Lawrence Berkeley National Laboratory Recent Work

Title

SiO2-AI2O3 METASTABLE PHASE EQUILIBRIUM DIAGRAM WITHOUT MULLITE
Permalink
https://escholarship.org/uc/item/6hm82107
Author
Risbud, Subhash H.
Publication Date
1978

$\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ METASTABLE PHASE EQUILIRRIUM DIAGRAM WITHOUT MULLITE

Subhash H. Risbud and Joseph A. Pask

January 1978

REGEIVED

 l.awnenceBEMKLEY LABORATORY
MAY 2^{1978}
LIERARY AMD
DOCUMENTS SECTION

Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48

This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call Tech. Info. Dívision, Ext. 57166782

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

$\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ METASTABLE PHASE
 EQUILIBRIUM DIAGRAM WITHOUT MULLLITE

Subhash H. Risbud and Joseph A. Pask
Materials and Molecular Research Division, Lawrence Berkeley Laboratory and Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720

ABSTRACT

A metastable binary phase diagram between SiO_{2} (cristobalite) and $\alpha-A 1_{2} O_{3}$ (corundum) in the absence of any mullite phase is.presented. A eutectic is indicated at a temperature of $\approx 1260^{\circ} \mathrm{C}$ and a composition of $\approx 18 \mathrm{wt} \%(\approx 12 \mathrm{~mole} \%) \mathrm{Al}_{2} \mathrm{O}_{3}$. The 1 iquidi of the proposed metastable system were positioned on the basis of the thermodynamic data calculated from the stable equilibrium diagram of Aksay and Pask. 2. Experimental evidence is also presented.

A $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ melt containing $80 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ cooled at a slow rate in sealed molybdenum crucibles showed crystalline $\mathrm{Al}_{2} \mathrm{O}_{3}$ plus a glass phase whose composition followed the calculated extension of the stable $\mathrm{Al}_{2} \mathrm{O}_{3}$ liquidus to lower temperatures. Compacts of cristobalite-corundum mixtures were fired at sub-solidus temperatures to estimate the eutectic temperature experimentally. The proposed metastable phase diagram effectively explains the formation of non-crystalline phases in subsolidus reactions, and microstructures obtained on solidification of high alumina melts.

I. INTRODUCTION

Phase diagrams indicate the location of stable equilibrium phase boundaries and do not, in general, include data on metastable equilibria. In many systems, especially those forming glasses, kinetic inaccessibility of stable phases makes metastability readily realizable under normal experimental conditions. Development of metastable diagrams for such systems is, therefore, of importance in understanding solid state reaction sequences as well as of practical utility.

In their studies on phase equilibria in the $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ system, (Fig. 1) Davis and Pask ${ }^{1}$ and Aksay and Pask ${ }^{2}$ suggested the existence of a metastable $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase diagram in the absence of any mullite phase. The occurrence of amorphous phases in solid state reactions between cristobalite and alumina has been reported by several authors. Wahl et al. ${ }^{3}$ observed reactions at temperatures as low as $1200^{\circ} \mathrm{C}$ with no mullite formation by high temperature x-ray diffraction. Subsolidus formation of non-crystalline material was also reported by Staley and Brindley ${ }^{4}$ in cristobalite-corundum reactions at $1500^{\circ} \mathrm{C}$. Kennard et al. 5 observed microstructures containing only glass plus alumina during directional solidification of high alumina compositions.

The purpose of this study was to obtain by experimental and thermodynamic methods the metastable phase boundaries in the $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ system that occur without precipitation of the mullite phase.
II. PROCEDURES
A. Thermodynamic Calculations

Using thermodynamic models ${ }^{6-9}$ based on regular solution approximations, the activities of $\mathrm{Al}_{2} \mathrm{O}_{3}$ were calculated along the $\mathrm{Al}_{2} \mathrm{O}_{3}$
liquidus curve of the stable phase diagram (Fig. 1). The equation for calculating the activities takes the form:

$$
\begin{equation*}
\log _{10} \mathrm{a}^{\mathrm{L}}=\frac{\Delta \mathrm{H}_{\mathrm{m}}}{4.575}\left[\frac{1}{\mathrm{~T}_{\mathrm{m}}}-\frac{1}{\mathrm{~T}_{\mathrm{L}}}\right]=\log _{10} \mathrm{a}^{\mathrm{S}} \tag{1}
\end{equation*}
$$

where $a^{L}=$ activity of the liquid in the liquidus composition referred to pure liquid standard state, $\mathrm{a}^{\mathrm{S}}=$ activity of solid at the liquidus temperature referred to pure liquid standard state, $\Delta H_{m}=$ heat of melting in cals/mol, $\mathrm{T}_{\mathrm{m}}=$ melting temperature in ${ }^{\circ} \mathrm{K}$, and $\mathrm{T}_{\mathrm{L}}=$ liquidus temperature in ${ }^{\circ} \mathrm{K}$.

The main assumptions in the calculation procedure were the constancy of the heat of fusion with temperature, and ideality in the solution mixing at high temperatures. Further, assuming that the partial molal heat of solution of $\mathrm{Al}_{2} \mathrm{O}_{3}, \overline{\Delta \mathrm{H}} \mathrm{Al}_{2} \mathrm{O}_{3}$, is independent of temperature ${ }^{9}$ over the temperature range of interest, the activity data-obtained from Eq. (1) were used to calculate isothermal activity coefficients of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at any chosen temperature T. Thus,

$$
\begin{equation*}
\Delta \mathrm{H}_{\mathrm{Al}_{2} \mathrm{O}_{3}}=\mathrm{RT}_{\mathrm{L}} \log _{10} \gamma_{\mathrm{L}}=\mathrm{RT} \log _{\mathrm{LO}} \gamma_{\mathrm{T}} \tag{2}
\end{equation*}
$$

where T_{L} and $\gamma_{L}=$ 1iquidus temperature and activity coefficient at the liquidus, respectively, T and $\gamma_{T}=$ temperature and activity coefficient at the chosen temperature T , and $\mathrm{R}=$ gas constant ($1.98 \mathrm{cals} / \mathrm{mol}{ }^{\circ} \mathrm{K}$) ; and

$$
\begin{equation*}
\log _{10} a_{L}=\log _{10} \gamma_{L}+\log _{10} x \tag{3}
\end{equation*}
$$

where $\mathrm{X}=\mathrm{Al}_{2} \mathrm{O}_{3}$ mole fractions between 0.4 and 1.0 (1iquidus compositions). The isothermal activity coefficients of $\mathrm{Al}_{2} \mathrm{O}_{3}$ were fitted by the method of least squares to yield an expression of the form:

$$
\begin{equation*}
\log _{10} \gamma_{T}=A+B X+C X^{2}+D X^{3} \tag{4}
\end{equation*}
$$

where $X=$ the mole fraction of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $A, B, C, D=$ constants. Assuming that the fit represented by Eq. (4) is valid for $\mathrm{Al}_{2} \mathrm{O}_{3}$ mole fractions, X, less than 0.4 (Fig. 1), $\log _{10} \gamma_{T}$ values at chosen mole fractions X, (between 0.15 and 0.34) were obtained. The activity coefficients at the liquidus temperature were then calculated from Eq. (2). Using these calculated values of $\log _{10} \gamma_{L}$, in Eqs. (1) and (3) the liquidus temperature at each $\mathrm{Al}_{2} \mathrm{O}_{3}$ mole fraction, $\mathrm{X},(0.15<\mathrm{X}<0.35)$ was calculated. Similar calculations were performed for extension of the SiO_{2} Iiquidus (Fig. 1) to lower temperatures.
B. $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{Melts}^{2,10}$

High purity fused silica* and reactive $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}{ }^{* \%}$ powders were blended in isopropyl alcohol, dried at $\approx 1.10^{\circ} \mathrm{C}$, and calcined in a platinum crucible at $\approx 600^{\circ} \mathrm{C}$ for 12 hours. Calcined mixtures containing $80 \mathrm{wt} \%$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ were pressed into molybdenum crucibles ($\sim 11 \mathrm{~mm}$ dia X 15 mm height) which were then sealed around the lid by electron beam welding and helium leak-checked. The sealing and leak checking procedures were necessary to prevent loss of silica by vaporization during the high temperature melting. The sealed crucibles were heat-treated in a tantalum resistance furnace ${ }^{\#}$ at a temperature of $\approx 1985^{\circ} \mathrm{C}$ under a vacuum of $\approx 10^{-6}$ torr. The furnace temperature was electronically controlled through the use of a W5Re-W26Re thermocouple (accuracy $\pm 7^{\circ} \mathrm{C}$ at $1800^{\circ} \mathrm{C}$). In addition, the crucible temperature was monitored by an optical pyrometer (accuracy $\pm 10^{\circ}$ at $2000^{\circ} \mathrm{C}$) utilizing black body conditions. The pyrometers were

[^0]calibrated against a NBS secondary standard pyrometer at the melting points of platinum $\left(1772^{\circ} \mathrm{C}\right)$ and $\mathrm{Al}_{2} \mathrm{O}_{3}\left(2054^{\circ} \mathrm{C}\right)$. A11 temperatures reported are based on the 1968 International Practical Temperature Scale (IPTS-68).
C. Cristobalite-Alumina Mixtures

The same high-purity fused silica powder that was used for preparation of the melts was heated in platinum crucibles in air at $\approx 1420^{\circ} \mathrm{C}$ for 7 days to obtain the cristobalite phase. Cristobalitealumina batches were dry milled and cold pressed into pellets. The pressed compacts were fired in platinum crucibles in air at temperatures ranging from 1100 to $1280^{\circ} \mathrm{C}$ for various times. The diameter of the pellets before and after firing was accurately measured to obtain shrinkage data.

D. Materials Characterization

Crystalline phases obtained after heat treating the $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ me1ts and the cristobalite-corundum pellets were identified by x-ray diffraction using silicon* as an internal standard after crushing specimens to a powder.

The molybdenum crucibles were cut on a diamond saw after the heat treatment and highly polished surfaces were prepared by ceramographic procedures. The polished sections were lightly etched in dilute HF and observed by interference contrast microscopy.**

Samples for chemical composition analysis of the phases present in the microstructure were prepared by depositing a conducting carbon film

[^1]on the polished sections and by painting the edges of the mounting material with a carbon-ethanol slurry. The samples were loaded into the vacuum chamber of the electron beam microprobe ${ }^{\dagger \dagger}$ and the primary characteristic x-ray intensities emitted from a specific phase in the microstructure were compared with the emission from an identically coated standard of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and SiO_{2}. All measurements were made with an accelerating voltage of 15 kv at a x-ray emergence angle of 41°. The $A 1 K_{\alpha}$ and SiK $_{\alpha}$ intensities were simultaneously recorded on two spectrometers. Intensity counts in $1 \mu \mathrm{~m}$ steps starting wịth one phase and traversing across the various phases in the microstructure were monitored by logic circuit counters and simultaneously punched on IBM cards for data correction. Corrections for dead time, drift, background, absorption and fluorescence were made through a computer program adapted from Frazer et al. for use with the $C D C-7600$ computer system of this laboratory. Since the difference in atomic numbers of Al and Si is small, no correction for atomic number was made.
III. RESULTS AND DISCUSSION

A. Calculated Metastable Liquidi

Calculated thermodynamic data for the $\mathrm{Al}_{2} \mathrm{O}_{3}$ liquidus (Fig. 1), assuming SiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ as the mixing components, are listed in Table 1. These data were obtained from Eqs. (1) and (2) using experimentally reported values of the heat of fusion ($25,700 \mathrm{cals} / \mathrm{mole}$) and melting point $\left(2323^{\circ} \mathrm{K}\right)$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$.

[^2]The activity coefficients $\log _{10} \gamma_{\mathrm{A1}}^{2} \mathrm{O}_{3}$ listed in Table 1 were used to calculate isothermal activity coefficients at a particular temperature T. For example, at a temperature of $1673^{\circ} \mathrm{K}$ the $\log _{10^{\Upsilon}}{ }^{\mathrm{L}} \mathrm{A} 1_{2} \mathrm{O}_{3}$ values calculated from Eq. (2) were fitted by the least squares method to the expression:

$$
\log _{10} \gamma_{\mathrm{A} 1_{2} \mathrm{O}_{3}}^{1673}=\left[-0.187+2.05 \mathrm{x}-3.37 \mathrm{x}^{2}+1.5 \mathrm{x}^{3}\right]
$$

where $X=$ mole fraction of $\mathrm{Al}_{2} \mathrm{O}_{3}(0.4<\mathrm{X}<1.0)$. Assuming that this expression is valid for $\mathrm{Al}_{2} \mathrm{O}_{3}$ mole fractions less than 0.4 , isothermal $\log _{10} \gamma^{A l_{2}} \mathrm{O}_{3}$ values at $1673^{\circ} \mathrm{K}$ were obtained for $\mathrm{Al}_{2} \mathrm{O}_{3}$ mole fractions between 0.15 and 0.35 . These $\log _{10} \gamma_{A 1} \mathrm{O}_{3}$ values, when used in Eqs. (1) and (2), yielded the temperatures of the metastable $\mathrm{Al}_{2} \mathrm{O}_{3}$ liquidus in the mole fraction range 0.15 to 0.35 . Similar calculations were performed for the SiO_{2} liquidus. The calculated extensions of the SiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ liquidi are shown in Fig. 1 superimposed on the stable and metastable equilibria proposed by Aksay and Pask ${ }^{2}$; a metastable binary eutectic is indicated at a $\mathrm{Al}_{2} \mathrm{O}_{3}$ mole fraction of 0.12 ($18 \mathrm{wt} \%$) and $1260^{\circ} \mathrm{C}$. The figure also shows the recently proposed miscibility gap. 8
B. Subsolidus Cristobalite-Corundum Reactions

The eutectic temperature of the metastable $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ system was determined experimentally by firing cristobalite-corundum pellets and measuring the shrinkage. Table 2 summarizes the shrinkage data for a mixture containing $\sim 27 \mathrm{wt} \%(\sim 18 \mathrm{~mole} \%) \mathrm{Al}_{2} \mathrm{O}_{3}$. No mullite formation was detected after firing, as determined by x-ray diffraction. However, the shrinkage of the compacts was increased considerably at firing temperatures above $1250^{\circ} \mathrm{C}$. At $1280^{\circ} \mathrm{C}$ a linear shrinkage of $\sim 13 \%$ was observed. This sharp change in sintering characteristics from 1250 to $1280^{\circ} \mathrm{C}$ suggests the
formation of some liquid phase which promotes sintering. Since liquid Formation is to be expected at the eutectic temperature in the metastable $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ system, the eutectic temperature from the above data is expected to be between 1250 and $1280^{\circ} \mathrm{C}$. The correspondence of the calculated eutectic point with the experimental data of $1260^{\circ} \mathrm{C}$ is good. Furthermore, Staley and Brindley ${ }^{4}$ reported an average composition of $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{SiO} 2$ ($\approx 17 \mathrm{~mole} \% \mathrm{Al}_{2} \mathrm{O}_{3}$) for the non-crystalline component formed in reactions between cristobalite and corundum mixtures fired at $1500^{\circ} \mathrm{C}$. This composition is very close to the shown $\mathrm{Al}_{2} \mathrm{O}_{3}$ liquidus at $1500^{\circ} \mathrm{C}$ in Fig .1. C. Microstructures of Slowly Cooled Melts
A. $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ melt containing $71 \mathrm{~mole} \%$ ($80 \mathrm{wt} \%$) $\mathrm{Al}_{2} \mathrm{O}_{3}$ was cooled from the homogenization temperature of $\sim 1985^{\circ} \mathrm{C}$ to $1750^{\circ} \mathrm{C}$ in 1 hr to allow the precipitation and growth of $\mathrm{Al}_{2} \mathrm{O}_{3}$; a rapid quench from the homogenization temperature always resulted in crystallization of mullite plus residual glass. ${ }^{2,10}$ The microstructure of the slowly cooled specimen is shown in Fig. 2. X-ray diffraction indicated the presence of $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ as the only crystalline phase. An average composition of $\approx 48 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ ($\sim 37 \mathrm{~mole} \%$ $\mathrm{Al}_{2} \mathrm{O}_{3}$) was reported for the matrix surrounding the primary $\mathrm{Al}_{2} \mathrm{O}_{3}$ precipitates. Since this average value was obtained by an electronmicroprobe scan of the matrix consisting of glass plus the fine $\mathrm{Al}_{2} \mathrm{O}_{3}$ needles, it is likely to indicate a slightly higher $\mathrm{Al}_{2} \mathrm{O}_{3}$ content than the actual glass composition. Consequently, the composition of the metastable $\mathrm{Al}_{2} \mathrm{O}_{3}$ liquidus at $1750^{\circ} \mathrm{C}$ may be expected to be slightly less than $48 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ ($\sim 37 \mathrm{~mole} \% \mathrm{Al}_{2} \mathrm{O}_{3}$). The $\mathrm{Al}_{2} \mathrm{O}_{3}$ liquidus obtained in the present work (Fig. 1) shows a composition of $\approx 44 \mathrm{wt} \% \mathrm{AI}_{2} \mathrm{O}_{3}\left(\sim 32 \mathrm{mcle} \% \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ at $1750^{\circ} \mathrm{C}$.

The observations of Kennard et al. ${ }^{5}$ also provided indirect evidence for the existence of a metastable $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ diagram. They solidified $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ ingots by the Bridgman technique. $\mathrm{A} 78 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ melt yielded a microstructure of glass plus crystalline $\mathrm{Al}_{2} \mathrm{O}_{3}$; the glass composition was reported to be ~ 23 wt\% $\mathrm{Al}_{2} \mathrm{O}_{3}\left(\sim 15 \mathrm{~mole} \% \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ on the basis of re0 fractive index measurements. This composition lies at a temperature of $\sim 1470^{\circ} \mathrm{C}$ on the $\mathrm{Al}_{2} \mathrm{O}_{3}$ liquidus shown in Fig. 1. The metastable $\mathrm{Al}_{2} \mathrm{O}_{3}$ plus glass assemblage observed by Kennard et al. can thus be explained on the basis of the presented metastable diagram.
IV. SUMMARY

A metastable phase diagram between SiO_{2} (cristobalite) and $\mathrm{aAl}_{2} \mathrm{O}_{3}$ (corundum) without mullite is proposed. The eutertic point of the diagram lies at a temperature of $\approx 1260^{\circ} \mathrm{C}$ at an $\mathrm{Al}_{2} \mathrm{O}_{3}$ composition of $\approx 18 \mathrm{wt} \%$ ($\approx 12 \mathrm{~mole} \%$) $\mathrm{Al}_{2} \mathrm{O}_{3}$. The proposed diagram explains experimentally observed reactions in cristobalite-corundum compacts and microstructures of slowly cooled $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ melts with high $\mathrm{A1}_{2} \mathrm{O}_{3}$ contents.

ACKNOWLEDGMENT
This work was supported by the Division of Basic Energy Sciences, U.S. Department of Energy.

REFERENCES

1. R. F. Davis and J. A. Pask, "Diffusion and Reaction Studies in the System $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$," J. Am. Ceram. Soc., 55 [10], 525-531 (1972).
2. I. A. Aksay and J. A. Pask, "Stable and Metastable Equilibria in the $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ System," ibid, 58 [11-12] 507 (1975).
3. F. M. Wahl, R. E. Grim and R. B. Graf, "Phase Transformations in Silica-Alumina Mixtures as Examined by Continuous X-ray Diffraction," Amer. Mineralogist, 46, 1064 (1961).
4. W. G. Staley and G. W. Brindley, "Development of Non-Crystalline Materials in Subsolidus Reactions between Silica and Alumina," J. Am. Ceram. Soc: . 52, 616 (1969).
5. F. L. Kennard, R. C. Bradt and V. S. Stubican, "Controlled Ceramic Microstructures by Directional Solidification," P. 580 in "Reactivity of Solids," Edited by J. S. Anderson, North Holland Publ. Co. (1972).
6. J. Chipman, "Activities in Liquid Metallic Solutions," Disc.

Faraday Soc., No. 4, p 23-49 (1948).
7. M. Rey, "The Thermodynamic Activity of Silica and of Oxides in Silicate Melts," ibid, p.257-265.
8. S. H. Risbud and J. A. Pask, "Calculated Thermodynamic Data and Metastable Immiscibility in the System $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}, " \Im$. Am. Ceram. Soc., 60 [9-10] 418 (1977).
9. R. J. Charles, "Activities in $\mathrm{Li}_{2} \mathrm{O}-\mathrm{Na}_{2} \mathrm{O}-\mathrm{K}_{2} \mathrm{O}-\mathrm{SiO}_{2}$ Solutions," J. Am. Ceram. Soc., 50 [12] 631 (1967).

Table 1. Thermodynamic Data from $\mathrm{Al}_{2} \mathrm{O}_{3}$ Liquidus with SiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ as Mixing Components.

Mole Fraction $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Liquidus Composition)	Liquidus Temperature	$\log _{10}{ }^{\gamma} \mathrm{Al}_{2}^{\mathrm{L}} \mathrm{O}_{3}$
1.00	2323	0.0000
0.95	2310	0.0087
0.90	2301	0.0226
0.85	2288	0.0335
0.80	2280	0.0512
0.75	2266	0.0639
0.70	2254	0.0806
0.65	2243	0.1004
0.60	2226	0.1159
0.55	2205	0.1293
0.50	2195	0.1590
0.45	2148	0.1478
0.40	2105	0.1444
0.30	2004	0.1382
0.25	1937	0.1195
0.20	1856	0.0090
0.15	1759	0.0047

Table 2. Subsolidus Reactions in Cristobalite-Corundum Mixtures ($\sim 27 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$).

FIGURES

Fig. 1. The extensions of the SiO_{2} (cristobalite) and $\alpha \mathrm{Al}_{2} \mathrm{O}_{3}$ (corundum) liquidi to form the metastable phase equilibrium diagram without mullite superimposed on the $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase equilibrium diagram reported by Aksay and Pask. ${ }^{2}$

Fig. 2. Microstructure of specimen containing $80 \mathrm{wt} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ melted in sealed Mo crucible at $\sim 1985^{\circ} \mathrm{C}$ for $1-1 / 2 \mathrm{hrs}$. cooled to $1750^{\circ} \mathrm{C}$ in. $1 \mathrm{hr} .$, and quenched to room temperature. Both large and needlelike precipitates are $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ surrounded by a glassy matrix.

XBL 766-7008
Fig. 1

$$
-15-
$$

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

E-:
TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

[^0]: *-325 mesh Corning 7940 silica, Corning Glass Works, NY (free from metallic impurities).
 **
 Aluminum Co. of America, Pittsburgh, PA. Chemical analysis (wt\%) Na) $0.08, \mathrm{SiO}_{2} 0.05, \mathrm{CaO} 0.03, \mathrm{MgO} 0.05, \mathrm{Fe}_{2} \mathrm{O}_{3} 0.01, \mathrm{MnO} 0.0015, \mathrm{~B}_{2} \mathrm{O}_{3}<0.001$, $\mathrm{Cr}_{2} \mathrm{O}_{3} 0.0002$.
 \#Richard D. Brew and Co., Concord, NH - Model 14665-4.

[^1]: *Standard No. 640, NBS, Wash., DC.
 ** Nomarski differential interference-contrast Micrography, Zeiss Ultraphot II metallograph, Carl Zeiss, W. Germany.

[^2]: \dagger^{+}Materials Analysis Co., Palo Alto, CA.

