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Abstract

The following article presents an approach for interac-

tive foreground extraction in still images that is currently

being integrated into the GIMP. The presented approach has

been derived from color signatures, a technique originat-

ing from image retrieval. The article explains the algorithm

and presents some benchmark results to show the improve-

ments in speed and accuracy compared to state-of-the-art

solutions. The article also describes how the algorithm can

easily be adapted for video segmentation tasks.

1 Introduction

The algorithm presented here has been originally devel-

oped for the extraction of an instructor teaching in front of

an electronic chalkboard. In the E-Chalk system [15, 8, 9],

which is used for recording and transmitting lectures over

the Internet, the board content is transmitted as vector

graphics while the video of the extracted lecturer is sent as

separate stream. The extracted lecturer is then laid over the

high resolution board image at video stream rates. The lec-

turer may be dimmed from opaque to semitransparent, or

even transparent. This makes it possible to transmit mimic

and gestures of the lecturer in relation to the board without

using either too much bandwidth or having blurry artefacts

around the board strokes produced by state-of-the-art video

compression. Figure 1 shows an example of such a video.

Video segmentation requires speed more than accuracy.

In still image segmentation, accuracy becomes the higher

priority. This article shows that our algorithm for the seg-

mentation of the instructor is general enough to be used also

for foreground extraction in still images.

Section 2 first introduces related work. Section 3 then

explains the algorithm and how it is used. We benchmark

our results and compare them to the GrabCut underlying al-

gorithm presented in [3]. Section 5 shortly summarizes the

Figure 1. A video of the lecturer is recorded
(above left), the instructor is extracted (above
right), superimposed semi-transparently on
the vector based board data (below left) and
replayed together using MPEG4 (below right).

video segmentation approach before, in Section 6, a conclu-

sion is drawn and possible future work is presented.

2 Related Work

A nicely written summary and discussion of most still-

image foreground extraction methods can be found in [16].

In the following, some approaches for still image segmenta-

tion are briefly described. The most popular tool for extract-

ing foreground is Magic Wand [1]. Magic Wand starts with a

small user-specified region. The region grows through con-

nected pixels such that all selected pixels fall within some

adjustable tolerance of the color statistics of the specified

region. The methods works well for images that contain

very few colors, such as comic strips. Intelligent Scissors

[13] can be used to select contiguous areas of similar col-

ors in a fashion similar to Magic Wand. The primary dif-



ference is that the scissor tool creates the selection area in

one line at a time. Clicking with the mouse creates nodes

that are joined using curve shapes that attempt to follow

color weights. Once the area is closed, clicking inside the

new area renders the selection area. For photographs, find-

ing the correct tolerance threshold is often cumbersome, so

a satisfactory segmentation is seldom achieved. Knockout

is a proprietary plugin for Photoshop [6] that is, like the

approach presented here, driven from a trimap (see Sec-

tion 3.1). According to [5] the results are sometimes sim-

ilar to and sometimes of less quality than Bayes matting.

Bayes Matting also gets a trimap as input and tries to com-

pute alpha values over the unknown region. A disadvantage

is that the user must specify a lot of shape information for

the algorithm to work properly. Grabcut [16] is a two step

approach. The first step is an automatic segmentation step

that relies on the work of Graph Cut [4] and [3]. The second

step is a manual post editing step. The idea of the automatic

classification is to build a graph where each pixel is a node

with outgoing edges to each of the 8 pixel’s neighbors. The

edges are weighted such that a max-flow/min-cut problem

solves the segmentation. The user only provides the region

of interest. Grabcut’s manual post processing tools include

the so-called background brush, a foreground brush, and a

matting brush to smooth borders or re-edit classification er-

rors manually. The disadvantage is that its complicated data

structure requires high computational effort. At the time of

writing this article, there was no program available to test

the performance of the tool, nor is there sufficient informa-

tion to compare any benchmark results. Since, in this article

only automatic classification without manual intervention is

considered, Benchmark comparison is done using the re-

sults in [3].

3 The Algorithm

The described algorithm solves the task of foreground

extraction in a given image. We define foreground to be a

single, spatially connected object that is of interest to the

user. The rest of the image is considered background. The

user has to specify at least a superset of the foreground and

the algorithm is to return an image where all background

pixels have been set transparent.

3.1 Input

The input for the algorithm consists of three user spec-

ified regions of the given image: Known background, un-

known region, and known foreground. The user specified

regions are called a trimap. The known foreground is op-

tional, but eases segmentation of tricky images. To provide

this information, the user makes several selections with the

mouse. The outer region of the first selected areas specify

Figure 2. The original image from [11], a
user provided rectangular selection (red: re-
gion of interest, green: known foreground),
and the corresponding trimap (black: known
background, gray: unknown, white: known
foreground).

the known background while the inner region define a su-

perset of the foreground, i.e. the unknown region. Using ad-

ditional selections, the user may specify one or more known

foreground regions. Figure 2 shows an example of the user

interaction and the resulting trimap. Internally, the trimap is

mapped to a confidence matrix, where each element of the

matrix corresponds to a pixel in the image. The values of the

elements lie in the interval [0, 1] where a value of 0 specifies

known background, a value of 0.5 specifies unknown, and

a value of 1 specifies known foreground. Any other value

expresses uncertainty with a certain tendency towards one

limit or the other.

3.2 Conversion to CIELAB

The first step of the algorithm is to convert the entire im-

age into the CIELAB color space. This color space was

explicitly designed as a perceptually uniform color space.

It is based on the opponent-colors theory of color vision,

which assumes that two colors cannot be both green and

red, nor blue and yellow at the same time. As a result, sin-

gle values can be used to describe the red/green and the yel-

low/blue attributes. When a color is expressed in CIELAB,

L defines lightness, a denotes the red/green value and b the

yellow/blue value. In the algorithm described here, the stan-

dard observer and the D65 reference white (see [18]) is used

as an approximation to all possible color and lighting condi-

tions that might appear in an image. CIELAB may still not

be the optimal color space and the aforementioned assump-

tion clearly leads to problems but in practice, the Euclidean

distance between two colors in this space better approxi-

mates a perceptually uniform measure for color differences

than in any other color space, like YUV, HSI, or RGB. Re-

fer to Section 4.3 for a short discussion on the limits and

issues of using this color space.

3.3 Color Segmentation

The segmentation method was adapted from [17] who

describes the use of color signatures and the Earth Mover’s



Distance for image retrieval. The idea behind our approach

is to create a kind of color signature of the known back-

ground and use it to classify the pixels in the image as

those belonging to the signature and those not belonging to

it. The known background sample is clustered into equally

sized clusters because in LAB space specifying a cluster

size means to specify a certain perceptual accuracy. To

do this efficiently, we use the modified two-stage k-d tree

[2] algorithm described in [17], where the splitting rule is

to simply divide the given interval into two equally sized

subintervals (instead of splitting the sample set at its me-

dian). In the first phase, approximate clusters are found by

building up the tree and stopping when an interval at a node

has become smaller than the allowed cluster diameter. At

this point, clusters may be split into several nodes. In the

second stage of the algorithm, nodes that belong to several

clusters are recombined. To do this, another k-d tree clus-

tering is performed using just the cluster centroids from the

first phase. We use different cluster sizes for the L, a, and b

axes. The default is 0.64 for L, 1.28 for a and 2.56 for the

b axis. The values can be set by the user according to the

perceived color diversity in each of the axes. For efficiency

reasons, clusters that contain less than 1 h of the pixels of

the entire background sample are removed.

We explicitly build the k-d tree and store the interval

boundaries in the nodes. Given a certain pixel, all that has to

be done is to traverse the tree to find out whether it belongs

to one of the known background clusters or not. Another

tree is built for the known foreground, if the user has speci-

fied such. Each pixel is then also checked against the known

foreground. If it does not belong to either one of the trees,

it is assumed to belong to the cluster with the minimum Eu-

clidean Distance between the pixel and each cluster’s cen-

troid.

Using known foreground improves the classification rate

dramatically because it lowers the probability that fore-

ground colors that also exist in the background are classified

as background.

3.4 Post Processing

The remaining task is to eliminate the background colors

that appear in the foreground. By the above definition, the

foreground must be a unique, spatially connected region. In

addition to several smoothing steps and an erosion/dilation

step, a breadth-first-search on the confidence matrix is per-

formed to identify all spatially connected regions that were

classified as foreground. We assume that the biggest region

is the one of user interest and eliminate all other regions1. In

addition, the user can provide a smoothness factor to spec-

ify, how much smoothing should be applied to the resulting

1Another approach would be to use all regions containing known fore-

ground.

Figure 3. The result of the color classification
(left) and after post processing (right).

confidence matrix. More smoothing reduces small classifi-

cation errors. Less smoothing is appropriate for high fre-

quency object boundaries, for example hair or clouds. The

values of the confidence matrix are directly used as trans-

parency factors (also known as α-values) for each corre-

sponding pixel. The default value for the smoothing factor

is 3. Figure 3 shows the result for an example image directly

after color segmentation and after post-processing.

4 Benchmarking Results

4.1 Data Set

Rother et. al. [3] presents a database of 50 images

plus the corresponding ground truth to be used for bench-

marking foreground extraction approaches. The benchmark

dataset is available on the Internet [12] and also includes

20 images from the Berkeley Image Segmentation Bench-

mark Database [11]. In addition to images and ground truth

the database also contains user specified trimaps. These

trimaps, however, are not optimal inputs for the algorithm

presented here because their known foreground is not al-

ways a representative color sample of the entire foreground.

Furthermore, creating such a trimap would be too cumber-

some for the user, as it already contains a lot of shape infor-

mation. The benchmark then would not represent the results

a user could obtain. For this reason, we created an addi-

tional set of trimaps better suited for testing the approach.

We asked an independent user to draw appropriate rectan-

gles for the region of interest and known foreground in each

of the images. These trimaps may still be suboptimal but

it is assumed here that they represent the typical input of a

user. Using a rough free hand selection instead of a rect-

angular area, for example, would improve the segmentation

result of those images where the smallest possible rectangle

already covers almost the entire picture. For the benchmark,

the default values for the smoothness factor and the cluster

granularity were used. Figure 4 shows an example of an

image with both types of trimaps and the ground truth.

Given a perceptual accurate error measurement for fore-

ground extraction approaches would reduce the entire task



Figure 4. From left to right: The original im-
age, the lasso selection, the trimap by a user,
and the ground truth

to minimizing this error function. Unfortunately it is diffi-

cult, maybe impossible, to create a general error measure.

Because we want to create comparable results, we stick to

the error measurement defined in [3]. We chose compar-

ison with this article because the solutions presented there

are commonly considered to be very successful methods for

foreground extraction. The segmentation error rate is de-

fined as:

ǫ =
no. misclassified pixels

no. of pixels in unclassified region
(1)

In low contrast regions, a true boundary cannot be observed.

This results in the ground truth database containing unclas-

sified pixels. For comparability, these pixels are excluded

from the number of misclassified pixels as in [3]. The over-

all error when applying the lasso trimaps provided by the

database is 9.1 %. As already mentioned, the lasso selec-

tions are not optimal for the segmentation algorithm pre-

sented here. Figure 5 shows the result for the additional

set of trimaps based on rectangular user selections2. The

overall error is 4.3 % and the segmentations subjectively ap-

pear much better. The best case average error rate on the

database for the GrabCut underlying algorithm is reported

as 7.9 %[3].3 Using different trimaps for classification re-

sults in a higher number of pixels to classify. One could

object that a higher number of pixels to classify contains

more pixels that are easier to classify and thus may beau-

tify the error rate because there is no focus on the critical

boundary pixels. This may be true for algorithms that seek

an accurate boundary by growing from some center of the

picture, or by shrinking a lasso. The algorithm proposed

here makes no distinction between critical and non-critical

pixels: In the color classification step every pixel has an

equal chance of being misclassified no matter where in the

image it is located. Having more pixels to classify therefore

makes the test even harder.

2In this article, the images are always listed in the same order.
3At the time of writing of this article, a per image error measurement

has not been published.

Figure 5. Error rates of segmenting the
benchmark images.

Color Space Worst Case Error Average Error

LAB 17.8 % 4.3 %

RGB 97.0 % 12.3 %

HSI 54.2 % 6.0 %

YUV 34.7 % 5.4 %

Table 1. Average and worst-case classifica-
tion results for different color spaces.

4.2 CIELAB vs. YUV vs. HSI vs. RGB

In order to test the impact of using CIELAB as the un-

derlying color space, the algorithm was also applied to the

benchmark images using YUV, HSI, and RGB. Otherwise

the algorithm remained completely unchanged. CIELAB

proves to be better than all other color spaces. Although

YUV comes close in average, CIELAB shows a signifi-

cantly smaller worst-case error. Figure 6 shows the detailed

results and Table 1 summarizes the average and worst-case

results. Of course, a small worst case error is very important

for a generic image manipulation tool.

4.3 Strengths and Weaknesses

The benchmark shows that the presented algorithm per-

forms well on a number of difficult pictures where it is even

difficult to construct an accurate ground truth. If the con-

trast is good, the segmented border is accurate to a pixel

(see Figure 8). The classification copes well with noise al-

though the computation needs considerably more time for

noisy input. Figure 7 shows the result of classifying a noisy

image. However, looking at the resulting pictures also dis-

closes some weaknesses. The segmentation depends heav-

ily on the user provided trimap. The user must select a

region of interest containing the whole foreground object.

Failing to do so will give unusable results. Difficult im-



Figure 6. Error rates of segmenting the
benchmark images in different color spaces.

Figure 7. A fairly high signal-to-noise ra-
tio (50 %) has little effect on the segmenta-
tion (left: original image from [7] with added
noise, right: segmented horse).

ages require a wise selection of representative foreground.

Therefore the user must have at least a little knowledge of

what could be representative. It is not possible to extract

multiple objects at once. For example, extracting multiple

clouds from a sky requires several steps4. If two very sim-

ilar objects exist in the picture, and only one of them is to

be considered foreground, the segmentation mostly gives

bad results. The reason is that most of the colors of the

foreground are then considered background because they

exist on the second object. The only workaround is to in-

clude both objects in the region of interest and to provide

good foreground samples. Still, this method may fail when

the unwanted similar object is bigger than the desired one.

Foreground objects that are connected together with objects

of the same color structure (for example, two people em-

bracing each other) are almost impossible to segment using

the approach. Most of the misclassified pixels in the bench-

mark result from objects that are close to the foreground

object, both in color structure and in location. The same

reason accounts for shadows and reflections. Still another

problem is the use of the standard observer and the D65

reference white. Pictures photographed with different il-

4A simple trick in this case is to invert the problem. Just consider the

sky to be the foreground.

Figure 8. An example of the accuracy of
the segmentation in a middle-contrast region
(left: original image, right: segmented im-
age).

lumination conditions are segmentated poorly. Especially

underwater scenes are awkward to segmentate, because of

the natural color quantization underwater [14]. For these

pictures, a different model would have to be used. In the

case of underwater photography, this model would have to

depend on the depth where the picture was taken.

5 Video Segmentation

Due to the fact that the k-d-tree structure enables fast

range queries, the classification algorithm can also be used

for video segmentation. After converting each video frame

to CIELAB space, the first processing step simply uses a

Gaussian noise filter and calculates the difference between

two consecutive frames pixel wise using Euclidean dis-

tance. The confidence matrix is initialized with these dis-

tance values normalized between 0 and 1.

The next processing step is to apply exponential smooth-

ing on the last three confidence matrices. This improves the

frame rate independence of the algorithm. Now, similar to

the first user selection, a representative sample of the back-

ground has to be reconstructed.

To distinguish noise from real movements, the follow-

ing simple but general model is used. Given two measure-

ments m1 and m2 of the same object with each measure-

ment having a maximum deviation e of the real world due

to noise or other factors, it is clear that the maximum pos-

sible deviation between m1 and m2 is 2e. Given several

consecutive frames, we estimate e to find out which pix-

els changed due to noise and which pixels changed due to

real movement. To achieve this, the color changes of each

pixel over a time period h(x,y) (where x and y specify pixel

coordinates) is recorded. It is assumed that during this in-

terval, the minimal change should be one that is caused by



Figure 9. For extracting foreground objects in
a video the trimap has to be reconstructed
from motion statistics. The images show the
original video (left) and known background
that was reconstructed over several frames
(right). The white regions constitute the un-
known region.

noise. The frame is then divided into 16 sub-frames and

the changes in each sub-frame are accumulated. Under the

assumption, that at least one of these sub-frames was not

touched by any foreground object 2e is estimated to be the

maximal variation of the sub-frame with the minimal sum.

Then those pixels of the current frame are joined with the

background sample that during this history period h(x,y) did

not change more than our estimated 2e. The history pe-

riod h(x,y) is initialized to one second and is continously in-

creased for pixels that are seldom classified as background,

to avoid that a still-standing instructor is added to the back-

ground buffer. Figure 9 shows some examples of recon-

structed backgrounds. It normally takes several seconds,

until enough pixels can be collected to form a representative

subset of the background. The background sample buffer is

organized as an aging FIFO queue.

The color classification (as described in Section 3.3)

is performed using the representative background sample.

Once built-up, the tree is only updated when more than a

quarter of the underlying background sample has changed.

The confidence matrix is then updated by averaging the re-

sults of the classification with the old confidence values.

This lowers the risk that colors that appear both in the back-

ground and foreground are classified in the end as back-

ground. Like in still-image segmentation, a connected com-

ponent analysis is performed for all pixels classified as fore-

ground, i.e. pixels with a confidence greater than 0.5.

The biggest blob is considered to be interesting, and all

other blobs (mostly noise and other moving objects) are put

back into the background buffer. Again, the elements of the

confidence matrix are directly mapped to α-values, specify-

ing the opaqueness of each pixel.

The performance of the algorithm depends on the com-

plexity of the background (entropy) and on how often it

has to be updated. The algorithm was applied to ex-

Figure 10. A screenshot of the GIMP plugin.

tract an instructor standing in front of an electronic chalk

board [15, 8]. Using these segmentation videos, the current

Java-based prototype implementation processes a 640×480
video at 6 frames per second. This includes a preview win-

dow and a motion JPEG compression. A 320×240 video

can be processed at 14 frames per second on a standard

3 GHz PC. This rate can be dramatically increased by utiliz-

ing the SIMD multimedia instruction sets of modern CPUs.

As the algorithm focuses on the background it provides

rotation and scaling invariant tracking of any biggest mov-

ing object.

6 Conclusion and Future Work

The article presented a color classification algorithm that

can be used for foreground extraction in images as well as

in videos. The advantage of the algorithm is that its cen-

tral data structure is efficient and not spatially bounded to a

certain picture, like a graph spanned between pixels. Once

built, the structure can be reused for subsequent frames in

a video. Benchmark results show that an implicit use of

the spatial information provided in the image using region

growing suffices to compete with approaches that use this

information explicitely by spanning graphs over pixels.

Figure 11 shows some example images from the bench-

mark. A usable implementation of the algorithm is available

as a plugin for the GIMP [10], see Figure 10 for a screen

shot of the current prototype. SIOX is open source and cur-

rently being integrated into the GIMP. It will be part of the

core functionality in GIMP 2.4. This will make the extrac-

tion process more effective because of the various manual

post editing facilities that are available in GIMP.



Figure 11. Some of the benchmark images,
along with the user provided trimaps, and the
segmentation result.

Future enhancements may include automatic finding of

the cluster sizes according to the color distribution of the

image and a further improvement of the classification speed.

Different observers and illumination models may improve

segmentation of underwater scenes, space images, or pic-

tures taken at night. We are also experimenting with the

integration of color distribution based methods and with us-

ing the SCIELAB space [19].

Further information, including detailed benchmark re-

sults, demonstration videos, the GIMP plugin, and a pre-

view of the GIMP tool is available at: http://www.siox.org
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