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Chronic pain is a disease of long-lasting pain with unpleasant feelings mediated

by central and (or) peripheral sensitization, its duration usually lasts more than

3 months or longer than the expected recovery time. The patients with chronic

pain are manifested with enhanced sensitivity to noxious and non-noxious

stimuli. Due to an incomplete understanding of the mechanisms, patients are

commonly insensitive to the treatment of first line analgesic medicine in clinic.

Thus, the exploration of non-opioid-dependent analgesia are needed. Recent

studies have shown that “sinomenine,” the main active ingredient in the natural

plant “sinomenium acutum (Thunb.) Rehd. Et Wils,” has a powerful inhibitory

effect on chronic pain, but its underlying mechanism still needs to be further

elucidated. A growing number of studies have shown that various immune cells

such as T cells, B cells, macrophages, astrocytes and microglia, accompanied

with the relative inflammatory factors and neuropeptides, are involved in the

pathogenesis of chronic pain. Notably, the interaction of the immune system

and sensory neurons is essential for the development of central and (or)

peripheral sensitization, as well as the progression and maintenance of

chronic pain. Based on the effects of sinomenine on immune cells and their

subsets, this reviewmainly focused on describing the potential analgesic effects

of sinomenine, with rationality of regulating the neuroimmune interaction.

KEYWORDS

sinomenine, sensory neurons, immune cells, glial cells, chronic pain

1 Introduction

According to the IASP, “chronic pain” is an unpleasant emotional experience with its pain

sensation lasting longer than 3 months or the expected time for disease recovery (Knotkova

et al., 2021). Recently, an epidemiological study shows that more than 20% of U.S. adults

experience chronic pain (Yong et al., 2022). Long-term pain induces a multitude of harmful
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effects like anxiety, insomnia, depression, premature aging and other

harmful symptoms, seriously threatens the physical and mental

health of patients (Finan et al., 2013; Rachor and Penney 2020;

Lahav et al., 2021; Ma et al., 2021). Thus, chronic pain has been

gradually recognized as a disease with biological, social,

psychological, and spiritual manifestations, and is vulnerable to

many risks, such as smoking, alcohol consumption, exercise,

nutrition, and medical intervention (Paller et al., 2009;

Andersson et al., 2013; Mills et al., 2019). However, the

pathogenesis of chronic pain has not been fully clarified yet

(Fitzcharles et al., 2021).

Immune cells and central glial cells have been shown to

contribute to the development and maintenance of chronic pain

through neuro-immune interactions (Grace et al., 2014; Sanmarco

et al., 2021). For example, the sensory neurons release neuron-

derived mediators, such as adenosine triphosphate (ATP), neuron-

peptides and macrophage-colony stimulating factor (M-CSF), to

simulate the polarization of macrophages (Merighi et al., 2008;

Stösser et al., 2011; Burnstock 2017). On the other hand, by secreting

different kinds of mediators such as tumor necrosis factor alpha

(TNF-α), nerve growth factor (NGF) and interleukin-1beta (IL-1β),
some peripheral immune cells, such as macrophages, Schwann cells,

lymphocytes and mast cells, enhance the excitability and sensibility

of the primary sensory neurons and induce chronic pain, suggesting

that interfering the interaction between macrophages and neurons

may potentially help to alleviate chronic pain (Shu and Mendell

1999; Lim et al., 2015; Minnone et al., 2017; Aarão et al., 2018;

Domoto et al., 2021). In addition, T cells, infiltrating into the dorsal

root ganglion (DRG) of nerve injury model animals, were also

reported to release leukocyte elastase (LE) and induce chronic pain,

while this phenomenon could be inhibited by SerpinA3N inhibitor

secreted by DRG neurons (Vicuña et al., 2015). Apart from

peripheral immune cells, central glial cells including microglia

and astrocytes were also proved to interact with neurons to

regulate chronic pain, indicating that inhibiting the interaction

between central glial cells and sensory neurons might also be a

potential pathway for treating chronic pain (Ji et al., 2016).

It is reported that nearly 20% of chronic pain patients are

insensitive to anti-inflammatory and analgesic drugs (Buch 2018;

Buch et al., 2021). However, using opioids as an analgesic may have

the risks of inducing hyperalgesia, drug resistance and addiction, etc.

(Benyamin et al., 2008; Mercadante et al., 2019). Natural plants have

been widely used medicinally for centuries in different countries, and

many pharmaceutical active compounds derived from natural plant

products have been proved to be effective in the treatment of chronic

pain (Jiang et al., 2022). We recently screened out the herb,

“Qingfengteng” (“Sinomenium acutum (Thunb.) Rehd. Et Wils.”)

as a frequently prescribed herb for treatment arthritic pain in clinic

(Lai et al., 2022). As the main active ingredient of “Qingfengteng,”

sinomenine was reported with various biological activities, such as

antioxidant, neuroprotection, and antidepressant, etc. (Liu S. et al.,

2018; Hong et al., 2022). According to the previous pharmacological

studies, sinomenine, also known as “cucoline,” is an alkaloid found in

the root of the climbing plant Sinomenium acutum, and has a

powerful analgesic and anti-tumor effects in clinic (Figure 1).

Single administration of sinomenine could significantly alleviate

mechanical allodynia in rats with cancer bone pain, while long-

term treatment of sinomenine could significantly reduce the

neuropathic pain of spinal nerve ligation (SNL) rats and inhibit

central sensitization (Chen et al., 2018; Wang X. et al., 2021). As a

dextrorotatory morphinan analog with a chemical structure similar

tomorphine (Figure 1), sinomenine could combine to and activate μ-

opioid receptors to exert its central analgesic effect directly (Wang

et al., 2008). In addition, a parallel randomized controlled study

involving 120 patients showed that sinomenine could be used to

assist the clinical first-line drug use, improve its toxic and side effects,

reduce the risk of adverse event (AE), and help patients to receive a

long course of treatment (Liu S. et al., 2018; Huang et al., 2019; Hong

et al., 2022). Thus, it is widely used in the treatment of rheumatoid

arthritis, enteritis, ischemia and reperfusion injury, organ

allotransplantation and other diseases in clinic.

However, the underlying mechanisms of analgesic effects of

sinomenine have not been fully elucidated. This review is aimed

to provide researchers with insights into the possible effects of

sinomenine on the neuro-immune interaction, through which

might be potentially promising to relieve chronic pain, and

provides new ideas for the further clinical alternative

treatment and pharmaceutical research.

2 The effects of sinomenine on
peripheral immune cells

2.1 Sinomenine regulates macrophage
functions in peripheral sensitization

Macrophage derives from embryonic development (tissue

resident macrophages) or bone marrow-derived circulating

FIGURE 1
Chemical formula of sinomenine.
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monocyte macrophages (non-tissue resident macrophages). It is

one of the most important immune cells with multiple effects,

including antigen presentation and phagocytosis effects during

the human defensive reaction. Recently, several studies have

shown that dysfunction of macrophages is closely related to

chronic pain, as well as the development of peripheral

sensitization, and the regulation of macrophages is a

promising way to treat chronic pain (Gentek et al., 2014;

Ginhoux and Guilliams 2016; Domoto et al., 2021). At the site

of peripheral nerve injury, the occurrence of endothelial

activation results in recruitment of monocytes/macrophages,

which sensitized nociceptive neurons and induced peripheral

sensitization. Moreover, the phenomenon that macrophages

infiltrated into DRG was observed in various models of

neuropathic pain, while using chlorophosphate to deplete

macrophages helps to alleviate pain, suggesting a crucial role

of DRG macrophages in chronic pain (Zhang et al., 2016; Yu

et al., 2020). We speculate that the macrophage might be one of

the targets for sinomenine, and the potential mechanisms are

reviewed as follows:

2.1.1 Sinomenine inhibits inflammatory cytokines
secreted from macrophages

Inflammation is the key pathogenesis in the development and

maintenance of chronic pain. When the peptidergic nerve fibre

was exposed to IL-1 (Interleukin-1), IL-6 (Interleukin-6), and

TNF-α, the hyperalgesia that manifested in adjuvant-induced

arthritis (AIA) model animals could be induced directly (Lopes

et al., 2020). By bounding to the receptors that expressed on DRG

neurons, pro-inflammatory cytokines could activate the

downstream signaling pathway and upregulate the activities of

neurons. However, when the transcription, expression, and the

secretion of pro-inflammatory cytokines were inhibited, the

chronic pain could be successfully suppressed (Martinez et al.,

2008; Schaible 2014; Cook et al., 2018). Sinomenine was proved

to have a powerful inhibitory effect on the secretion of various

pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6 in

various diseases (Zhao et al., 2013; Xiong et al., 2017; Kim et al.,

2018; Zhang et al., 2018; Wang et al., 2020). It was reported that

the concentration of IL-6 and IL-1β were significantly reduced in
the serum of collagen-induced arthritis (CIA) rats treated with

sinomenine, as well as their foot swelling, serological markers and

arthritic scores, suggesting that sinomenine would be a potential

drug for the treatment of RA inflammation (Zhou et al., 2008).

Yan et al. found that the mRNA expression of TNF-α, IL-1β and
IL-6 were decreased, and the mechanical and heat hyperalgesia

were both reversed by sinomenine administration in complete

Freund’s adjuvant (CFA) model rats (Yuan et al., 2018). In

addition, in the rat model of AIA, the secretion of TNF-α, IL-
6 and IL-1β were also inhibited by sinomenine treatment (Lan

et al., 2016). Furthermore, it was reported that the mRNA of

TNF-α, IL-1β, NF-κB, and inhibitor of NF-kappa B (IκB) in rat

peritoneal macrophages was inhibited by sinomenine treatment

in the AIA model (Figure 2) (Wang et al., 2005). These studies

indicated that the inhibitory effects of sinomenine on pro-

inflammatory cytokines in different models might be partially

dependent on its inhibition of macrophages.

It was also found in vitro that the intervention of sinomenine

in LPS-induced peritoneal primary macrophages activation, and

the its release of pro-inflammatory cytokines might be involved

the inhibition of TLR4/myeloid differentiation factor 88

(MyD88)/NF-κB signaling pathway (Yin N. et al., 2020; Zeng

and Tong 2020). Zhang et al. reported that sinomenine could also

suppress the phosphorylation of tumor necrosis factor-associated

factor 6 (TRF6), thereby inhibit the activation of downstream

NF-/kB that induced by transforming growth factor activated

kinase-1 (TAK1), and implement the inhibitory effect on the

MAPK signaling pathway (Zhang et al., 2015). Furthermore, the

effect of sinomenine might also partially depend on α7 nicotinic
acetylcholine receptor (α7nAChR), because sinomenine, as a

ligand, could bind to macrophage α7nAChR to inhibit the

expression of lipopolysaccharide receptor (CD14)/TLR4, and

then activate the downstream JAK2/STAT3 pathway to exert

the anti-inflammatory effects (Figure 2) (Yi et al., 2015; Zhu et al.,

2019; Xie et al., 2021). However, it is important to note that, in

addition to the receptors and ion channels that expressed on the

surface of primary sensory neurons, the effects of sinomenine on

specialized membrane proteins that with binding functions to

pro-inflammatory cytokines remain to be further explored.

2.1.2 Sinomenine inhibits macrophage
proliferation

Liu et al. reported that, in CIA model mice, the increased

proliferation of macrophages (CD11b+, F4/80+, CD64+) located

in the synovial membrane of the joints was reduced by

sinomenine treatment. The numbers of macrophages

(CD11b+, Ly6C+, CD43+) in the spleen and lymph nodes were

also significantly inhibited. In addition, sinomenine reversed the

increased proportion of macrophages (CD14+, CD16+) in

peripheral blood monocytes of RA patients (Liu W. et al.,

2018). It was also reported that sinomenine administration

could activate extracellular signal-regulated kinase (ERK),

increase the expression of pro-apoptotic factors Bcl-2

associated X protein (Bax)/B cell lymphoma 2 (Bcl-2) and the

Cyclin-dependent kinase (CDK) regulator P27Kip1, and

promote the apoptosis of RAW264.7 cells (He et al., 2005).

Moreover, the autophagy of peritoneal macrophage was

enhanced in cecal puncture ligation mice treated with

sinomenine hydrochloride, which was reversed by the

autophagy blocker 3-methyladenosine (Jiang et al., 2015). It

indicated that sinomenine might be able to inhibit

proliferation by promoting autophagy and apoptosis of

macrophages. However, it is of great significance to study the

effect of sinomenine on the proliferation of macrophages that

infiltrated into peptidergic nerve fibers, which were observed in

the DRG in varieties of pain models (Bravo-Caparros et al., 2020;
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Dai et al., 2020; Yu et al., 2020). Clarifying the role of

macrophages infiltrating into DRG in the progression of

pathogenesis might provide an important theoretical basis for

the research of chronic pain. Furthermore, whether sinomenine

could inhibit the proliferation of macrophages by regulating the

cell cycle progression of macrophages still remains to be further

studied.

2.1.3 Sinomenine inhibits macrophage migration
and invasion

The migration and invasion of macrophages are

important factors that affect the peripheral sensitization

and contribute to the progression of chronic pain. Gao

et al. reported that the migration of macrophage was

significantly inhibited by sinomenine treatment in

carrageenan induced inflammatory pain of mice. As

performed in vitro experiments, they also found that

sinomenine inhibited the migration of RAW264.7 cell, the

secretion of TNF-α and IL-6, and the expression of inducible

nitric oxide synthase (iNOS), P-Tyr416Src and

P-Tyr397FAK, suggesting that sinomenine might inhibit

macrophage migration through the proto-oncogene

tyrosine-protein kinase Src/focal adhesion kinase (FAK)

pathway to alleviate chronic pain (Figure 2) (Gao et al.,

2021). Cellular structural plasticity is closely related to the

cytoskeleton, as well as the participation of micro-tubules

(MTs) and actin (F-actin) (Cain et al., 1981; Chiou and Don

2007; Pegoraro et al., 2017). However, whether sinomenine

could regulate microstructural changes and the redistribution

of microtubules and actin filaments, to affect the remodeling

of the cytoskeleton of macrophages and thus change its

migration, still remains to be further investigated.

FIGURE 2
The interaction between macrophages and neurons under the intervention of sinomenine.
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In addition, sinomenine could also inhibit the invasion of

macrophages. According to recent studies, sinomenine regulated

osteoclast differentiation by inhibiting the prostaglandin E2

(PGE2)-induced osteoprotegerin (OPG)/receptor activator of

nuclear factor-kB ligand (RANKL) ratio, which induced by

macrophage invasion (He et al., 2014; Zhou B. et al., 2017).

Ou et al. found that, when exposed to sinomenine, the secretion

and expression of Matrix metalloproteinase 2 (MMP2), Matrix

metalloproteinase 9 (MMP9) and extracellular matrix

metalloproteinase inducer (CD147) were all down-regulated,

reducing the migration and invasion of macrophages (Ou

et al., 2009; Ju et al., 2010). However, it is worth noting that

all these effects were not validated in patients or animals with

chronic pain. Besides, through any other mechanisms, whether

sinomenine could inhibit the invasion of macrophages, to either

DRG or central nervous system, to alleviate hyperalgesia of

chronic pain remains to be further explored. Moreover,

whether sinomenine could reduce cartilage erosion and

alleviate osteoarthritis (OA) pain through inhibiting the

migration and invasion of macrophages in the joints and

synovial membrane still needs to be further investigated.

2.1.4 Sinomenine regulates macrophage
polarization

Macrophages aggregated into the DRGs after sciatic nerve

transection (SNT) in rats, and their classically activated

macrophages (M1)/alternatively activated macrophages (M2)

polarization ratio was increased (Chen et al., 2022). Ramin

et al. reported that M1 macrophage infiltration appeared in

the DRG of osteoarthritis pain model mice. The arthritic pain

was independent of the tetrodotoxin-resistant voltage-gated

sodium channels (Nav1.8 channels) on DRG neurons, but the

induction of macrophage M2 polarization could significantly

inhibit the pain (Raoof et al., 2021). Furthermore, sinomenine

could also inhibit the expression of TNF-α and IL-6, and

M1 polarization of peripheral macrophages in vitro (Zhi et al.,

2022). In the oxygen-glucose deprivation (OGD) experiment,

sinomenine could also improve the expression of arginase1

(Arg1) and interleukin-10 (IL-10) of BV2 cells, suggesting that

sinomenine might not only has the function of inhibiting

macrophages M1 polarization, but also

promoting its transition to M2 polarization (Figure 3) (Bi

et al., 2021).

2.2 Effect of sinomenine on lymphocytes

Lymphocytes play important roles in human adaptive

immunity. Several studies showed that dendritic cells (DC)

and macrophages could release complements to promote

downstream immune activity after antigen presentation,

then induce T-helper (Th1) differentiation of CD4+ T cells.

FIGURE 3
Sinomenine inhibits chronic pain by affecting the polarization of macrophages and glial cells.
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It’s worth noting that Th1 cells release pro-cytokines to induce

inflammatory and chronic pain (Lubbers et al., 2017). The

imbalance between Th1/Th2 or T-helper 17 (Th17)/

T-regulatory (Treg) cells (Th17/Treg) is an important factor

in inducing the body’s immune system disorders. When

Th1 and Th17 cells are dominant, the body’s immune

system tends to be pro-inflammatory and release large

amounts of pro-inflammatory mediators to induce chronic

pain. B cells, on the other hand, produce antibodies through

differentiated plasma cells, while auto-antibodies could bind

to the Fc gamma receptor I (FCγRI) expressed on sensory

neurons and induce pain (Qu et al., 2011; Jiang et al., 2017;

Wang et al., 2019; Liu F. et al., 2020). Thus, we speculate that

lymphocytes may be another target for sinomenine to regulate

chronic pain, and the potential mechanisms are reviewed as

follows:

2.2.1 Sinomenine inhibits the activation and
proliferation of T cells, and the differentiation of
B cells

Complement is an important component of the innate

immune system. It was reported that sinomenine treatment

increased the level of plasma complement C3, inhibited

Th1 transcription and cytokines secretion, and downregulated

the immune response (Cheng et al., 2009). The primary

lymphocyte aggregation, and the surface markers CD25 and

CD69 of T cell activation were inhibited by sinomenine (Shu

et al., 2007). Sinomenine administration also directly affected

CD4+ T proliferation by blocking the cell cycles, evidenced by the

fact that the increased CD4+ T cells of G2/M + S phase were

almost completely suppressed by sinomenine treatment through

caspase 3-dependent cells apoptosis regulation (Figure 4) (Yin

et al., 2007). However, aside from the cell cycle, whether

sinomenine could influence the quantity, viability and

proliferative capacity of CD4+ T cells by affecting its apoptosis

or autophagy, and thus affect chronic pain, remains to be further

demonstrated. In addition, sinomenine directly inhibited B cell

activation through the IL4/miR-324-5p/CUE domain containing

protein 2 (CUEDC2) axis, by inhibiting IKK phosphorylation

and NF-kB activation (Song et al., 2015). It was also reported that

sinomenine inhibited the differentiation of plasma cells (PCs) by

inhibiting IL-6/JAK2/STAT2 signaling, regulated the anti-

apoptotic properties of PCs, and improved the local

infiltration of CD138+ PCs (Figure 4 Figure 5) (Liu Y. et al.,

2020). However, whether sinomenine could affect chronic pain,

by regulating B cell cycle, apoptosis, autophagy, polarization, or

the interaction with other immune cells, remains to be further

investigated.

FIGURE 4
Sinomenine inhibits the proliferation of CD4+T cells.
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2.2.2 Sinomenine regulates the balance of Th1/
Th2 and Th17/Treg cells

T cell subsets are closely related to the pathological

progression of chronic pain (Sharif et al., 2018; Jiao et al.,

2019; Ruterbusch et al., 2020), and the imbalance of Th1/

Th2 or Th17/Treg cells plays an important role in the

pathogenesis of arthritic chronic pain (Quick et al., 2013;

Luchting et al., 2015; Woda et al., 2016; Motrich et al., 2020;

Ding et al., 2021). Moreover, the release of interferon-gamma

(IFN-γ) after Th1 cell activation could induce macrophage

M1 polarization, while the secretion of IL-4 from Th2 cell

could induce macrophage M2 polarization (Zhou K. et al.,

FIGURE 5
Sinomenine inhibits chronic pain by promoting B cell apoptosis and inhibiting the release of inflammatory cytokines.

FIGURE 6
Sinomenine inhibits the proliferation of glial cells and the release of inflammatory cytokines.
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2017). Several studies have shown that sinomenine regulated the

balance between Th1 and Th2, as well as the Th17/Treg cells. It

inhibited the serum anti-OVA IgG2a levels and IFN-γ (Th1 cell)
with a dose-dependent effect, showing its analgesic effect in the

adjuvant-induced arthritis model mice. The inhibitory effect was

much stronger than that on serum anti-OVA IgE and IL-5

(Th2 cell) (Feng et al., 2006; Feng et al., 2007). In addition,

sinomenine significantly inhibited the expression of IFN-γ
secreted by Th1, reduced T-box expressed in T cells (T-bet)

expression and T-bet/GATA-binding protein 3 (GATA-3) ratio,

both of which were important transcription factors for Th1 and

Th2 cell differentiation, suggesting that sinomenine might also

achieve its inhibiting effects by interfering T cell differentiation

(Luo et al., 2021).

Administration of Qing-Luo-Yin, a traditional Chinese

medicine (TCM) granule within sinomenine as its main active

ingredient, inhibited the phosphorylation of the c-Jun

N-terminal kinases (JNK) and p65 in monocytes, reduced the

differentiation of Th17 cells, and the secretion of IL-6 and IL-1β
(Wang D. D. et al., 2021). Sinomenine also significantly increased

CD4+ CD62L+ T cells, inhibited the proliferation of effector T

(Teff) cells and the differentiation of Th1 and Th17 cells, as well

as the secretion of IL-17F and IL-21, which were all reversed by

aryl hydrocarbon receptor (AhR) antagonist, suggesting that

sinomenine might modulate the balance between Th17 and

Treg in an aryl hydrocarbon receptor (AHR)-dependent

manner (Tong et al., 2016). In addition, compared to vehicle

administration in CIA model, the number of Treg cells in rat

intestinal tissue and serum IL-10 were both up-regulated by

sinomenine treatment, while the Th17 cells and serum IL-17A

were down-regulated. Together with the reduced rat joint

inflammation, it suggested that sinomenine might inhibit the

pathological progression of arthritis by regulating the balance of

Th17 and Treg cells (Tong et al., 2015).

It is noteworthy that, the above studies mainly focused on

peripheral lymphocytes, whether sinomenine regulate chronic

pain by influencing the activation or the differentiation of central

immune cells has not been thoroughly validated. Furthermore,

sinomenine administration not only directly reduced spinal

iNOS levels, the T-bet and IFN-γ expressions in the spinal

cord of experimental autoimmune encephalomyelitis (EAE)

rats, but also reduced the expression of iNOS from primary

astrocytes (Gu et al., 2012). All these results indicated that

sinomenine might be able to affect nociception and chronic

pain by regulating the interaction between peripheral

lymphocytes and central glial cells.

2.3 Effect of sinomenine on central glial
cells

Due to the blood-brain/spinal barrier (BBB/BSB),

peripheral immune cells are unable to enter the central

nervous system. Spinal astrocytes have been shown to be

closely linked to the function of sensory neurons and

implicated in many types of chronic pain (Colombo and

Farina 2016; Han et al., 2021), while microglia, regarded as

central resident macrophages, promoting inflammation and

oxidative stress, cause spinal sensitization and induce

chronic pain (Kettenmann et al., 2011; O’Shea et al., 2017;

Borst et al., 2021). A creasing number of studies have

investigated the effects of sinomenine on central glial cells,

as well as on the central sensitization. The potential

mechanisms are reviewed as follows:

2.3.1 Sinomenine decreases the proliferation and
activation of glial cells

Sinomenine reduced sirtuin one by promoting expression

and acetylation of p53 in malignant glioma cells, then promoted

G0/G1 cell cycle arrest and apoptosis, indicating that sinomenine

might be able to decrease glial cell proliferation by inhibiting cell

cycles and promoting apoptosis (He et al., 2018). Studies have

shown that sinomenine reversed the activation of retinal

microglia and BV2 cells that induced by advanced glycation

end-products (AGEs) and intracerebral hemorrhage (ICH),

respectively. It also significantly inhibited the release of

inflammatory factors from BV2 microglia such as TNF-α, IL-
1β and ROS to alleviate the neuroinflammatory injury (Wang

et al., 2007; Yang et al., 2014). On the other hand, studies have

reported that sinomenine administration reduced central

inflammatory damage through inhibiting the activation of

astrocytes, and the release of inflammatory cytokines. For

example, in the middle cerebral artery occlusion (MCAO)

model of mice, sinomenine enhanced the expression of the

dopamine D2 receptor (DRD2) and small heat shock protein

αB-crystallin (CRYAB) in astrocytes, promoted the interaction of

alpha B-crystallin (CRYAB) with STAT3, and inhibited the

phosphorylation of the downstream STAT3 (Figure 6).

Thereby, it reduced the cytotoxic damage of neurons (Qiu

et al., 2016b). It was also reported that sinomenine inhibited

amyloid peptide-induced activation of astrocytes and the release

of NO and ROS, showing a protective effect on neuronal injury

that caused by neuroinflammation and oxidative stress after

astrocyte activation (Singh et al., 2020). Furthermore, in the

co-culture experiments of glial cells and primary neurons,

sinomenine ameliorated the neuroinflammatory injury of

neurons by inhibiting AMPK-mediated NOD-like receptor

family pyrin domain containing 3 (NLRP3) inflammasome

activation (Qiu et al., 2016a). Another study found that, in the

multiple sclerosis (MS) model of animals, sinomenine inhibited

pyroptosis degeneration of neurons by inhibiting

NLRP3 inflammasome activation and Caspase-1 expression in

the spinal cord, which indicated that the NLPR3 pathway

of glial cells might also be one of the

potential targets for sinomenine to reduce chronic pain

(Kiasalari et al., 2021).
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2.3.2 Sinomenine inhibits microglia polarization
As central resident macrophage, the polarization of microglia

is closely related to chronic pain. It was reported that, in the

hippocampus of chronic constrictive sciatic nerve injury model

(CCI) animals, the number of microglia with M1 polarization

increased (Wang X. et al., 2021; Zhou et al., 2021). The inhibition

of central microglia M1 polarization or the promotion of

M2 polarization tends to be a potential way to relief chronic

pain (Popiolek-Barczyk et al., 2015; Jin et al., 2020). Shi et al.

found that, with pretreatment of sinomenine, the M1 polarized

microglia was inhibited and the expression of microglia

M2 polarization markers were elevated, suggesting one

potential mechanism for sinomenine to play its analgesic

effect (Shi et al., 2016). It is worth noting that the above

studies did not verify the effect of sinomenine on the

polarization state of microglia from a morphological and

functional perspective in pain models of animals. Moreover, it

remains to be further investigated whether sinomenine could

exert its analgesic effect by affecting the neurotoxic or pro-

inflammatory phenotype (A1), or the neuroprotective or anti-

inflammatory phenotype (A2) polarization state of astrocytes

(Figure 3).

3 Conclusions and future
perspectives

Chronic pain is an intractable nervous systemic disease,

which seriously threatens the patient’s quality of life. The

induction of chronic pain, such as arthritic pain, has always

been interpreted from the perspective of inflammation. Local

inflammation increases the release of pro-inflammatory

cytokines and promotes the interaction of immune and

sensory cells to cause peripheral and central sensitization. In

this review, we described the effects on peripheral immune cells

and central glial cells of sinomenine. In addition to inhibiting

pro-inflammatory cytokines release directly to achieve its

immune-suppressive effects, sinomenine can also promote cell

apoptosis and block the cell cycles to down-regulate the

proliferation and function of immune cell subsets, and

regulate the dynamic balance among different immune cells,

as well as their migration and invasion.

In addition, sinomenine regulates the interactions between

“immune cells,” “immune cells and neuron cells,” and “glial cells

and neuron cells,” respectively: Sinomenine inhibited chronic

pain by blocking the positive feedback between macrophages and

CD4+ T cells. M1 macrophages released pro-inflammatory

cytokines such as IL-1β, IL-6, and TNF-α, which could induce

CD4+ T cells to differentiate into Th1 cells that released IFN-γ. In
turn, IFN-γ inducedM1 polarization of macrophages, aggravated

inflammatory response, and promoted the development and

maintenance of chronic pain. Similar mechanisms could also

be observed in M2 polarization of macrophages and Th2 cell

differentiation. Besides, sinomenine inhibited the release of

autoantibodies from B cells, reducing their bindings to FcγRI
on nociceptive receptors, and regulated peripheral sensitization

(Feng et al., 2007; Bersellini Farinotti et al., 2019; Wang et al.,

2019). Sinomenine also inhibited ROS, Maleic Dialdehyde

(MDA), NF-κB and other substances released from central

glial cells, and had neuron-protective effects, such as anti-

oxidative stress and anti-inflammatory response, that

alleviated neuronal apoptosis, central sensitization and

chronic pain.

Moreover, numerous studies have shown that the

activation of sensory neurons can regulate chronic pain by

secreting exosomes to regulate immune cell functions. DRG

neurons released extracellular vesicle-Mir-23a that taken up

by macrophages, which promoted macrophage

M1 polarization and exacerbated the neuroinflammatory

pathology of chronic pain (Zhang et al., 2021). Increased

secretion of soluble frizzled-related proteins (sFRP2) by

neurons induced M1 polarization and infiltration of

macrophages, and induced hyperalgesia and inflammatory

responses, suggesting that regulating the interaction

between neurons and macrophages might influence chronic

pain (Mei et al., 2019). Similarly, Mir-21-5p released from

PC12 exosomes was phagocytosed by microglia, which

promoted M1 polarization of microglia, suggesting that the

neurons had both effects on peripheral immune cells and

central glial cells (Yin Z. et al., 2020). Although no studies

have shown yet whether sinomenine has the function of

interfering the mechanisms that described above, we

speculate that sinomenine might play a potential role in

interplaying the interaction between sensory systems and

the immune cells subsets, to regulate chronic pain.

On the other hand, sinomenine was reported to alleviate

abstinence reaction by suppressing the cyclic adenosine

monophosphate (cAMP) level and enhancing the Cyclic

guanosine monophosphate (cGMP) level in neonatal rat

histaminergic neurons, evidenced by inhibiting morphine-

induced conditioned place preference (CPP) in rodent models,

suggesting that sinomenine might not have the side effects of

addiction (Mo et al., 2005; Mo et al., 2006; Zhang et al., 2009).

Sinomenine also showed its advantages of none drug resistance

after repeating administration compared with opioids (Gao et al.,

2014; Gao et al., 2019).

In this study, the potential analgesic mechanism of

sinomenine was sorted out via analyzing the potential effect

of sinomenine on the neuro-immune interactions. However,

such as the evidences from the cecal puncture ligation (CLP),

carrageenan, experimental autoimmune encephalomyelitis

(EAE) and Middle cerebral artery occlusion (MCAO) relative

experiments, there is a lack of previous studies with sinomenine

that mediated neural-immune interaction in chronic pain. For

treating chronic pain, active ingredients from traditional

Chinese herb medicines might be a promising direction for
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the development of non-opioid-dependent analgesia. In the

future, with more extensively and comprehensively basic

research and clinical trials, sinomenine and its derivatives

will provide a new adjuvant choice for the precise treatment

of chronic pain.
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