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Abstract
In this paper, we resolve the challenging obstacle of detecting pedestrians with the ubiquity of irregularities in scale, rotation, 
and the illumination of the natural scene images natively. Pedestrian instances with such obstacles exhibit significantly unique 
characteristics. Thus, it strongly influences the performance of pedestrian detection techniques. We propose the new robust 
Scale Illumination Rotation and Affine invariant Mask R-CNN (SIRA M-RCNN) framework for overcoming the predecessor’s 
difficulties. The first phase of the proposed system deals with illumination variation by histogram analysis. Further, we use 
the contourlet transformation, and the directional filter bank for the generation of the rotational invariant features. Finally, 
we use Affine Scale Invariant Feature Transform (ASIFT) to find points that are translation and scale-invariant. Extensive 
evaluation of the benchmark database will prove the effectiveness of SIRA M-RCNN. The experimental results achieve 
state-of-the-art performance and show a significant performance improvement in pedestrian detection.
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1 Introduction

In the past few decades, the world has been observing the 
threats to security in urban areas, which has expanded the 
pertinence of vision-based surveillance systems enough to 
detect pedestrians in high-density areas. Pedestrian detection 
has countless applications in computer vision. The obvious 
application is video surveillance [1].

Need and  impor tance of  Pedestrian detec-
tion  Recently, due to the COVID-19 pandemic, surveil-
lance systems have been used to monitor crowded places. It 
helps to identify hot spots (the areas where the virus infec-
tion spreads more opportunities). Owing to human interac-
tion in highly congested areas, the chances of the spread of 
the COVID-19 virus increase. Therefore, the demand for 
pedestrian detection systems has increased. However, the 
current state-of-the-art installed system requires a conven-
tional manual inspection of the video, which is in most cases 
time-consuming and infeasible. Pedestrian detection is an 

essential and important task in any intelligent video surveil-
lance system because it provides information for semantic 
understanding of video scenes. The focus of the researchers 
is to make it smarter and use deep learning to move from 
passive surveillance to active surveillance. The author pro-
poses several promising frameworks to improve the accuracy 
and speed of pedestrian detection. Nevertheless, the deep 
learning framework still has room for improvement.

Need and importance of Pedestrian detection  The 
detection accuracy is affected by various changes such as 
human body appearance, trajectory, posture, abrupt motion, 
scale changes, complex background, pedestrian deformation, 
partial or complete occlusion, shadows, etc. In this area, it 
is still an unresolved problem. Different factors related to 
the video capture method, such as low frame rate, unavail-
ability of color information, camera sensor stability, com-
pression technology, etc., directly affect the quality of the 
video sequence. It may limit the design of object detection 
algorithms. In addition, different cameras have different sen-
sors, lenses, resolutions, and frame rates, resulting in differ-
ent image quality. A low-quality image sequence can affect 
moving object detection algorithms. In some cases, different 
parts of a moving object might have different movements 
in terms of speed and orientation. When detecting moving 
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objects in the presence of a moving camera, the need to 
estimate and compensate for camera movement is inevitable. 
However, it is not an easy task to do because of possible 
camera’s depth changes and its complex movements Table 1.

The development history of CNN based deep learning 
architecture can be summarized as follows The state-
of-the-art Convolutional Neural Network (CNN) architecture 
used for object detection is You Only Look Once (YOLO) 
[2]. Compared with other CNN-based object detection 
frameworks, it is the most accurate and fastest.

PP-YOLO or PaddlePaddle YOLO is the most efficient 
and fast object detection model in real-time [3]. YOLO has 
different variants, such as YOLO v1, YOLO v2, YOLO v3, 
YOLO v4, and YOLO v5 [4]. However, YOLO-based object 
detection fails in multiple object detection and occlusion. 
Specifically, Mask R-CNN performs better in crowded envi-
ronments. We can also use it for semantic, instance seg-
mentation, and classification [5, 6]. Other architectures are 
Faster R-CNN [7, 8], Fast R-CNN [9], Region-based Fully 
Convolutional Network (R-FCN) [10], Single Shot MultiBox 
Detector (SSD) [11], Fully Convolutional Network (FCN) 
[12], Deep Convolutional Generative Adversarial Network 
(DCGAN) [13], Residual Neural Network (ResNet) [14], 
GoogLeNet [15], Visual Geometry Group (VGG Net) [16], 
ZFNet [17], AlexNet [18], Deep Belief Network (DBN) [19], 
LeNet [20], etc. used for the pedestrian detection. These 
frameworks are significantly better than other neural network 
architectures, such as Support Vector Machine (SVM) [21], 

AdaBoost [22], Probabilistic Neural network (PNN) [23], 
Radial basis Neural Network (RBN) [24], Artificial neural 
network (ANN) [25].

The motivation for the proposed research work The 
Fig. 1 illustrates the motivation for the proposed contribu-
tion. Changes in the appearance of pedestrian instances 
make pedestrian detection difficult. In many cases, images 
of natural scenes usually vary in proportion, orientation, and 
lighting. These artifacts make pedestrian incident detection 
and classification a challenging task. Several other problems 
include 1) uneven lighting, 2) blurry and hazy appearance, 
3) highlighting pedestrians, 4) changes in size with differ-
ent posture changes, etc. Fig. 2 describes the key ideas of a 
new SIRA R-CNN framework, which is built on the Faster 
R-CNN pipeline [12]. The input image is first verified by the 
illumination recognition algorithm whether the input image 
needs illumination enhancement. The input image has low 
contrast, and then the histogram enhancement is performed 
on the input image. Afterwards, for the object proposal gen-
eration, first passes the process image through the bottom 
shared convolutional layers to extract its feature maps. Use 
these feature maps and scale rotation, affine invariant feature 
map for generation of to generate the final detection result, 
which is defined on the recommended size. We can always 
improve conclusive results through proposed feature maps 
and two-stage backbone networks, which are suitable for 
current input at certain scales. Therefore, SIRA R-CNN can 
achieve excellent detection performance in a wide range of 
input scales. Since SIRA R-CNN shares the convolutional 

Fig. 1  Illustration of the motivation of the proposed SIRA Mask-
RCNN. (a) Scale variation: The top row of the first column shows 
the pedestrian images from the California Institute of Technology [1] 
and the ETH [2] database. The first column and the bottom row show 
that the scaled visual appearance has changed significantly in propor-
tion. (b) Illumination variation: The top row of the second column 
shows the pedestrian images from the California Institute of Tech-

nology [1] and the ETH [2] database. The bottom row of the second 
column shows a significant change in the visual appearance of the 
lighting after zooming. (c) Rotation variation: The top row of the 
third column shows the pedestrian images from the California Insti-
tute of Technology [1] and the ETH [2] database. The bottom row of 
the third column shows a significant change in the visual appearance 
when rotated after zooming
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features of the entire image with different target proposals, it 
is very effective in terms of training and testing time. Mask 
R-CNN has the advantage of predicting a binary mask for 
each specific detected object, while Faster-RCNN and FCN 
do not have this advantage. In these networks, objects are 
identified and classified, but no pixel-level segmentation 
mask is generated, and individual objects are not accurately 
distinguished.

The proposed region generation step generates an RoI, 
which may or may not contain the required objects. In the 
classification step, each RoI is classified as an object or 
background. However, despite its outstanding performance 
in terms of object detection accuracy, Mask RCNN is com-
putationally costly for the new image as input to the system. 

The proposal area generation process takes time to generate 
the RoI. Similarly, due to the unavailability of meaningful 
information about the object’s scale and rotation-invariant 
features, the existing Mask R-CNN cannot effectively clas-
sify the smallest rotating object. These two drawbacks 
restrict the use of the Mask R-CNN in a real-world applica-
tion for object detection in video surveillance.

The main objective of this research paper is to propose a 
method to reduce the computational cost of the pre-trained 
Mask-RCNN in the testing phase and to detect the small, 
revolved object efficiently. The key idea of this method is to 
modify the version of the Region Proposal Network (RPN) 
to generate a feature map with a scale rotation affine invari-
ant feature map, which will provide additional object scale, 
orientation information. In particular, the feature map of the 
network can locate objects in the image. Hence, proposal 
regions for a new input image generated with scale and ori-
entation aware information in the trained network, which 
results in the efficient small and rotated object detection in 
less computational cost. The detection accuracy increases 
because of the availability of object information on multiple 
scales. Joint feature maps of multiple resolutions extracted 
from different layers of the two networks and used for pedes-
trian detection, which results in a low false-positive rate. 
Experimental results show improvements in detection rates 
due to the proposed feature map.

R. Girshick et al. introduced a Fast R-CNN [9] to resolve 
the problem of the scale-variance issue by applying brute-
force data on the image for scaling at the cost of time and 
computational complexity. Y. Gong et al. [29] recommended 
to use a multi-scale filtering model for all objects of different 

Fig. 2  Illustration of the proposed SIRA Mask R-CNN. We use 
multiple predefined box filters to filter multi-scale images to detect 
instances of different sizes. According to the proposed size of the 

target, the final result is obtained by fusing two-stage detectors and 
scale, illumination, rotation and affine invariant feature maps

Table 1  Feature extraction algorithm used in the state-of-the art 
pedestrian detector

Feature Extraction Classifier Reference

CNN Mask R-CNN [31]
HOG Neural Network [36]
LBP SVM+CNN [37]
Integral channel features SVM+CNN [38]
GLCM SVM [47]
Haar-wavelet transforms SVM [48]
Directional features SVM [46]
Vertical and horizontal SVM [47]
Edge intensities descriptors Chamfer [48]
Rectangular filter bank Boosted cascade [49]
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sizes. However, Mask R-CNN is very popular in object 
detection. In this case, the recognition and generation of 
the object region proposal takes time to generate the ROI. 
Similarly, since there is no scaling factor, it will cause false 
detection of objects whose size changes during the object 
detection process. Each region proposal is convolved with a 
fixed-size filter mask to obtain CNN features. These features 
are inaccurate when the image has significant contrast, light-
ing, scale changes, and unclearness. These three shortcom-
ings limit the application of Mask R-CNN in the real world.

The contributions of this paper are as follows:

1. A new SIRA Mask-RCNN is proposed to overcome 
scale, rotation and illumination artifacts.

2. In the proposed method. First, the illumination recogni-
tion and detection algorithms solve the problem of illu-
mination changes. Secondly, the Contourlet transform 
and the direction filter bank use to solve the problem of 
rotation changes. Third, use ASIFT to solve the problem 
of translation and scale invariance.

3. The comprehensive evaluation of the proposed method 
on Caltech, INRIA, MS COCO, ETH, KITTI and the 
proposed academic environment database proves the 
effectiveness and robustness of the proposed SIRA Mask 
R-CNN.

The rest of the research paper is further organized 
as follows The latest architectural innovations in pedes-
trian detection technology and deep learning are described 
in Section 2. In Section 3, we describe the theoretical back-
ground of using deep neural networks for pedestrian detec-
tion. Section 4 describes the proposed approach to pedes-
trian detection. Section 5 presents the experimental results 
and comparative analysis of the proposed approach and the 
relevant methods. The last part ends with further research 
on the direction of pedestrian detection.

2  Literature survey

Researchers have proposed many pedestrian detection 
frameworks based on deep learning to improve the accuracy 
of pedestrian detection [30–35]. However, the accuracy of 
pedestrian detectors is affected by complex backgrounds, 
pedestrian scale changes, object occlusion, and illumina-
tion changes. These issues are partially addressed. The most 
commonly used method of pedestrian detection is the Histo-
gram of Oriented Gradients (HOG) [36]. In this method, the 
directional gradient is used to detect objects in the image. It 
fails to detect an object in the case of occlusion and the HOG 
feature extraction process is time-consuming. Hence, it is not 
a perfect match for a real-time. In addition, In [37] proposed 

a combination method of HOG and local binary mode (LBP) 
to deal with partial occlusion of pedestrians. In this method, 
LBP is used to obtain the texture features of the image. The 
HOG features and texture features used together to detect 
the pedestrian. P. Dollar et al. [38] introduce the method of 
combining HOG features and color features. Compared with 
HOG features, this method is faster because it uses integral 
images. In this method, the feature pyramid based on direc-
tional gradients of different scales. This leads to fast feature 
calculations in real time. The texture and orientated gradi-
ent feature somewhat address the issues and challenges of 
pedestrian detection. Therefore, researchers continue to use 
region-based deep learning techniques to solve the problem 
of detectors based on texture and directional gradient fea-
tures [39, 40]. However, the region-based techniques use the 
pedestrian region proposals. The results of these methods are 
more accurate and simpler. In [41], an instance segmentation 
using the coverage loss method for object segmentation was 
proposed.

In this method, CNN features and scale-invariant feature 
transform (SIFT) combined together to detect objects. The 
limitations of this method are 1) Due to the hierarchical 
structure, when objects in the scene are occluded, non-adja-
cent areas will not merge to form a single part. A model was 
proposed in [42], which integrates a patch-based CNN and a 
global multi-receptive field (MRF) network. In this method, 
patches of different sizes are used to identify the ROI. CNN 
is used to mark each patch. MRF contains the unidirectional 
graph of label patches. In this graph, each vertex depicts an 
instance label of each pixel. The limitations of this method 
include: 1) It is not suitable for detecting multiple related 
occluded objects. In [43] exhibited a Relief R2-CNN for 
pedestrian detection in real-time. In this method, the main 
aim was on faster ROIs identification using CNN features. 
The weaknesses of this approach are 1) not validated and 
tested in real-time. 2) the classification needs more time. In 
[31] present, a unified joint detection model for the cyclist 
pedestrian detection. This approach utilizes Fast R-CNN. 
The limitations of this method are 1) It is not verified in 
real time. 2) target detection rate of cyclic pedestrians could 
be improved. It needs the verification of the target detec-
tion method in intelligent driven vehicles. Farther, In [30] 
introduced employed Mask R-CNN and an Optical flow-
based method for the detection of the active football player’s 
pedestrian. The shortcoming of this method are 1) non-
active football players have been misclassified as an active 
player. 2) segmentation process is time-consuming and 
manual. Hence, not suitable for real-time. In [30], a scale-
aware Fast R-CNN (SAF R-CNN) method for pedestrian 
detection is introduced. In this approach, two sub-networks 
are employed to detect varying scale pedestrians. The major 
disadvantage of this method is that the training and testing 
time increase because of the utilization of a two-sub network 
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and need time for computation. The proposed SIRA Mask 
R-CNN framework addresses the aforementioned problem 
by detecting the pedestrian at a different scale, orientation, 
and illumination. The next section describes the proposed 
SIRA Mask-RCNN framework (see Section 4).

3  Theoretical background

The conventional pedestrian detection system reported in 
the literature was classified into a Region of Interest (ROI) 
detection, feature extraction, and candidate classification. 
ROI detection is most often based on stereo vision. The most 
commonly used hand crafted features are HOG [36], LBP 
[37], Integral channel features [38], Gray level co-occur-
rence matrix [47], CNN features [31], HAAR-Wavelet [48], 
and Oriented gradients [49]. The classifier trained using 
these features. The different classifiers such as SVM, Mask 
R-CNN, Neural network, and Boosted cascade, etc. are used 
for the classification. The sliding windows [30] scheme and 
the hand-crafted feature-based method proposed, partially 
address the issues of pedestrian detection (1).

Hence, the researcher moves towards the region-based 
deep learning approaches to overcome the existing hand-
crafted feature based system issues [39, 40] as shown in 
Table 2. LeNet is the first CNN architecture introduced by 
LeCun et al. [22] in 1998. It only includes two convolutional 
layers, a pooling layer, and a backpropagation network for 
training. LeNet has been trained on the revised National 
Institute of Standards and Technology (MNIST) database, 
which contains 50,000 images divided into 10 categories. 
At that time, it was successfully used for object detection 
and handwritten signature detection commercially. Its error 
rate is 26.2%. Next, AlexNet introduced by Krizhevsky et al. 
[20] in 2012. It is very similar to LeNet. AlexNet uses ReLU 
activation and cross-entropy loss function.

AlexNet has more convolutional layers. It is trained 
on the ImageNet large database and contains more than 1 

million images from 1,000 categories. AlexNet has higher 
object detection accuracy than LeNet and is used for dif-
ferent types of object detection purposes. The error rate is 
reduced to 15.4%. Zeiler et al. [19] A modified version of 
AlexNet was launched in 2013. ZFNet uses 7 x 7 filters in 
the first convolutional layer instead of 11 x 11 as used in 
AlexNet. It achieves an error rate of 11.2%. Liu et al. [21] 
In 2009, an unsupervised deep neural network architec-
ture was introduced. DBN consists of several layers along 
with multiple feature detectors or hidden units. Simon-
yan et al. citeref19 introduced VGGNet in 2014, which 
reduces the error rate to 7.2%. It expanded the number 
of convolutional layers to 19 layers. It limited the filter 
size reduced by a factor of 16 and to 3 x 3. GoogLeNet 
and ResNet use similar architectural patterns. Vanhoucke 
et al. [17, 18] The Google Inception network with VGGNet 
was introduced in 2014. It achieves the error rate of 6.7% 
marginally better than the VGGNet at the cost of com-
plex architecture design patterns compares to VGGNet. 
He et al. [16] in 2015, introduced ResNet. It achieves an 
error rate of 3.57%. ResNet contains 152 convolutional 
layers. ResNet uses forward and backward instead of the 
initial model passes of the backpropagation algorithm. The 
problem with these approaches is the selection of a region 
before convolution. Objects in the image may have dif-
ferent spatial positions and aspect ratios. Need to select a 
huge area to get the object of interest in the image. Hence, 
an algorithm like YOLO, R-CNN developed to solve the 
problem of selection of regions that constitute an object 
of interest. Ross Girshick et al. [28] proposed R-CNN, 
in which a selective search algorithm is used to find a 
region of interest (RoI) in an image, which is called a 
region proposal. The selective search algorithm extracts 
2000 regions from the image. The problem with R-CNN 
is that 1) it required an enormous amount of time to train 
the 2000 region proposals in the image. 2) We cannot use 
it for real-time applications. Because it takes 47 seconds 
for testing the image. 3) The selective search algorithm 
is fixed and not adaptive, so it sometimes generates bad 
region suggestions for complex images.

Fast R-CNN solves the shortcomings of R-CNN. Ross 
Girshick et al. [14] again proposed the enhanced version of 
R-CNN i.e. Fast R-CNN. It is similar to R-CNN, but instead 
of inputting regional suggestions into CNN, it inputs this 
architecture into CNN to generate convolutional feature 
maps. In this process, it max-pooled the input feature map 
to generate a 7 x 7 square area of fixed size. This area is 
inputted into the fully connected Softmax layer to predict 
the category of the object. Results have been represented 
using the bounding box. Fast R-CNN is more efficient and 
faster than R-CNN because it does not require 2000 region 
proposal training to classify objects. Both the architecture 
usages the selective search to find region proposals using a 

Table 2  Deep learning architecture used for pedestrian detection

Architecture Dataset Error rate (%)

LeNet [22] MNIST 26.2%
AlexNet [20] ImageNet 15.4%
ZFNet [19] ImageNet 11.2%
VGGNet [18] MNIST 7.2%
Google Inception [17] ImageNet 6.7%
network with VGGNet [16]
ResNet [15] ImageNet 3.57%
Fast R-CNN [14] MS COCO 3.1%
Faster R-CNN [13] MS COCO 2.75%
Mask R-CNN [12] MS COCO 2.67%
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selective search algorithm. This process is slow and time-
consuming that affects the performance of the network.

Shaoqing Ren et al. [12, 13] introduced a Faster R-CNN 
to solve the Fast R-CNN speed problem by eliminating the 
selective search algorithm. In this architecture, the network 
itself learns the region proposals instead of using a selec-
tive search algorithm to identify region proposals. It pro-
poses to use a separate network for the recognition region 
in the convolutional feature map. Hence, it is faster than 
the Fast R-CNN but not useful in the real-time applications 
for object detection. In all previous versions of the R-CNN 
series, regions are used to locate objects in the image. 
Joseph Redmon et al. [8] introduced a new architecture, i.e. 
YOLO. Here, a single convolutional layer network predicts 
the bounding boxes and class labels of these boxes. The 
input image composed of the S x S grid and each grid, m 
bounding boxes generated. For each of the bounding boxes, 
the convolutional network generates the class probability 
and bounding box location values for locating the object in 
the image. YOLO processes 45 frames per second, which 
is faster than other object detection algorithms. The prob-
lem with YOLO is that it cannot detect small objects in the 
image due to the limitation of the spatial plane coordinate 
position of the algorithm. The semantic segmentation algo-
rithms classify the object at the pixel level. Recent architec-
ture, i.e., Mask-RCNN, has used for instance segmentation. 
Recognizing each instance of a single object in the image 
and locating each instance pixel is called instance segmen-
tation. However, instance segmentation is difficult because 
it requires accurate positioning and detection of all moving 
and non-moving objects in the image. Hence, it combines 
object detection and semantic segmentation techniques. 
Here, object detection, object classification, and the use of 
bounding boxes for representation. In semantic segmenta-
tion, each pixel is classified into a meaningful group without 
distinguishing object instances.

4  Proposed methodology

The proposed SIRA Mask-RCNN framework includes three 
stages: 1) input image/video enhancement, 2) illumination, 
rotation, scaling and translation invariant feature extraction, 
and 3) classification using Mask R-CNN. We describe each 
of these steps in brief as follows.

4.1  Input image/video enhancement

The input to the proposed system is the image or frame of 
the video. If it is a video, we transform it into a frame. We 
have conducted experiments on the publicly obtainable 

standard database and on our database in an academic 
environment. The main steps of enhancement include the 
use of histogram analysis for illumination recognition and 
detection. These steps are essential for enhancing the input 
image/video quality. We describe each of the steps in the 
next subsection.

4.2  Illumination identification and detection

The main aim of the proposed algorithm is to identify 
input image/frame required illumination enhancement or 
not based on the histogram analysis. First, we divide the 
input image into three categories as 1) uneven image, 2) 
glare image, and 3) uniform image based on the histogram 
and pixel-level analysis. The input image/frame converted 
from RGB to HSV color space. We need the conversion 
because our focus is on the intensity of the image. We have 
plotted the histogram of a value change to identify the 
type of image. After several experiments on the different 
images, we have obtained the optimal thresholds used for 
distinguishing the darker and brighter intensity. We use the 
percentais ge of low pixel and high pixel values to classify 
the image into one of the three categories.

We describe the sequence of steps for lighting recogni-
tion and detection below.

The uneven intensity image composed of light that 
unevenly distributed in different intensity ranges. Glare 
images include specific areas in the image that are overex-
posed by light. Image specific areas comprise brighter pix-
els. The ideal image does not require the enhancement, it 
comprises the uniformly distributed intensity. if the input 
image has a high variance, it is the case of irregular bright-
ness. After histogram analysis, we observed that the image 
background is uniform, and low variance means that the 
input image does not need to be enhanced. In the image 
below, you can view the three small peaks that process 
three separate illuminated areas. The highest peak in the 
center results from making all the dark region black pixels 
to the mean value. After several experiments, we found 
that a standard deviation above 25 can be called uneven 
illumination cases.

We can also identify the bright pixels easily when there 
is a glare on the image. Except for objects, the glare image 
looks like a good image. There can be a possibility that the 
image comprises high brightness regions, so if the mean of 
the input image is above 200, then it is true that there is no 
need to detect the object. We can eliminate those frames, 
as shown in Fig. 2.

Finally, by using the proposed illumination recognition 
and detection algorithm, it is detected whether illumination 
enhancement is needed. In the next section, we describe 
image enhancement using logarithmic transformation.
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4.3  Image enhancement

Logarithmic transformation replaces all pixel values with 
their logarithmic values. We used it for image enhance-
ment as it unfolds, dark pixels as compared to the bright 
pixel. We compute the log transformation using the fol-
lowing Eq. 1.

Here, F(x, y), input image and s is scaling constant and 
L(x, y), output image. The value of s is determined such 
that, we get the maximum output corresponding to the bit 
size used. So, the s is calculated using the following Eq. 2.

However, for the computation of constant value s any pixel 
intensity is 0 then its corresponding log value will be infi-
nite. Hence, we are adding 1 to each pixel intensity value 
at the time of log transformation that results in any pixel 
intensity value is 0, then it will become 1 and its log value 
will be 0. Fig. 3 shows the result input image enhancement 
after log transformation.

In the conversion, the darker low intensity is given 
the brighter high value, so that the features existing in 
the darker or gray area of the image are more visible and 
obvious to the human eye. It can also reduce the brighter 
brightness to a lower dark value. Results in a more illumi-
nated image in the output as shown in Fig. 4.

However, the luminous intensity not scaled down to the 
low-intensity region. The scaling constant represents and 
transforms the higher intensities. In the next subsection, 
we have described the rotation invariant feature extraction.

4.4  Rotation invariant feature extraction

The rotation-invariant features extracted using contour-
let transformation. It converts the enhanced image into a 
multi-resolution part. It is a combination of the Laplacian 
pyramid and direction filter bank. The features obtained 
from the contourlet transform are scale invariants. It can 
provide smooth edges in any direction. We have not imple-
mented wavelet transformation, because we see edges, but 
the directional information about the edges unknown. It 
gives edges in four directions (vertical, horizontal, +45◦ , 
-45◦ ). We extracted the contourlet transformation edges in 
eight directions. In Laplace decomposition, the two main 
scaling operations are to perform reduction and growth. 
Each of the operation describe in brief as follows. 

1. Reduced operation employs a low-pass filter to the trans-
formed image and down-samples by two factors.

(1)L(x, y) = s ∗ log(1 + F(x, y))

(2)s = 255∕ log(1 +max(F(x, y)))
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2. The grow operation applies a predefined interpolation 
technique and up-samples it by two factors.

3. Next, in the Gaussian pyramid a series of replica repre-
sented by Gp1,Gp2, ..Gpn of the transformed image rep-
resented by lf(x, y) at different scale. It is accomplished 
by placing Gp1 = lf (x, y) , and iteratively employing 
Gpi+1 = reduce(Gpi).

4. The Gaussian pyramid is processed to obtained Lapla-
cian pyramids represented by Lp1,Lp2,Lp3...Lpn . It is 
accomplished by placing Lpn = Gpn , and iteratively 
employing Gpi = Lpi grow Gpi+1.

Later, the Laplacian pyramid feed into the directional filter 
bank (DFB). The input image obtained from the Laplacian 
pyramid of Level 1 modulated. In modulation, the constit-
uent frequency component shifted before re-sampling the 
image component. In re-sampling, we have considered the 
frequency re-sampling matrix 2 x 2. It is used to reshape 
the dimand shap component to different parallelogram. At 
the end, down-sampled the image. It reduces the number 
of grid point in the original image. In down-sampling the 
smoothing and sharpening performed. Later We subtracted 
the filtered responses to obtain the contours. The obtained 

edges are in 8 direction. Each of the directional filter bank 
steps are describe in brief as follows. 

1. The first operation is a Gaussian low-pass filtering for smooth-
ing the image. It calculates the average of pixel and replace 
with the original pixel repeatedly applies for every pixel with 
cutoff frequency D0 as 85. It is represented by Lo(�) . The 
transfer function of a Gaussian lowpass filter is defined as: 

2. The next operation is a high-pass. It produces the Gaussian high 
frequency component and reduces low frequency component 
with cutoff frequency D0 is 15. It is represented by Ho(�) . The 
transfer function of a Gaussian highpass filter is defined as: 

3. At the end both values are subtracted to obtained the 
contours as Eq. 3. It is represented by Co(�) . 

4. The same process continuously applies up to third itera-
tion.

(3)Lo(�) = e−D
2(u,v)∕2D2

0

(4)Ho(�) = 1 − e−D
2(u,v)∕2D2

0

(5)Co(�) = Ho(�) − Lo(�)

Fig. 3  First row shows even, uneven, and glare illuminated image. Second row shows the histogram of image
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5. The three levels of information are extracted from the 
transformation. It is eight directional information. The 
sub-band of 0-3 is taken as horizontal direction and sub-
band of 4-7 taken as vertical direction. Later these fea-
tures are combined with CNN features of Mask R-CNN 
to obtained the detection result.

6. The histogram equalization is applied over the trans-
formed image to obtained the normalized image.

Next, sub-section describes the ASIFT feature extraction and 
architecture of improved Mask R-CNN as shown Fig. 5 used 
for pedestrian detection and classification.

4.5  ASIFT feature extraction and mask R‑CNN

The new scale-invariant feature map generation algorithm is 
placed in the Regional Proposal Network (RPN) to generate 
multi-scale feature maps for pedestrian instances of different 
scales. We divide the proposed framework into three stages viz. 
1) scale-invariant feature map generation. 2) region proposal 
generation. 3) Extract the detected pedestrian target from the 
image. Input to the Mask R-CNN is the transformed image, and 
it generates the object surrounded by a bounding box, class label, 
and pixel-level mask. We used Mask-RCNN for pixel-level mask 
generation, as shown in Fig. 5. We describe the algorithm for gen-
eration of scale and translation invariant CNN feature as follows:

As shown in Fig. 4, enhanced image is transformed by 
assuming all possible orientation and translation changes 
in the position. The tilt represented by t computed by 
Eq. 4.

The directional transformation t on the input image u(x, y) 
change to u(x, y) → u(tx, y) . The gaussian filtering is used for 
reducing aliasing error. ASIFT key points, rotation invariant 
features, and CNN features are combined to obtained the 
detection result (Fig. 6).

We divided the process of pedestrian detection into three 
stages: 1) Region proposal generation, 2) the multi-scale, 
rotation, and affine invariant feature extraction. 3) Bound-
ing box and category prediction. We convolve the different 
scale masks with various size anchor box filters to obtain 
the confidence score without omitting the low-resolution 
layer, which was omitted in the existing Mask R-CNN 
RPN network. Later, this score integrated with the rotation, 
scale, and affine invariant features obtained in an earlier 
stage. The primary purpose is to use the proposed method 
to improve the accuracy of regional recommendations. In 
RPN, we convolve the enhanced image with bottom-up and 
top-down methods to extract features. From the enhanced 
image, ResNet is used to extract high-level features.

The previous layer convolved with a 3x3 sliding window 
to generate the multiple feature map. Next, apply the 1x1 
convolution filter again to the class prediction and bounding 
box. For the 3x3 mask, we used a sliding window because 
the mask applied from the center will result in accurate 
information. K anchor boxes of different sizes used at the 
time of convolution so that different shape objects detected. 
We generate the output as the 2k score of the class layer 
and the 4k score of the bounding box regression. The scale-
invariant feature map is fused with other feature maps to 
effectively locate objects of different scales. Next, each 
region’s proposal aligned using the ROI align. In the end, 
we represent all the detected objects with the bounding box 
and segmentation mask at a pixel in the original image. At 
last, human detected class IDs separated from all detected 
objects.

5  Implementation

We assessed the performance of the proposed SIRA Mask 
R-CNN on benchmark pedestrian databases such as Caltech 
[1], INRIA [2], MS COCO [26], ETH [27], and KITTI [28] 
and our pedestrian database. The experiments and proposed 
deep learning framework implemented on single NVIDIA 

(6)t =
1

cos �
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GPU and a CPU Intel Core i5 3.4GHz processor having 
16GB RAM and 16GB NVIDIA graphics card.

6  Experiment

The State-of-the-art pedestrian analysis research con-
ducted on publicly available benchmark data sets such 
as Caltech [1], INRIA [2], MS COCO [26], ETH [27], 
and KITTI [28], etc. The limitation of these datasets are: 
1) the limited range of pedestrian poses recorded on the 
city streets in a controlled environment, 2) these datasets 
contain data with short lapses of time between successive 
observations of each ID in a single day, which allows to 
use clothing appearance features in identity matching, 3) 
All of these pedestrian data sets are recorded in various 
places such as streets and parking spaces, but they do not 
cover student behavior in an academic environment. This 
paper proposes a new dataset in an academic environment. 
Human experts annotated student pedestrian behavior on 
each frame sequence of the video, providing three types 
of information. 

1. Pedestrian positioning with bounding box. The position 
of each pedestrian in the video frame is represented as 
a bounding box, and we can use this data for pedestrian 
detection, tracking, instance, and semantic segmentation.

2. Physical, behavioral, or adhered to human characteristics. 
Each pedestrian fully characterized by labels such as ‘Face’: 
eyes, eyebrows, forehead, nose, ears, mouth, facial hair, mous-
tache, glasses, beard, ‘hairstyle’, ‘hair color’, ‘age’, ‘body vol-
ume’, ‘gender’, ‘age’, ‘height’, ‘body accessories’, ‘ethnicity’, 
‘head accessories’, ‘action’ and ‘clothing data’.

3. Annotated class label and ID. Each pedestrian has a 
unique identifier that is uniform across all video frames. 
These characteristics of the data set make it suitable for 
various recognition difficulties.

6.1  Experimental setup

We propose a pedestrian database composed of different 
behaviors of students under different conditions in academic 
activities such as students studying in a practical lab, exami-
nation hall scenarios, classrooms, a student cheating in an 
exam hall, a student taking an answer book outside the exam 
hall, a student stealing a mobile phone or other electronic 

Fig. 4  Image enhancement 
results. First row shows before 
log transformation and Second 
row shows after log transforma-
tion
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Fig. 5  SIRA Mask R-CNN: Improved Mask R-CNN Architecture

Fig. 6  Affine Scale Invariant 
Feature Map Generation. Point 
along the ray from initial point
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devices such as a mouse or keyboard, a student stealing 
lab equipment, a student dispute on the college premises, 
a student disturbing another student, a student threatening 
another student, etc. as shown in Fig. 7. Students’ behavior 
in college premises is recorded using a high-quality DSLR 
camera from different viewing angles. The video is recorded 
at 30 f/s. The database includes approximately 100 sample 
videos. 20 to 30 minute duration for each sample video.

6.1.1  Image/video acquisition framework

Student’s behavior in college premises recorded using a high-
quality DSLR camera from a different viewing angle. We 
recorded video at 30 f/s, enabled 4K recording, with a resolu-
tion of 3840×2160, and H.264 compressed to .mp4 format. 
The database includes more or less 100 sample videos. The 
duration of each example video is 20-30 minutes. The camera 
tilt angle varies from 45◦ to 90◦ . Pedestrians are students of 
Yeshwantrao Chavan College of Engineering in Nagpur, aged 
22-27 years old, over 90%, of which 65% are male and 35% 
are female, mainly of Indian ethnicity. The key features of the 
data acquisition settings summarized in Table 3.

6.1.2  Data pre‑processing

In the proposed dataset, we classified the video information 
namely into three directories as “Train”, “Test” and “Valida-
tion”. We describe the following three entities: 

1. Annotations directory contains a XML file for each 
image. This file contains all the information about the 
image.

2. The frames are extracted from each video and divided 
into training and validation set in different directory.

3. The details about the frames are stored in the .txt file, it 
stores a unique identity number for each image.

However, for the classification purpose, we defined a 
SIRA Mask R-CNN model, along with “ReLU” as an 
activation function. In the proposed approach, we used 
sparse categorical cross-entropy instead of categorical 
cross-entropy for the compilation of SIRA Mask R-CNN 
model. The major advantage of using sparse classification 
cross-entropy is that it preserves time and computational 
effort, because it only uses a single value for a class label 
instead of the entire feature vector. We used simultaneous 
callbacks. A callback is a phenomenon that can execute 
processes at different stages of training phase. Each of 
these stages are describe as follows: 

Table 3  The proposed dataset video Acquisition configuration

Parameter of Camera Setting

Camera:DSLR HD:12.4M Frame size:3840×2160
Lens FOV 94 20 mm f/2.8 focus ISO Range: 100-3200
Camera tilt angle 45◦ to 90◦

Video recording format .mp4

Fig. 7  Sample image of the proposed database. The first row illus-
trates two girls dispute in the lab. The second row illustrate the sce-
nario stealing the mobile phone in lab. The third row illustrate a 
scenario of a student threatening. The fourth row shows the same 

threatening scenario(front view). The fifth row shows the scenario of 
students stealing the lab equipment. The sixth row shows the scenario 
cheating in the exam hall
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1. Early stopping stage: When the observed indicators stop 
improving the results, the training process stops.

2. Reduce Learning rate On Plateau:When the observed 
indicator stops improving the result, it is used to reduce 
the learning rate.

The detailed configuration of the the proposed SIRA Mask 
R-CNN model illustrated in Table 4. We can see that most of 
the images classified by our model are correct. Also, as there 
is always room for improvement, this model can perform 
better with a larger dataset. The summary of layers with their 
required parameter while training and validation phase for 
the proposed SIRA Mask R-CNN shown in Table 5.

The model got a notable accuracy of 96% on the testing 
set and 95% of accuracy on the validation set. Next, we have 
computed the training loss and accuracy and validation loss 
accuracy. The Fig. 8(8) illustrate the accuracy and epochs 
plot for representing accuracy and validation accuracy and 
Fig. 8(8) illustrate the loss and epochs plot for representing 
loss and validation loss. The loss represented training loss. 
The accuracy represented training accuracy. The valLoss 
represented validation accuracy, and the valAcc represented 
validation accuracy.

Table 4  The proposed SIRA Mask R-CNN model configuration

Parameter Setting

Backbone ResNet101
Backbone Strides [4,8,16,32,64]
Batch Size 1
BBox [0.1 0.1 0.2 0.2]
Backbone shape None
Max obj detection 100
Min Confidence 0.7
NMS Threshold 0.3
FPN Layer Size 1024
GPU 1
Gradient Norm 5.0
Image Per GPU 1.0
Image Channel Count 3
Image Max Dim 1024
Image Meta Size 93
Image Min Dim 800
Image Min Scale 0
Image Resize Mode Square
Image Shape [1024 1024 3]
Learning Momentum 0.9
Learning Rate 0.001
Loss Weight rpnClassLoss: 1.0,

rpnBboxLoss: 1.0,
mrcnnClassLoss:1.0,
mrccBboxLoss:1.0,
mrcnnMaskLoss:1.0

Mask Pool Size 14
Mask Shape [28 28]
Max GT Instances 100
Mean Pixel [123.7 116.8 103.9]
Mini Mask Shape [56 56]
Number of Class 2
Pool Size 7
Post NMS RoIs Inference 1000
Post NMS RoIs Training 2000
Pre NMS Limit 6000
RoI Positive Ratio 0.33
RPN Anchor Ratios [0.5, 1, 2]
RPN Anchor Scales [32, 64, 128, 256, 512]
RPN Anchor Stride 1
RPN BBox [0.1 0.1 0.2 0.2]
RPN NMS Threshols 0.7
RPN Train Anchors Per Image 256
RPN NMS Threshold 1000
Top Down Pyramid Size 256
Train BN False
Train RoIs Per Image 200
USE Mini Mask True
USE RPN RoIs True
Validation Steps 50
Weight Decay 0.0001

Table 5  The proposed SIRA Mask R-CNN model summary

Layers type Output Shape Params

InputLayer (None, 224, 224, 3) 0
Conv2D (None, 224, 224, 64) 1792
Conv2D (None, 224, 224, 64) 36928
MaxPooling2D (None, 112, 112, 64) 0
Conv2D (None, 112, 112, 128) 73856
Conv2D (None, 112, 112, 128) 147584
MaxPooling2D (None, 56, 56, 128) 0
Conv2D (None, 56, 56, 256) 295168
Conv2D (None, 56, 56, 256) 590080
Conv2D (None, 56, 56, 256) 590080
MaxPooling2D (None, 28, 28, 256) 0
Conv2D (None, 28, 28, 512) 2359808
Conv2D (None, 28, 28, 512) 2359808
Conv2D (None, 14, 14, 512) 0
MaxPooling2D (None, 14, 14, 512) 2359808
Conv2D (None, 14, 14, 512) 2359808
Conv2D (None, 14, 14, 512) 2359808
Conv2D (None, 7, 7, 512) 0
MaxPooling2D (None, 25088) 0
Flatten (None, 4096) 102764544
Dense (None, 4096) 16781312
Dense (None, 2) 8194
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6.1.3  Pedestrian annotation

The proposed dataset completely annotated at the frame of 
video, by human specialists. We provide a csv file for each 
video sequence, using the same file naming protocol as vide-
ofilename.csv. The labeling process is divided into three stages: 
1) human detection; 2) tracking, 3) suspicious activity recogni-
tion and soft biometric features. First, the Mask R-CNN [12] 
method is used to provide an initial estimate of the position of 
each pedestrian in the scene, and the data obtained are manu-
ally verified and corrected. Next, the deep sort method [14] 
provided the preparatory tracking information, which was 
again corrected manually. As a result of these two initial steps, 
we obtain a rectangular bounding box representing the region 
of interest (ROI) for each pedestrian in each frame. The final 
stage of the annotation process is carried out manually, where a 
human expert who personally knows the students of the college 
sets up ID information and characterizes the samples based on 
soft labels. Table 6 shows the detailed information of the label 
annotated for each pedestrian instance in the frame, as well as 
the ID information, the bounding box that defines the ROI, and 
the frame information. For each label, we also provide a list of 
its possible values.

6.2  Experimental results and analysis

AP (Average Accuracy) is a commonly used index to meas-
ure the accuracy of object detectors (such as Faster R-CNN, 
Fast R-CNN SSD, etc.). Average precision calculates the 
average precision value of the recall value in the range of 0 to 
1. We considered the following criteria in our experiments. 

1. IF IoU ≥ 0.5, classify the object detection as True Posi-
tive (TP). We have calculated AP at IoU .50 and .75. 
represented as AP50 , AP75 . Also, at across scales small, 
medium, and large, represented as APS , APM , APL as 
shown in Table 7.

2. If IoU < 0.5, then it is a wrong detection and classifies 
it as False Positive (FP).

3. When ground truth is present in the image and the model 
failed to detect the object, we classify it as False Nega-
tive (FN).

Fig. 8  Accuracy and loss train-
ing and validation. (a) Accuracy 
vs Epochs for representing 
accuracy and validation accu-
racy. (b) Loss vs Epochs for 
representing loss and validation 
loss

Table 6  The proposed dataset 16 annotated attribute with other soft 
biometric Labels of the pedestrian in the frame

Attributes Values

Height 0→‘Children’, 1 →‘Short’, 2 → ‘Medium’,
3→ ‘Tall’, 4 →‘Not known’.

Age 0→0-11, 1 →12-17, 2 →18-24, 3 →25-34,
4→35-44, 5 →45-54, 6 →55-64,
7→greater than 65, 8 →‘Not known’.

Bounding Box [x→Top Left; y →Top left row; h →Height;
w→Width]

ID 1, 2, 3, 4, …. ‘Not known’.
Feet 0→‘Sport’, 1 →‘Classic’, 2 →‘High Heels’,

3→‘Boots’, 4 →‘Sandals’,
5→‘Nothing’, 6 →‘Not known’.

Frame 1, 2, 3, 4, .... ‘n’.
Body Volume 0→‘Thin’, 1 →‘Medium’, 2 →‘Fat’,

3→‘Not known’.
Hairstyle 0→‘Bald’, 1 →‘Short’, 2 →‘Medium’,

3→‘Long’, 4 →‘Horse Tail’, 5 →‘Unknown’.
Hair Color 0→‘Black’, 1 →‘Brown’, 2 →‘White’,

3→‘Red’, 4 →‘Gray’,
5→‘Occluded’, 6 →‘Not known’.

Head 0→‘Hat’, 1 →‘Scarf’, 2 →‘Neckless’,
Accessories 3→‘Occluded’, 4 →‘Not known’.
Upper Body 0→‘T-shirt’, 1 →‘Blouse’, 2 →‘Sweater’,

3→‘Coat’, 4 →‘Bikini’.
Clothing 5→‘Naked’, 6 →‘Dress’, 7 →‘Uniform’,

8→‘Shirt’, 9 →‘Suit’,
10→‘Hoodie’, 11→‘Cardigan’.

Lower Body 0→‘Jeans’, 1 →‘Leggins’, 2 →‘Pants’,
Clothing 3→‘Shorts’, 4 →‘Skirt’,

5→‘Bikini’ , 6 →‘Dress’, 7 →‘Uniform’,
8→‘Suit’, 9 →‘Not known’.

Moustache 0→‘Yes’, 1 →‘No’, 2 →‘Not known’.
Beard 0→‘Yes’, 1 →‘No’, 2 →‘Not known’.
Action 0→‘Walk’, 1 →‘Run’, 2 →‘Standing’,

3→‘Sit’, 4 →‘Cycle’, 5 →‘Exercise’,
6→‘Pet’, 7 →‘Phone’, 8 →‘Leave Bag’,
9→’Fall’, 10→‘Fight’,
11→‘Date’, 12→‘Offend’, 13→‘Trade’.

Accessories 0→‘Bag’, 1 →‘Backpack’, 2 →‘Rolling’,
3→‘Umbrella’, 4 →‘Sport’,
5→‘Market’, 6 →‘Nothing’, 7 →‘Unknown’.
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4. True Negative (TN) is every part of the image where we 
did not predict an object. This metrics is not useful for 
object detection, hence we ignore TN. We have com-
puted the precision, recall, and mean accuracy precision 
(mAP) using the mathematical model as: 

 We compare SIRA Mask R-CNN to the state-of-the-
art techniques in the area of instance segmentation in 
Table 8. Our proposed model outperform baseline vari-
ants of previous state-of-the-art models. This involves 
MNC [50] and FCIS [51], which are the winners of the 
COCO 2015 and 2016 challenges, respectively. SIRA 

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN

(9)mAP =
1

N

N
∑

i=1

APi

Mask R-CNN with ResNet-101-FPN backbone is better 
than FCIS [51]. We achieve a benchmark AP of 79%, 
AP50 of 68%, and AP75 of 64%. Again, we validate our 
system at multiple scale and obtained the results as APS 
of 16.5%, APM of 39.5%, and APL of 54.5%. SIRA Mask 
R-CNN results are illustrated in Figure 16 under chal-
lenging scenarios.

6.3  Comparison with state‑of‑the‑art pedestrian 
detection methods

6.3.1  Caltech

The proposed framework trained using Caltech database 
images. The Fig. 9 shows the proposed method is com-
pared with the techniques such as SAF R-CNN [30], Side 

Table 7  Evaluation metrics used for SIRA Mask R-CNN pedestrian 
detector

Metric Annotation Description

Avg. Precision AP AP at IoU=.50:.05:.95
APIoU=.50 AP50 AP at IoU=.50
APIoU=.75 AP75 AP at IoU=.75
APSmall APS AP for small objects area

< 322

APMedium APM AP for medium objects
< 322 < area < 962

APLarge APL Area for large objects
area > 962

Table 8  SIRA Mask R-CNN 
average precision results. 
Comparative analysis of average 
precision of proposed model to 
the state of the art approaches 
available in the literature

Methodology Backbone AP AP50 AP75 APS APM APL

MNC [50] ResNet-101-C4 24.6 44.3 24.8 4.7 25.9 43.6
FCIS [51] ResNet-101-C5-dilated 29.2 49.5 - 7.1 31.3 50.0
Mask R-CNN [6] ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN [6] ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN [6] ResNeXt-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5
R-CNN [4] ResNeXt-101-FPN 61.61 50.13 44.79 – – –
pAUCEnsT [45] ResNeXt-101-FPN 65.26 54.49 48.60 – – –
FilteredICF [49] ResNeXt-101-FPN 67.65 56.75 51.12 – – –
DeepParts [4] ResNeXt-101-FPN 70.49 58.67 52.78 – – –
CompACT-Deep [48] ResNeXt-101-FPN 70.69 58.74 52.71 – – –
Regionlets [47] ResNeXt-101-FPN 73.14 61.15 55.21 – – –
3DOP [46] ResNeXt-101-FPN 77.93 65.01 60.42 – – –
SAF R-CNN [30] ResNeXt-101-FPN 77.93 65.01 60.42 – – –
SIRA Mask R-CNN ResNeXt-101-FPN 79 68 64 16.5 39.5 54.5

Fig. 9  Caltech dataset-SIRA Mask R-CNN gives the lowest log-aver-
age miss rate of 8.30%
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Fusion FPN (SF-FPN) [44], Small-scale sense network 
(SSN) [45], Attention-Enhanced Multi-Scale Region, and 
Proposal Network (AEMS-RPN) [46]. It can be observed 
that SIRA Mask R-CNN outperforms the other methods by 
a huge margin. We achieve the lowest miss rate of 8.31%. 
It is the state-of-the-art performance for object detection 
by utilizing Mask R-CNN as shown in Table 9.

6.3.2  INRIA and ETH

The SIRA Mask R-CNN also trained and tested with 
the INRIA and ETH database images. The comparative 
results are shown in Figs. 10 and 11. First, for the INRIA 
dataset image, the proposed method gives the miss rate of 
7.31%, which outperforms the existing method YOLOv4 

Fig. 10  INRIA dataset-SIRA Mask R-CNN gives the lowest log-aver-
age miss rate of 7.31%

Fig. 11  ETH dataset-SIRA Mask R-CNN gives the miss rate of the 
proposed model is 32.63%

Fig. 12  KITTI dataset-SIRA Mask R-CNN gives promising results 
79%, 68%, and 64%

Fig. 13  MS COCO dataset-SIRA Mask R-CNN gives a miss rate of 
8.56%

Fig. 14  Proposed pedestrian dataset-SIRA Mask R-CNN gives a miss 
rate of 8.68%
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[2], Mask R-CNN [5], SAF R-CNN [30], and AEMS-
RPN [46]. Second, for the ETH dataset, the miss rate of 
the proposed model is 32.63% compared with 33.87% of 
[41] and 36.46% of [46]. In general, the proposed method 
achieves a higher detection rate on both the dataset and 
lower miss rate.

6.3.3  KITTI

The SIRA Mask R-CNN also tested on challenging the 
KITTI dataset. The pedestrian detection performance com-
parisons of the SIRA R-CNN with existing methods SAF 
R-CNN [30], SF-FPN [44], SSN [45], AEMS-RPN [46] are 

Fig. 15  Precision vs Recall: 
SIRA Mask R-CNN compare 
with recent state-of-the-art 
methods

Fig. 16  SIRA Mask R-CNN result. First row - proposed database 
images. Second row-Results on proposed database. Third row-MS 
COCO dataset images [3]. Fourth row-Proposed method results on 

the Caltech dataset. Fifth row-Caltech dataset [1]. Sixth row-Proposed 
method results on the Caltech dataset
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shown in Fig. 12. The proposed approach gives promising 
results on the KITTI dataset, i.e., 79%, 68%, and 64%.

6.3.4  MS COCO and proposed pedestrian dataset

The results are shown in Figs. 13 and 14 The proposed 
approach compared with the existing methods in YOLOv4 
[2], SAF R-CNN [30], MNPrioriBoxes-Yolo [41], and 
AEMS-RPN [46]. It gives a miss rate of 8.56% on MS 
COCO and miss rate of 8.68% on the proposed pedestrian 
dataset.

Figure 15 shows the results of the recall and precision of 
the proposed model compare with YOLOv4 [2], SAF R-CNN 
[30], MNPrioriBoxes-Yolo [41], and AEMS-RPN [46].

It can be observe that the SIRA Mask R-CNN outper-
form existing methods in terms of accuracy, speed, and 
time needed for pedestrian detection as shown in Fig. 15 on 
various pedestrian dataset. Table 9 illustrate the compara-
tive analysis of proposed SIRA Mask RCNN with the state 
of the art deep learning framework such as Faster R-CNN 
[7], YOLO [2], Fast R-CNN [9], SAF R-CNN [30]. The pro-
posed SIRA Mask R-CNN detect the pedestrian in presence 
of artifacts efficiently. The pedestrian detection accuracy is 
96%, which is notable accuracy on challenging benchmark 
pedestrian databases.

7  Conclusion and future scope

In this paper, we proposed a scale, illumination, rotation, 
and affine invariant Mask-RCNN based pedestrian detector. 
The proposed framework detects the pedestrian in presence 
of scale, rotation, illumination artifacts efficiently.It deliv-
ers competitive results on the benchmark datasets such as 
Caltech [1], INRIA [2], MS COCO [26], ETH [27], KITTI 
[28], and our proposed academic environment database. 
The experimental results confirmed that the proposed SIRA 
Mask R-CNN delivers 1) the lowest miss rate of 8.31% on 
the Caltech dataset, 2) the lowest log-average miss rate of 
7.31% INRIA, 3) miss rate of 32.63% on ETH dataset, the 
pedestrian detection accuracy of 79% on the KITTI dataset 

and 4) miss rate of 8.68% on the proposed database. The pro-
posed method is superior in detecting the different sizes and 
varying illuminated pedestrian along with variation in orien-
tation compared with the existing state-of-the-art techniques 
such as YOLOv4 [2], Mask R-CNN [5], SAF R-CNN [30], 
MNPrioriBoxes-Yolo [41], SSN [45], and AEMS-RPN [46].

In the future, the proposed framework can be enhanced 
from the following aspects. First, the proposed work 
addresses scaling, rotation, and lighting issues. Other prob-
lems, such as motion blur, partial or complete occlusion, 
can be effectively solved by extracting different features of 
pedestrian objects that are invariant to occlusion and motion 
blur to improve the feature extraction process. It should 
improve the pedestrian detection time to meet the real-time 
usage. An unsupervised approach to pedestrian detection 
can be useful to reduce the time of detection. The proposed 
model can also be used to detect human poses and trajecto-
ries of different sizes and to block pedestrians.
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