total concentration of bicarbonate (HCO3−) and carbonate (CO3
2−) ions 

(Bowman, 1997), reflecting the capability of the water to corrode limestone bedrocks and the 

carbonate components of overburden deposits. In general, the higher the alkalinity is, the 

lower the aggressiveness of the water will be. The concentration of bicarbonate in the typical 

karstic groundwater is around 200 mg/l (Salvati & Sasowsky, 2002), whereas in some parts 

of the KRQ it exceeds 1500 mg/l. The GA map was produced by discretizing this continuous 

variable into six intervals using the natural break method (Figure 3e). 

 
Bedrock lithology (BL) 

BL is a critical factor for the distribution of sinkholes, since a prerequisite for their formation 

is the presence of soluble bedrock. Nonetheless, most of the sinkholes occur in areas 

extensively covered by Quaternary alluvium, where there is significant uncertainty about the 

distribution of the different lithologies that form the rockhead (Heidari et al., 2011). Five 

lithotypes have been differentiated in the BL map: schist-shale, marl, limestone, marly 

limestone and conglomerate-sandstone (Figure 3f). 
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Alluvial thickness (AT) 

A striking characteristic of this area is that sinkholes occur in zones where the limestone 

bedrock is covered by a very thick alluvial cover, locally more than 100 m thick (Taheri et 

al., 2015). This indicates that deep cavities developed in the bedrock can propagate upwards 

by progressive collapse through thick alluvium. The AT map has been generated with the 

available borehole data and dividing the variable into six classes by the natural break method 

(Figure 3g). 

 

Distance to faults (DF) 

The relative spatial distribution of sinkholes and major faults, as well as some patterns like 

the elongation and alignment of some sinkholes suggest that the cavities and the associated 

subsidence processes may be controlled by tectonic structures (Taheri et al., 2016). The DF 

map was produced with the faults depicted in the available 1:100,000 scale geological maps 

and categorizing the resulting values into six classes (Figure 3h). The faults used in the 

analysis, mostly with reverse displacement, where checked during the field surveys. 

 

Fault density (FD) 

Fault density refers to the cumulative length of faults per unit area (Shirzadi et al., 2017a). A 

high density of faults in carbonate bedrock may create favorable permeability conditions for 

groundwater circulation, the creation of structurally-controlled cavities and the occurrence of 

sinkholes. The fault density was calculated using data from the 1:100,000 scale geological 

map and was grouped into six classes (Figure 3i). 

 

Land use (LU) 

The type of land use may significantly influence some processes involved in sinkhole 

development by modifying the natural hydrology and vegetation, notably internal erosion and 

cover collapse. The LU map was produced using Operational Land Imager (OLI)-sensor 

images captured by Landsat 8 satellite on 10 August 2013 and provided by the National 

Geographical Service of Iran. The land-use map differentiates five classes including dry 

farming, rocky land, rangeland, irrigated farming and barren land. The land-use classes were 

mapped by means of supervised Maximum Likelihood Classification (MLC) using the 

ENVI5.1 software (Figure 3j). The resulting normalized difference vegetation index (NDVI) 

https://landsat.usgs.gov/how-does-landsat-8-differ-previous-landsat-satellites
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map shows the distribution of different vegetation coverages. This index is between -1 to +1 

and was calculated by the following equation (Pradhan et al., 2010): 

 
NDVI=(NIR - VIS)/(NIR + VIS)                                                                                                  

(1) 

           

where VIS and NIR are the spectral reflectance acquired in the red band and near-infrared 

band, respectively. 

 

(Figure 3) 
(Table 2) 

 

Factor selection based on the information gain ratio 

Sinkhole occurrence depends on favorable conditions determined by a number of local 

factors. Consequently, selecting the factors with higher predictive ability is a critical step in 

susceptibility modeling (Pradhan, 2013). In order to increase the prediction capability of the 

models and the benefit/effort ratio of the data-gathering and modeling process, the factors 

with low or null predictive capability should be removed (Doshi, 2014). These factors can be 

identified through the information gain ratio method (IGR) (Quinlan, 1996).  

Consider S as a training dataset consisting of n input samples, where  in Y , S is the number 

of samples in the training dataset S, belonging to the iY class (sinkhole, no-sinkhole). The 

IGR for a sinkhole conditioning factor such as alluvial thickness (AT) and the training data 

(S) is given by: 

  Entropy (S)-Entropy (S, AT)IGR S, AT  =
SplitEntropy (S, AT)

                                                                                    

(2) 

2
i i

2
i=1

n(Y , AT) n(Y , AT)Entropy (S) = - log
S S                                                                                         

(3) 

m
j

j=1

S
Entropy (S, AT)= Entropy (S)

S                                                                                                       

(4) 



 

This article is protected by copyright. All rights reserved. 

m j j
2

j=1
SplitEntropy ( , ) = - log

S S
S AT

S S
                                                                                                 

(5) 

 

Background on the machine learning algorithms 

Naïve Bayes (NB) classifier 

NB is a Bayes-based classifier based on conditional independence (CI) (Pham et al., 2017). 

In CI, it is assumed that all attributes of examples are independent for maximizing the 

posterior probability with given output class for classification issue (Soni et al., 2011). The 

main aim of the NB classifier is to compute the prior probabilities of each class using a 

discriminant function (Hong et al., 2017). NB has been applied in many scientific fields 

because it is very robust to noise and irrelevant attributes and also does not need a big 

training dataset for modeling (Tien Bui et al., 2012). For mapping sinkhole susceptibility 

using the NB classifier, it was considered  1 2 10, ,...,x x x x  as the vector of the ten 

conditioning factors and  1 2,y y y as the vector of the dependent variables (sinkhole, no-

sinkhole). The prior probability of NB is obtained using a discriminant function as follows: 

 

10

NB i i i
i=1

 y = sinkhole,no-sinkholei

y =argmaxP(y ) P(x y )

     


                                                                                                        

(6)                                                                                          

where iP(y )  is prior probability of iy , and i iP(x y )  is the conditional probability obtained 

using the following equation:  
 

22
i i

1P(x y )
2

ix

e






 

                                                                                                                    

(7)                                                                                                

where  and   are the mean and standard deviation of ix , respectively.  

 

Bayes Net (BN) classifier 

BN is a Bayes-based graphical classifier with a strong independence assumption. It was 

introduced by Friedman et al (1997) to represent the relationships among variables (Song et 

al., 2012; Pham et al., 2016b). BN has a power classifier for assessing hazardous events 
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(Liang et al., 2012). BN comprises two components: (1) directed acyclic graph (DAG) of the 

nodes in the BN classifiers that are corresponded to conditioning factors, and (2) a 

conditional distribution for each node determined by a conditional probability table (CPT). 

The CPT for each node can be calculated by Domain Knowledge (DK) using expert and 

Parameters Learned (PL) from sample datasets through machine learning or Bayesian 

estimation (Liang et al., 2012). The latter was used in this study. If rX represents a node in 

the BN classifier, then the joint probability distribution of a sinkhole in relation with a 

conditioning factor X can be computed as: 

 1 2 1
1 1

, ,..., ( )
i i X i

n n

BN n B X X
i i

P X X X P X 
 

                                                                     

(8) 

where  1 2 10X = X ,X ,...,X  denotes the sinkhole conditioning factors, and

i i Xi

10

B 1 X X
i=1

P (X ) θ   is a sinkhole joint probability distribution in relation with a 

conditioning factor iX , and n is the number of sinkhole conditioning factors.  

 
Logistic Regression (LR) 

LR is a multivariate statistical technique, in which the dependent variable should be binary or 

dichotomous, such as 0 and 1, or presence and absence of an event, while independent 

variables (conditioning factors) can be continuous and categorical (Shirzadi et al., 2012; 

Shahabi et al., 2014; Chapi et al., 2017). It is a generalization of a linear model whereby 

relationships between the probability of sinkhole occurrence and the ten independent 

variables can be quantitatively computed as follows: 

e
1 e

z

LR z
P 


                                                                                                                                             

(9)                                                                                                                                 

0 1 1 2 2log ( ) ( ) , ,...,
1 n n

P
Z it P Ln c a x a x a x

P
   


                                                                            

(10)                                                                           

where 
LR

P  is the probability of sinkhole occurrence, Z  is the weighted linear combination of 

the independent variables, 0c  is the constant or intercept of model, i(i=0, 1, 2, ..., n)a  are the 

coefficients, and  i=0, 1, 2 ,..., n
i

x   are the independent variables (Chen et al., 2017b). 
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Bayesian Logistic Regression (BLR) classifier 

The BLR classifier is a combination of the NB classifier and the LR function. This classifier 

constructs the relationships between dependent (sinkhole and no-sinkhole) and independent 

(ten conditioning factors) variables (Chapi et al., 2017). The Bayesian framework is 

constructed in three steps; firstly, the prior probability (PP) is specified for each parameter; 

then the likelihood function (LF) is obtained for the dataset, and finally the posterior 

probability distribution (PPD) for the parameters is calculated (Avali et al., 2014). Let 

1 2 nx = (x ,x ,...,x )  be the vector of the sinkhole conditioning factors of the training dataset X, 

and 1 2y = (y , y )  the vector of the classifier dependent variables (sinkhole, no-sinkhole). PPD 

for a sample belonging to a specific class can be computed by the logistic function: 

n

0 i i
i=1

1 2 n
(b+w *c+ w *f(x ))

1P(class x ,x ,...,x )=

(1+exp                                                                                
(11) 

where ix denotes the sinkhole conditioning factors, c is the prior log odds ratio, which is 

obtained using ( 0)log
( 1)

P class
c

P class
 ,‘b ’ is bias, weights 0w  and iw  are learned from the 

training dataset, and the th
i attribute ix is utilized to obtain if(x )  using 

( 0)
log

( 1)
i

i

P x class

P x class

(for binary class outcome variables) (Figure 4).  

(Figure 4) 

 

Accuracy assessment and comparison 

The receiver operating characteristics curve  

The receiver operating characteristics curve (ROC) was used for the first time by the United 

States army to analyze the detection of radar signals related to Japanese aircrafts during Word 

War II (Ingleby, 1967). The aim of the receiver operating characteristic (ROC) method was to 

increasing the success rate in the detection of Japanese aircraft from radar signals. 

Subsequently, it has been used in psychophysics (Ingleby, 1967), medicine (Zweig & 

Campbell, 1993; Pepe, 2003), and meteorology (Kharin & Zwiers, 2003). However, the first 

application of the ROC curves in machine learning was carried out by Spackman (1989) for 

comparing and evaluating different classification algorithms (Spackman, 1989). The ROC 

curve is plotted in a two-dimensional graph with the sensitivity (true positives) in the Y-axis 

https://en.wikipedia.org/wiki/Psychophysics
https://en.wikipedia.org/wiki/Medicine
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and the specificity (false positives) in the X-axis, respectively. If it is based on the training 

dataset, the graph is named success rate curve (SRC) and if it is based on the validation 

dataset, it is designated as prediction rate curve (PRC) (Bradley, 1997). 

The area under the ROC curve (AUROC) is a measure of the capability of the model to 

predict the spatial distribution of events (sinkhole) (Hong et al., 2017). It ranges between 0.5 

(null prediction capability) and 1 (perfect model) (Shirzadi et al., 2017a). The AUROC can 

be classified into different predictive capability ranks as excellent (0.9-1), very good (0.8-

0.9), good (0.7-0.8), average (0.6-0.7) and poor (0.5-0.6) (Bui et al., 2017). The AUROC can 

be expressed as:  

 
 
TP+ TN

AUROC=
P+N

 
                                                                                                        

 

(12) 

where TP is the number of sinkholes that are correctly classified, TN is the number of 

incorrectly classified sinkholes, P is the total number of sinkholes, and N is the total number 

of no-sinkhole pixels. 

 
Statistical index-based measures 

To further validate the performance of the models, some statistical indices including 

sensitivity, specificity, accuracy, Kappa index, root mean square error (RMSE), and mean 

absolute error (MAE) were used. These measures are obtained using the four possible 

consequences: true positive (TP), true negative (TN), false positive (FP), and false negative 

(FN). TP and FP are defined as the proportion of sinkhole pixels correctly and incorrectly 

classified as sinkhole in the model, respectively. TN and FN are the proportion of the number 

of no-sinkhole pixels correctly and incorrectly classified as no-sinkhole, respectively (Pham 

et al., 2016a; Shirzadi et al., 2017a). These indices can be formulated as: 

TPPrecision =
TP+ FP                                                                                                                               

(13)                                                                                                                                       
 

TPSensitivity =
TP+ FN                                                                                                                            

(14) 

TNSpecificity =
TN+ FP                                                                                                                                        

(15)
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TP+ TNAccuracy =
TP+ TN+ FP+ FN                                                                                                                        

(16) 

C exp

exp

P - P
Kappa index (K) =

1- P
                                                                                                                              

(17)
 

CP = (TP+TN) (TP+TN+ FN+ FP)                                                                                                             
(18) 

        Pexp = TP+ FN TP+ FP + FP+ TN FN+ TN (TP+ TN+ FN+ FP)
                                

(19) 

n 2
. .i=1

1RMSE = (X - X )
n est obs

                                                                                                           
(20) 

1

1 N

est obs

i

MAE X X
N 

                                                                                                              

(21) 

where n is the total number of samples in the training or validation dataset; .X est is the 

predicted values in the training or validation datasets; and .Xobs is the actual (output) values 

from the sinkhole susceptibility models. 

 
Non-parametric statistical assessment  

To evaluate significant differences among statistical treatments of two or more machine 

learning classifiers without recording their variances, parametric and non-parametric analyses 

can be applied. Although parametric statistical tests are utilized when data are normally 

distributed with equal variances, the non-parametric Freidman (Friedman, 1937) and 

Wilcoxon (Wilcoxon, 1945) tests are free from any statistical assumption. The null 

hypothesis is: there is no difference among the performances of sinkhole classifiers at a 

significant level of α=0.05 (or 5%). Consequently, based on the probability of a hypothesis 

(p-value), the null hypothesis is rejected or accepted if the p-value is true or false, 

respectively (Bui et al., 2016). If the p-value in the Freidman test is true in the models, the 

results of comparison among two or more models are not reliable. Hence, the Wilcoxon test 

is conducted to assess systematic pairwise differences among the sinkhole models using p-

value and z-value. Accordingly, the performance of the sinkhole susceptibility classifiers is 
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significantly different (rejecting the null hypothesis) when the p-value is less than 0.05 and 

the z-value exceeds the critical values of z (−1.96 and +1.96) (Bui et al., 2016). 

 

RESULTS AND DISCUSSION 

Sinkhole conditioning factor analysis 

The prediction capability of the 10 sinkhole conditioning factors was evaluated using the IGR 

method in a 10-fold cross-validation on the training dataset (Table 3). The higher the IGR is, 

the higher the capability of the factor to predict the spatial distribution of new sinkholes will 

be. Results showed that bedrock lithology has the highest impact on sinkhole occurrence 

(IGR=0.626), followed by groundwater alkalinity (IGR=0.37), fault density (IGR=0.3), 

distance to faults (IGR=0.28), penetration of deep wells into the karst aquifer (IGR=0.205), 

water level decline (IGR=0.203), groundwater exploitation (IGR=0.119), and distance to 

deep wells (IGR=0.101). IGR revealed that alluvial thickness and land-use, with IGR=0, have 

negligible predictive utility. Consequently, these conditioning factors were disregarded for 

the susceptibility modeling process. The obtained results are in agreement with Taheri et al. 

(2015), who reported that bedrock lithology reached the highest weight in comparison to 

other independent variables, using the analytical hierarchy process (AHP) method. Taheri et 

al. (2015) also indicated that the distance to deep wells (DDW) has the lowest AHP weight 

and has a limited utility for sinkhole modeling.  

A critical and particularly challenging task of this work was the production of the data layer 

corresponding the bedrock lithology, since sinkholes mainly occur in areas where the bedrock 

is concealed by thick alluvium. The boundaries between the different lithological units in the 

areas covered by Quaternary deposits were delineated by interpolation, considering the 

contacts of the geological maps and the tectonic structures. Moreover, the distribution of 

sinkholes in the study area showed that they tend to form clusters and alignments, suggesting 

that faults may play a significant spatial control, as previously suggested by Taheri et al. 

(2015).  

Initially, alluvial thickness and land-use were intuitively considered to be important factors 

for the development of the models. However, the computed IGR values revealed that these 

factors are not useful for modeling sinkhole susceptibility. It should be noted that these 

results are site-specific and may not be applicable in other regions.  

 

(Table 3) 
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Sinkhole susceptibility mapping  

After applying the BN, NB, LR and BLR statistical approaches, sinkhole susceptibility 

indices (SSIs) were estimated for each pixel in the different models. The SSIs are computed 

according to the probability distribution function (PDF) of each approach. For example, in 

the BN and NB methods, the PDFs are probability functions, whereas logistic functions are 

applied to calculate the SSIs indices in the LR and BLR approaches.   

In order to facilitate the visualization of the susceptibility models, the indices were classified 

into five susceptibility classes by the natural break method: very low (VLS), low (LS), 

moderate (MS), high (HS), very high (VHS). Finally, four susceptibility maps were 

developed by the different statistical approaches (Figure 5). These maps consistently indicate 

that the central and southwestern parts of the study area, associated with major cartographic 

faults, significant water level decline and penetration of deep wells into the karst aquifer have 

the highest susceptibility to sinkhole occurrence. 

 

(Figure 5) 
Model results and analysis 

Once the best conditioning factors and the parameters of the four different models were 

determined, their performances were evaluated using both the training (Table 4) and 

validation datasets (Table 3). 

(Table 4) 

 
According to the training dataset, the BN model has the best performance (goodness of fit) 

measured by RMSE, MAE and AUROC, and the NB model shows the best results in terms of 

sensitivity, specificity, accuracy, and Kappa indexes. According to the sensitivity criterion, 

the NB model (0.938) shows the best quality, with 93.8% of the sinkhole pixels correctly 

classified in the sinkhole classes, followed by BN (0.935), BLR (0.903) and LR (0.844). The 

NB model also has the highest specificity (0.938), with 93.8% of the no-sinkhole pixels 

correctly classified in the no-sinkhole class. The highest accuracy was achieved by the NB 

model (0.938), indicating that the probability of correctly classified pixels is 93.8%, followed 

by the BN (0.922), BLR (0.891) and LR models (0.844). 

 

The RMSE and MAE computed with the training dataset shows that the BN model has the 

highest fit (0.097 and 0.234), followed by the NB (0.107 and 0.271), BLR (0.109 and 0.3) 

and LR models (0.226 and 0.336). The NB model has the highest Kappa index (0.875) 
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calculated with the training dataset, indicating an almost perfect agreement between 

estimation and observation, followed by the BN (0.843), BLR (0.781), and LR models 

(0.681). 

 

The ROC curves produced with the training dataset showed that the BN model has the 

highest AUROC (0.977), followed by the NB (0.954), LR (0.914) and BLR models (0.891). 

The prediction capability of the four models was evaluated using the validation dataset (Table 

5). The four models showed excellent or very good prediction ability with the highest 

AUROC for the BN model (0.976), followed by the NB (0.899), BLR (0.867) and LR models 

(0.809). The Kappa index varies from 0.6 to 0.733 proving that all the models had almost 

perfect agreement with the validation dataset. The highest sensitivity corresponds to the NB 

(0.789), BN (0.789), and BLR models (0.789), indicating that 78.9% of the sinkhole pixels 

were correctly classified. The BN, NB and BLR models has the highest specificity index 

(1.0), with 100% of the no-sinkhole pixels correctly classified, followed by the LR model 

(0.909). The BN, NB and BLR models yield the highest accuracy (0.867), followed by the 

LR model (0.8). The BN model has the lowest RMSE and MAE (0.148 and 0.339), followed 

by the NB (0.151 and 0.362), BLR (0.153 and 0.365) and LR models (0.264 and 0.384).  

Overall, the results indicate that the Bayes Net classifier (BN) approach allows generating a 

higher quality susceptibility model than the other statistical methods (NB, BLR and LR). The 

BN considers the uncertainty interdependence among conditioning factors and provides a 

semantic mode to check the missing data, decreasing noise and preventing over-fitting 

problems (Liang et al., 2012; Song et al., 2012). The obtained results are in agreement with 

Pham et al. (2016b), who compared five machine learning methods, namely Support Vector 

Machines (SVM), Logistic Regression (LR), Fisher's Linear Discriminant Analysis (FLDA), 

Bayesian Network (BN), and Naïve Bayes (NB) for the spatial prediction of landslides, 

concluding that the BN model outperformed the NB model.   

 
(Table 5) 

 
Model validation and comparison 

The validity of the four susceptibility maps was quantitatively evaluated by the AUROC 

(Figure 6). The area under the success rate curve reaches the highest value for the BN model 

(0.909), followed by NB (0.888), LR (0.877) and BLR models (0.864) (Figure 6a). The 

highest area under the prediction rate curve was also achieved by BN (0.856), closely 
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followed by NB (0.832), LR (0.811) and BLR (0.784). These values suggest that the BN 

model has the highest prediction capability. 

(Figure 6) 
Results indicated that all the models yield reliable predictions (Tables 5 and 6, and Figure 6). 

However, in order to determine whether they show statistically significant differences, the 

Freidman and Wilcoxon tests were applied at the 5% significant level (Table 6). Results 

indicate that since P-value is 0.000 (<0.05), the null hypothesis is rejected revealing that there 

are significant differences among the models.  

(Table 6) 
 

The Friedman test does not discriminate a model any significant difference. Therefore, the 

Wilcoxon test was used to check the statistical differences between any pair of sinkhole 

models (Table 7). The null hypothesis was rejected implying that the BN approach allows 

producing significantly different sinkhole susceptibility maps in the study area. Overall, the 

pairwise comparison showed that the performances of the four models are significantly 

different from each other, except for LR versus BLR, which showed equivalent 

performances. 

(Table 7) 

 

CONCLUSIONS 

 

Sinkholes in the Hamadan typically occur in farmlands, pose a severe hazard to people and 

human structures and cause significant onsite and offsite land-degradation impacts, including 

disturbance of natural and artificial drainage systems and large amounts of soil loss. Effective 

management and mitigation of these detrimental consequences requires understanding the 

factors that govern their development and producing reliable predictions on their future 

distribution. As this work illustrates, identifying the most significant conditioning factors and 

testing the performance of different machine learning and statistical approaches (NB, BN, 

LR, and BLR) to predict the distribution of future sinkholes constitutes a valuable 

contribution for managing and mitigating the associated geoenvironmental problems.   

The IGR values calculated for the ten conditioning factors considered in the analysis allowed 

the identification of : (1) the factors with greatest predictive capability, notably bedrock 
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lithology; and (2) the factors with negligible statistical significance for sinkhole prediction 

(i.e., alluvial thickness and land use). The latter were disregarded in the susceptibility 

modeling process since they do not contribute to increase the prediction capability of the 

models. This step, which is rarely performed in susceptibility modeling, has several 

advantages, including: (1) the identification of the main factors that control the development 

of sinkholes, providing useful clues for hazard and risk mitigation, (2) contributes to reduce 

the effort/benefit ratio by disregarding particular factors in the data-collection and modeling 

process, and (3) may allow producing susceptibility models with higher prediction capability 

using a more limited amount of data. 

The quantitative and independent evaluation of the susceptibility models developed with the 

different machine learning algorithms reveals that Bayes-based models (BN, NB, and BLR) 

provide more reliable predictions than statistical model (LR) measured by the AUROC. This 

is probably related to the fact that Bayes-based models are more adequate for analyzing 

complex phenomena governed by largely hidden factors such as sinkholes. The BN model 

produced the most reliable sinkhole susceptibility map.  

The results obtained in the Hamadan region offer promising prospects in the field of sinkhole 

modeling and risk mitigation. Our findings can be applied by watershed managers, 

stakeholders, and land policy makers for managing and mitigating land degradation caused 

by sinkholes. However, additional work should be performed in order to assess wether these 

findings can be generalized and to improve the quality and usefulness of the predictions. It 

would be desirable to apply this methodology in other regions with different geological 

conditions and where sinkholes are controlled by other factors. It would be also advisable to 

assess the potential impact of improving the accuracy of the factors (e.g. spatial resolution) 

on the quality of the models. Moreover, transforming susceptibility models into hazard 

models that quantitatively estimate the probability of occurrence of new sinkholes in each 

portion of the territory would significantly increase the applicability of the models.  
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Table 1 Sinkhole inventory over the study area 

No. Location 
UTM D 

(m) 
d 
(m) 

Depth 
(m) 

Nomenclature 
Date of 
occurrence E N 

1 Hame kasi 313857 3877387 2.5 1.5 1.5 Bedrock collapse sinkhole old 

2 Hame kasi 313833 3873060 100 80 4 Cover sagging & suffosion 
sinkhole old 

3 Hame kasi 313844 3877187 15 5 4 Bedrock collapse sinkhole old 

4 Hame kasi 313809 3877225 6 1 5 Bedrock collapse sinkhole old 

5 Hame kasi 313832 3873060 6 4 3 Bedrock collapse sinkhole old 

6 Hame kasi 313832 3873060 11 ? 15 Bedrock collapse sinkhole old 

7 Bizanjerd 312370 3876038 4 3.5 2 Cover suffosion sinkhole 1989 

8 Hame kasi 313345 3879084 6.6 6 4 Cover suffusion sinkhole 1992 

9 Hame kasi 313254 3879076 11.8 10 3 Cover suffosion sinkhole 1992 
10 Hame kasi 313211 3879101 23 20 1 Cover suffosion sinkhole 1992 
11 Hame kasi 314376 3877351 15 15 1 Cover suffosion sinkhole 1992 

12 Hame kasi 314089 3877762 10 8 1 Cover suffosion sinkhole 1992 

13 Hame kasi 314365 3877325 34 28.5 3 Cover suffosion sinkhole 1992 

14 Jahan abad 315478 3883662 23 20 17 Cover collapse sinkhole 1994 
15 Jahan abad 315512 3883472 33 12 1.5 Cover suffosion sinkhole 1995 
16 Khan abad 295344 3894429 5 4 3 Cover suffosion sinkhole 1995 

17 Kerd abad 299573 3888825 22 17 8 Cover collapse sinkhole 1995 
18 Hame kasi 312841 3875380 5 4 3 Cover suffosion sinkhole 1996 
19 Hame kasi 312885 3875532 3 2.5 1.5 Cover suffosion sinkhole 1996 

20 Hame kasi 312849 3875387 3 2.5 1.5 Cover suffosion sinkhole 1996 

21 Negar khatoon 310917 3890981 4 3.5 4 Cover suffosion sinkhole 1997 

22 Bizanjerd 313024 3879519 20 16 3 Cover suffosion sinkhole 1998 

23 Bizanjerd 312268 3875934 3 2.5 6 Cover suffosion sinkhole 1998 

24 Hesar 279627 3901716 3 2 1 Cover suffosion sinkhole 1998 

25 Amir abad 289590 3901017 --- --- ---- Cover suffosion sinkhole 1999 

26 No abad 296997 3889035 14 11 16 Cover suffosion sinkhole 1999 

27 Hame kasi 313891 3876783 2.5 1.6 1 Cover suffosion sinkhole 1999 

28 Sari tapeh 328147 3876434 2 1.5 5 Cover suffosion sinkhole 2001 

29 Sari tapeh 328155 3876443 1.5 1.5 1.5 Cover suffosion sinkhole 2001 

30 Famenin 315290 3887200 20 15 30 Cover collapse sinkhole 2002 

31 Kerd abad 298819 3888249 31 24.5 12 Cover collapse sinkhole 2003 

32 Kerd abad 299452 3888739 28 25 20 Cover collapse sinkhole 2004 

33 Hame kasi 314135 3877028 8.7 8.6 3 Cover collapse sinkhole 2004 

34 Hame kasi 314375 3877350 10 10 20 Cover collapse sinkhole 2004 

35 Baban 295576 3899807 21 20 20 Cover collapse sinkhole 2008 

36 Kerd abad 298882 3888391 38 37.5 8 Cover collapse sinkhole 2008 

37 Baban 295495 3899780 5 4 8 Cover collapse sinkhole 2009 

38 Kerd abad 298888 3888373 43.5 20 5 Cover collapse sinkhole 2009 

39 Kerd abad 298888 3888373 --- --- --- Cover collapse sinkhole 2010 

40 Hame kasi 314439 3877234 9 5 10 Cover collapse sinkhole 2010 

41 Hame kasi 314121 3877028 9.5 8.5 10 Cover collapse sinkhole 2011 

42 Bizanjerd 311513 3877458 3 2.5 3 Cover suffosion sinkhole Unknown 

43 Kahriz 311545 3877455 5 4 2 Cover suffosion sinkhole Unknown 

44 Gondejin 290945 3893667 10 8 2 Cover suffosion sinkhole Unknown 

45 
Qare chay 
river 314227 3881089 20 18 10 Cover collapse sinkhole Unknown 

46 Hame kasi 314209 3876811 13.5 8.3 6 Cover collapse sinkhole Unknown 

47 Hame kasi 313833 3877177 6 5 0.5 Cover sagging sinkhole Unknown 
D: major axial length (m), d: minor axial length (m), asterisks denote sinkholes of doubtful origin, which may be related to 
karst voids or anthropogenic cavities, like old qanats or abandoned water wells. 
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Table 2 Factors used in sinkhole susceptibility assessment and data sources 
 

Variable Layer Source Scale/ Resolution 
Sinkhole location  SL Field survey 5m×5m 
Distance to faults 
Fault density 

DF 
FD 

Geological map of 
Iran 1:100,000/30m 

Water Level Decline WLD Calculated from 
HWRC piezometric 
data 

30 m 

Groundwater 
Exploitation 

GE HWRC groundwater 
data base 30 m 

Penetration of deep 
wells into karst 
aquifer 

PKA Extracted from 
HWRC dossiers of 
the over 3000 public 
production wells 

30 m 

Distance to deep 
wells 

DDW HWRC wells data 
base 30 m 

Groundwater 
alkalinity  

GA Gathered Data 
available and 
obtained by authors 

30 m 

Bedrock lithology BL Data from around 
330 exploration and 
production wells 
processed by the 
authors 

30 m 

Alluvium thickness AT Geophysical  map 30 m 

Land use map LU OLI-sensor images of 
satellite Landsat 8 30 m  
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Table 3 Factor selection based on information gain ratio (IGR) in this study 
Row Factors IGR 

1 Lithology 0.626 
2 GA 0.375 
3 FD 0.308 
4 DF 0.283 
5 PKA 0.205 
6 WLD 0.203 
7 GE 0.119 
8 DDW 0.101 
9 AT 0 
10 Land use 0 
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Table 4 Parameters of machine learning algorithms applied in this study 

Algorithm Parameters 

BN 
Debug: false; Estimator: Simple estimator for finding the conditional probability 
tables of the Bayes Network; Search algorithm: K2 for searching network 
structures; Use ADTree: false. 

NB 

Debug: false; display Model In Old Format (use old format for model output): false; 
use Kernel Estimator (use a kernel estimator for numeric attributes rather than a 
normal distribution): false; use Supervised Discretization (use supervised 
discretization to convert numeric attributes to nominal ones): false. 

LR 
Use Quasi-Newton Method to search for the optimized values of the m*(k-1) 
variables; Maximum number of iterations to perform, -1; the Ridge value in the log-
likelihood, 1.0E-8. 

BLR 

Hyper parameter value range, R:0.01-316,3.16; Specific hyper parameter value, 
0.27; The maximum number of iterations to perform, 1000; The number of folds in 
the internal cross-validation or pruning, 2; The random number seed, 1; the 
threshold for classification, 0.5. 
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Table 5 Model performance on the training (T) and validation (V) datasets  
 

 

 

 

 

 

 

 

  

Parameters BN NB LR BLR 
T V T V T V T V 

TP 29 15 30 15 27 14 28 15 
TN 30 11 30 11 27 10 29 11 
FP 3 0 2 0 5 1 4 0 
FN 2 4 2 4 5 5 3 4 
Sensitivity 0.935 0.789 0.938 0.789 0.844 0.737 0.903 0.789 
Specificity 0.909 1.000 0.938 1.000 0.844 0.909 0.879 1.000 
Accuracy 0.922 0.867 0.938 0.867 0.844 0.800 0.891 0.867 
RMSE 0.097 0.148 0.107 0.151 0.226 0.246 0.109 0.153 
MAE 0.234 0.339 0.271 0.362 0.336 0.384 0.300 0.365 
Kappa 0.843 0.733 0.875 0.733 0.687 0.600 0.781 0.733 
AUROC 0.977 0.976 0.954 0.899 0.914 0.809 0.891 0.867 
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Table 6 Average ranking of the four sinkhole susceptibility models for the study area 

using the Friedman’s test 
No Sinkhole models Mean ranks χ2 Sig. 
1 BN 1.79 

124.064 0.000 2 NB 1.49 
3 LR 3.26 
4 BLR 3.46 
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Table 7 Performance of the sinkhole susceptibility models using Wilcoxon signed-rank test 

(two-tailed)  

NO Pair wise 
comparison 

Number of positive 
differences 

Number of 
negative 

differences 
z-value p-value Significance 

1 BN vs. NB 20 4 -2.676 0.007 Yes 
2 BN vs. LR 58 5 -6.353 0.000 Yes 
3 BN vs. BLR 59 5 -6.728 0.000 Yes 
4 NB vs. LR  61 3 -6.487 0.000 Yes 
5 NB vs. BLR 59 4 -6.791 0.000 Yes 
6 LR vs. BLR 39 25 -0.976 0.329 NO 

(The standard p value is 0.05) 
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Figure 1 a) Geographic location of the study area in northwestern Iran; b) location of the 

Kabudar Ahang and Razan-Qahavand subcatchments (KRQ) in northern Hamadan Province; 

c) sketch of the KRQ of the Hoz-e-soltan of Qom watershed showing the distribution of 

alluvial aquifers and the sinkholes used for the development and validation of the 

susceptibility models; d) cover-collapse sinkhole at Jahan Abad; e) bedrock and cover-

collapse sinkhole at Hame kesi; f and g) cover collapse  sinkholes in Hame kasi. 
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Figure 2 Geological map of the KRQ showing sample locations 
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Figure 3 Thematic maps of the analyzed conditioning factors that affect sinkhole occurrence 

in the study area: a) water level decline (WLD); b) groundwater exploitation (GE); c) 

penetration of deep wells into the karst aquifer (PKA); d) distance to deep wells (DDW); e) 

groundwater alkalinity (GA); f) bedrock lithology (BL); g) alluvium thickness (AT); h) 

distance to faults (DF); i) fault density (FD); and j) land use (LU).  
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Figure 4 Flowchart of machine learning algorithms for sinkhole susceptibility mapping 
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Figure 5 Sinkhole susceptibility maps developed using the different statistical approaches.   
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Figure 6 AUROC curve and of the models using the training dataset (left) and validation 
dataset (right) 

 


