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Sinusoidal-Gaussian beam solutions are derived for the propagation of electromagnetic waves in free space and 
in media having at most quadratic transverse variations of the index of refraction and the gain or loss. The 
resulting expressions are also valid for propagation through other real and complex lens elements and systems 
that can be represented in terms of complex beam matrices. The solutions are in the form of sinusoidal func­
tions of complex argument times a conventional Gaussian beam factor. In the limit of large Gaussian beam 
size, the sine and cosine factors of the beams are dominant and reduce to the conventional modes of a rectan­
gular waveguide. In the opposite limit the beams reduce to the familiar fundamental Gaussian form. Al­
ternate hyperbolic-sinusoidal-Gaussian beam solutions are also found. © 1997 Optical Society of America 
[S0740-3232(97)00212-3] 

1. INTRODUCTION 

One of the most basic problems in optics is the determi­

nation of the propagation characteristics of electromag­

netic beam waves in various optical elements and sys­

tems. Historically, the simplest limit of propagation in 

free space was the first to be analyzed in detail, and it 

was found that the field solutions in that case can be de­

scribed in terms of Laguerre-Gaussian functions of real 

argument (referring to the argument of the Laguerre 

function) if one is working in cylindrical coordinates 1 or 

Hermite-Gaussian functions of real argument in rectan­

gular coordinates.2 However, many optical elements of 

interest involve spatial variations of the index of refrac­

tion, gain, or loss; and it is also important to understand 

the propagation characteristics of optical beams in such 

elements. It has long been known that media with re­

fraction profiles can be used to guide electromagnetic 

beams. The guiding of beams by media with gain or loss 

profiles was also predicted,3 and gain guiding has been 

demonstrated experimentally.4 However, the propaga­

tion of higher-order electromagnetic beams in such com­

plex media cannot be easily described in terms of 

polynomial-Gaussian solutions of real argument. Com­

plex Hermite-Gaussian beams5 and Laguerre-Gaussian 

beams6 were discovered as eigenfunctions for laser reso­

nators with Gaussian mirror-reflectivity profiles, and the 

complex Hermite-Gaussian beams were also found in 

more general propagation studies.7- 16 In particular, it 

Was shown that complex off-axis Hermite-Gaussian and 

Laguerre-Gaussian beams can propagate in any medium 

that can be characterized by only constant, linear, and 

quadratic transverse variations of the gain and index of 

refraction in the vicinity of the beam. ll,12,16 Thus such 

0740-3232/97/123341-08$10.00 

beams are needed for the most general analytic propaga­

tion studies. 

There are important qualitative distinctions between 

the propagation behavior of polynomial-Gaussian beams 

of real argument and the behavior of the corresponding 

beam solutions of complex argument. With the real­

argument solutions the polynomial-Gaussian fields retain 

the general form of their field distribution at all planes 

along the propagation path. Thus the scale of the ampli­

tude profile may change, but its general shape is con­

stant. With the complex beams, on the other hand, the 

field profile may change form dramatically from one plane 

to another. A further important difference is that the 

spatial phase variations of the real-argument beams are 

similar to spherical waves, whereas the complex­

argument beams have more complicated phase profiles. 

Although most attention over the years has been fo­

cused on Hermite-Gaussian and Laguerre-Gaussian 

field solution sets, other solutions are possible, too. It 

was shown that linearly polarized Jo-Bessel-Gaussian 

beams can propagate in free space,17,18 and recently a set 

of higher order azimuthally or radially polarized free­

space Bessel-Gaussian beams was reported. 19,20 A set of 

higher-order linearly polarized beams can also be ob­

tained. Like the polynomial-Gaussian solutions of com­

plex argument, the field distribution of these beams 

evolves strongly with propagation distance. 

An attractive feature of the Bessel-Gaussian beams is 

their correspondence with the modes of waveguides. 

Thus in the limit that the Gaussian beam size becomes 

large, the remaining Bessel function factor corresponds 

exactly with the Bessel function modes of dielectric 

waveguides such as optical fibers. 21 These solutions are 

© 1997 Optical Society of America 
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also the same as the so-called nondiffracting beams of re­

cent interest.22
,23 Such beams have been called nondif­

fracting on the basis that, if a sufficient portion of the 

beam profile is available, the beam will propagate for a 

long distance without much reduction in the amplitude of 

the central maximum (or any other maximum). 

The new Bessel-Gaussian beams are one of the natural 

solutions of the wave equation in cylindrical coordinates. 

It is reasonable to inquire whether there might also be a 

corresponding set of beams in rectangular coordinates. 

Such a set should ideally reduce to conventional rectan­

gular waveguide modes in an appropriate limit. One 

purpose of this work has been to develop a set of 

sinusoidal-Gaussian field solutions of complex argument 

for beam propagation in a rectangular system. In the 

limit that the Gaussian becomes infinitely wide, these so­

lutions reduce to the ordinary sinusoidal modes that one 

would expect for a rectangular waveguide. Local 

maxima of such modes are, of course, also nondiffracting. 

The derivation of our sinusoidal-Gaussian beams has 

included the possibility of propagation in complex lenslike 

media having at most quadratic transverse variations of 

the index of refraction and the gain or loss. The special 

case of propagation in free space is also considered. The 

beams also propagate in any of the optical elements or 

systems that have previously been analyzed in terms of 

polynomial-Gaussian functions. Advanced matrix meth­

ods for off-axis beams in general misaligned systems are 

also applicable to this solution set.24 

The basic derivation of the sinusoidal-Gaussian beams 

is included in Section 2. The purpose of this derivation is 

to reduce the partial differential wave equation to a set of 

first-order ordinary differential equations governing the 

various parameters that characterize the beam. The so­

lutions of these simpler equations are discussed in Sec­

tion 3, and the specific problem of propagation through 

free space is explored in Section 4. 

2. DERIVATION OF THE BEAM SOLUTIONS 

For any investigation of light propagation the proper 

starting point is the Maxwell-Heaviside equations. 

These equations can be combined to yield coupled-wave 

equations that govern the various field components of a 

propagating electromagnetic beam. For the usual case of 

slowly varying complex propagation constant k, the domi­

nant transverse field components are governed by the 

much simpler wave equation 

V 2E'(x, y, z ) + k2(x, y , z )E'(x, y, z ) = 0, (1) 

where E' is the complex amplitude of the vector electric 

field E , and k is the complex spatially dependent wave 

number. The wave number may have an imaginary part 

as a result of nonzero conductivity or out-of-phase compo­

nents of the material polarization or magnetization. If 

needed, the weak z components of the fields may be found 

from the transverse components by means of the 

Maxwell- Heaviside equations.ll 

In many practical situations the gain (or loss) and in­

dex of refraction have at most quadratic variations in the 

vicinity of the propagating beam, and one can write 

Casperson et I a. 

k 2(X , y , z ) = ko( z )[ko(z ) - kIx(z )x - kIy(z)y 

- k 2x(z )X 2 - k2y(Z)y2]. 
(2) 

For an x-polarized wave propagating in the z direction 
useful substitution is a 

Ex' (x , y, z ) = A(x, y, z ) exp[ -i tkO(Z')dz'j, (3) 

and the x component of Eq. (1) reduces to 

~ A ~A M ~o 

ax 2 + -2 - 2iko - - i-A - ko(klxx + kl y 
ay az dz Y 

+ k2xx2 + k2yy2)A = 0, (4) 

where A (x , y, z ) is assumed to vary so slowly with z that 

its second derivative can be neglected. 

A useful form for an astigmatic off-axis Gaussian beam 

is I2 

( 
.[Qx(Z)X2 

A (x , y, z) = B (x, y, z) exp -l 2 

+ S x(z)x + Sy(z)y lJ. (5) 

With this substitution Eq. (4) may be separated into the 

set 

2 dQx 
Qx + ko dz + kok 2x = 0, 

2 dQ y 
Qy + ko dz + kok2Y = 0, 

. dSx koklx 
= 0, QxS x + ko dz + 

2 

dSy kok ly 
Q yS y + k 0 dz + 2 = 0, 

a2B aB a2B aB 
-2 - 2i(Sx + Qxx) - + -2 - 2i(Sy + QyY) -
ax . , ax ay ay 

(6) 

(7) 

(8) 

(9) 

dk o 
- i & B = 0. (10) 

This separation is accomplished by setting equal to zero 

the various terms in x 2 , Y 2, x, and y . The significance of 

the Q parameters is contained in the relation 

(11) 
ko(z) 2 

Qx(z) = R-( ) - i ~( )' 
x Z W x Z 

where R x and W x are, respectively, the radius of curva­

ture of the phase fronts and the lie amplitude spot size in 

the x direction. The ratio d xa = -Sxi IQxi is the dis­

placement in the x direction of the amplitude center ofthe 

Gaussian part of the beam, and the ratio dxp 

= - S xrlQxr is the displacement in the x direction of the 

phase center of the beam.ll Here the subscripts i and r 

den 
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denote, respectively, the imaginary and real parts of the 

parameters Q x and S x , and similar relations apply to the 

functions Qy and Sy. 

Thus far we have obtained a general set of off-axis 

Gaussian beams governed by Eqs. (6)-(9), and the solu­

tions of these equations are known for z-independent 

rnedia. ll Additional amplitude and phase variations can 

be found as solutions of Eq. (10). In the special case that 

B (x, y, z) is independent of x and y, the solutions corre­

spond to the fundamental Gaussian beam. If B (x, y, z) 

is not independent of x and y, Eq. (10) can still be solved 

exactly. In fact, several different solution sets ' are pos­

sible, and most previous solutions have included various 

on-axis and off-axis Hermite-Gaussian and Laguerre­

Gaussian beams. The solutions reported here involve 

general off-axis sinusoidal-Gaussian beams of complex ar­

gument. 

To maintain as much generality as possible, one is led 

to modify Eq. (10) with the following changes of 

variables12
: 

x' = ax(z)x + bx(z), (12) 

y' = ay(z)y + by(z), (13) 

z' z, (14) 

where ax(z), bx(z), ayCz), and by(z) are as yet unspeci­

fied functions of z. With these substitutions, Eq. (10) be­

comes 

a
2

B [ 
ax

2
ax

'2 - 2 iaxSx + i(x' - bx)Qx 

(x' - bx) da x db x] aB 
+ iko - + iko - -

a x dz ' dz ' ax ' 

a
2

B [ 
+ ay

2 
ay,2 - 2 iaySy + iCY' - by)Qy 

. (y' - by) day . db y] aB 
+ ~ko - + ~ko - -

a y dz' dz' ay' 

- (Sx 2 + Sy2)B - i(Qx + Qy)B 

. aB . dk o 
- 2~ko -, - ~ -dz' B = 0. (15) 

az 

The substitution 

B(x', y', z') = C(x', y', z')exp[ -iP(z')] 

in Eq. (15) makes possible the arbitrary separation 

dP 

dz' 
1 [2 2 . 

- 2ko (Sx + Sy ) + ~(Q x + Qy) 

2 2 2 2 . dkoj 
+ ('Yx a x + 'Yy ay ) + ~ (1;'1 , 

(16) 

(17) 
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a2 
C [ (x' - b x) da x 

ax
2 
-a ,2 - 2 iaxSx + i(x' - bJQx + iko -dz' 
x ax 

db x] aC 2 a
2
c 

+ ik - - +a -
o dz' ax' y ay,2 

[ 

(y' - by) day 
- 2 iaySy + iCY' - by)Qy + iko a

y 
~ 

db y] aC . aC 
+ iko - - - 2~ko -

dz' ay' az' 

+ ('Yx 2ax
2 + 'Yy 2ay 2)C = 0, (18) 

where P(z ') is a phase parameter and 'Yx and 'Yy are sepa­

ration constants. Equation (18) may be reduced to equa­

tions for sinusoidal functions if the quantities in brackets 

are set equal to zero. Then this equation initially be­

comes 

( 
a2c ) ( a

2
c ) 

ax 
2 

ax 1 2 + 'Y x 
2 
C + a y2 ay 12 + 'Yy 

2 
C 

aC 
- 2iko -, = 0. (19) 

az 

The corresponding constraints on ax(z ') and bx(z ') that 

arise from equating separately the terms in the first 

bracketed quantity of Eq. (18) that multiply x' and those 

that do not may be written 

ko da x 
Qx + - (1;'1 = 0, (20) 

ax 

db x 
axS x + ko dz' = 0, (21) 

where Eq. (20) has also been used in simplifying Eq. (21). 

Similar equations are obtained for ay(zl) and by(ZI). 

The product function 

C(X', y', Zl) = X(XI)Y(y') (22) 

satisfies Eq. (19) provided that X and Yare solutions of 

the sine function differential equations 

a2x 
_ + 2 ax ,2 'Yx X = 0, (23) 

a2 y 
+ 2y 

ay'2 'Yy = 0. (24) 

Thus the general solution for the propagation of optical 

beams in complex z-dependent lenslike media can be ex­

pressed in terms of sinusoidal-Gaussian functions of com­

plex argument. The previous results can be collected to­

gether and written explicitly as 
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where y/ = i Yx , yy' = i yy, and the terms in large pa­

rentheses are meant to suggest a possible superposition of 

the sine, cosine, hyperbolic sine, and hyperbolic cosine 

symmetries, which could also be represented as, for ex­

ample, just the sine or sinh functions but with added 

phase terms. The separation constants Yx and yy could 

Casperson et al. 

-

In this expression R x represents the radius of curvature 

of the phase fronts, W x is the spot size or 1 Ie amplitude 

radius of the Gaussian amplitude distribution, A. is the 

vacuum wavelength, and no is the index of refraction. 

For a z-independent medium the ABCD coefficients in Eq. 
(26) are the elements of the matrix 

[
AxBx] [ cos[(k 2xlko)1/2zJ 

CxDx = -(k2xlko)1/2 sin[(k 2x lk o)1I2z J 

(k 0 I k 2x) 1/2 sine (k 2x Ik 0) 1/2Z J] 
cos[ (k 2xlko)1/2ZJ . (28) 

now be absorbed into their associated a and b coefficients, 

or, equivalently, they can be set equal to unity. Equation 

(25) is our general form for the sinusoidal-Gaussian 

beams of complex argument in complex lenslike media. 

3. SOLUTION OF THE BEAM EQUATIONS 

In the previous section we derived a set of beam solutions 

that can describe the spatial distribution of electromag­

netic waves as they propagate in general complex lenslike 

media. In this process the partial differential wave equa­

tion has been reduced to a set of ordinary differential 

equations. Our solutions will not be complete until these 

secondary beam-parameter equations have actually been 

solved. Thus it is now necessary to solve the coupled or­

dinary first-order differential equations given above as 

Eqs. (6)- (9), (17), (20), and (21). 

Although many specific solutions exist for the beam pa­

rameter Eqs. (6) and (7), no completely general analytic 

solution for Qx and Qy is available for arbitrary z depen­

dences of the wave-number coefficients k 0 , k 1, and k 2 . 

Numerical solutions are of course always possible, and it 

will be seen that all of the other coefficients in the mode 

expressions can be expressed in terms of Q x and Q y . 

The solutions to Eq. (6) can be written in the well-known 

form3 

1 Cx + Dxlqxl 

A x + B xlqxl ' 
(26) 

and this result is also valid for a wide variety of other op­

tical elements. We will be using the standard low-gain­

per-wavelength form of the beam parameter25
: 

1 1 iA. 

2 ' 
no7TWx 

(27) 

Similar solutions are obtained for Eq. (7). Equation (26) 

was referred to by Kogelnik as the ABCD law26 but has 

also otherwise been called the Kogelnik transformation. 

Equation (26) gives the z dependence of the beam pa­

rameter Q x , and this result can now be substituted into 

Eq. (8) for the complex displacement parameter S x ' The 

resulting equation can be integrated explicitly. For sim­

plicity we will make the specific choice that the medium is 

aligned with the z axis (k I x = k l y = 0), and then the dis­

placement parameter for the x direction is governed by 

the AB law27 

(29) 

with a similar equation for the displacement parameter 

for the y direction S y 2 . 

In the present limit of an aligned medium, Eq. (20) for 

the parameter ax(z) is of the same form as Eq. (8) for the 

displacement parameter S x(z ). Therefore the parameter 

ax(z ) is also governed by an AB law, 

a x 2 = A B I ' x + x qxl 
(30) 

with a similar equation for a y 2' With the results given 

above, Eq. (21) for the parameter bx(z) can be written as 

<. . 
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This equation can be integrated, and the result is 

a x18 xl (holk2J l/2 sin[(k 2xlk o)1I2z ] 
bx(z) = bXl - 112 1/2 . 1/2' (32) 
. ko COS[(k2x lko) z] + (kolk2x) sm[(k 2x lk o) Z]/q xl 

or 

-a x18 xl B x (33) 
bX2 = bXl - -----;;;- Ax + B x Iq x l . 

A similar result is obtained for by(z). 

The phase parameter follows from Eq. (17), and for z 

independent media this equation is 

dP(z) 

dz 

1 2 2 . 
- 2ko [(8x + 8 y ) + ~(Q x + Qy) 

+ (-)Ix 2a} + I'y 2ay 2)]. (34) 

With the ,same methods as before, this equation can be in­

tegrated. The result is 

~ 

P 2 = PI - '2 [In(Ax + B x lqxl) + In(Ay + Bylqyl)] 

_1_ [(8XI
2 + I'x2axl2)Bx 

2ko Ax + B x lqxl 

(8y 1
2 + Yy 2a y12)By] 

+ Ay + B y lqyl ' 
(35) 

which can be checked by differentiation. When the vari­

ous parameter formulas discussed here are introduced 

into Eq. (25), one has a complete description of the propa­

gation of sinusoidal-Gaussian beams in aligned complex 

lens like media. These results also apply to lenses, ret­

rorefiectors, and the many other elements that can be rep­

resented by ABCD matrices. Misaligned and displaced 

media are most easily treated by using a 3 X 3 matrix 

formulation. 24 

4. PROPAGATION IN FREE SPACE 

As an example of the previous results, we will now con­

sider in detail the important special case of beam propa­

gation in free space. The general propagation matrix 

given in Eq. (28) reduces for a uniform medium (k 2x 
0) to the simple form 

[
A x B x] [1 zl 
CxDx = 0 l' 

(36) 

and if the medium is free space the parameter k 0 has the 

real value 21T1'A.. With use of Eq. (36) the various param­

eter equations given above as Eqs. (26), (29), (30), (33), 

and (35) reduce to 

11qxl 1 
(37) 

q x2 1 + zlqxl ' 

8 x2 = 1 (38) 

a xl 

a x2 - 1 + zlqxl ' 

a x18xlzlko 

bx2 = bXI - 1 + zlq xl ' 

i 
P 2 = PI - '2 [In(1 + Zlq xl) + In(1 + zlqyl)] 

(39) 

(40) 

_ ~ x l + Yx a xl + y l + Yy ayl . 
( 
8 2 2 2 8 2 2 2) 

2ko 1 + zlq x l 1 + Zlqyl 

(41) 

As a further specialization it will be assumed that both 

the Gaussian and sinusoidal factors of the beam remain 

on the z axis (8x l = 8 Yl = bXI = bY l = 0). Further­

more, it will be assumed that the beam is so wide in the y 

direction (lIq yl =:::} 0, I'ya yl =:::} 0) that it can be considered 

a simple slab geometry configuration. In these limits Eq. 

(25) governing the field can be written 

E x' (x, z) ~ E xo' exp( -i[ koz + 2::~:) + p(Z)]l 

X sine Yxa x(z)x], (42) 

where, to be specific, only the sine form of the beam is 

shown. The remaining equations governing the param­

eters of the beam include Eqs. (37), (39), and the following 

simplified form of Eq. (41): 

~ z Yx 2ax12 

P 2 = PI - -2 In(1 + Zlq xl) - -2k 1 I . (43) 
o + z qxl 

Equations (27) and (37) are familiar in Gaussian beam 

studies. If the spot size and phase front curvatures are 

referenced to their values at the waist of the Gaussian 

factor of the beam, these equations yield the standard re­

sults 

Wx2 = w xo[1 + (zlzO)2]1I2, 

Rx2 = z[1 + (ZOIZ)2], 

(44) 

(45) 

where Zo = 1Twx0
2/'A. is the Rayleigh length and WxO is the 

spot size at the waist. To be still more specific, while em­

phasizing the initial form of the beam as a sine-Gaussian, 

it will be assumed that the parameter a xl at the beam 

waist has the real value a xo. In this case the real and 

imaginary parts ofa x 2 in Eq. (39) can be written 

axo 
(46) - 2' ax2r - 1 + (zlzo) 

a xo(z lzo) 
- 2' ax2i - 1 + (zlz o) 

(47) 

From Eq. (43) the phase parameter can be separated into 

its real and imaginary parts according to 

iii 
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Fig. 1. Transverse intensity profiles of a sine-Gaussian beam at 

the reference plane Z" = a for the normalized modal parameter 

values a" = 1,3, and 5. For small values of this parameter the 
intensity distribution approaches that of a first-order Hermite­
Gaussian beam mode. 

I.OO~---------------- ---, 

oS? 

075

1 
Z = 0.0 Zo 

.~ 
0.50 

c: 
Q) 

] 

0.25 
z = 0.5 Zo 

-2 o 4 

Position x / Wo 

Fig. 2. Transverse intensity distribution of a sine-Gaussian 

beam with a" = 5 for the normalized propagation distance val­

ues Z" = 0.0, 0.5, 1.0. For large values of the propagation dis­
tance the intensity distribution evolves into that of a sinh­
Gaussian beam mode. 

Z Yx 2ax0
2/(2k o) 

1 + (Z/ZO)2 

Z Yx 2ax0
2(z/zo)/(2k o) 

1 + (z/zO)2 

where the initial phase has been set to zero. 

(48) 

(49) 

The intensity is proportional to the product of the com­

plex field amplitude Ex' and its conjugate, and from Eqs. 

(42), (44)-(49) the intensity can be written as 

Casperson et ai. 

Equation (50) is our final result for the intensity distrib _ 

tion of a pure sine-Gaussian beam propagating from U 

uniform-phase waist in free space. A similar result is ob~ 
tained for a pure cosine-Gaussian beam. 

The implications of Eq. (50) are not especially easy to 

visualize, so we have plotted some representative inten­

sity profiles. As a first step it is helpful to introduce the 

normalized transverse coordinate x" = x/wxo, the nor­

malized longitudinal coordinate z" = z/zo, and the nor­

malized parameter a" = Yx axow xo · With these substi­
tutions Eq. (50) reduces to the more compact form 

l(x", z") = 1
0 

exp ( 
(1 + z,,2)112 

[ ( 

2a"X"Z") 
x cosh 2 

1 + z" 

2X,,2 + a"2z "2/2) 

1 + z,,2 

cos( 2a"x" ) 1 / 
1 + z,,2 2. 

(51) 

We will look first at possible forms that this intensity 

profile may take at the reference plane z" = O. From Eq. 

(51) the intensity at this plane simplifies to 

l(x", z" = 0) = 10 exp( -2x,,2)[1 - cos(2a"x")]/2 

= 10 exp( -2x,,2)sin2(a"x"). (52) 

Figure 1 shows some typical transverse intensity profiles 

of a sine-Gaussian beam based on Eq. (52), for various 

values of the normalized parameter a". For small values 

of this parameter, Eq. (52) reduces to 

(53) 

which is the intensity distribution of a first-order 

Hermite-Gaussian beam. Under the same conditions 

the intensity distribution of a cosine-Gaussian beam 

would approach that of the fundamental Gaussian beam. 

It is also of interest to consider the transverse intensity 

distribution of a sine-Gaussian beam at various values of 

the propagation distance z", and plots of this variation 

are given in Fig. 2. For large values' of z", Eq. (51) sim­

plifies to 

x [cosh(2a"x"/z") -1]/2 

= 1
0

z,, - 1 exp[ _(2x,,2/z ,,2 + a,,2/2)] 

x sinh2(a"x"/z"). (54) 

Thus the sine-Gaussian beam evolves into a sinh­

Gaussian beam as it propagates. In a similar way the 

cosine-Gaussian beam would evolve into a cosh-Gaussian 

beam. 

The cosh-Gaussian beam in particular may have impor­

tant applications in optimizing the efficiency of laser am­

plifiers. To illustrate this, we will note from the form of 

(50) 

I 
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Fig. 3. Amplitude profiles from Eq. (55) for (a) a fundamental 
Gaussian beam and (b) a cosh-Gaussian beam. The horizontal 

variable for these plots is xlw, and the vertical variable is nor­

malized to unity. The cosh sc:ale width for part (b) is given by 

a X w = 5. 

Eq. (42) that at any value of the position z the transverse 

amplitude factors of a cosh-Gaussian beam are propor­

tional to 

Ex'(x, z) ex cosh[a(z)xJexp[ -x2/w(z)2]. (55) 

This amplitude profile is plotted in Fig. 3, where it is also 

compared with the more familiar Gaussian amplitude fac­

tor. It is clear from the figure that the cosh-Gaussian 

beam can be much squarer than other beam profiles, de­

pending on the specific values of the width coefficients in 

the equation. Thus, these profiles can resemble closely 

the super-Gaussian field distributions that are known to 

be more efficient at extracting energy from an amplifying 

medium.28 

5. DISCUSSION 

Sinusoidal-Gaussian beams have been obtained here for 

the propagation of electromagnetic waves in free space 

and in complex media. In the limit of large Gaussian 

beam spot size the Gaussian beam factor becomes unim­

portant, and the field distribution reduces to the conven­

tional modes of a rectangular waveguide. In the opposite 

limit that the period of the sinusoidal factors is large com­

pared with the width of the Gaussian factor, the beam 

takes the form of the familiar fundamental Gaussian 

beam (or sometimes the first-order Hermite-Gaussian 

beam). A different but similar class of beams involves 

hyperbolic-sinusoidal-Gaussian functions. 

None of these classes of beams is difficult to obtain in 

the laboratory. The easiest method would be to have an 

ordinary Gaussian beam be incident on an appropriate 

transmission or reflection aperture. For example, if a 

Gaussian beam is incident on an aperture having a cosh 

amplitude transmission function (at least over the dimen­

sions of the beam), one immediately obtains a cosh­

Gaussian beam. Although the detailed amplitude and 

phase profiles of this beam will evolve with further propa­

gation through free space or through an arbitrary ABCD 

optical system, the general functional form of the beam 

will remain expressible as cosh-Gaussian. Such beams 
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are of practical interest because of their potentially more 

efficient extraction of energy from conventional laser am­

plifiers. 

Although the example just mentioned involved a hyper­

bolic sinusoidal-Gaussian beam, the nonhyperbolic 

sinusoidal-Gaussian beams are equally interesting. 

These beams could also be readily obtained by means of 

an appropriate transmission filter, and there are impor­

tant applications for spatially modulated Gaussian laser 

beams.29 Any thin optical element with a periodic trans­

verse amplitude (or phase) transmission (or reflection) 

profile, such as a grating, would yield a transformation 

profile that could be represented as a Fourier series. 

Each of the resulting harmonics might be imagined to 

convert a portion of the input beam into a corresponding 

sinusoidal-Gaussian. However, since field reversals oc­

cur between neighboring areas of the desired sinusoidal­

Gaussian beam, an ideal sinusoidal transmission filter 

would include a phase plate to modify both the amplitude 

and the phase of the incident Gaussian beam. The re­

sulting sinusoidal-Gaussian beams could be propagated 

through conventional optical elements by using standard 

ABCD matrix methods, and they might also be useful in 

transforming between the Gaussian free-space beams and 

the sinusoidal modes that commonly occur in waveguides. 

To some extent, the Hermite-Gaussian and sinusoidal­

Gaussian solutions may be considered to compete with 

each other as representations for propagating electromag­

netic beams. However, if the input field is primarily 

sinusoidal-Gaussian in form, several Hermite-Gaussian 

solutions might be required to represent it, and vice 

versa. Thus the choice of field representation would 

probably be made on the basis of efficiency, and the beam 

solutions described here would provide the optical system 

designer with a sometimes welcome alternative. A more 

detailed discussion of applications of the sinusoidal­

Gaussian beam solutions will be given elsewhere. 
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