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Sir Gilbert Walker and a Connection
between El Niño and Statistics
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Abstract. The eponym “Walker Circulation” refers to a concept used
by atmospheric scientists and oceanographers in providing a physical
explanation for the El Niño–Southern Oscillation phenomenon, whereas
the eponym “Yule–Walker equations” refers to properties satisfied by the
autocorrelations of an autoregressive process. But how many statisticians
(or, for that matter, atmospheric scientists) are aware that the “Walker” in
both terms refers to the same individual, Sir Gilbert Thomas Walker, and that
these two appellations arose in conjunction with the same research on the
statistical prediction of climate? Like George Udny Yule (the “Yule” in Yule–
Walker), Walker’s motivation was to devise a statistical model that exhibited
quasiperiodic behavior. The original assessments of Walker’s work, both in
the meteorology and in statistics, were somewhat negative. With hindsight, it
is argued that his research should be viewed as quite successful.
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Southern Oscillation, teleconnections, Yule–Walker equations.

1. INTRODUCTION

It is a natural supposition that there should
be in weather free oscillations with fixed
natural periods, and that these oscillations
should persist except when some external
disturbance produces discontinuous changes
in phase or amplitude.—Sir Gilbert T. Wal-

ker (Walker, 1925, pages 340–341)

Much recent attention in the popular press and in the
scientific literature has been devoted to the 1997–1998
El Niño event, with all sorts of anomalous weather
conditions and consequent societal impacts having
been blamed on it (e.g., Changnon, 2000). Figure 1
shows the field of anomalies of sea surface temperature
(i.e., deviations from the long-term sample mean) at the
peak in intensity of this event, with the magnitude of
the anomalies in the equatorial Pacific (shaded in dark
red) being among the largest observed during the entire
twentieth century.
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At first only recognized as a local phenomenon, the
term “El Niño” (or “Christ Child” in Spanish) appar-
ently originated in the nineteenth century as a name
fishermen applied to an anomalously warm current
that appears off the Peruvian coast around Christmas
(Glantz, 2001, page 15). Such El Niño events, or anom-
alously warm sea surface temperatures in the equa-
torial Pacific, now are understood as part of a more
general atmosphere–ocean phenomenon known as the
El Niño–Southern Oscillation (ENSO) (e.g., Glantz,
2001; Allan, Lindesay and Parker, 1996). This phe-
nomenon is the largest single source of climate vari-
ations globally on an annual time scale, with its links
to distant anomalous weather and climate events (such
as droughts or heavy rains) being termed “teleconnec-
tions” (e.g., Glantz, Katz and Nicholls, 1991).

The Southern Oscillation (SO) is the atmospheric
component of ENSO, loosely speaking a tendency of
the atmospheric pressure to “seesaw” between two
“centers of action,” one in the general vicinity of In-
donesia, the other in the tropical–subtropical southeast-
ern Pacific Ocean. A physical explanation for the ex-
istence of the SO is provided at least in part by the
“Walker Circulation,” a large-scale atmospheric circu-
lation consisting of sinking air in the eastern Pacific
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FIG. 1. Field of sea surface temperature anomalies (◦C) (i.e., deviations from sample mean over time period 1950–1979) for December

1997 [source: Columbia University International Research Institute, NOAA National Centers for Environmental Prediction (NCEP)].

and rising air in the western Pacific and caused by feed-
back between trade winds and ocean temperatures. It
is an eponym familiar to any present-day atmospheric
scientist or physical oceanographer and was coined by
Bjerknes (1969), who was the first to recognize the
physical mechanism by which the SO, the Walker Cir-
culation, and the El Niño phenomenon are linked. In
its normal mode (Figure 2), trade winds along the sur-
face flow toward the west, creating a pool of warm
water near Indonesia and Australia. This warm water
heats the atmosphere, resulting in conditions favorable
for convection and precipitation to occur. Higher up in
the atmosphere, the winds blow toward the east com-
pleting the circulation loop. During an ENSO event,
an anomalous Walker Circulation occurs. Weakened
trade winds, in conjunction with weakened upwelling
of cold water along the equatorial coast of South Amer-
ica, shift the warm pool farther east along with the con-
vection and precipitation (for further details about the
Walker circulation, see Trenberth, 1991).

Most present-day statisticians would be familiar with
the eponym “Yule–Walker equations,” relating the pa-
rameters of an autoregressive (AR) process to its au-
tocorrelations. For many years, the Yule–Walker equa-

FIG. 2. Schematic diagram of Walker Circulation.

tions (or the closely related normal equations for least
squares) were the basis of a common method for fitting
AR processes to time series, until computational ad-
vances made the method of maximum likelihood read-
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ily available. These equations still are popular (e.g.,
used in S-PLUS) for estimating partial autocorrela-
tions and, through a generalization (Whittle, 1963,
page 101), for fitting multiple AR processes.

But how many statisticians (or, for that matter, at-
mospheric scientists) are aware that the “Walker” in
both terms refers to the same individual and, more-
over, that these two appellations arose in conjunction
with the same research? The “Walker” in question is
none other than Sir Gilbert Thomas Walker (Figure 3).
While stationed in India as Director General of Obser-
vatories of that country’s meteorological department,
Walker became preoccupied with attempts to forecast
the monsoon rains, whose failure could result in wide-
spread famine (Davis, 2001). It was in the course of
this search for monsoon precursors that he identified
and named the “Southern Oscillation” (Walker, 1924).

At that time, the approach most prevalent in the
statistical analysis of weather variables was to search
for deterministic cycles through reliance on harmonic
analysis. Such cycles included those putatively as-

FIG. 3. Photograph of Sir Gilbert T. Walker (source: Royal

Society; Taylor, 1962).

sociated with sunspots, the hope being to provide a
method for long-range weather or climate forecast-
ing. Walker was quite skeptical of these attempts, es-
pecially given the lack of statistical rigor in identify-
ing any such periodicities. Eventually, he suggested the
alternative model of quasiperiodic behavior (Walker,
1925). Meanwhile, the prominent British statistician
George Udny Yule devised a second-order autoregres-
sive [AR(2)] process to demonstrate that the sunspot
time series was better modeled as a quasiperiodic phe-
nomenon than by deterministic cycles (Yule, 1927). To
determine whether the SO exhibits quasiperiodic be-
havior, Walker was compelled to extend Yule’s work
to a general pth-order autoregressive [AR(p)] process
(Walker, 1931).

The focus of the present paper is on the connec-
tion between the meteorological and statistical aspects
of Walker’s research. First some background about
Walker’s research on what he called “world weather”
is provided. Then the development of the Yule–Walker
equations is treated, including a reanalysis of the in-
dex of the SO originally modeled by Walker. Reaction
to his research, contemporaneously and in subsequent
years and both in meteorology and in statistics, is char-
acterized. For historical perspective, the present state
of stochastic and dynamic modeling of the SO is briefly
reviewed, examining the extent to which his work has
stood the test of time. Finally, the question of why his
work was so successful is considered in the discus-
sion section. For a more formal, scholarly treatment of
Walker’s work, in particular, or of the ENSO phenom-
enon, in general, see Diaz and Markgraf (1992, 2000)
and Philander (1990) (in addition to the references on
ENSO already cited in this section).

2. WALKER’S RESEARCH ON WORLD WEATHER

2.1 Training and Career

In grammar school, Sir Gilbert Thomas Walker, who
lived from 1868 to 1958, “showed an early interest in
arithmetic and mechanics” (Taylor, 1962, page 167).
After being educated under a mathematical scholar-
ship at Trinity College, University of Cambridge, he
remained there, assuming an academic career as Fel-
low of Trinity and Lecturer. Walker was a “mathemati-
cian to his finger-tips” (Simpson, 1959, page 67) and
was elected Fellow of the Royal Society in 1904 on the
strength of his research in pure and applied mathemat-
ics, including “original work in dynamics and electro-
magnetism before ever he turned his thoughts to me-
teorology” (Normand, 1958). Among his first papers
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(published in 1895) was one that dealt with the purely
mathematical subject of the properties of Bessel func-
tions.

In 1903 Walker left academia, taking charge of the
Indian Meteorological Department the next year. This
career change seems quite surprising given the fact that
he was not a meteorologist, but a “typical Cambridge
don and had never read a word of meteorology” (Simp-
son, 1959, page 67). In fact, it came about through
the actions of the previous Director of the Indian Me-
teorological Department, John Eliot. His rationale for
choosing Walker was that he saw the need for his suc-
cessor to be someone with strong mathematical abili-
ties (Normand, 1953). Walker soon became “engrossed
in the problem of monsoon forecasting” (Sheppard,
1959) and spent the next 21 years in India working on
what evolved into the broader topic of world weather.

Upon his return to England in 1924, the King of
England conferred knighthood upon Walker, primarily
for his accomplishments in directing the Indian Mete-
orological Department. He then became Professor of
Meteorology at Imperial College of Science and Tech-
nology, University of London, continuing to devote
much of his time to the topic of world weather, in-
cluding forecasting the Indian monsoon. In making the
presentation to him in 1934 of the Symons Memorial
Medal for “distinguished work in connection with me-
teorological science,” the famous British astrophysicist
and geophysicist Sydney Chapman remarked that: “Sir
Gilbert has had a long and distinguished career, first
as mathematician and then as meteorologist” (Chap-
man, 1934, pages 184–185). Despite formal retirement
at about this time, he remained an active researcher
for many years, publishing his last research paper in
1950.

Walker was something of a “Renaissance man,”
working on diverse topics seemingly unrelated to his
primary research focus. For example, he published
several papers on the flight of birds, having made
observations with a telescope in India (Taylor, 1962).
He also worked on the mathematics of the flight of the
boomerang (publishing a paper in 1897 that became
well known), in the course of which he acquired such
expertise in throwing them that he earned the sobriquet
“Boomerang Walker” at Cambridge (Chapman, 1934).
In India, he retained his interest in the boomerang,
as even the Viceroy noticed his throwing (Simpson,
1959). Upon retirement, he wanted to become a glider
pilot, but “found that at 65 his reactions were too
slow” (Taylor, 1962, page 171). A recent description
of Walker’s life appeared in Walker (1997), and a
publication list in Taylor (1962).

2.2 Statistical Methods

Scientific attempts to forecast the monsoon rains had
started at least 25 years before Walker’s arrival in India,
with official forecasts being issued beginning in 1886
(Normand, 1953, page 463). Lacking any rigorous me-
teorological or statistical basis (i.e., being derived from
a combination of apparent connections and unverified
theories), these forecasts were of limited, if any, suc-
cess. Still these efforts led to the tentative identification
of predictor variables for the monsoon, including Hi-
malayan snow cover and atmospheric pressure at dis-
tant locations (such as Australia and southern Africa).
Other prior meteorological research, not focused on the
Indian monsoon per se, indicated that connections ex-
isted between the variations in atmospheric pressure at
distant locations, including some apparent cycles with
estimated periods of about 3 1

2 years (e.g., Lockyer and
Lockyer, 1904). Making use of these clues, Walker’s
“investigation begun with the narrow object of improv-
ing the Indian monsoon forecasts developed into an ex-
amination of worldwide variations of weather” (Nor-
mand, 1953, page 468).

Walker faced a situation in which no quantitative the-
ory for forecasting the Indian monsoon was available,
with “no agreed explanation of the general circulation,
and certainly no quantitative theory whatever about de-
viations from the normal” (Normand, 1953, page 468).
Even a rudimentary understanding of the general cir-
culation of the atmosphere was not developed until
the 1920s and 1930s (Crutzen and Ramanathan, 2000).
A satisfactory dynamical explanation for the existence
of the SO only was postulated well after his death
(Bjerknes, 1969).

“It is a sign of the high quality and flexibility of
his mind that he could realize that all the skill he
had acquired in the past would be of little use to
him in his new situation” (Taylor, 1962, page 170).
Instead, Walker “at once saw the part the new branch
of mathematics—statistics, very active then under
Pearson and others—might play in scientific monsoon
forecasting” (Simpson, 1959, page 67). The first to
apply statistical methods to the problem, he became
a “pioneer in the use of correlation in meteorology”
(Normand, 1953, page 464). Despite working in the
relative isolation of India, Walker was able to apply
and extend recent developments in statistics, published
primarily by British researchers, in his study of world
weather. He made use of the techniques of correlation,
regression and harmonic analysis, a consistent theme
being the need to impose “criteria for reality” (Walker,
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1914). Faced with the daunting task of sorting through
a myriad of possible relationships, he was one of the
first to develop a formal treatment of the problem of
multiple comparisons.

2.2.1 Correlation and regression.

Monsoon prediction. Walker set about using the
techniques of correlation and regression in an ency-
clopedic attempt to describe the relationships among
climate variables (especially precipitation, temperature
and pressure) around the world. As early as 1908, he
was performing correlation analysis and developing
multiple regression equations to predict Indian mon-
soon rainfall, as well as precipitation and related vari-
ables such as stream flow (e.g., Nile flood) for other
regions. These regression equations involved as many
as four to five predictor variables, and he used determi-
nants to solve the system of normal equations. For ex-
ample, Indian monsoon rainfall (totaled over a number
of months and averaged over a number of stations) was
related to four predictor variables, including pressure at
the quite distant locations of Mauritius and Argentina–
Chile (Walker, 1910).

Probable errors. Walker employed Yule’s modern
notation for correlation just introduced in 1907, and
routinely attached “probable errors” (roughly two-
thirds standard error in the case of statistics whose
large-sample distribution is normal) to statistics such
as the correlation coefficient (at that time, it was
conventional to quote probable, instead of standard,
errors). When first starting to perform regression analy-
ses, Walker had available an expression for the approx-
imate standard error of an ordinary correlation coef-
ficient [i.e., of the form (1 − ρ2)/n1/2, for correlation
coefficient ρ and sample size n, a result derived by Karl
Pearson], but lacked a corresponding one for the mul-
tiple correlation coefficient (called “joint” correlation
by Walker). In one of a series of somewhat obscure
monographs published by the Indian Meteorological
Department, Walker set out a long, tedious algebraic
argument, in an attempt to justify the use of the same
approximate expression in this case as well (Walker,
1910). In this way, he could attach at least a crude mea-
sure of uncertainty to the strength of any fitted regres-
sion relationship.

Centers of action. Despite a network of meteorolog-
ical observations that was quite sparse, especially over
the Pacific Ocean, Walker tried to decompose the vari-
ations in large-scale weather into a few dominant cen-
ters of action. These centers were primarily defined in
terms of atmospheric pressure averaged over a season.

Relying on the correlation coefficient because “the re-
lations between weather over the earth are so complex
that it seems useless to try to derive them from theoret-
ical considerations” (Walker, 1923, page 75), he com-
piled extensive tables of sample correlations between
the pressure at different locations. These statistics in-
cluded what we would today term autocorrelation and
cross correlation coefficients, with leading or lagging
relationships of up to two seasons being considered.

On purely statistical grounds through careful inter-
pretation of these correlation tables, Walker was able
to identify three pressure oscillations central to world
weather:

there is a swaying of pressure on a big scale
backwards and forwards between the Pa-
cific Ocean and the Indian Ocean, there are
swayings, on a much smaller scale, between
the Azores and Iceland, and between the ar-
eas of high and low pressure in the N. Pa-
cific (Walker, 1923, page 109).

Besides the aforementioned SO (i.e., the swaying
between the Pacific and Indian Oceans), he named
the seesaw in pressure between the Icelandic Low and
Azores High the “North Atlantic Oscillation” (NAO),
and the seesaw in the Pacific, the “North Pacific
Oscillation” (NPO) (Walker, 1924). The NAO (e.g.,
Lamb and Peppler, 1987) now is the focal point for
much research on variations in climate on annual to
decadal time scales in higher latitudes of the Northern
Hemisphere, especially in western Europe (Hurrell,
1995). The NPO (e.g., Wallace and Gutzler, 1981)
has received some recent attention as well (Hurrell,
1996). Despite his labeling of these phenomena as
“oscillations,” he did not necessarily view them as
being strictly periodic (recall quote at beginning of
Section 1).

Walker further asserted that the SO is the predom-
inant oscillation: “the influence of the Pacific Ocean–
Indian Ocean swayings upon world weather seems to
be much greater than that of either of the other two”
(Walker, 1923, page 110). He also noted a tendency
of the SO to persist for at least one to two seasons
(his correlation tables included the first- and second-
order sample autocorrelation coefficients), suggesting
the potential for using the SO in forecasting world
weather (Walker, 1924). So when Bjerknes later iden-
tified the atmospheric circulation tied to the SO (see
Section 1 and Figure 2), he named it after Walker, sta-
ting that it “must be part of the mechanism of the still
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FIG. 4. Contemporaneous cross correlation (in tenths) between annual (May–April) Tahiti–Darwin SO index (SOI) and sea-level pressure

(SLP) at individual grid points (source: NOAA/NCEP; Trenberth and Caron, 2000).

larger ‘Southern Oscillation’ statistically defined by Sir
Gilbert Walker” (Bjerknes, 1969, page 169).

Taking advantage of more recent meteorological
pressure measurements that have both higher spatial
density and higher quality than those available to
Walker, Figure 4 shows the contemporaneous cross
correlation between an annual index of the SO (i.e.,
difference in pressure between Tahiti and Darwin aver-
aged over 12 months, May–April) and the pressure at
individual grid points across the world [i.e., measure-
ments that have been spatially interpolated to a grid
(termed an “analysis”)]. A large area of positive corre-
lation (shaded in dark red) is evident over the eastern
Pacific, from South America to Alaska, with a large
area of negative correlation (shaded in dark blue) from
India to Australia.

2.2.2 Multiple comparisons. The question remains
of how Walker was able to disentangle these pressure
oscillations from a plethora of apparent relationships,
a task that had foiled earlier researchers at least in
part because of the difficulties that arise in such “data
snooping.” As has already been noted, he believed in
attaching probable errors to any estimates. However,
in practice, he actually adopted a much more stringent

procedure to combat the problem of multiplicity. He
recognized, in particular, that “it frequently happens
that a large number of possible relationships or of
periodicities are investigated, and of these the case
of the largest ‘measure’ is examined for reality by
the same criterion as that applied to a case that has
not been selected for its magnitude” (Walker, 1914,
page 13). In fact, he even issued an admonition
about “the desirability of publishing the results of all
examinations of relationships, not merely those which
prove to be close: . . . unless we know that all results are
published we do not know how great is the significance
of the relationships found” (Walker, 1923, page 77).

Walker test. In another one of the series of mono-
graphs previously referred to, Walker (1914) sought to
develop a general approach for dealing with the prob-
lem of multiple comparisons. Under the assumption
that the statistics involved (e.g., correlation coefficients
or periodogram ordinates) are independent, he deter-
mined the probable value for the largest of the set. In
more modern terminology, suppose that m independent
tests of significance are performed each at a nominal
level α. Then the desired overall level α0 would be ob-
tained if the individual level is chosen as

α = 1 − (1 − α0)
1/m.(1)
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In practice, Walker would set α0 = 0.5 in (1) to obtain
the probable value to attach to the largest of the set
of statistics. He made use of a rough large-sample
normal approximation for the correlation coefficient
and of Schuster’s result that a periodogram amplitude
is exponentially distributed. For the two cases of
correlation and periodogram analysis, a table in Walker
(1914) shows how the ratio of the probable value of the
largest of the set of m statistics to the probable value of
a single one increases as m is increased.

This procedure apparently is the first instance of an
“error-rates batchwise” approach to multiple compar-
isons, using the terminology of John Tukey (Braun,
1994, page 106). In the case of searching for hidden pe-
riodicities, Walker’s technique constitutes an improve-
ment over the original method of Schuster (1898),
which is only appropriate in the case of testing for a
periodicity whose frequency is specified a priori. Be-
cause it ignores the effect of estimating the variance,
Walker’s technique still is approximate.

In an early book on economic time series analy-
sis, Davis (1941, pages 188–189) published a table of
what are called “Walker probabilities” for the “Walker
test” for hidden periodicities (also see Anderson, 1971,
page 120). In the case of correlations, Walker routinely
relied on his multiple comparisons procedure as a cri-
terion for reality, with typical batch sizes ranging from
m = 15 to m = 35 (e.g., Walker, 1924). A more de-
tailed treatment of his approach to dealing with multi-
plicity in research on teleconnections is given in Katz
and Brown (1991), who showed that in realistic climate
applications the Walker test does not differ much in
performance from the more modern Bonferroni tech-
nique (which does not require independence).

2.2.3 Harmonic analysis. Walker’s interest in peri-
odogram analysis already has been alluded to in con-
junction with the issue of multiple comparisons. In
the study of world weather, he actually did not devote
much effort to searching for deterministic cycles and,
consequently, did not rely much on such techniques.
Rather, he felt compelled to comment on harmonic
analysis given its popularity within meteorology at the
time (e.g., Walker, 1925, 1930). For example, he red-
erived a proof of Schuster’s result on the distribution
of a periodogram amplitude, because: “There still are
meteorologists and seismologists whose lack of famil-
iarity with mathematical ideas enables them to ignore
both Schuster’s criterion and that which I have com-
municated” (Walker, 1930, page 97).

As Editor of the Quarterly Journal of the Royal Me-

teorological Society, Walker advocated the application

of criteria for reality (i.e., tests of significance) for pe-
riods detected by harmonic analysis as a requirement
for publication. He observed that “as is probably true,
ninety-five per cent of the periods announced are non-
existent” (Walker, 1936a, page 2). His general attitude
is summed up in a statement he made near the end of
his research career, commenting on one of the early pa-
pers on modern time series analysis by the British sta-
tistician Maurice Kendall: “I have spent much time and
energy in attempting to diminish faith in very doubtful
periodicities” (discussion in Kendall, 1945, page 137).

3. YULE–WALKER EQUATIONS

3.1 AR Process

Much of the early use of autocorrelation was mo-
tived by meteorological applications. According to
Klein (1997, page 67), the “first published exam-
ple of serial or autocorrelation on time series data”
was a meteorological one, involving the relationship
between daily pressure readings at distant locations
(Cave-Browne-Cave, 1904). Clayton (1917) also made
use of the autocorrelation function for time series of so-
lar radiation and temperature. The notion of an AR(1)
process was implicit in even earlier work of Francis
Galton and Karl Pearson, involving correlation and re-
gression applied to heredity (Klein, 1997, pages 261–
262).

3.1.1 AR(p) process. The original impetus for the
development of an AR(p) process, with order p ≥ 2,
was to provide a statistical model for quasiperiodic be-
havior. From a physical perspective, the basic issue
is that if cyclic behavior were of deterministic origin,
then it could be plausibly attributable to some cause
(especially one with a similar deterministic period).
The alternative of quasiperiodic behavior arises intrin-
sically, so no cause need be invoked to explain its ori-
gin.

A zero-mean AR(p) process {Xt } satisfies the differ-
ence equation

Xt = φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p + at ,(2)

where φk denotes the kth-order autoregression para-
meter (the φk must satisfy certain constraints for the
process to be stationary and causal) and at denotes the
innovation (or error) term (zero mean, uncorrelated).
Using (2) and taking expectations, the Yule–Walker
equations for an AR(p) process are of the form

ρk = φ1ρk−1 + φ2ρk−2 + · · · + φpρk−p, k 
= 0,(3)

σ 2
a = (1 − φ1ρ1 − φ2ρ2 − · · · − φpρp)σ 2,(4)
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where ρk = corr(Xt ,Xt−k), σ 2 = var(Xt ) and σ 2
a =

var(at). Equation (3) reflects the fact that the autocor-
relation coefficients satisfy the same form of difference
equation as does the AR process itself [i.e., (2) neglect-
ing the error term], whereas (4) shows how the inno-
vation variance is reduced relative to the process vari-
ance.

3.1.2 Quasiperiodic behavior. For simplicity, the
case of an AR(2) process is considered. Properties of
its autocorrelation function and spectrum can be de-
rived directly from the Yule–Walker equations (3)–(4)
with p = 2. In particular, its autocorrelation function is
a damped sine wave with frequency f ,

cos(2πf ) = |φ1|/[2(−φ2)
1/2] if φ2

1 + 4φ2 < 0(5)

(Box and Jenkins, 1976, page 59).
For the spectrum of an AR(2) process to be peaked,

the amplitude of the damped sine wave for its autocor-
relation function must be large enough. In particular,
its spectrum has a peak at frequency f ,

cos(2πf ) = −[φ1(1 − φ2)]/(4φ2)

(6)
if φ2 < 0 and |φ1|(1 − φ2) + 4φ2 < 0

(Jenkins and Watts, 1968, pages 229–230). More
generally, the autocorrelation function of an AR(p)
process, p > 2, can include a mixture of one or more
damped sine waves and a spectrum with one or more
peaks, depending on the values of the autoregression
parameters.

In early practice (e.g., as by Yule and Walker), any
“quasiperiod” was identified as having the frequency
of the autocorrelation function (5), as opposed to that
corresponding to the actual peak in the spectrum (6).
Still the frequency values obtained from (5) and (6)
do not necessarily differ very much, plus the peak in
the spectrum associated with quasiperiodic behavior
will be a broad band, as opposed to a thin line. To
avoid confusion, a period based on (5) is referred to
as a correlation quasiperiod, based on (6) as a spectral

quasiperiod.

3.2 Yule’s Model for Sunspot Numbers

Yule’s pioneering 1927 paper on a time series model
for sunspots has been cited many times, so only a brief
treatment is given here. Before this work, the sunspot
time series had been subjected to numerous searches
for hidden periodicities via harmonic analysis, with an
approximately 11-year period being claimed to exist.
Yule’s genius was to suggest an alternative model

in which a deterministic cycle (specifically, a sine
wave) is randomly shifted in phase and amplitude. This
chance mechanism led directly to the formulation of an
AR(2) process.

Given Yule’s earlier innovative work in correlation
and regression, especially on the concepts of partial
correlation and regression, it should not be surprising
that he was the first to formulate such a model. Us-
ing the method of least squares, he fit this model to
the annual time series of sunspot numbers, 1749–1924,
obtaining a correlation quasiperiod of about 11 years,
or roughly consistent with the results of previous har-
monic analyses. In effect, he used the solution to the
Yule–Walker equations for the autoregression parame-
ters (3) (with p = 2) in interpreting the properties of
the fitted model. Making use of the regression analogue
to the expression for the innovation variance (4), he
concluded that an AR(1) model was unsatisfactory, but
that higher than second-order terms need not be added.
Yule’s AR(2) model explains much more of the vari-
ance of the sunspot time series than does a strictly pe-
riodic model with one harmonic component.

3.3 Walker’s Model for Darwin Pressure

Before the appearance of Yule’s work on sunspots,
Walker was already thinking about the issue of quasi-
periodic behavior as an alternative to deterministic cy-
cles. The context still was world weather and the pre-
diction of the Indian monsoon. For an index based on
one of the centers of action involved in the SO, the
seasonal mean pressure at Darwin, Australia, 1882–
1923, he observed that “though there is no definite
‘line’ in the periodogram, there appears to be a ‘band’
with its centre between 3 and 3 1

4 years” (Walker, 1925,
page 342). Figure 5 shows the same time series of sea-
sonal pressure at Darwin that Walker analyzed, except
that it has been standardized somewhat differently and
extended to the present (see the Appendix).

Walker also urged that a distinction be drawn be-
tween periods and quasiperiods: “The word ‘period’
has hitherto had a definite meaning in physical math-
ematics and it will tend to confusion if it has to bear
also a second meaning” (Walker, 1925, page 343). This
paper was read before the Royal Meteorological Soci-
ety on 20 May 1925, with one of the discussants being
Harold Jeffreys. Besides being well known for his work
in Bayesian statistics, Jeffreys made major contribu-
tions to many areas of earth science, including several
papers during 1915–1925 on theories of atmospheric
circulation. He commented:
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with reference to the possibility of a real
periodicity of variable period, that such a
phenomenon could be discovered, if it were
present, by Clayton’s method in which cor-
relation coefficients were worked out be-
tween the value of the data and its val-
ues one, two, three, etc., days afterwards
(Walker, 1925, page 346).

Thus as early as 1925, Walker was given advice on
how he might formally model quasiperiodic behavior.

A subsequent paper, read before the Royal Meteo-
rological Society by Walker on 18 November 1925,
focuses on uses and abuses of correlation coefficients
(Walker and Bliss, 1926). The British statistician Regi-
nald Hooker, known for his ideas about detrending time
series (Klein, 1997, Chapter 3), was one of the discus-
sants and commented:

He had listened on the previous day to
an extraordinarily interesting address at the
Statistical Society by Mr. Udny Yule, who
took as his subject much the same prob-
lem as Sir Gilbert Walker had taken, and he
hoped that he and Sir Gilbert Walker might
collaborate in the investigation of this sub-
ject (Walker and Bliss, 1926, page 81).

The paper to which Hooker was referring had the
provocative title of “Why do we sometimes get non-
sense-correlations between time-series?” (Yule, 1926),
in some respects a precursor to Yule (1927). Evidently,
no such collaboration between Yule and Walker ever
took place. Yule’s 1927 paper turned out to be his

last significant research, because he retired in 1930
and was a semiinvalid from 1931 onward (Kendall,
1952). Nevertheless, Hooker was certainly prescient
with respect to the appearance of the term Yule–Walker
equations.

3.3.1 Derivation of Yule–Walker equations. As soon
will be explained, Walker’s application to Darwin pres-
sure required a more complex model than an AR(2)
process. So he was compelled to extend Yule’s ap-
proach, considering an AR process of arbitrary order p

and deriving the general form of Yule–Walker equa-
tions, (3)–(4) (Walker, 1931). Because the autocorrela-
tion coefficients satisfy a relationship (3) identical to
that for the original process (2), Walker argued that
the autocorrelation function “may be used to read off
the character of the natural periods” of the process
(Walker, 1931, page 532). Wold (1938, pages 143–144)
claims that Walker derived (3) only for lags k > p,
but Walker actually stated that (3) holds “in general”
(Walker, 1931, page 519) without specifying any con-
ditions on k, so this issue is not completely clear.

3.3.2 Analysis of Darwin pressure. In the same
paper, Walker applied the general autoregressive model
to the seasonal time series of Darwin pressure, now
extended through winter 1926 (see Figure 5). His
motivation was that Darwin is

one of the most important centres of ac-
tion of “world weather,” which . . . displays
surges of varying amplitude and period with
irregularities superposed, suggesting that
pressure in this region has a natural period

FIG. 5. Standardized time series of seasonal mean sea level pressure at Darwin, Australia, for winter 1882–fall 1998.
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of its own, based presumably on the physi-
cal relationships of world-weather, but that
the oscillations are modified by external dis-
turbances (Walker, 1931, page 525).

Unlike the sunspot time series, the sample autocorre-
lation function for the Darwin time series appeared to
him to have a more complex form than that of a damped
sine wave. For this reason, he considered a higher-
order AR(p) process as a candidate model, observing
that the Yule–Walker equations (3) imply that the au-
tocorrelation function is, in general, a sum of damped
exponential and damped sine waves (see Section 3.1).

However, Walker did not adopt Yule’s estimation
method of fitting an AR process directly to the data
by regression. Being preoccupied with the issue of
quasiperiodicity, he fit a mixture of one damped sine
wave and two damped exponentials to the sample
autocorrelation function by trial and error. Next this
fitted autocorrelation function was converted into the
corresponding difference equation, which assumes the
form of an AR(4) model. Still, he was cautious about
drawing any firm conclusions on the basis of the fitted
AR(4) model alone: “There appears to be a periodicity
of about 11 1

2 quarters . . . but the evidence that it is
damped is not conclusive” (Walker, 1931, page 531).

It turns out that this rather indirect approach to model
fitting does not necessarily result in sensible parame-
ter estimates. Although Walker’s fitted model for the
autocorrelation function matches reasonably well the
first three or four sample autocorrelation coefficients,
his indirectly derived AR(4) model does not. As later
pointed out by Wold (1938, pages 145–146), the dif-
ficulty is that Walker’s fitted autocorrelation function
does not actually correspond to an AR process. Before
returning to Wold’s assessment of Walker’s application
in Section 4.1, it will be useful to reanalyze the Darwin
pressure time series.

3.3.3 Reanalysis of Darwin pressure. The time se-
ries of mean seasonal pressure at Darwin analyzed by
Walker ranges from winter 1882 to winter 1926 (i.e.,
a length of 177 seasons), or nearly the same num-
ber of observations as the sunspot data as analyzed
by Yule (Walker, 1931). To eliminate the annual cycle
in mean pressure, Walker converted the data into de-
viations from the corresponding seasonal mean. Here
Walker’s analysis is repeated, with a few minor modi-
fications that include making use of data corrected for
instrumental bias and removing the annual cycle in the
pressure standard deviation. The Appendix gives more
details on these changes, the rationale being that their

FIG. 6. Sample autocorrelation function of Darwin pressure,

winter 1882–winter 1926.

nature is such that Walker would have been readily able
to implement them.

The reanalyzed data appear as the first portion of the
time series in Figure 5, except for slight differences
introduced by the standardization being based on
a shorter time period. The sample autocorrelation
function (Figure 6) indicates at least weak evidence
of a damped oscillation. Walker obtained a similar
pattern except for a tendency for the autocorrelation
to remain positive at higher lags, apparently due to an
artificial trend in the data introduced by instrumental
bias (see the Appendix). Figure 7 gives the raw
periodogram, a nonparametric smoothed spectrum and
the spectrum for an AR(4) model fitted by the Yule–
Walker equations (3)–(4). A broad band is evident at
about 3 to 3 1

2 yr (i.e., at about 0.07 to 0.08 cycles per
season in Figure 7), but it is rather weak. Rather than
determine the statistical significance of these estimates
directly, their reality will be examined in Section 5 in
the light of more recent observational evidence and
theoretical developments.

3.4 Etymology

The eponym Yule–Walker equations (or “relations”)
did not originate until long after the work of Yule and
Walker was published, with the earliest appearance
I have found being in Kendall (1949). Wold (1938,
page 178) recognized the equivalence of the Yule–
Walker equations to the normal equations that arise
in least squares. He solved (3), for 1 ≤ k ≤ p, to
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FIG. 7. Log spectrum of Darwin pressure, winter 1882–winter

1926: periodogram (solid line), smoothed using Daniell lag win-

dows (short-dashed line), and for fitted AR model (long-dashed

line).

obtain estimates of the autoregression parameters,
observing that this approach reproduces the first p

sample autocorrelation coefficients.
At first, the solutions to (3) for the autoregression pa-

rameters were referred to as least squares estimates, no
matter how the autocorrelation coefficients were esti-
mated (e.g., Whittle, 1954a, b). With the development
of the Levinson–Durbin recursion (Durbin, 1960; see
Morettin, 1984, for a review), (3) could be solved for
the autoregression coefficients in a rapid iterative fash-
ion, convenient when fitting many trial orders of an
AR model to the same data. This advance made para-
meter estimation via the Yule–Walker equations an at-
tractive alternative to regression. Some time afterward,
the distinction between least squares and Yule–Walker
estimators became prevalent; with the two estimators
not being identical because of differences in how the
autocorrelation coefficients are estimated (the nonneg-
ative definite version being preferred in the case of
Yule–Walker estimators; e.g., Box and Jenkins, 1976,
pages 277–279).

4. REACTION TO WALKER’S RESEARCH

4.1 Reaction in Statistics

4.1.1 Correlation and regression. It is evident that
some of Walker’s research on correlation and regres-
sion stimulated interest within statistics. For example,

a monograph by the British statistician John Wishart,
well known for his work in multivariate statistics, be-
gins with: “The use of the multiple correlation coef-
ficient in weather forecasting was suggested by Sir
Gilbert Walker in 1910” (Wishart, 1928, page 29).
Wishart went on to show that the expression for the
standard error of the multiple correlation coefficient
used by Walker is overly conservative if no real cor-
relation is present (see Section 2.2.1).

4.1.2 Multiple comparisons. Walker’s work on mul-
tiple comparisons clearly contributed to subsequent de-
velopments in statistics on testing for hidden periodic-
ities. In particular, R. A. Fisher extended the Walker
test for hidden periodicities by developing a Studen-
tized version (Fisher, 1929). This improvement effec-
tively superceded the Walker test, with “Fisher’s test”
still being used today.

4.1.3 Time series analysis. The appearance of the
book by Swedish statistician Herman Wold in 1938
marked the emergence of modern time series analysis
(Klein, 1997, page 20). Exploiting recent advances
in the theory of stationary stochastic processes, the
topic began to be viewed as a bona fide branch of
statistics. Yet in the section of Wold’s book “On earlier
applications of the scheme of linear autoregression”
(Wold, 1938, pages 140–146), he was only able to
cite the two applications described in the present
paper, Yule’s to sunspots and Walker’s to atmospheric
pressure. He critiqued both of these applications, with
his assessment of Yule’s work being quite laudatory.

On the other hand, Wold’s assessment of Walker’s
application to Darwin pressure is somewhat negative
(although to be fair, he qualified his remarks: “a more
detailed analysis of the air pressure data is beyond the
scope of the present survey”; Wold, 1938, page 146).
He does give full credit to Walker for his derivation
of the Yule–Walker equations (3)–(4). As mentioned
in Section 3.3, Wold raised legitimate concerns about
the indirect approach by which Walker fit an AR(4)
process to the Darwin pressure, but Wold did not
actually attempt to improve upon Walker’s parameter
estimates by fitting an AR(4) process directly to the
data. Rather, Wold observed that a simpler AR(1)
process provided “a fairly good fit to the few serial
coefficients” (Wold, 1938, page 145) and would be an
adequate model for Darwin pressure. He saw no need
for a higher order AR model: “it is doubtful whether it
would be possible to improve sensibly the approach . . .
by taking into account more distant elements” (Wold,
1938, page 145), not being convinced of any need for a
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model with quasiperiodic behavior: “this periodogram
does not like that of the sunspots suggest a scheme of
linear autoregression with a tendency to periodicity”
(Wold, 1938, page 146).

4.2 Reaction in Meteorology

4.2.1 General. During the time span of Walker’s re-
search career, the general reaction within the meteo-
rological community to statistical methods, especially
correlation and regression, was extreme skepticism.
For example, a rather technical paper, making exten-
sive use of correlation in modeling rainfall, was read
by Fisher before the Royal Meteorological Society on
19 April 1922 (Fisher and Mackenzie, 1922). In the
discussion of this paper, it was mentioned that “no new
meteorological fact had been discovered by means of
correlation coefficients; certainly up to the present no
practical forecasts had been obtained from correlation
coefficients” (Fisher and Mackenzie, 1922, page 242).

So it should not be surprising that Walker’s research
discoveries were met with much resistance within
meteorology. For example, concerning his pioneering
use of correlation in meteorology, Normand (1953,
page 464) noted that “meteorologists have not all
accorded him whole-hearted thanks.”

4.2.2 Forecasting. Because the potential value of
long-range weather forecasts was perceived to be high,
Walker’s research did draw much attention, but doubts
remained about reliance on statistical methods. For
instance, in a review of the series of memoirs of
the Indian Meteorological Department produced by
Walker, the British meteorologist William Dines (1916,
page 130) argued that “correlation is of very little use
for the purpose of forecasting unless the coefficients
concerned are very high.” Dines did admit that “for
the purpose of investigating relationships between
various elements and their physical causes correlation
coefficients, and more especially partial ones, are of
very great importance.” Walker’s response to Dines
was to observe that “the object of weather forecasting
being practical, we cannot wait until we are absolutely
certain of our results” (Walker, 1918, page 223).

Over the years, there were several attempts to “ver-
ify” Walker’s correlations and multiple regression
equations for seasonal forecasting, generally by re-
calculating the same statistics as the number of ob-
servations increased (e.g., Montgomery, 1937). Grant
(1956, page 10) questioned Walker’s multiple regres-
sion equations for predicting rainfall in India, conclud-
ing that: “the observed correlations do not prove or

even render likely the existence of correlations of use-
ful magnitude between past and future weather.” In
several instances, the correlations appear to weaken
with more data, but not necessarily greater changes
than could be reasonably attributable to sampling vari-
ations (e.g., Gershunov, Schneider and Barnett, 2001).

4.2.3 Physical explanation. Despite his reliance on
statistics, Walker always sought physical explanations:
“The number of satisfactorily established relationships
between weather in different parts of the world is
steadily growing . . . and I cannot help believing that
we shall gradually find out the physical mechanism by
which these are maintained” (Walker, 1918, page 223).
Despite his lack of formal training in meteorology, he
tried to lay out possible research avenues. In an address
to the Royal Meteorological Society, he suggested that
“variations in activity of the general oceanic circula-
tion will be much more far reaching and important”
(Walker, 1927a, page 113) in explaining pressure os-
cillations such as the SO, and he later recommended
searching “for an explanation in terms of slowly chang-
ing features, such as ocean temperatures” (Walker,
1936b, page 136).

For reasons that are not completely clear, Walker’s
appeals for physical explanations went largely un-
heeded. At the time of his death in 1958, his work was
characterized in terms of unrealized expectations:

Walker’s hope was presumably not only
to unearth relations useful for forecasting
but to discover sufficient and sufficiently
important relations to provide a productive
starting point for a theory of world weather.
It hardly appears to be working out like that
(Sheppard, 1959, page 186).

With the recent popularity of the ENSO phenom-
enon, it is difficult to appreciate that: “As recently
as the 1960s, the SO was still largely dismissed as a
climate curiosity” (Rasmusson, 1991, page 310). The
conventional explanation in meteorology is that only
with the breakthrough by Bjerknes (1969) (see the In-
troduction and Section 2.2.1) was the physical theory
available to take advantage of Walker’s work. Surely,
more rapid progress would have been achieved if re-
searchers in meteorology had taken seriously Walker’s
discoveries, rather than tending to dismiss them (for
additional discussion of the reaction to Walker’s work
within meteorology, see Brown and Katz, 1991).
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5. PRESENT STATE OF MODELING THE

SOUTHERN OSCILLATION

Not only has the sunspot time series that Yule mod-
eled become one of the most analyzed data sets in
statistics, but on occasion it still is used in meteorol-
ogy as well to search for sun–weather connections. On
the other hand, the SO time series, originally modeled
by Walker, received very little attention within mete-
orology until recent decades. It is therefore somewhat
ironic that, at least for long-range weather or climate
forecasting, sunspots have proved of so little value
(e.g., Pittock, 1978), whereas today the ENSO phe-
nomenon is the primary focus of attention. At least in
this respect, it appears that Walker’s research discover-
ies have stood the test of time well.

Since Walker’s era, the observational information
about the SO has improved. Longer and more reliable
records exist as well as refined indices, such as the
difference between Tahiti and Darwin pressure (see
Figure 4), designed to reflect explicitly the two centers
of action involved in the SO pressure seesaw (Walker
did not make use of Tahiti pressure measurements, and
some doubts have been raised about their reliability
before 1935; e.g., Trenberth and Hoar, 1996). Progress
also has been made on the dynamical underpinnings of
the more general ENSO phenomenon.

5.1 Quasiperiodic Behavior

Recalling the discussion in Section 3.3 about the SO
being a quasiperiodic phenomenon (see Figure 7), little
doubt remains about this issue within the meteorology
community. For example, Chu and Katz (1989) used an
AR(3) process for the seasonal Tahiti–Darwin pressure
difference since 1935, obtaining an estimated spectral
quasiperiod of about 3.6 years; and Trenberth and
Hoar (1996) modeled the seasonal Darwin time series
for 100 years from 1882 to 1981 (i.e., much of the
same data shown in Figure 5) with an ARMA(3, 1)
process yielding an estimated spectral quasiperiod of
about 4.2 years. The SO time series even has appeared
recently in the statistics literature, with Huerta and
West (1999) performing a fully Bayesian analysis
(involving the use of Markov chain Monte Carlo
methods) of the Tahiti–Darwin pressure difference
aggregated to a monthly time scale starting in 1950.
Their posterior distribution on the order p of an AR
process attaches nonnegligible probability between 8
and 17 [roughly consistent with the findings of Chu and
Katz (1989), who selected an ARMA(7, 1) model for
monthly data over a slightly different time period], and

they obtained an estimated spectral quasiperiod of 4 to
5 years (Chu and Katz, 3.3 years). So, notwithstanding
the limitations in Walkers’s original analysis of the
Darwin data, his insight about the SO phenomenon
appears to be essentially correct.

5.2 Nonlinear Dynamics

The quasiperiodic feature of the ENSO phenomenon
now is viewed as fundamental (Graham and White,
1988), but with its source remaining unclear (e.g.,
Wang, 2001). The prevailing dynamical explanation is
the “delayed oscillator hypothesis” originally formu-
lated by Suarez and Schopf (1988), with alternative
versions subsequently being proposed (Wang, 2001).
All of these conceptual models involve deterministic
nonlinear equations, making use of both positive and
negative feedbacks between the atmosphere and ocean
in the equatorial Pacific to produce an oscillation on
the interannual time scale of ENSO. To obtain the qua-
siperiodic behavior of the actual ENSO phenomenon,
a stochastic forcing term sometimes has been added to
the model (Graham and White, 1988). In a sense, this
approach is reminiscent of Yule’s original idea of intro-
ducing randomness into a strictly periodic oscillation.

Finally, it should be noted that general circulation
models (GCM’s), very complex deterministic numeri-
cal models of the atmosphere–ocean system, likewise
are starting to be capable of generating “ENSO-like”
behavior. For example, Meehl and Arblaster (1998)
found that one particular GCM, the NCAR Climate
System Model, produces a spectral quasiperiod of
about 4 yr or quite close to that observed for ENSO.
For reasons that are not yet understood, many GCM’s
exhibit a peak at shorter periods than that observed
(AchutaRao et al., 2000).

6. DISCUSSION

Sir Gilbert Walker’s contribution to the Yule–Walker
equations arose in conjunction with an attempt to de-
velop a quasiperiodic model for the Southern Oscil-
lation, a pressure seesaw closely related to the El
Niño phenomenon. The question remains of why has
his work concerning the SO, other pressure oscilla-
tions and related teleconnections proved so success-
ful. Within meteorology, the somewhat parochial ex-
planation is that it must have been Walker’s climato-
logical expertise. In my judgment, however, it was his
expertise in mathematics and statistics, coupled with
a dedicated effort to solve a particular scientific prob-
lem (namely, long-range weather or climate forecast-
ing) that best explains this success.
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A heightened level of interest in collaborative re-
search between statistics and the environmental sci-
ences and geosciences now exists (e.g., Chelton, 1994;
Nychka, 2000; Piegorsch, Smith, Edwards and Smith,
1998). However, the lessons gleaned from the earlier
history of collaboration in such areas ought to be appre-
ciated as well. In this vein, one last quote from Walker
is germane:

There is, to-day, always a risk that spe-
cialists in two subjects, using languages
full of words that are unintelligible without
study, will grow up not only, without knowl-
edge of each other’s work, but also will
ignore the problems which require mutual
assistance.—Sir Gilbert T. Walker (Walker,
1927b, page 321)

APPENDIX

The time series of monthly mean Darwin pressure,
for the period January 1882–present, is available from
a Web site maintained by the Climate Prediction Cen-
ter of the National Oceanic and Atmospheric Admin-
istration (NOAA): http://www.cpc.ncep.noaa.gov/data/
indices/index.html. The seasonal time series, originally
analyzed by Walker (1931), was reconstructed from
this NOAA data set. Because it is not possible to
specify the initial state of the time series (i.e., winter
1882), the required value for December 1881 was ob-
tained from another source, a Web site maintained by
the Australian Bureau of Meteorology Research Cen-
tre: ftp://ftp.bom.gov.au/anon/home/ncc/www/sco/soi/
darwinmslp.html.

Since the time Walker analyzed this data, a correc-
tion has been applied to remove an artificial trend in-
troduced by instrumental drift. This trend actually was
noticed by Walker (1931, page 529), and he suspected
a source such as “some change of barometric correc-
tion.” Yet he did not remove this trend and argued that
“its effect on periodicity will be insignificant.” Inci-
dentally, Walker was a contributor to the collection in
which these corrected pressures were published (Clay-
ton, 1934, page 575). In fact, the impetus for this se-
ries of publications of weather records was research on
world weather in which Walker was one of the initia-
tors.

In constructing atmospheric or oceanic circulation
indices, today it is common to adjust for annual cy-
cles in the mean and standard deviation simply by stan-
dardizing each month or season separately (i.e., sub-
tracting the corresponding sample mean and then di-
viding by the sample standard deviation) (e.g., Tren-
berth and Hoar, 1996). Although Walker only removed

the seasonal mean in his analysis of Darwin pressure,
he did make much use of standardized variables in
other work. In particular, he usually expressed multi-
ple regression equations in this form, both for compu-
tational convenience and for ease in interpretation (e.g.,
Walker, 1910). In addition, his correlation or regression
analyses generally were conducted separately for each
season (i.e., stratifying the data by the season to be pre-
dicted), because he was aware of the possibility that
variability and covariability might differ depending on
the time of year (e.g., Walker, 1924).
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