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Abstract

The rules governing the availability and quality of connections in a wireless network are

described by physical models such as the signal-to-interference & noise ratio (SINR) model.

For a collection of simultaneously transmitting stations in the plane, it is possible to identify

a reception zone for each station, consisting of the points where its transmission is received

correctly. The resulting SINR diagram partitions the plane into a reception zone per station

and the remaining plane where no station can be heard.

SINR diagrams appear to be fundamental to understanding the behavior of wireless networks,

and may play a key role in the development of suitable algorithms for such networks, analogous

perhaps to the role played by Voronoi diagrams in the study of proximity queries and related

issues in computational geometry. So far, however, the properties of SINR diagrams have

not been studied systematically, and most algorithmic studies in wireless networking rely on

simplified graph-based models such as the unit disk graph (UDG) model, which conveniently

abstract away interference-related complications, and make it easier to handle algorithmic issues,

but consequently fail to capture accurately some important aspects of wireless networks.

The current paper focuses on obtaining some basic understanding of SINR diagrams, their

properties and their usability in algorithmic applications. Specifically, we have shown that as-

suming uniform power transmissions, the reception zones are convex and relatively well-rounded.

These results are then used to develop an efficient approximation algorithm for a fundamental

point location problem in wireless networks.
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1 Introduction

1.1 Background

It is commonly accepted that traditional (wired, point-to-point) communication networks are sat-

isfactorily represented using a graph based model. The question of whether a station s is able to

transmit a message to another station s′ depends on a single (necessary and sufficient) condition,

namely, that there be a wire connecting the two stations. This condition is thus independent of

the locations of the two stations, of their other connections and activities, and of the locations,

connections or activities of other nearby stations1.

In contrast, wireless networks are considerably harder to represent faithfully, due to the fact

that deciding whether a transmission by a station s is successfully received by another station s′ is

nontrivial, and depends on the positioning and activities of s and s′, as well as on the positioning

and activities of other nearby stations, which might interfere with the transmission and prevent its

successful reception. Thus such a transmission from s may reach s′ under certain circumstances

but fail to reach it under other circumstances. Moreover, the question is not entirely “binary”, in

the sense that connections can be of varying quality and capacity.

The rules governing the availability and quality of wireless connections can be described by

physical or fading channel models (cf. [20, 5, 21]). Among those, the most commonly studied is

the signal-to-interference & noise ratio (SINR) model. In the SINR model, the energy of a signal

fades with the distance to the power of the path-loss parameter α. If the signal strength received

by a device divided by the interfering strength of other simultaneous transmissions (plus the fixed

background noise N ) is above some reception threshold β, then the receiver successfully receives

the message, otherwise it does not. Formally, denote by dist(p, q) the Euclidean distance between

p and q, and assume that each station si transmits with power ψi. (A uniform power network is

one in which all stations transmit with the same power.) At an arbitrary point p, the transmission

of station si is correctly received if

ψi · dist(p, si)
−α

N +
∑

j $=i ψj · dist(p, sj)−α
≥ β .

Hence for a collection S = {s0, . . . , sn−1} of simultaneously transmitting stations in the d-

dimensional space, it is possible to identify with each station si a reception zone Hi consisting

of the points where the transmission of si is received correctly. The common belief is that the

path-loss parameter falls in the range 2 ≤ α ≤ 4, while the reception threshold is β ≈ 6 (β is always

assumed to be greater than 1).

To illustrate how reception depends on the locations and activities of other stations, consider

(the numerically generated) Figure 1. Figure 1(A) depicts uniform stations s1, s2, s3 and their

1 Broadcast domain wired networks such as LANs are an exception, but even most LANs are collections of

point-to-point connections.
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reception zones. Point p (represented as a solid black square) falls insideH2. Figure 1(B) depicts the

same stations except station s1 has moved closer, so that now p does not receive any transmission.

Figure 1(C) depicts the stations in the same positions as Figure 1(B), but now s3 is silent, and as

a result, the other two stations have larger reception zones, and p receives the message of s1.

(A) (B) (C)

Figure 1: An example of SINR diagram with three transmitters s1, s2, s3 and one receiver denoted by

the solid black square. (A) The receiver can hear s2. (B) Station s1 moves and now the receiver cannot

hear any transmission. (C) If, at the same locations as in (B), s3 is silent, then the receiver can hear

s1.

Figure 1 illustrates a concept central to this paper, namely, the SINR diagram. An SINR

diagram is a “reception map” characterizing the reception zones of the stations, namely, partitioning

the plane into n reception zones Hi, 0 ≤ i ≤ n−1, and a zone H∅ where no station can be heard. In

many scenarios the diagram changes dynamically with time, as the stations may choose to transmit

or keep silent, adjust their transmission power level, or even change their location from time to

time.

Notice that the SINR diagram adds no new information concerning the locations in which the

stations themselves are positioned, since it follows from the definition (refer to Section 2.2 for a

formal definition) that station si cannot receive the transmission of any station sj , j %= i, unless the

two stations coincide. However, SINR diagrams can be extremely useful for a listening device that

does not belong to S and is located at an arbitrary point p in the plane. Using the SINR diagram,

it is possible to decide which of the stations of S (if any) can be correctly received at the location

p of the listening device.

It is our belief that SINR diagrams are fundamental to understanding the dynamics of wire-

less networks, and will play a key role in the development of suitable (sequential or distributed)

algorithms for such networks, analogous perhaps to the role played by Voronoi diagrams in the

study of proximity queries and related issues in computational geometry. Yet, to the best of our

knowledge, SINR diagrams have not been studied systematically so far, from either geometric,

combinatorial, or algorithmic standpoints. In particular, in the SINR model it is not clear what

shapes the reception zones may take, and it is not easy to construct an SINR diagram even in a
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static setting.

Taking a broader perspective, a closely related concern motivating this paper is that while a

fair amount of research exists on the SINR model and other variants of the physical model, little

has been done in such models in the algorithmic arena. (Some recent exceptions are [10, 12, 11,

13, 14, 15, 17, 18, 19, 22].) The main reason for this is that SINR models are complex and hard

to work with. In these models it is even hard to decide some of the most elementary questions on

a given setting, and it is definitely more difficult to develop communication or design protocols,

prove their correctness and analyze their efficiency.

Subsequently, most studies of higher-layer concepts in wireless multi-hop networking, including

issues such as transmission scheduling, frequency allocation, topology control, connectivity mainte-

nance, routing, and related design and communication tasks, rely on simplified graph-based models

rather than on the SINR model. Graph-based models represent the network by a graph G = (S,E)

such that a station s will successfully receive a message transmitted by a station s′ if and only if

s and s′ are neighbors in G and s does not have a concurrently transmitting neighbor in G. In

particular, when the stations are deployed in the Euclidean plane, the model of choice for many

protocol designers is the unit disk graph (UDG) model [7]. In this model, also known as the protocol

model [12], the transmission of a station can be received by every other station within a unit ball

around it. The UDG graph is thus a graph whose vertices correspond to the stations, with an edge

connecting any two vertices whose corresponding stations are at distance at most one from each

other.

Graph-based models are attractive for higher-layer protocol design, as they conveniently ab-

stract away interference-related complications. Issues of topology control, scheduling and allocation

are also handled more directly, since notions such as adjacency and overlap are easier to define and

test, in turn making it simpler to employ also some useful derived concepts such as domination,

independence, clusters, and so on. (Note also that the SINR model in itself is rather simplistic, as it

assumes perfectly isotropic antennas and ignores environmental obstructions. These issues can be

integrated into the basic SINR model, at the cost of yielding relatively complicated ”SINR+” mod-

els, even harder to use by protocol designers. In contrast, graph-based models naturally incorporate

both directional antennas and terrain obstructions.) On the down side, it should be realized that

graph-based models, and in particular the UDG model, ignore or do not accurately capture a num-

ber of important physical aspects of real wireless networks. In particular, such models oversimplify

the physical laws of interference; in reality, several nodes slightly outside the reception range of a

receiver station v (which consequently are not adjacent to v in the UDG graph) might still generate

enough cumulative interference to prevent v from successfully receiving a message from a sender

station adjacent to it in the UDG graph; see Figure 2 for an example. Hence the UDG model might

yield a “false positive” indication of reception. Conversely, a simultaneous transmission by two or

more neighbors should not always end in collision and loss of the message; in reality this depends

on other factors, such as the relative distances and the relative strength of the transmissions. We
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(A) UDG Diagram (B) SINR Diagram

Figure 2: Interference in the UDG and SINR models. (A) UDG diagram: p can hear s1. (B) SINR

diagram: the cumulative interference of stations s2, s3, s4 prevents p from hearing s1.

illustrate some of these scenarios in Figures 3 and 4, which compare the reception zones of the

UDG and SINR models with four transmitting stations s1, s2, s3, s4 and one receiver p (represented

as a solid black square). In the initial setting depicted in Figure 3, only station s1 transmits, and

all others remain silent, so the UDG and SINR diagrams are the same and p can hear s1 in both

models. Figure 4 illustrates three steps of gradually adding s2, s3 and s4 to the transmitting set.

When both s1, s2 transmit simultaneously, p cannot hear any station in the UDG model, but it

does hear s1 in the SINR model (cases (A) and (B) respectively). Hence in this case the UDG

model yields a “false negative” indication. When s3 joins the transmitting stations, p still cannot

hear any station in the UDG model, but now it can hear station s3 in the SINR model (cases (C)

and (D)). When s4 transmits as well, the effect varies again across the two models (cases (E) and

(F)).

Figure 3: Reception diagrams in the UDG and SINR models. Initially only s1 transmits, so the reception

zone is the same in both models.

In summary, while the existing body of literature on models and algorithms for wireless networks

represents a significant base containing a rich collection of tools and techniques, the state of affairs
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(A) UDG Diagram (B) SINR Diagram

(C) UDG Diagram (D) SINR Diagram

(E) UDG Diagram (F) SINR Diagram

Figure 4: Reception zones in the UDG and SINR models when adding stations one at a time. (A)-(B):

adding s2. (C)-(D): adding s3. (E)-(F): adding s4.
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described above leaves us in the unfortunate situation where the more practical graph-based models

(such as the UDG model) are not sufficiently accurate, and the more accurate physical models

are not well-understood and therefore difficult to use by protocol designers. Hence obtaining a

better understanding of the SINR model, and consequently bridging the gap between this physical

model and the graph based models, may have potentially significant (theoretical and practical)

implications. This goal is the central motivation behind the current paper.

1.2 Related work

Some recent studies aim at achieving a better understanding of the SINR model. In particular, in

their seminal work [12], Gupta and Kumar analyzed the capacity of wireless networks in the physical

and protocol models. Moscibroda [17] analyzed the worst-case capacity of wireless networks, making

no assumptions on the deployment of nodes in the plane, as opposed to almost all the previous

work on wireless network capacity.

Thought provoking experimental results presented in [18] show that even basic wireless stations

can achieve communication patterns that are impossible in graph-based models. Moreover, the

paper presents certain situations in which it is possible to apply routing / transport schemes that

may break the theoretical throughput limits of any protocol which obeys the laws of a graph-based

model.

Another line of research, in which known results from the UDG model are analyzed under the

SINR model, includes [19], which studies the problem of topology control in the SINR model, and

[10], where impossibility results were proven in the SINR model for scheduling.

More elaborate graph-based models may employ two separate graphs, a connectivity graph

Gc = (S,Ec) and an interference graph Gi = (S,Ei), such that a station s will successfully receive

a message transmitted by a station s′ if and only if s and s′ are neighbors in the connectivity

graph Gc and s does not have a concurrently transmitting neighbor in the interference graph

Gi. Protocol designers often consider special cases of this more general model. For example, it

is sometimes assumed that Gi is Gc augmented with all edges between 2-hop neighbors in Gc.

Similarly, a variant of the UDG model handling transmissions and interference separately, named

the Quasi Unit Disk Graph (Q-UDG) model, was introduced in [15]. In this model, two concentric

circles are associated with each station, the smaller representing its reception zone and the larger

representing its area of interference. An alternative interference model, also based on the UDG

model, is proposed in [22].

A constant factor approximation algorithm for scheduling arbitrary sets of wireless links in

uniform power networks was obtained in [11]. In[14] it was proven that wireless scheduling in R2

with α > 2 is in APX. An O(log n log log∆) approximation algorithm for SINR scheduling in the

case of unidirectional links, where ∆ is the ratio between the longest and the shortest link length,
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was presented in [13].

A natural question concerns the difference between the arbitrary and uniform power models.

It is possible to prove that if some resource (e.g., the energy used or the general area in which the

network resides) is bounded, then the ratio between the two models is proportional to logB, where

B is the bound on the resource; see [3, 4, 13, 16].

1.3 Our results

As mentioned earlier, a fundamental issue in wireless network modeling involves characterizing

the reception zones of the stations and constructing the reception diagram. The current paper

aims at gaining a better understanding of this issue in the SINR model, and as a consequence,

deriving some algorithmic results. In particular, we consider the structure of reception zones in

SINR diagrams corresponding to uniform power networks in a d-dimensional space (d ∈ Z≥1) with

path-loss parameter α > 0, and examine two specific properties of interest, namely, the convexity

and fatness2 of the reception zones. Apart from their theoretical interest, these properties are also

of considerable practical significance, as obviously, having reception zones that are non-convex, or

whose shape is arbitrarily skewed, twisted or skinny, might complicate the development of protocols

for various design and communication tasks.

Our first result is cast in Theorem 1, proven in Section 3.

Theorem 1. The reception zones in an SINR diagram of a uniform power network in a d-

dimensional space with path-loss parameter α > 0 and reception threshold β ≥ 1 are convex.

Note that our convexity proof still holds when β = 1. In contrast, when β < 1, the reception

zones of a uniform power network are not necessarily convex, and may also overlap. This phe-

nomenon is illustrated in (the numerically generated) Figure 5. We then establish an additional

attractive property of the reception zones.

Theorem 2. The reception zones in an SINR diagram of a uniform power network in a d-

dimensional space with path-loss parameter α > 0 and reception threshold β > 1 are fat.

Theorem 2 is proved in Section 4. In a certain sense, this result lends support to the model of

Quasi Unit Disk Graphs suggested by Kuhn et al. in [15].

Armed with this characterization of the reception zones, we turn to a basic algorithmic task

closely related to SINR diagrams, namely, answering point location queries. We address the follow-

ing natural question: given a point in the plane, which reception zone contains this point (if any)?

For UDG, this problem can be dealt with using known techniques, cf. [1, 2]. For arbitrary (non-

2 The notion of fatness has received a number of non-equivalent technical definitions, all aiming at capturing the

same intuition, namely, absence of long, skinny or twisted parts. In this paper we say that the reception zone of

station si is fat if the ratio between the radii of the smallest ball centered at si that completely contains the zone and

the largest ball centered at si that is completely contained by it is bounded by some constant. Refer to Section 2.1

for a formal definition.
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Figure 5: A uniform power network with three transmitters s1, s2, s3, path-loss parameter α = 2,

reception threshold β = 0.3, and background noise N = 0.05. The reception zones (bold lines) are

clearly non-convex and overlapping.

unit) disk graphs, the problem is already harder, as the direct reduction to the technique of [2] no

longer works. In the SINR model the problem becomes even harder. A naive solution will require

computing the signal to interference & noise ratio for each station, yielding time O(n2). A more

efficient (O(n) time) querying algorithm can be based, for example, on the observation that there is

a unique candidate si ∈ S whose transmission may be received at p, that is, the one whose Voronoi

cell contains p in the Voronoi diagram defined for S. However, it is not known if a sublinear query

time can be obtained. This problem can in fact be thought of as part of a more general one, i.e.,

point location over a general set of objects satisfying some “niceness” properties. Previous work

on the problem dealt with Tarski cells, namely, objects whose boundaries are defined by a constant

number of polynomials of constant degree [1, 6]. In contrast, the SINR diagram consists of objects

(the reception zones) whose boundaries may be defined by polynomials3 of degree proportional to

n. We are unaware of a technique that answers point location queries for such objects in sublinear

time.

Consider the SINR diagram of a uniform power network with in a d-dimensional space with

path-loss parameter α > 0 and reception threshold β > 1 and fix some performance parameter

0 < ǫ< 1. The following theorem is proved in Section 5 (refer to Figure 6 for illustration).

Theorem 3. It is possible to construct, in O(n2ǫ−1) preprocessing time, a data structure DS of

size O(nǫ−1) that imposes a (2n+1)-wise partition H̄ =
〈

H+
0 , . . . ,H

+
n−1,H

?
0, . . . ,H

?
n−1,H

−〉 of the

Euclidean plane R
2 (that is, the zones in H̄ are pair-wise disjoint and R

2 =
⋃n−1

i=0 H+
i ∪ H− ∪

⋃n−1
i=0 H?

i ) such that for every 0 ≤ i ≤ n− 1:

3 In fact, when α is not an integer, the boundaries of the reception zones are not defined by polynomials at all.
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Figure 6: The reception zones Hi for 1 ≤ i ≤ 4 (enclosed by bold lines) and the partition of the plane

to disjoint zones H+
i (light gray, dashed lines), H?

i (dark gray, dashed lines), and H− (the remaining

white).

(1) H+
i ⊆ Hi;

(2) H− ∩Hi = ∅; and

(3) H?
i is bounded and its area is at most an ǫ-fraction of the area of Hi.

Furthermore, given a query point p ∈ R
2, it is possible to extract from DS, in time O(log n), the

zone in H̄ to which p belongs.

1.4 Open Problems

Our results concern wireless networks with uniform power transmissions. General wireless networks

are harder to deal with. For instance, the point location problem becomes considerably more

difficult when different stations are allowed to use different transmission energy, since in this case,

the appropriate graph-based model is no longer a unit-disk graph but a (directed) general disk graph,

based on disks of arbitrary radii. An even more interesting case is the variable power setting, where

the stations can adjust their transmission energy levels from time to time.

The problems discussed above become harder in a dynamic setting, and in particular, if we

assume the stations are mobile, and extending our approach to the dynamic and mobile settings

are the natural next steps.
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2 Preliminaries

2.1 Geometric notions

Throughout, we consider the d-dimensional Euclidean space Rd (for d ∈ Z≥1). The distance between

points p and point q is denoted by dist(p, q) = ‖q−p‖. We extend the definition of distance to point

sets so that the distance between point sets P and Q is dist(P,Q) = inf{dist(p, q) | p ∈ P, q ∈ Q}.

A ball of radius r centered at point p is the set of all points at distance at most r from p, denoted

by B(p, r) = {q ∈ R
d | dist(p, q) ≤ r}. We say that point p ∈ R

d is internal to the point set P if

there exists some ǫ > 0 such that B(p, ǫ) ⊆ P .

A point set P is said to be open if all points p ∈ P are internal points, and closed if its

complement P̄ is open. If there exists some real r such that dist(p, q) ≤ r for every two points

p, q ∈ P , then P is said to be bounded. A compact set is a set that is both closed and bounded. The

closure of P , denoted cl(P ), is the smallest closed set containing P . The boundary of P , denoted by

∂P , is the intersection of the closure of P and the closure of its complement, i.e., ∂P = cl(P )∩cl(P̄ ).

A connected set is a point set P that cannot be partitioned to two non-empty subsets P1, P2 such

that each of the subsets has no point in common with the closure of the other (i.e., P is connected if

for every P1, P2 %= ∅ such that P1∩P2 = ∅ and P1∪P2 = P , either P1∩cl(P2) %= ∅ or P2∩cl(P1) %= ∅.).
We refer to the closure of an open bounded connected set as a thick set. By definition, every thick

set is compact.

A point set P is said to be convex if the segment p q is contained in P for every two points

p, q ∈ P . The point set P is said to be star-shaped [8] with respect to point p ∈ P if the segment p q

is contained in P for every point q ∈ P . Clearly, convexity is stronger than the star-shape property

in the sense that a convex point set P is star-shaped with respect to any point p ∈ P ; the converse

is not necessarily true in the sense that the star-shape property with respect to a single point does

not imply convexity. For thick sets we have the following necessary and sufficient condition for

convexity.

Lemma 2.1. A thick set P is convex if and only if every line intersects ∂P at most twice.

We frequently use the term zone to describe a point set with some “niceness” properties.

Unless stated otherwise, a zone refers to the union of an open connected set and some subset of

its boundary. (A thick set is a special case of a zone.) It may also refer to a single point or to the

finite union of zones. Given some bounded zone Z, we denote the area of Z (assuming that it is

well-defined) by area(Z). For a non-empty bounded zone Z and an internal point p of Z, denote

δ(p, Z) = sup{r > 0 | Z ⊇ B(p, r)} , ∆(p, Z) = inf{r > 0 | Z ⊆ B(p, r)} ,

and define the fatness parameter of Z with respect to p to be ϕ(p, Z) = ∆(p, Z)/δ(p, Z). (See

Figure 7.) The zone Z is said to be fat with respect to p if ϕ(p, Z) is bounded by some constant.
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Figure 7: The zone Z (enclosed by the solid line) with the ball defining δ(p, Z) (dotted line) and the

ball defining ∆(p, Z) (dashed line).

2.2 Wireless networks

We consider a wireless network A = 〈d, S,ψ,N ,β,α〉, where d ∈ Z≥1 is the dimension, S =

{s0, s1, . . . , sn−1} is a set of transmitting radio stations embedded in the d-dimensional space, ψ is

an assignment of a positive real transmitting power ψi to each station si, N ≥ 0 is the background

noise, β ≥ 1 is a constant that serves as the reception threshold (to be explained soon), and α > 0

is the path-loss parameter. For notational simplicity, si also refers to the point (xi1, ..., x
i
d) in the

d-dimensional space R
d where the station si resides, and moreover, when d = 2, the point si in the

Euclidean plane is denoted (ai, bi). The network is assumed to contain at least two stations, i.e.,

n ≥ 2. We say that A is a uniform power network if ψ = 1̄, namely, ψi = 1 for every 0 ≤ i ≤ n− 1.

The energy of station si at point p %= si is defined to be EA(si, p) = ψi · dist(si, p)
−α. The

energy of a set of stations T ⊆ S at a point p %∈ T is defined to be EA(T, p) =
∑

si∈T EA(si, p). Fix

some station si and consider some point p /∈ S. We define the interference to si at point p to be

the energies at p of all stations other than si, denoted IA(si, p) = EA(S − {si}, p). The signal to

interference & noise ratio (SINR) of si at point p is defined as

SINRA(si, p) =
EA(si, p)

IA(si, p) + N
=

ψi · dist(si, p)
−α

∑

j $=i ψj · dist(sj , p)−α + N
. (1)

Observe that SINRA(si, p) is always positive since the transmitting powers and the distances of the

stations from p are always positive and the background noise is non-negative. When the network

A is clear from the context, we may omit it and write simply E(si, p), I(si, p), and SINR(si, p).

The fundamental rule of the SINR model is that the transmission of station si is received

correctly at point p /∈ S if and only if its SINR at p is not smaller than the reception threshold of

the network, i.e., SINR(si, p) ≥ β. If this is the case, then we say that si is heard at p. We refer to
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the set of points that hear station si as the reception zone of si, defined as

Hi = {p ∈ R
d − S | SINR(si, p) ≥ β} ∪ {si} .

This admittedly tedious definition is necessary as SINR(si, ·) is not defined at any point in S and

in particular, at si itself.

Certain relationships hold between the SINR diagram on a set of stations S and the corre-

sponding Voronoi diagram on S, cf. [9]. The Voronoi diagram partitions4 the d-dimensional space

into n Voronoi cells, denoted Vor(si) for si ∈ S, such that Vor(si) = {p ∈ R
2 | dist(si, p) <

dist(sj , p) for any j %= i}.

A uniform power network A = 〈d, S, 1̄,N ,β,α〉 is said to be trivial if |S| = 2, N = 0, and β = 1.

Note that for i = 0, 1, the reception zone Hi of station si in a trivial uniform power network is the

half-plane consisting of all points whose distance to si is not greater than their distance to s1−i. In

particular, Hi is unbounded. Hence for trivial networks, the reception zones of the SINR diagram

coincide with the closure of the Voronoi cells.

For non-trivial networks, the SINR diagram no longer partitions the space, and its n reception

zones are strictly contained in the corresponding Voronoi cells. This is expressed formally in the

following observation, which relies on the fact that SINR(si, ·) is a continuous function in R
d − S.

Observation 2.2. Let A = 〈d, S, 1̄,N ,β,α〉 be a non-trivial uniform power network. Then the

reception zone Hi is compact for every si ∈ S. Moreover, every point in Hi is closer to si than it

is to any other station in S, i.e., Hi is strictly contained in the Voronoi cell Vor(si).

For a nontrivial uniform power network A, we say that the reception zone Hi is fat if it is fat

with respect to si.

Next, we state a simple but important lemma that will be useful in our later arguments.

Lemma 2.3. Let f : Rd → R
d be a mapping consisting of rotation, translation, and scaling by a fac-

tor of σ > 0. Consider some network A = 〈d, S,ψ,N ,β,α〉 and let f(A) = 〈d, f(S),ψ,N /σ2,β,α〉,
where f(S) = {f(si) | si ∈ S}. Then for every station si and for all points p /∈ S, we have

SINRA(si, p) = SINRf(A)(f(si), f(p)).

2.3 Technical lemmas

For completeness, the proof of the following technical lemma is included in the appendix.

Lemma 2.4. For all x, y, z ∈ (0, 1) and for all σ, τ,α ∈ R>0, we have

max

{

σ

(

x

y

)α

+ τ
(x

z

)α

,σ

(

1− x

1− y

)α

+ τ

(

1− x

1− z

)α}

≥ σ + τ .

Observation 2.5.
α
√
a+c+1

α
√
b+c−1

≤ α
√
a+1

α
√
b−1

for any reals a ≥ b > 1, c > 0, and α > 0.

4 Strictly speaking, the Voronoi diagram partitions the space into n Voronoi cells and the remaining points residing

on the boundaries of these cells.
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3 Convexity of the reception zones

In this section we consider the SINR diagram of a uniform power network A = 〈d, S, 1̄,N ,β,α〉 and
establish Theorem 1. As all stations admit the same transmitting power, it is sufficient to focus

on s0 and to prove that the reception zone H0 is convex. We begin by proving this assertion on

the Euclidean plane, i.e., for dimension d = 2. We do so by considering some arbitrary two points

p1, p2 ∈ R
2 and arguing that if s0 is heard at both p1 and p2, then s0 is heard at all points in the

segment p1 p2. This argument is established in three steps. First, as a warmup, we prove that H0

is star-shaped with respect to s0. This proof, presented in Section 3.1, establishes our argument

for the case that p1 and p2 are colinear with s0. It also implies the correctness of Theorem 1

for the case d = 1. Second, we prove that in the absence of background noise (i.e., N = 0), if

pi ∈ H0 for i = 1, 2, then p1 p2 ⊆ H0. This proof, presented in Section 3.3, relies on the analysis

of a special case of a network consisting of only three stations which is analyzed in Section 3.2.

Third, in Section 3.4 we reduce the convexity proof of a uniform power network with n stations

and arbitrary background noise to that of a uniform power network with n + 1 stations and no

background noise, thus completing the proof for the 2-dimensional case. Finally, in Section 3.5 we

prove this assertion on a d-dimensional space for any integer d ≥ 2.

3.1 Star-shape for the 2-dimensional case

In this section we consider a uniform power network A = 〈2, S, 1̄,N ,β,α〉, and show that the

reception zone H0 is star-shaped with respect to the station s0. In fact, we prove a slightly stronger

lemma.

Lemma 3.1. Consider some point p ∈ R
2. If SINR(s0, p) ≥ 1, then SINR(s0, q) > SINR(s0, p) for

all internal points q in the segment s0 p.

Proof. We consider two disjoint cases. First, suppose that there exists some station si, i > 0, such

that E(si, p) = E(s0, p). The assumption that SINR(s0, p) ≥ 1 necessitates, by (1), that N = 0,

n = 2 (which means that i = 1), and SINR(s0, p) = 1. Therefore dist(s0, p) = dist(s1, p) and for all

internal points q in the segment s0 p we have dist(s0, q) < dist(s1, q). Thus SINR(s0, q) > 1 and the

assertion holds.

Now, suppose that E(si, p) < E(s0, p) for every i > 0, which means that dist(si, p) > dist(s0, p)

for every i > 0. By Lemma 2.3, we may assume without loss of generality that s0 = (0, 0) and

p = (−1, 0). Consider some station si, i > 0. Note that if si is not located on the positive half

of the horizontal axis, then it can be relocated to a new location s ′i on the positive half of the

horizontal axis by rotating it around p so that dist(s ′i, p) = dist(si, p) and dist(s ′i, q) ≤ dist(si, q) for

all points q ∈ s0 p (see Figure 8). This process can be repeated with every station si, i > 0, until all

stations are located on the positive half of the horizontal axis without decreasing the interference

13



Figure 8: Relocating stations si, i > 0.

at any point q ∈ s0 p. Therefore it is sufficient to establish the assertion under the assumption that

si = (ai, 0), where ai > 0, for every i > 0.

Let q = (−x, 0) for some x ∈ (0, 1]. The SINR function of s0 at q can be expressed as

SINR(s0, q) =
x−α

∑

i>0(ai + x)−α + N
.

In this context, it will be more convenient to consider the reciprocal of the SINR function,

f(x) = SINR−1(s0, q) =
∑

i>0

(

x

ai + x

)α

+ xα · N ,

so that it remains to prove that f(x) < f(1) for all x ∈ (0, 1). The assertion follows since the

derivative df(x)
dx = αx ·

∑

i>0
ai

(ai+x)(α+1) + αx · N is positive when x ∈ (0, 1].

Consider a non-trivial uniform power network A = 〈2, S, 1̄,N ,β,α〉 and suppose that s0 %= sj

for every j > 0, that is, the location of s0 is not shared by any other station. Lemma 3.1 implies

that the point set H′
0 = {p ∈ R

2 − S | SINRA(s0, p) > β} ∪ {s0} is star-shaped with respect to s0,

and in particular, connected. Moreover, since SINR is a continuous function in R
2 − S, it follows

that H′
0 is an open set. As H0 is the closure of H′

0, we have the following corollary.

Corollary 3.2. In a non-trivial network, if the location of s0 is not shared by any other station,

then H0 is a thick set. Moreover, it is star-shaped with respect to s0.

3.2 Convexity for three stations with no background noise

In this section we analyze the special case of the 3-station uniform power network A3 =

〈2, S, 1̄,N ,β, 2α〉, where S = {s0, s1, s2}, N = 0, β = 1 and5 2α > 0. Recall that for this spe-

5The path-loss parameter is denoted here as 2α to simplify the analysis.
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cial case, the SINR and SINR−1 formulas take the form

SINRA(s0, p) =

1
dist(s0,p)2α

1
dist(s1,p)2α

+ 1
dist(s2,p)2α

and

SINR−1
A (s0, p) =

(

dist(s0, p)
2

dist(s1, p)2

)α

+

(

dist(s0, p)
2

dist(s2, p)2

)α

. (2)

Our goal is to establish the following lemma.

Lemma 3.3. The reception zone H0 of station s0 in A3 is convex.

In order to establish Lemma 3.3, it is required to show that p1 p2 ⊆ H0 for any two points

p1, p2 ∈ H0, i.e., SINRA(s0, q) ≥ β for any q ∈ p1 p2. By Lemma 3.1, p1 p2 ⊆ H0 for any p1, p2 ∈ H0

which are not colinear with s0. Here we prove the claim for the remaining cases. In fact, we prove

a stronger claim, namely, that

SINRA(s0, q) ≥ min{SINRA(s0, p1), SINRA(s0, p2)} ≥ β

for any p1, p2 ∈ H0 such that s0 %∈ p1 p2 and q ∈ p1 p2 .

Actually, the claim we prove is even slightly more general than that, as it shows that the SINR

function is convex in any segment that is contained in Vor(s0), the Voronoi cell of s0 (recall that

H0 ⊆ Vor(s0)). Formally, we show that

SINRA(s0, q) ≥ min {SINRA(s0, p1), SINRA(s0, p2)}

for any p1, p2 ∈ Vor(s0) such that s0 %∈ p1 p2 and q ∈ p1 p2 .

The SINR function is continuous in both variables (x and y) and in particular on any straight

line or segment (except on the points s0, s1 and s2). Therefore, in order to prove the convexity of

SINR in Vor(s0), it is sufficient to prove the following. For any two points p1, p2 ∈ R
2, let q denote

the middle point of the segment p1 p2, i.e., q ∈ p1 p2 and dist(p1, q) = dist(p2, q). Then we show

that

SINRA(s0, q) ≥ min {SINRA(s0, p1), SINRA(s0, p2)} (3)

for any p1, p2 ∈ R
2 such that s0, s1, s2 %∈ p1 p2 and q ∈ Vor(s0) .

To prove Eq. (3), consider points p1, p2, q as above. By Lemma 2.3 we may assume without loss

of generality that p1 = (−1, 0), p2 = (1, 0) and q = (0, 0). Consider the uniform power network

A′ = 〈S′ = {s ′0, s
′
1, s

′
2}, 1̄,N = 0,β = 1, 2α〉 obtained from A by rotating each of the stations s0, s1

and s2 (separately) around the origin point q until it reaches the positive y-axis, i.e., the stations

s ′0, s
′
1 and s ′2 are on the positive y-axis and preserve the distances of s0, s1 and s2, respectively, from

q, and hence SINRA(s0, q) = SINRA′(s ′0, q). Formally, letting ρi = ||si|| =
√

a2i + b2i , for i = 0, 1, 2,

the station s ′i is located at (0, ρi) for i = 0, 1, 2, as illustrated in Figure 9. As q ∈ Vor(s0), we have:

15



0

0

ρ
2

ρ
0

ρ
1

s’
2

s’
1

s
1

s
0

1

2
s

−1

0

s’

Figure 9: The network A contains the stations s0, s1 and s2. The network A′ contains the rotated

stations s ′0, s
′
1 and s ′2. Note that si and s ′i are at equal distance ρi from the origin and s ′i is on the

positive y-axis, and thus dist(s ′i, p1) = dist(s ′i, p2), for i = 0, 1, 2.

Observation 3.4. ρi > ρ0 for i = 1, 2.

We are now ready to establish Lemma 3.3. This is done by combining the following two

propositions, thus proving the validity of Eq. 3.

Proposition. SINRA(s0, q) > SINRA′(s ′0, p1) = SINRA′(s ′0, p2).

Proof. By Obs. 3.4,

ρ20
ρ2i

=
ρ20(ρ

2
i + 1)

ρ2i (ρ
2
i + 1)

=
ρ20 + ρ20/ρ

2
i

ρ2i + 1
<

ρ20 + 1

ρ2i + 1

for i = 1, 2. Therefore,

SINR−1
A (s0, q) =

(

ρ20
ρ21

)α

+

(

ρ20
ρ22

)α

<

(

ρ20 + 1

ρ21 + 1

)α

+

(

ρ20 + 1

ρ22 + 1

)α

= SINR−1
A′ (s

′
0, p1) = SINR−1

A′ (s
′
0, p2) .

The assertion follows.

Proposition. SINRA′(s ′0, p1) = SINRA′(s ′0, p2) ≥ min {SINRA(s0, p1), SINRA(s0, p2)}.

Proof. Define the angle θi so that si = (ρi cos θi, ρi sin θi) for i = 0, 1, 2. We have

dist(si, p1)
2 = ρ2i sin

2 θi + (ρi cos θi + 1)2 = ρ2i sin
2 θi + ρ2i cos

2 θi + 2ρi cos θi + 1

= ρ2i + 2ρi cos θi + 1,
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and analogously

dist(si, p2)
2 = ρ2i − 2ρi cos θi + 1 .

Thus, for i = 0, 1, 2,

dist(si, p1)
2 + dist(si, p2)

2 = 2(ρ2i + 1) .

Let xi =
dist(si,p1)

2

2(ρ2
i
+1)

, for i = 0, 1, 2. It follows that x0, x1, x2 ∈ (0, 1), and that 1− xi =
dist(si,p2)

2

2(ρ2
i
+1)

for

i = 0, 1, 2. Let a =
ρ20+1

ρ21+1
and b =

ρ20+1

ρ22+1
. Formula (2) implies that

SINR−1
A (s0, p1) = aα

(

x0
x1

)α

+ bα
(

x0
x2

)α

and

SINR−1
A (s0, p2) = aα

(

1− x0
1− x1

)α

+ bα
(

1− x0
1− x2

)α

.

Recall that the angles of the corresponding stations s ′0, s
′
1 and s ′2 are θ′0 = θ′1 = θ′2 = π/2, hence

SINR−1
A′ (s ′0, p1) = SINR−1

A′ (s ′0, p2) = aα + bα. Applying Lemma 2.4 with τ = aα, γ = bα, x = x0,

y = x1 and z = x2, we have that

max

{

aα
(

x0
x1

)α

+ bα
(

x0
x2

)α

, aα
(

1− x0
1− x1

)α

+ bα
(

1− x0
1− x2

)α}

≥ aα + bα

for all x0, x1, x2 ∈ (0, 1). This, in turn, implies that

max
{

SINR−1
A (s0, p1), SINR

−1
A (s0, p2)

}

≥ SINR−1
A′ (s

′
0, p1) = SINR−1

A′ (s
′
0, p2) ,

yielding the assertion.

3.3 Convexity for n stations with no background noise

In this section we return to a uniform power network A = 〈2, S, 1̄,N ,β,α〉 with an arbitrary number

of stations, an arbitrary reception threshold β ≥ 1, and α > 0, but still on the Euclidean plane and

with no background noise (i.e., d = 2 and N = 0). Our goal is to establish the convexity of H0.

Lemma 3.5. The reception zone H0 of station s0 in A is convex.

Lemma 3.5 is proved by induction on the number of stations n = |S|. For the base of the

induction, n = 2, note that the theorem clearly holds if s0 and s1 share the same location, as

this implies that H0 = {s0}. Furthermore, if β = 1, which means that A is trivial, then H0 is a

half-plane, and in particular convex. So in what follows we assume that s0 %= s1 and that β > 1.

Corollary 3.2 implies that H0 is a thick set, and thus, by Lemma 2.1, it is sufficient to argue

that every line L has at most two intersection points with ∂H0. To that end, consider some line

L. If s0 ∈ L, then the argument holds due to Lemma 3.1, so assume that s0 /∈ L. For every point

q ∈ ∂H0, we have E(s0, q)/I(s0, q) = β, which can be rewritten as dist(s1, q)
2 = β2/α · dist(s0, q)

2.
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The argument holds since this is essentially a quadratic equation, hence it has at most two real

solutions (each corresponding to an intersection point of L and ∂H0).

The inductive step of the proof of Lemma 3.5 is more involved. We consider some arbitrary

two points p1, p2 ∈ H0 and prove that p1 p2 ⊆ H0. Informally, we show that if there exist at least

two stations other than s0, then it is possible to discard one station and relocate the rest so that

the interference at pi remains unchanged for i = 1, 2 and the interference at q does not decrease for

all points q ∈ p1 p2. By the inductive hypothesis, the segment p1 p2 is contained in H0 in the new

setting, hence it is also contained in H0 in the original setting. This idea relies on the following

lemma.

Lemma 3.6. Consider the stations s0, s1, s2 and some distinct two points p1, p2 ∈ R
2. If E(s0, pi) ≥

E({s1, s2}, pi) for i = 1, 2, then there exists a point s∗ ∈ R
2 such that a new station placed at s∗

satisfies

(1) E(s∗, pi) = E({s1, s2}, pi) for i = 1, 2; and

(2) E(s∗, q) ≥ E({s1, s2}, q), for all points q in the segment p1 p2.

Proof. Let ρi = 1/ α
√

E({s1, s2}, pi) and let Bi be a ball of radius ρi centered at pi for i = 1, 2.

It is easy to verify that Bi consists of all points s such that placing a new station at s yields

E(s, pi) ≥ E({s1, s2}, pi). Assume without loss of generality that ρ1 ≥ ρ2.

Proposition. The circles ∂B1 and ∂B2 intersect.

Proof. By Lemma 2.3, we may assume that p1 = (0, 0) and p2 = (c, 0) for some positive c. Since

s0 must be in both B1 and B2, it follows that the two balls cannot be disjoint. We establish the

claim by showing that B2 is not contained in B1. Let us define a new uniform power network A′

consisting of the stations s1, s2, and s ′ = (c+ ρ2, 0) with no background noise. The points p1 and

p2 are colinear with the station s ′, hence Lemma 3.1 may be employed to conclude that

SINRA′(s ′, p1) < SINRA′(s ′, p2) . (4)

The construction of A′ guarantees that SINRA′(s ′, p2) = E(s ′, p2)/E({s1, s2}, p2) = 1. On the

other hand, if B2 ⊆ B1, then s ′ is in B1 (see Figure 10(A)), and thus E(s ′, p1) ≥ E({s1, s2}, p1),

which means that SINRA′(s ′, p1) ≥ 1, in contradiction to inequality (4). Therefore ∂B1 and ∂B2

must intersect.

Let s∗ be an intersection point of ∂B1 and ∂B2 (see Figure 10(B)). We now show that s∗

satisfies the assertions of Lemma 3.6. Note that E(s, pi) = E({s1, s2}, pi) for any station s located

on ∂Bi, thus a new station placed at s∗ produces the desired energy at pi for i = 1, 2, that is,

E(s∗, pi) = E({s1, s2}, pi). Hence assertion (1) is satisfied.

Consider a uniform power network A∗ consisting of the stations s∗, s1, and s2 with no back-

ground noise. We have SINRA∗(s∗, pi) = E(s∗,pi)
E({s1,s2},pi)

= 1 for i = 1, 2. Therefore, Lemma 3.3
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(with s∗, H∗ and 1 substituted for s0, H0 and β respectively) guarantees that E(s∗,q)
E({s1,s2},q)

=

SINRA∗(s∗, q) ≥ 1 for all points q ∈ p1 p2, which means that E(s∗, q) ≥ E({s1, s2}, q). Thus

assertion (2) follows as well, completing the proof of Lemma 3.6.

(A) (B)

Figure 10: (A) The setting if B2 is strictly contained in B1. (B) The intersection point s∗ is at distance

ρi from pi for i = 1, 2.

We now turn to describe the inductive step in the proof of Lemma 3.5. Assume by induction

that the assertion of the theorem holds for n ≥ 2 stations, i.e., that in a uniform power network

with n ≥ 2 stations and no background noise we have p1 p2 ⊆ H0 for every p1, p2 ∈ H0. Now

consider a uniform power network A with n + 1 stations s0, . . . , sn and no background noise. Let

p1, p2 ∈ H0. Suppose that s1 is closest to, say, p1 among all stations s1, . . . , sn. Since p1, p2 ∈ H0,

we know that E(s0, pi) > E({s1, s2}, pi) for i = 1, 2. Let s∗ be the point whose existence is asserted

by Lemma 3.6 .

Note that s∗ must differ from s0. This is because E(s∗, pi) = E({s1, s2}, pi) while E(s0, pi) >

E({s1, s2}, pi) for i = 1, 2, thus dist(s∗, pi) > dist(s0, pi).

Consider the n-station uniform power network A∗ obtained from A by replacing s1 and s2 with

a single station located at s∗ (see Figure 11). Note that IA∗(s0, pi) = IA(s0, pi) for i = 1, 2 and

IA∗(s0, q) ≥ IA(s0, q) for all points q ∈ p1 p2, hence SINRA∗(s0, pi) = SINRA(s0, pi) for i = 1, 2

and SINRA∗(s0, q) ≤ SINRA(s0, q). By the inductive hypothesis, SINRA∗(s0, q) ≥ β for all points

q ∈ p1 p2, therefore SINRA(s0, q) ≥ β and s0 is heard at q in A. It follows that every q ∈ p1 p2

belongs to H0 in A, which establishes the assertion and completes the proof of Lemma 3.5.

3.4 Convexity with background noise

Our goal in this section is to complete the proof of Theorem 1 in the Euclidean plane, by extending

the convexity proof to the case with background noise. Formally, we show the following.

Lemma 3.7. The reception zones in an n-station uniform power network A = 〈d = 2, S, 1̄,N ,β,α〉,
where N > 0, are convex.

Proof. Let p1 and p2 be points in R
2 and suppose that s0 is heard at p1 and p2 in A. Let B1 and B2
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Figure 11: A∗ is obtained from A by removing stations s1 and s2 and introducing station s∗.

Figure 12: A′ is obtained from A by omitting the background noise N and introducing station sn.

be the balls of radius 1/
√
N centered at p1 and p2, respectively. Note that SINRA(s0, pi) ≥ β ≥ 1

implies that E(s0, pi) > N , thus dist(s0, pi) < 1/ α
√
N for i = 1, 2. Therefore dist(p1, p2) < 2/ α

√
N

and ∂B1 and ∂B2 must intersect.

We construct an (n+1)-station uniform power network A′ from A by locating a new station sn

(with transmitting power ψn = 1 like all other stations) in an intersection point of ∂B1 and ∂B2 and

omitting the background noise (see Figure 12). Clearly, E(sn, pi) = N for i = 1, 2. In particular,

this means that sn %= s0 as E(s0, pi) > N . Since dist(sn, p1) = dist(sn, p2) = 1/
√
N , it follows

that dist(sn, q) ≤ 1/ α
√
N for all points q ∈ p1 p2, hence E(sn, q) ≥ N . Therefore SINRA′(s0, pi) =

SINRA(s0, pi) for i = 1, 2 and SINRA(s0, q) ≥ SINRA′(s0, q) for all points q ∈ p1 p2. Since A′ has

no background noise, we may employ Lemma 3.5 to conclude that SINRA′(s0, q) ≥ β for all points

q ∈ p1 p2. The assertion follows.

This completes the proof of Theorem 1 for the case where d = 2.

3.5 From the Euclidean plane to a d-dimensional space

Our goal in this section is to extend the convexity result to higher dimensional spaces, and show

the following.

Lemma 3.8. The reception zones in a uniform power network A = 〈d, S, 1̄,N ,β,α〉, where d ≥ 2

and N ≥ 0, are convex in the d-dimensional Euclidean space.

Proof. Let p1 and p2 be some points in R
d and suppose that s0 is heard at p1 and p2 in A, i.e.,
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p1, p2 ∈ H0. By Lemma 2.3, we may assume without loss of generality that p1 = (0, 0, ..., 0) and

p2 = (c, 0, ..., 0), where c %= 0. Note that the straight line that goes through p1 and p2 is the

horizontal axis, i.e., the line L∗ = {(x, 0, ..., 0) | x ∈ R}.

We construct a new uniform power network A′ = 〈2, S′, 1̄,N ,β,α〉 in which all stations are

deployed on the Euclidean plane. The network A′ is obtained from A by rotating each station si

around L∗ until it reaches the plane {(x, y, 0, ..., 0) | x, y ∈ R}. Note that if some station si is not

located on this plane, i.e., there exists 3 ≤ j ≤ d such that xij %= 0, then it can be relocated to

a new location s ′i on the plane by rotating it around L∗ so that dist(si, q) = dist(s ′i, q), for every

q ∈ L∗. More formally, the location of s ′i is (ai, bi) ∈ R
2, where ai = xi1 and bi =

√

∑d
j=2(x

i
j)

2, for

every i = 0, 1, ..., n− 1. (Recall that si = (xi1, x
i
2, ...x

i
d).) It follows that

dist(si, q) =

√

√

√

√

(

xi1 − x
)2

+

d
∑

j=2

(

xij

)2
=

√

(ai − x)2 + b2i = dist(s ′i, q)

for every i = 0, 1, . . . , n− 1 and every q = (x, 0, . . . , 0) ∈ L∗, and in particular, for every q ∈ p1 p2.

This implies that

SINRA(s0, q) = SINRA′(s ′0, q) (5)

for all points q ∈ p1 p2.

The stations in the uniform power networkA′ are deployed in the Euclidean plane (d = 2), hence

we already know that the the reception zoneH′
0 of s

′
0 is convex. This implies that SINRA′(s ′0, q) ≥ β,

for all points q ∈ p1 p2. By applying Eq. (5), we conclude that SINRA(s0, q) ≥ β for all points

q ∈ p1 p2, hence p1 p2 ⊆ H0 and the assertion follows.

This completes the proof of Theorem 1 for the d-dimensional space for any d ≥ 2. The one-

dimensional case (d = 1) is trivial to analyze, and in particular, follows from Lemma 3.1.

4 The fatness of the reception zones

In Section 3 we showed that the reception zone of each station in a uniform power network is convex.

In this section we develop a deeper understanding of the shape of the reception zones by analyzing

their fatness. Consider a uniform power network A = 〈d, S, 1̄,N ,β,α〉, where S = {s0, . . . , sn−1}

and α > 0 and β > 1 are constants6. We focus on s0 and assume that its location is not shared by

any other station (otherwise, its reception zone is H0 = {s0}). In Section 4.1 we establish explicit

bounds on the radii ∆(s0,H0) and δ(s0,H0). These bounds imply that ϕ(s0,H0) = O ( α
√
n). This

is improved in Section 4.2, where we show that ϕ(s0,H0) = O(1), thus establishing Theorem 2.

6Unlike the convexity proof presented in Section 3, which holds for any β ≥ 1, the analysis presented in the current

section is only suitable for β being a constant strictly greater than 1. In fact, when β = 1, the fatness parameter is

not necessarily defined (as happens, for example, in a trivial network).
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4.1 Explicit bounds

Our goal in this section is to establish an explicit lower bound on δ(s0,H0) and an explicit upper

bound on ∆(s0,H0). Since H0 is compact and convex, it follows that there exist some points on

its boundary, qδ, q∆ ∈ ∂H0, such that dist(s0, qδ) = δ(s0,H0) and dist(s0, q∆) = ∆(s0,H0). In fact,

we may redefine δ(s0,H0) as the distance from s0 to a closest point on ∂H0 and ∆(s0,H0) as the

distance from s0 to a farthest point on ∂H0. To avoid cumbersome notation, we assume a two-

dimensional space (d = 2) throughout this section; the proof is trivially generalized to arbitrary

choices of d.

Fix κ = min{dist(s0, si) | i > 0}. An extreme scenario for establishing a lower bound on

δ(s0,H0) would be to place s0 at (0, 0) and all other n − 1 stations at (κ, 0). This introduces the

uniform power network Aδ = 〈2, {(0, 0), (κ, 0), . . . , (κ, 0)}, 1̄,N ,β,α〉. The point qδ whose distance

to s0 realizes δ(s0,H0) is thus located at (d, 0) for some 0 < d < κ. On the other hand, an extreme

scenario for establishing an upper bound on ∆(s0,H0) would be to place s0 in (0, 0), s1 in (κ, 0),

and all other n − 2 stations in (∞, 0), so that their energy at the vicinity of s0 is ignored. This

introduces the uniform power network A∆ = 〈2, {(0, 0), (κ, 0), (∞, 0), . . . , (∞, 0)}, 1̄,N ,β,α〉. The

point q∆ whose distance to s0 realizes ∆(s0,H0) is thus located at (−D, 0) for some D > 0.

For the sake of analysis, we replace the background noise N in the above scenarios with a new

station sn located at (κ, 0) whose power is ψn = N ·κα. More formally, the uniform power network

Aδ is replaced by the network

A′
δ = 〈2, {(0, 0), (κ, 0), . . . , (κ, 0), (κ, 0)}, (1, . . . , 1,N · κα), 0,β,α〉

and the uniform power network A∆ is replaced by the network

A′
∆ = 〈2, {(0, 0), (κ, 0), (∞, 0) . . . , (∞, 0), (κ, 0)}, (1, . . . , 1,N · κα), 0,β,α〉 .

Note that the energy of the new station sn at point (x, 0) satisfies E(sn, (x, 0)) > N for all 0 < x < κ;

E(sn, (x, 0)) = N for x = 0; and E(sn, (x, 0)) < N for all x < 0.

Therefore, the value of δ(s0,H0) under A′
δ is smaller than that under Aδ, and the value of

∆(s0,H0) under A
′
∆

is greater than that under A∆.

To establish a lower bound on δ(s0,H0) in the context of A′
δ, we would like to compute the

value of x̌ > 0 that solves the equation

SINRA′

δ
(s0, (x̌, 0)) =

x̌−α

(n− 1 + N · κα)(κ− x̌)−α
= β .

Rearranging, we get (κ − x̌)α = x̌αβ(n − 1 + N · κα), yielding x̌ = κ
α
√

β(n−1+N ·κα)+1
, hence

δ(s0,H0) ≥ κ
α
√

β(n−1+N ·κα)+1
.
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To establish an upper bound on ∆(s0,H0) in the context of A′
∆
, we would like to compute the

value of x̂ > 0 that solves the equation

SINRA′

∆
(s0, (−x̂, 0)) =

x̂−α

(1 + N · κα)(κ+ x̂)−α
= β .

Rearranging, (κ+x̂)α = x̂αβ(1+N ·κα), or x̂ = κ
α
√

β(1+N ·κα)−1
, hence ∆(s0,H0) ≤ κ

α
√

β(1+N ·κα)−1
.

The fatness parameter of H0 with respect to s0 thus satisfies

ϕ(s0,H0) ≤
κ

α
√

β(1 + N · κα)− 1

/

κ
α
√

β(n− 1 + N · κα) + 1
≤

α
√

β(n− 1) + 1
α
√
β − 1

= O
(

α
√
n
)

,

where the second inequality makes use of Obs. 2.5. This yields the following.

Theorem 4.1. In a uniform energy network A = 〈2, S, 1̄,N ,β,α〉, where S = {s0, . . . , sn−1} and

α > 0 and β > 1 are constants, if κ = min{dist(s0, si) | i > 0} > 0, then

δ(s0,H0) ≥
κ

α
√

β(n− 1 + N · κα) + 1
,∆(s0,H0) ≤

κ
α
√

β(1 + N · κα)− 1
,

and ϕ(s0,H0) = O( α
√
n).

4.2 An improved bound on the fatness parameter

In this section we prove Theorem 2 by establishing the following theorem.

Theorem 4.2. The fatness parameter of H0 with respect to s0 satisfies

ϕ(s0,H0) ≤
α
√
β + 1

α
√
β − 1

which is O(1) for every constant path-loss parameter α > 0 and reception threshold β > 1.

Theorem 4.2 is proved in three steps. First, in Section 4.2.1 we bound the ratio ∆/δ in a setting

of two stations in a one-dimensional space. This is used in Section 4.2.2 to establish the desired

bound for a special type of uniform power networks called positive colinear networks. We conclude

in Section 4.2.3, where we reduce the general case to the case of positive colinear networks.

4.2.1 Two stations in a one-dimensional space

Let A = 〈1, {s0, s1}, (1,ψ1),N ,β,α〉 be a network consisting of two stations s0, s1 embedded in

the one-dimensional space R with no background noise (i.e., N = 0). Assume without loss of

generality that s0 is located at a0 = 0 and s1 is located at a1 = 1 (due to Lemma 2.3). Suppose

that s0 uses transmitting power ψ0 = 1 while the transmitting power of s1 is any ψ1 ≥ 1. Let

µr = max{p > 0 | SINRA(s0, p) ≥ β} and let µl = min{p < 0 | SINRA(s0, p) ≥ β} (see Figure 13).

It is easy to verify that H0 = [µl, µr] and that δ = δ(s0,H0) = µr and ∆ = ∆(s0,H0) = −µl.
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Figure 13: The embedding of s0 and s1 in a one-dimensional space.

Figure 14: A positive colinear network.

Lemma 4.3. The network A satisfies ϕ(s0,H0) = ∆/δ ≤ α
√
β+1

α
√
β−1

, with equality attained when

ψ1 = 1.

Proof. The boundary points µr and µl of H0 are the solutions to the equation

1/|x|α

ψ1/(1− x)α
= β,

leading to 1−x
|x| = (βψ1)

1/α, or, x + (βψ1)
1/α|x| = 1. Solving this linear equation separately for

positive and negative x yields, respectively, the solutions

µr =
1

1 + (βψ1)1/α
and µl =

1

1− (βψ1)1/α
.

Therefore the ratio ∆/δ satisfies

∆

δ
=

−µl

µr
=

α
√
βψ1 + 1

α
√
βψ1 − 1

≤
α
√
β + 1

α
√
β − 1

,

where the last inequality holds since α > 0, β > 1 and ψ1 ≥ 1. The Lemma follows.

4.2.2 Positive collinear networks

In this section we switch back to the Euclidean plane R
2 and consider a special type of uniform

power networks. A network A = 〈2, {s0, . . . , sn−1}, 1̄,N ,β,α〉 is said to be positive collinear if

s0 = (0, 0) and si = (ai, 0) for some ai > 0 for every 1 ≤ i ≤ n− 1. Positive collinear networks play

an important role in the subsequent analysis due to the following lemma. (Refer to Figure 14 for

illustration.)

Lemma 4.4. Let A be a positive colinear uniform power network. Fix µr = max{r > 0 |

SINRA(s0, (r, 0)) ≥ β} and µl = min{r < 0 | SINRA(s0, (r, 0)) ≥ β}. Then

(1) δ(s0,H0) = µr,
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(2) ∆(s0,H0) = −µl, and

(3) ϕ(s0,H0) ≤
α
√
β+1

α
√
β−1

.

Proof. First, we argue that the reception zone H0 of s0 in the positive colinear network A is

contained in the infinite vertical strip defined by µl ≤ x ≤ µr. To see why this is true, suppose,

towards contradiction, that the point (x, y) ∈ H0 for some x > µr or x < µl. By symmetry

considerations, the point (x,−y) is also in H0. By the convexity of H0, it follows that (x, 0) ∈ H0,

in contradiction to the definitions of µr and µl. We thus have the following.

Claim 4.5. If (x, y) ∈ H0, then µl ≤ x ≤ µr.

To prove assertion (1) of the lemma, we show that the ball of radius µr centered at s0 is contained

inH0. In fact, by the convexity ofH0, it is sufficient to show that the point p(θ) = (µr cos θ, µr sin θ)

is in H0 for all 0 ≤ θ ≤ π. Since the network is positive colinear, it follows that IA(s0, p(θ)) attains

its maximum for θ = 0. Therefore the fact that p(0) = (µr, 0) ∈ H0 implies that p(θ) ∈ H0 for all

0 ≤ θ ≤ π as desired. Assertion (1) follows.

Next, we show that ∆ is realized by the point (µl, 0). Indeed, by the triangle inequality, all

points at distance k from s0 are at distance at most k+ ai from si = (ai, 0), with equality attained

for the point (−k, 0). Thus the minimum interference to s0 under A among all points at distance k

from s0 is attained at the point (−k, 0). Therefore, by the definition of µl, there cannot exist any

point p ∈ H0 such that dist(p, s0) > −µl. Assertion (2) follows.

It remains to establish assertion (3). Fix c = min{ai | 1 ≤ i ≤ n−1}, that is, the leftmost station

other than s0 is located at (c, 0). Clearly, µr < c. Denote the energy of station si at (µr, 0) by

Ei = E(si, (µr, 0)) = (ai−µr)
−α. We construct a new (n+1)-station network A′ = 〈2, S′,ψ′, 0,β,α〉

consisting of s0 and n new stations s ′1, . . . , s
′
n, all located at (c, 0). We set the transmitting power

ψ′
i of the new stations s ′i to

ψ′
i =

{

Ei · (c− µr)
α for 1 ≤ i ≤ n− 1; and

N · (c− µr)
α for i = n.

This ensures that the energy produced by these stations at (µr, 0) is

E(s ′i, (µr, 0)) =

{

Ei for 1 ≤ i ≤ n− 1, and

N for i = n.

The network A′ falls into the setting of Section 4.2.1: the stations s ′1, . . . , s
′
n share the same

location, thus they can be considered as a single station ŝ1 with transmitting power ψ̂1 =
∑n

i=1 ψ
′
i.

Define µ′
r = max{r > 0 | SINRA′(s0, (r, 0)) ≥ β} and µ′

l = min{r < 0 | SINRA′(s0, (r, 0)) ≥ β}, so

that the restriction of the reception zone of s0 under A′ to the x-axis is [µ′
l, µ

′
r]. Lemma 4.3 implies

that −µ′
l/µ

′
r ≤

α
√
β+1

α
√
β−1

. The remainder of the proof relies on establishing the following two bounds,

relating the networks A and A′.
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(A1) SINRA′(s0, (r, 0)) ≤ SINRA(s0, (r, 0)) for all µr ≤ r < c; and

(A2) SINRA′(s0, (r, 0)) ≥ SINRA(s0, (r, 0)) for all r ≤ µr, r %= 0.

By combining bounds (A1) and (A2), we conclude that µ′
r ≤ µr and µ′

l ≤ µl, thus −µl/µr ≤ −µ′
l/µ

′
r,

which completes the proof of Lemma 4.4.

To establish bounds (A1) and (A2), consider some point p = (r, 0), where r < c, r %= 0. For

every 1 ≤ i ≤ n− 1, we have

E(si, p) =
1

(ai − r)α
, while E(s ′i, p) =

ψ′
i

(c− r)α
=

(c− µr)
α

(c− r)α(ai − µr)α
.

Comparing these two expressions, we get E(si, p) ≥ E(s ′i, p), or equivalently, (c − r)(ai − µr) ≥
(c− µr)(ai − r). Rearranging, we get cai − cµr − air + rµr ≥ cai − cr − aiµr + rµr, or

µr(ai − c) ≥ r(ai − c) ,

where the last inequality holds if and only ai = c, which, by definition, implies that E(si, p) =

E(s ′i, p), or µr ≥ r. Therefore the contribution of s ′i to the interference to s0 at p = (0, r) is not

larger than that of si as long as r ≤ µr and not smaller than that of si as long as µr ≤ r < c. On

the other hand, the energy of s ′n at p = (r, 0) satisfies E(s ′n, p) ≤ N for all c ≤ µr and E(s ′n, p) ≥ N

for all µr ≤ r < c. Bounds (A1) and (A2) follow.

4.2.3 General uniform power networks in d-dimensional space

We are now ready to prove the main theorem of Section 4.

Proof of Theorem 4.2. Consider an arbitrary uniform power network A = 〈d, S, 1̄,N ,β,α〉, where
S = {s0, . . . , sn−1} and β > 1 is a constant. We employ Lemma 2.3 to assume without loss of

generality that s0 is located at (0, ..., 0) and that max{dist(s0, q) | q ∈ H0} is realized by a point

q = (−∆, 0, ..., 0) on the negative x-axis. We now construct a new positive collinear uniform

power network A′ = 〈d, {s0, s ′1, . . . , s ′n−1}, 1̄,N ,β,α〉, obtained from A by rotating each station si

around the point q until it reaches the Euclidean plane at the positive x-axis (see Figure 15). More

formally, the location of s0 remains unchanged and s ′i = (a′i, 0), where a′i = dist(si, q)−∆ for every

1 ≤ i ≤ n− 1. Since s0 is heard at q under A, it follows that ∆ = dist(s0, q) < dist(si, q) for every

1 ≤ i ≤ n − 1, hence a′i > 0 and A′ is a positive colinear network. Clearly, dist(s ′i, q) = dist(si, q)

for every 1 ≤ i ≤ n− 1.

Let H′
0 denote the reception zone of s0 under A′. Fix δ′ = max{r > 0 | B(s0, r) ⊆ H′

0} and

∆′ = min{r > 0 | B(s0, r) ⊇ H′
0}. Let µ′

r = max{r > 0 | SINRA′(s0, (r, 0, ..., 0)) ≥ β} and let

µ′
l = min{r < 0 | SINRA′(s0, (r, 0, ..., 0)) ≥ β}. Lemma 4.4 guarantees that δ′ = µ′

r, ∆
′ = −µ′

l,

and ∆′

δ′
≤ α

√
β+1

α
√
β−1

. We establish the proof of Theorem 4.2 by showing that ∆′ = ∆ and δ′ ≤ δ. The

former is a direct consequence of Lemma 4.4; since SINRA′(s0, q) = SINRA(s0, q) = β, it follows

that max{dist(s0, p) | p ∈ H′
0} is realized at p = q.
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Figure 15: A′ is obtained from A by relocating each station si on the x-axis.

It remains to prove that δ′ ≤ δ. We do so by showing that B(s0, δ
′) ⊆ H0. Fix ρi = dist(si, q)

for every 1 ≤ i ≤ n−1. We argue that the ball B(s0, δ
′) is strictly contained in the ball B(q, ρi) for

every 1 ≤ i ≤ n − 1. To see why this is true, observe that −∆ < 0 < δ′ = µ′
r < a′i, hence the ball

centered at q = (−∆, 0, ..., 0) of radius ρi = ∆ + a′i strictly contains the ball of radius δ′ centered

at s0 = (0, ..., 0).

Consider an arbitrary point p ∈ B(s0, δ
′). We can now rewrite

dist(s ′i, (δ
′, 0, ..., 0)) = a′i − δ′ = min{dist(t, t′) | t ∈ B(s0, δ

′), t′ ∈ ∂B(q, ρi)}

for every 1 ≤ i ≤ n− 1. Recall that si ∈ ∂B(q, ρi), thus dist(si, p) ≥ dist(s ′i, (δ
′, 0, ..., 0)). Therefore

IA(s0, p) ≤ IA′(s0, (δ
′, 0, ..., 0)) and SINRA(s0, p) ≥ SINRA′(s0, (δ

′, 0)) = β. It follows that p ∈ H0,

which completes the proof.

5 Handling approximate point location queries

Our goal in this section is to prove Theorem 3. In fact, our technique for handling approximate point

location queries is suitable for a more general class of zones (and diagrams). Let Z be a convex thick

set in the euclidean plane and suppose that we are given an internal point s of Z, a lower bound δ̃

on δ(s,Z), and an upper bound ∆̃ on ∆(s,Z). Moreover, suppose that we are given access to an

oracle O : R2 → {0, 1} for membership in Z. Let 0 < ǫ < 1 be some predetermined performance
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c

d b

a

Figure 16: The gray region corresponds to Z. Cell a is internal, cell b is mixed (with mixed east

and west edges), and cells c and d are external.

parameter and fix ρ = ∆̃/δ̃. By making O(ρ3ǫ−1) calls to O in a preprocessing stage, we construct

a data structure QDS of size O(ρ3ǫ−1). QDS imposes a 3-wise partition Z̄ =
〈

Z+,Z−,Z?
〉

of the

Euclidean plane R
2 (that is, the zones in Z̄ are pair-wise disjoint and R

2 = Z+ ∪ Z− ∪ Z?) such

that:

(1) Z+ ⊆ Z;

(2) Z− ∩ Z = ∅; and
(3) Z? is bounded and its area is at most an ǫ-fraction of the area of Z.

Given a query point p ∈ R
2, it is possible to extract from QDS, in constant time, the zone in Z̄ to

which p belongs.

In Section 5.1 we describe the construction of QDS. In Section 5.2 we explain how the reception

zones and the SINR diagram fall into the above framework and establish Theorem 3.

5.1 The construction of QDS

In this section we describe the construction of the data structure QDS. Let γ be a positive real

to be determined later on. QDS is based upon imposing a γ-spaced grid, denoted by Gγ , on the

Euclidean plane. The notions of grid columns, rows, vertices, edges, and cells are defined in the

natural manner. We assume that Gγ is aligned so that the point s is a grid vertex.

A vertex of Gγ is said to be internal if it belongs to Z; otherwise, it is said to be external. A grid

cell is called internal (respectively, external) if all its (four) vertices are internal (resp., external). If

the cell has at least one internal vertex and at least one external vertex, then it is said to be mixed.

The convexity of Z ensures that an internal cell is fully contained in Z. By definition, a mixed cell

has a non-empty intersection with both Z and R
2 −Z. An external cell always intersects R2 −Z,

but it may also intersect Z which means that ∂Z has two intersection points with (at least) one of

its edges. A mixed edge is an edge with one internal vertex and one external vertex. Therefore a

mixed cell can be redefined as a cell admitting some (at least two) mixed edges. Refer to Figure 16

for illustration.

We will soon present an iterative process, referred to as the Boundary Reconstruction Process

(BRP), which identifies the mixed edges, and hence also the mixed cells. The union of the mixed

cells is isomorphic to a ring R such that the internal cells are enclosed by R and the external cells

are outside R. This enables the classification of each point p ∈ R
2 as follows:
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(a) if p belongs to some internal cell C, then p is classified as a Z+-point and C is classified as a

Z+-cell;

(b) else, if p belongs to some cell C at distance at most ργ from some mixed cell, then it is classified

as a Z?-point and C is classified as a Z?-cell;

(c) else, p is classified as a Z−-point.

A query on point p ∈ R
2 is handled merely by computing the cell to which p belongs and deciding

whether it is internal, mixed, or external, and in the latter case, deciding whether it is sufficiently

close to some mixed cell. (We explain later on how this is performed in constant time.) Our analysis

relies on bounding the number of mixed cells and consequently also the total number of cells that

form the zone Z?.

The parameter γ is set to be sufficiently small so that the cell containing point s is internal. In

fact, we take γ ≤ min{δ̃2/∆̃, δ̃/(2
√
2)} so that (i) the ball of radius δ̃ centered at s is guaranteed

to contain Ω(ρ2) cells (all of them are internal by definition); and (ii) the distance from s to any

mixed cell is at least 2γ.

Recall that s is an internal vertex. Let e1 be the unique mixed edge in the column of s to the

north of s (the convexity of Z implies that there is indeed one such edge). Let e2, . . . , em be the

rest of the mixed edges of Gγ in order of discovery when traversing the closed curve ∂Z in clockwise

direction starting from the (unique) intersection point with e1.

BRP begins by identifying the edge e1. This is done by applying the oracle O in a binary search

fashion to vertices north of s at distance at most ∆̃ and at least δ̃ from s, so that the total number

of oracle applications is O(log ρ).

Next, the process identifies the edges e2, . . . , em, one by one, in an iterative manner. Suppose

that the last identified mixed edge is ei, 1 ≤ i ≤ m − 1, and we wish to identify the next mixed

edge ei+1. Assume without loss of generality that ei is a column edge with internal south vertex

and external north vertex and that ei−1 is a (mixed) edge of the grid cell having ei as its east

edge. (Treating the other cases is done in an analogous manner.) Let C be the (mixed) grid cell

having ei as its west edge. The mixed edge ei+1 must be one of the other three edges of C. It is

uniquely determined by applying the oracle O to the south east and north east vertices of C. Refer

to Figure 17 for more details. BRP ends when the iterative process returns to the mixed edge e1.

We now turn to the analysis. By definition, every internal cell is fully contained in Z, thus

Z+ ⊆ Z. It remains to show that Z− ∩ Z = ∅ and that area(Z?) ≤ ǫ · area(Z). We start with the

former.

Lemma 5.1. If p ∈ R
2 is classified as a Z−-point, then p /∈ Z.
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Figure 17: The four possible results of applying the oracle O to the south east and north east vertices

of C. The mixed edge ei (solid line) is the west edge of C. Internal vertices are depicted by full circles;

external vertices are depicted by empty circles. The arrow points to the next mixed edge ei+1. The

dotted curves depict possible shapes of ∂Z.

!s !qθ !p

h(θ)

Figure 18: The point /qθ for θ = 2/3. Part of ∂Z is depicted by the dashed curve. The arrow represents

a vector orthogonal to /s− /p of magnitude h(θ).

Proof. Recall that p is classified as a Z−-point if and only if it does not belong to an internal cell nor

to any cell at distance at most ργ from some mixed cell. Suppose, towards deriving contradiction,

that there exists some point p which is classified as a Z−-point and yet p ∈ Z. In this context it may

be convenient to think of p and s as vectors in R
2; as such, we denote them by /p and /s, respectively.

Let /u be a unit vector orthogonal to /s− /p. For every real θ ∈ [0, 1], let /qθ = θ/s+ (1− θ)/p and fix

d(θ) = ‖/p− /qθ‖ and h(θ) = sup{h ∈ R≥0 | /qθ + h/u ∈ Z ∧ /qθ − h/u ∈ Z} .

The convexity of Z implies that the function f(θ) = h(θ)/d(θ) is non-increasing in the interval

(0, 1]. Refer to Figure 18 for illustration.

Let θ′ = inf{θ ∈ (0, 1) | /qθ belongs to a mixed cell}. This is well defined as /p belongs to an

external cell and /s belongs to an internal cell. Since /p is a point in Z− and /qθ′ is on an edge of a

mixed cell, we have d(θ′) > ργ. Consider the mixed cell that realizes θ′ and let e′ be the edge of

this cell such that /qθ′ ∈ e′. By the definition of θ′, both vertices of e′ are external. Let /v be the

vertex of e′ that maximizes /v · (/s− /p). Refer to Figure 19 for illustration.

Fix

θ′′ =
(/v − /p) · (/s− /p)

‖/s− /p‖2 and /w =
/v − /qθ′′

‖/v − /qθ′′‖
.

The parameter θ′′ can be thought of as the projection of /v − /p on (/s − /p)/‖/s − /p‖, normalized by
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!p

!s

e
′

!qθ′

!qθ′′

!v

Figure 19: The mixed cell that realizes θ′ is depicted by the solid square. The vector /v − /qθ′′ is

orthogonal to /s− /p.

a factor of ‖/s − /p‖. Since /v and /qθ′ are both on the edge e′, it follows that ‖/v − /qθ′‖ ≤ γ. By the

choice of γ, and since /qθ′ is on an edge of a mixed cell, we know that ‖/s − /qθ′‖ > 2 · γ. Therefore

θ′′ < 1. On the other hand, the choice of /v implies that θ′′ ≥ θ′. It follows that d(θ′′) ≥ d(θ′) > ργ.

By definition, /w is a unit vector. Moreover, it is orthogonal to /s− /p, as /w · (/s− /p) = 0 can be

equivalently expressed as (/v − /qθ′′) · (/s− /p) = 0, or alternatively as

(

/v − (/v − /p) · (/s− /p)

‖/s− /p‖2 (/s− /p)− /p

)

· (/s− /p) = 0 ,

which clearly holds. Since /v is an external vertex, it follows that h(θ′′) < ‖/qθ′′ − /v‖, and since

‖/qθ′′ − /v‖ ≤ ‖/qθ′ − /v‖, we conclude that h(θ′′) < γ. Therefore f(θ′′) = h(θ′′)/d(θ′′) < 1/ρ.

Recall that f(θ) = h(θ)/d(θ) is non-increasing in the interval (0, 1]. Thus f(1) ≤ f(θ′′) <

1/ρ. But as h(1) ≥ δ̃ and d(1) ≤ ∆̃, f(1) must be bounded from below by 1/ρ, yielding a

contradiction.

It remains to bound the area of Z? with respect to the area of Z. In an attempt to do so, we

first bound the number (and consequently, also the total area) of mixed cells. Since each mixed

edge introduces at most two mixed cells, it is sufficient to bound the number m of mixed edges. To

this end, we argue that m = O(∆̃/γ). Indeed, every grid column (respectively, row) that intersects

with ∂Z admits exactly two mixed vertical (resp., horizontal) edges and there are O(∆̃/γ) grid

columns (resp., rows) that intersect ∂Z. It follows that Z? contains O(∆̃/γ) mixed cells and

O(ρ∆̃/γ + ρ2) = O( ∆̃
2

γδ̃
) cells in total.

Since the area of each grid cell is γ2, it follows that area(Z?) ≤ cγ∆̃2/δ̃ for some constant c. In

order to guarantee that area(Z?) ≤ ǫ ·area(Z), we employ the fact that area(Z) ≥ πδ̃2 and demand

that cγ∆̃2/δ̃ ≤ ǫπδ̃2. Therefore it is sufficient to fix

γ =
ǫδ̃3

c∆̃2
,
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which means that the number of mixed edges is m = O(ρ3ǫ−1).

Each cell column in Gγ contains 0, 1, or 2 contiguous sections of Z?-cells. Let Q be the collection

of cell columns with at least one Z?-cell. Clearly, |Q| ≤ m + 2ρ = O(ρ3ǫ−1). Therefore the data

structure QDS can be implemented as a vector with an entry for each cell column χ in Q that

encodes the sections of Z?-cells in χ. The Z+-cells are then determined to be the cells in between

two contiguous sections of Z?-cells. Therefore, on input point p ∈ R
2, we merely have to compute

the grid cell to which p belongs in order to decide in constant time whether p is a Z+-point, a

Z?-point, or a Z−-point.

5.2 Approximate point location queries in the SINR diagram

In this section we explain the relevance of the construction presented in Section 5.1 to ǫ-approximate

point location queries in the SINR diagram and establish Theorem 3. Consider some uniform power

network A = 〈2, S, 1̄,N ,β,α〉, where S = {s0, . . . , sn−1} and α > 0 and β > 1 are constants. Given

some 0 ≤ i ≤ n− 1 and some point p ∈ R
2 −S, we can clearly decide whether p ∈ Hi in time O(n)

by directly computing SINRA(si, p).

Assuming that the location of si is not shared by any other station (if it is, then Hi = {si}, and

point location queries pertinent to Hi are answered trivially), we know that si is an internal point

of Hi. Furthermore, Theorem 1 guarantees that the reception zone Hi is a convex thick zone and

Theorem 4.1 provides us with a lower bound δ̃ on δ(si,Hi) and an upper bound ∆̃ on ∆(si,Hi)

such that ∆̃/δ̃ = O ( α
√
n).

In fact, we can obtain much tighter bounds on δ(si,Hi) and ∆(si,Hi). Let r be some positive

real and assume that we are promised that δ(si,Hi) = O(r) and that∆(si,Hi) = Ω(r). Theorem 4.2

guarantees that ∆(si,Hi)/δ(si,Hi) = O(1), hence both δ(si,Hi) and ∆(si,Hi) are Θ(r). Such a

positive real r is found by directly computing the values of the SINR function of si in a binary

search fashion, say, on points to the north of si at distance at most ∆̃ and at least δ̃ from si.

Since ∆̃/δ̃ = O ( α
√
n), it follows that this process is bound to end within O(log n) iterations. Each

iteration takes O(n) time, thus the improved bounds for δ(si,Hi) and ∆(si,Hi) are computed in

time O(n log n).

Given a performance parameter 0 < ǫ < 1, we apply the technique presented in Section 5.1 to

Hi, using direct computations of the SINR function as the oracle O, with the improved bounds on

δ(si,Hi) and ∆(si,Hi), and construct in time O(nǫ−1) a data structure QDSi of size O(ǫ−1) that

partitions the Euclidean plane to disjoint zones R
2 = H+

i ∪H−
i ∪H?

i such that (1) H+
i ⊆ Hi; (2)

H−
i ∩ Hi = ∅; and (3) H?

i is bounded and its area is at most an ǫ-fraction of Hi. Given a query

point p ∈ R
2, QDSi answers in constant time whether p is in H+

i , H
−
i , or H?

i . (We construct a

separate data structure QDSi for every 0 ≤ i ≤ n− 1.)

Recall that by Observation 2.2, point p cannot be in Hi unless it is closer to si than it is to any
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other station in S. Thus for such a point p there is no need to query the data structure QDSj for any

j %= i. A Voronoi diagram of linear size for the n stations is constructed in O(n log n) preprocessing

time, so that given a query point p ∈ R
2, we can identify the closest station si in time O(log n) and

invoke the appropriate data structure QDSi.

Combining the Voronoi diagram with the data structures QDSi for all 0 ≤ i ≤ n− 1, we obtain

a data structure DS of size O(nǫ−1), constructed in O(n2ǫ−1) preprocessing time, that decides in

time O(log n) whether the query point p is in H+
i for some i, in H?

i for some i, or neither, which

means that p ∈ H− =
⋂n−1

i=0 H−
i . Theorem 3 follows.
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[13] M.M. Halldórsson. Wireless scheduling with power control. In ESA, pages 361–372, 2009.
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Appendix: Proof of Lemma 2.4

Fix some x ∈ (0, 1) and let

F (y, z) = σ

(

x

y

)α

+ τ
(x

z

)α

and G(y, z) = σ

(

1− x

1− y

)α

+ τ

(

1− x

1− z

)α

.

It is easy to verify that the function F (y, z) (respectively, G(y, z)) is continuous and strictly de-

creasing (resp., increasing) in both variables y and z. Therefore, max{F (y, z), G(y, z)} is minimized

when F (y, z) = G(y, z) and it suffices to show that, letting H(y, z) = F (y, z)−G(y, z), the solution

to the following optimization problem is at least σ + τ :

min {F (y, z)}

s.t. H(y, z) = 0

y, z ∈ (0, 1) ,

We begin by understanding the structure of the contour

H0 = {(y, z) ∈ (0, 1)2 | H(y, z) = 0} .

Fix some y ∈ (0, 1). By definition, the point (y, z) satisfies H(y, z) = 0 if and only if

(x

z

)α

−
(

1− x

1− z

)α

=
σ

τ

[(

1− x

1− y

)α

−
(

x

y

)α]

.

Since the function f(z) =
(

x
z

)α −
(

1−x
1−z

)α

is continuous and strictly decreasing in z ∈ (0, 1) with

limz→0+ f(z) = +∞ and limz→1− f(z) = −∞, it follows that there exists a unique z ∈ (0, 1)
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such that H(y, z) = 0. Since the function g(y) = σ
τ

[(

1−x
1−y

)α

−
(

x
y

)α]

is continuous and strictly

increasing in y ∈ (0, 1) with limy→0+ = −∞ and limy→1− = +∞, we conclude that the contour H0

is depicted by the curve {(y, µ(y)) | y ∈ (0, 1)}, where the function µ : (0, 1) → (0, 1) is continuous,

strictly decreasing, and surjective.

It is easy to verify that the point (y = x, z = x) belongs to the curve H0. We argue that the

minimum of F (y, z) along the curve H0 is attained in that point. This establishes the assertion as

F (x, x) = σ + τ .

To that end, observe that limy→0+ F (y, µ(y)) = limy→1− F (y, µ(y)) = +∞, thus the minimum

of F (y, z) along the curveH0 is attained in some point (y, z) ∈ H0 such that the gradient /∇F (y, z) =
(

∂F
∂y (y, z),

∂F
∂z (y, z)

)

of F at (y, z) is colinear7 with the gradient /∇H(y, z) =
(

∂H
∂y (y, z),

∂H
∂z (y, z)

)

of H at (y, z). It is easy to verify that

∂F

∂y
(y, z) = −ασ

xα

yα+1
,

∂F

∂z
(y, z) = −ατ

xα

zα+1
,

∂H

∂y
(y, z) = −ασ

(

xα

yα+1
+

(1− x)α

(1− y)α+1

)

, and

∂H

∂z
(y, z) = −ατ

(

xα

zα+1
+

(1− x)α

(1− z)α+1

)

. (6)

Since these partial derivatives are non-zero for every (y, z) ∈ (0, 1)2, we conclude that for any point

(y, z) ∈ (0, 1)2 (not just points in H0), /∇F (y, z) is colinear with /∇H(y, z) if and only if

∂F
∂y (y, z)

∂F
∂z (y, z)

=

∂H
∂y (y, z)

∂H
∂z (y, z)

.

By (6), this condition can be written as

σ

τ
·

(

z

y

)α+1

=
σ

τ
·

xα

yα+1 + (1−x)α

(1−y)α+1

xα

zα+1 + (1−x)α

(1−z)α+1

,

or equivalently as

xα + (1− x)α
(

z

1− z

)α+1

= xα + (1− x)α
(

y

1− y

)α+1

,

or, after further simplification, as
z

1− z
=

y

1− y
,

which, in turn, holds if and only if y = z. The proof is completed by observing that the line y = z is

strictly increasing (with respect to y), thus it intersects the strictly decreasing curve H0 in exactly

one point: (y = x, z = x).

7In this context, two vectors are said to be colinear if one is a non-zero scalar multiplication of the other.
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