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Abstract—In this paper, the sinusoidal-ripple-current (SRC)
charging strategy for a Li-ion battery is proposed. The ac-
impedance analysis is used to explore the optimal charg-
ing frequency. Experiments indicate that the optimal charging
performance can be achieved by the proposed SRC with the
minimum-ac-impedance frequency fZ min. Compared with the
conventional constant-current constant-voltage charging strategy,
the charging time, the charging efficiency, the maximum rising
temperature, and the lifetime of the Li-ion battery are improved
by about 17%, 1.9%, 45.8%, and 16.1%, respectively.

Index Terms—Li-ion battery, minimum ac impedance, sinu-
soidal ripple current (SRC).

I. INTRODUCTION

THE development of portable electronic apparatus, elec-

tric vehicles, and renewable energies has been prolif-

erating rapidly in recent years. A secondary battery is the

significant and necessary energy-storage unit for these devices,

and consequently, a high-quality battery charge strategy is

desired. Nowadays, several charging techniques are proposed,

such as constant-trickle-current charging, constant-current

(CC) charging, and CC constant-voltage (CC-CV) charging

[1]–[5]. Among them, the CC-CV is used most extensively,

although its charging performance is still unable to meet the

consumers’ requirements of faster charging speed and longer

lifetime. Thus, other charging techniques, such as fuzzy con-

trol, neural network, heredity algorithm, ant-group algorithm,

and gray prediction, are applied to obtain a better battery-

charging performance [6]–[11]. The circuit design based on the

charging systems mentioned earlier is both complicated and

expensive. Hence, the phase-locked-loop charging techniques

were adopted to reach the goal of high performance and low

cost [12]–[15].

Advanced battery-charging systems mostly use the technique

of pulse charging which allows the evener distribution of ions
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Fig. 1. Li-ion-battery ac-impedance model.

in the battery electrolyte [16]–[25]. It meets the purpose of

slowing down the polarization of the battery and advances

the charge speed and the lifetime. Traditionally, the empirical

method and the trial-and-error method are mostly used to search

for the optimal charging frequency in the type of pulse charging

system. The scientific method is not particularly used to explore

how the optimal charging frequency of the Li-ion battery can

be decided. In other words, to explore the optimal charging

frequency of the Li-ion battery and to efficiently improve its

charging performances are the most important tasks. Moreover,

a low-frequency sinusoidal current effect in a one-stage charger

with power factor correction was discussed [26]. Experiments

show that the charging speed and the rising temperature of a

lead–acid battery charged by a 100-Hz sinusoidal current seem

little better than those charged by CC-CV [26]. In addition,

the sinusoidal current charging for a LiFePO4 battery was

tested and obtained better charging performances [27]. For

these reasons, the ac-impedance analysis is used in this paper

to explore the optimal charging frequency. In addition, the

sinusoidal-ripple-current (SRC) charging strategy for a Li-ion

battery is also proposed. When the Li-ion battery is charged

by the proposed SRC charging strategy with the minimum-ac-

impedance frequency fZ min, an optimal charging performance

can be obtained. Specially, the charging efficiency, the rising

temperature, and the lifetime are obviously improved by using

the proposed SRC with fZ min.

II. AC-IMPEDANCE ANALYSIS

In the past few decades, ac-impedance analysis has been

widely used in the research of electrochemistry. The ac im-

pedance of a battery can be used to explore battery performance

including state of charge and state of health [25]–[32]. Fig. 1

shows the Li-ion-battery ac-impedance model. This model con-

sists of a charge transfer resistance Rct, a Warburg impedance

0278-0046/$31.00 © 2012 IEEE
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Fig. 2. Simplified Li-ion-battery impedance model.

Fig. 3. Li-ion-battery equivalent circuit model.

Zw, a double-layer capacitance Cd, an ohmic resistance Ro, and

an anode inductance Ld [33]–[37]. The Warburg impedance Zw

influences the ac impedance only when the charging frequency

is below 1 Hz. Therefore, the Warburg impedance Zw can

be neglected [38]. Fig. 2 shows the simplified Li-ion-battery

ac-impedance model adopted in this paper. Fig. 3 shows the

Li-ion battery’s equivalent circuit model which consists of an

ac impedance and an ideal battery. From the electrical circuit

view, it is possible to find a frequency to minimize the battery

impedance so as to reduce the energy loss in the battery-

charging process. That means that the energy loss in electrical

energy transfer to chemical energy is minimized. Therefore, a

maximum energy transfer efficiency (i.e., the best electrochem-

ical reaction) is obtained in the battery. In fact, it has been

shown that a smaller charge transfer resistance means a better

electrochemical reaction [39], [40], proving further that a better

charge strategy can result in a smaller ohmic resistance [41].

Assuming that the charging frequency is fs, the ac im-

pedance of the battery Zbattery can be written as

Zbattery(ωs) =






Ro +

Rct

(ωsCd)2

R2
ct +

(

1
ωsCd

)2
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+j
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


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according to Fig. 2. Note that the temperature impact in this

mathematic analysis is ignored. Clearly, the ac impedance of a

Li-ion battery is changed as a consequence of the charging fre-

quency. The frequency fZ min that corresponds to the minimum

ac impedance Zmin can also be obtained and shown as

fZ min =
1

2πRctCd

√
K − 1 (2)

where

K =

√

2RoR3
ctC

2
d

+ 2LdR2
ctCd + R4

ctC
2
d

Ld

. (3)

Fig. 4. Flowchart of the experiment.

The minimum ac impedance Zmin can also be obtained and

shown as

Z2
min = R2

o +

(

Ld

RctCd

)2

(
√

K − 1) +
2RoRct + R2

ct√
K

− 2
Ld

Cd

(

1 − 1√
K

)

. (4)

III. EXPERIMENTAL PROCESS AND TEST PLATFORM

Fig. 4 shows the flowchart of the battery-charging test in this

paper. First, the ac-impedance spectrum of the Li-ion battery

is obtained with an ac-impedance analyzer. According to the

ac-impedance spectrum, the minimum-ac-impedance frequency

fZ min can be obtained. Then, the Li-ion battery is charged by

the proposed SRC with fZ min. When the battery is charged,

the charging time, the charging capacity, and the temperature

are recorded simultaneously. When the open-circuit voltage of

the Li-ion battery reaches 4.2 V, the Li-ion battery is regarded as

fully charged and then rests for 1 h. After that, the Li-ion battery

is discharged with 1-C CC by using an electronic load until

the battery voltage reaches 3 V. Meanwhile, the discharging
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Fig. 5. Battery-charging test platform.

time and discharging capacity are recorded. Finally, the battery-

charging efficiency is calculated according to

η(%) =
Qout

Qin
× 100% (5)

where Qin is the charging capacity and Qout is the discharging

capacity.

In order to verify that the battery-charging performance is

improved under the optimal charging frequency, the SRC with

four charging frequencies, which are 1 Hz, 100 Hz, fZ min,

and 10 kHz, is also tested. In addition, pulse current and CC-

CV are also included. Fig. 5 shows the battery-charging test

platform that consists of a digital oscilloscope, a programmable

ac source, and a voltage/current converter which contains a

MOSFET and an operational amplifier. First, a programmable

ac source is used to produce sinusoidal ripple signals VS(t)
shown as follows:

VS(t) = Vavg + Vavg sin 2πfst (6)

in which Vavg is the average voltage of VS(t). The SRC

for charging the Li-ion battery can be generated by the volt-

age/current converter and shown as

IC(t) =
VS(t)

R
=

Vavg + Vavg sin 2πfst

R
(7)

where R is a current-set resistor. When the battery is charging,

the digital oscilloscope is used to get the wave of the charging

current and the charging voltage. Meanwhile, the charging time,

the charging capacity, and the rising temperature are also mea-

sured and recorded. Fig. 6(a) and (b) shows the actual pictures

of the battery-charging test platform and the ac-impedance

analyzer. The used apparatus are listed in Table I.

Fig. 6. Pictures of (a) the battery-charging test platform and (b) the ac-
impedance analyzer.

TABLE I
APPARATUS

IV. EXPERIMENTAL RESULTS

Three brand-new SANYO UR18650W 1500-mAh high-

power Li-ion batteries, named batteries A, B, and C, are used

to verify the proposed SRC performance in this paper. Fig. 7

shows the ac-impedance spectrum of battery A measured by
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Fig. 7. Measured ac-impedance spectrum of battery A.

Fig. 8. Indirectly estimated parameters of battery A.

Fig. 9. (a) SRC charging current. (b) Pulse charging current.

the ac-impedance analyzer Solartron 1280B. The ac-impedance

spectrum indicates that the minimum-ac-impedance frequency

fZ min and the minimum ac impedance Zmin are about 998 Hz

and 0.0384 Ω, respectively.

These values of the transfer resistance Rct, the double-

layer capacitance Cd, the ohmic resistance Ro, and the anode

inductance Ld can be indirectly estimated by the ac-impedance

analyzer Solartron 1280B and are shown in Fig. 8. Using (2)

and (4), the minimum-ac-impedance frequency fZ min and the

minimum ac impedance Zmin are calculated and obtained as

Fig. 10. (a) Charging current curves. (b) Charging voltage curves. (c) Charg-
ing capacity curves. (d) Temperature curves.

992 Hz and 0.0382 Ω, respectively. Clearly, the theoretical

results are very close to the experimental results. This indicates

that the mathematical analysis and the practical measurement

are in agreement.

Fig. 9(a) shows the generated SRC charging current of the

used battery-charging test platform. Clearly, the proposed SRC

waveform can be excellently generated, and the average charg-

ing current of the SRC is 1.5 A (i.e., 1 C). Fig. 9(b) shows the

generated pulse charging current of the used battery-charging

test platform. The average of the pulse charging current is also

1.5 A (i.e., 1 C).
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TABLE II
EXPERIMENTAL RESULTS OF BATTERY A CHARGED BY THE

SRC WITH DIFFERENT FREQUENCIES

TABLE III
EXPERIMENTAL RESULTS OF BATTERY A CHARGED BY THE

PULSE CURRENT WITH DIFFERENT FREQUENCIES

The charging current, voltage, capacity, and temperature

curves of the proposed SRC with fZ min, the standard CC-CV,

and the pulse-current charging with fZ min in a fully charging

cycle are shown in Fig. 10(a)–(d), respectively. Clearly, the pro-

posed SRC has the best performance in charging speed, charg-

ing efficiency, and rising temperature in these three charging

methods. More details of the experimental results are described

as follows.

Table II shows the experimental results of battery A charged

by the SRC with 1 Hz, 100 Hz, fZ min, and 10 kHz. We can

find different charging frequency results in different charger

performances. However, battery A charged with fZ min has the

fastest charging speed, the maximum charging efficiency, and

the minimum rising temperature. Tables III and IV show the

experimental results of battery A charged by the pulse current

with fZ min and by the CC-CV. In the pulse-current charging

strategy, the duty cycle is 50%, and the average charging current

is 1.5 A, which is the same as that used in SRC. In the CC-CV

charging strategy, the CC is also 1.5 A, and the constant voltage

is 4.2 V.

TABLE IV
EXPERIMENTAL RESULTS OF BATTERY A CHARGED BY CC-CV

Fig. 11. Measured ac-impedance spectrum of battery B.

Fig. 12. Measured ac-impedance spectrum of battery C.

Tables III and IV indicate that the charging speed, charging

efficiency, and rising temperature of the pulse charging are

all better than those of CC-CV. However, the battery-charging

performance of the pulse charging is worse than that of the

proposed SRC. Comparing Tables II–IV, we can see that the

charging speed, the charging efficiency, and the rising temper-

ature of battery A charged by the SRC are better than those of

battery A charged by the pulse current and CC-CV.

Figs. 11 and 12 show the ac-impedance spectra of batteries B

and C. The ac-impedance spectra indicate that the minimum-ac-

impedance frequencies fZ min are about 996 and 1238 Hz for

batteries B and C, respectively. The minimum ac impedances

Zmin of batteries B and C are about 0.0385 and 0.0385 Ω, re-

spectively. We find that the minimum-ac-impedance frequency

fZ min varies for different Li-ion batteries.

Tables V–X show the charging time, the charging capacity,

the discharging time, the discharging capacity, the charging ef-

ficiency, and the rising temperature of batteries B and C charged

by the proposed SRC, the pulse current, and the CC-CV.

It is clear that the proposed SRC with fZ min has the fastest
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TABLE V
EXPERIMENTAL RESULTS OF BATTERY B CHARGED BY THE

SRC WITH DIFFERENT FREQUENCIES

TABLE VI
EXPERIMENTAL RESULTS OF BATTERY B CHARGED BY THE

PULSE CURRENT WITH DIFFERENT FREQUENCIES

TABLE VII
EXPERIMENTAL RESULTS OF BATTERY B CHARGED BY CC-CV

charging speed, the optimal charging efficiency, and the mini-

mum rising temperature.

Tables XI–XIII show the average value of the charging

time and the average value of the charging efficiency of three

SANYO UR18650W 1500-mAh high-power Li-ion batteries

charged by 1 Hz, 100 Hz, fZ min, and 10 kHz, respectively.

TABLE VIII
EXPERIMENTAL RESULTS OF BATTERY C CHARGED BY THE

SRC WITH DIFFERENT FREQUENCIES

TABLE IX
EXPERIMENTAL RESULTS OF BATTERY C CHARGED BY THE

PULSE CURRENT WITH DIFFERENT FREQUENCIES

TABLE X
EXPERIMENTAL RESULTS OF BATTERY C CHARGED BY CC-CV

Table XIV lists the average experimental values of these

three Li-ion batteries charged by CC-CV, the pulse current

with fZ min, and the proposed SRC with fZ min. It is clear

that the proposed SRC with fZ min is the best among these

three charge strategies. The average charging time, the average

efficiency, and the average rising temperature of the proposed
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TABLE XI
AVERAGING EXPERIMENTAL VALUES OF THESE THREE Li-ION

BATTERIES CHARGED BY THE SRC

TABLE XII
AVERAGING EXPERIMENTAL VALUES OF THESE THREE Li-ION

BATTERIES CHARGED BY THE PULSE CURRENT

TABLE XIII
AVERAGING EXPERIMENTAL VALUES OF THESE THREE Li-ION

BATTERIES CHARGED BY CC-CV

SRC with fZ min are 3626 s, 98.9%, and 2.4 ◦C. Compared

with the conventional CC-CV, the charging time, the efficiency,

and the rising temperature are improved by about 17%, 1.9%,

and 45.8%, respectively. Compared with the pulse current,

the charging time, the efficiency, and the rising temperature

are improved by about 0.24%, 0.27%, and 16.47%, respec-

TABLE XIV
AVERAGING EXPERIMENTAL VALUES OF THESE THREE Li-ION

BATTERIES CHARGED BY CC-CV, THE PULSE CURRENT

WITH fZ min, AND THE PROPOSED SRC WITH fZ min

tively. It is interesting that little enhancement of the charg-

ing efficiency can obtain obvious improvement of the rising

temperature.

Finally, the battery lifetime is also verified, and the deterio-

ration curves charged by the proposed SRC with fZ min and the

conventional CC-CV during 1000 cycles are shown in Fig. 13.

It is easy to see that the Li-ion-battery capacities charged by

SRC and CC-CV are deteriorated to 93.4% and 89.9% for

1000 cycles, respectively. The CC-CV’s resultant capacity after

839 cycles is equal to that of SRC after 1000 cycles according

to the picture. This means that the lifetime is improved by about

16.1% by the proposed SRC as we wanted.

In order to analyze the fZ min distribution, 28 brand-new

1500-mAh high-power Li-ion batteries are tested with different

states of charge and ambient temperatures, and its distributions

are shown in Fig. 14(a)–(d). We can find that a fully charge

battery and a fully discharge battery have higher ac impedance.

However, the fZ min is varied with very little. On the other hand,

a higher ambient temperature has a lower ac impedance for each

battery. Still, the fZ min is varied with very little.

The minimum-ac-impedance frequencies fZ min are within

900 to 1200 Hz. This means that a fixed frequency can be set

in a practical SRC charger to obtain a near-optimal charging

performance. However, developing an online adaptive tuning

algorithm to find fZ min is necessary and worth to study in the

future. For electrical vehicles [19], [30], [42]–[44], renewable-

energy applications [45], [46], and other industrial applications

[44], [47], [48], the using cost (i.e., battery price or battery

life) can be obviously reduced by using the proposed SRC.

Additionally, lower battery rising temperature results in higher

safety for these application systems.

In this paper, the proposed SRC is discussed for a single

Li-ion battery. However, the fZ min of a battery pack can also be

obtained by using an ac-impedance analyzer, and the proposed

SRC can also charge series-connected Li-ion batteries.

V. CONCLUSION

In this paper, the SRC charging strategy for a Li-ion battery

has been proposed and tested successfully. The ac-impedance

spectrum is used to explore the optimal charging frequency.

Experiments indicate that an excellent charging performance

can be obtained by the proposed SRC with the minimum-ac-

impedance frequency fZ min. Compared with the conventional

CC-CV charging strategy, the charging time, the charging ef-
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Fig. 13. Deterioration curves charged by SRC and CC-CV.

Fig. 14. fZ min distributions for ambient temperatures of (a) 30 ◦C,
(b) 40 ◦C, (c) 50 ◦C, and (d) 60 ◦C.

ficiency, the maximum rising temperature, and the lifetime of

the Li-ion battery are improved by about 17%, 2%, 45.8%,

and 16.1%, respectively. Compared with the traditional pulse-

current charging strategy, the charging time, the charging ef-

ficiency, and the maximum rising temperature of the Li-ion

battery are improved by about 0.24%, 0.27%, and 16.47%,

respectively.

APPENDIX

The impedance Zbattery as shown in Fig. 2 can be written as

Zbattery(ωs) =






Ro +

Rct

(ωsCd)2

R2
ct +

(

1
ωsCd

)2







+j




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ωsLd −

R
2

ct
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R2
ct +

(

1
ωsCd

)2




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(A-1)

and its square can be shown as

|Zbattery|2 = A2 + B2 (A-2)

where

A =

[

Ro +
Rct

R2
ctω

2
sC2

d
+ 1

]2

(A-3)

B(ωs) =

[

ωsLd − R2
ctωsCd

R2
ctω

2
sC2

d
+ 1

]2

. (A-4)

Then, the differential equation of (A-2) can be obtained and

written as

d|Zbattery|2
dωs

=
1

2

(

2A

[−2RctE

(D+1)2

]

+2B

[

Ld−
F (1−D)

(D+1)2
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(A-5)

where

D = R2
ctω

2
sC2

d (A-6)

E = R2
ctωsC

2
d (A-7)

F = R2
ctCd. (A-8)
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Next, make d|Zbattery|2/dωs = 0 for obtaining the

|Zbattery|2 minimum value, and the following equation can be

obtained:

L2
d

RctCd

D2 +
3L2

d

RctCd

D2

+

(

3L2
d

RctCd

− 2RoF − 2LdRct − RctF

)

D

+

(

L2
d

RctCd

− 2RoF − 2LdRct − F

)

= 0. (A-9)

After that, the minimum-ac-impedance frequency can be ob-

tained and shown as

fZ min =
1

2πRctCd

√
K − 1 (A-10)

where

K =

√

2RoR3
ctC

2
d

+ 2LdR2
ctCd + R4

ctC
2
d

Ld

. (A-11)

Finally, the minimum ac impedance Zmin can also be obtained

as follows:

Z2
min = R2

o +

(

Ld

RctCd

)2

(
√

K − 1) +
2RoRct + R2

ct√
K

−2
Ld
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(

1 − 1√
K

)

. (A-12)
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