
SIRAP: A Synchronization Protocol for Hierarchical
Resource Sharing in Real-Time Open Systems∗

Moris Behnam, Insik Shin†, Thomas Nolte, Mikael Nolin
Mälardalen Real-Time Research Centre (MRTC)

Västerås, Sweden
{moris.behnam, insik.shin, thomas.nolte, mikael.nolin}@mdh.se

ABSTRACT
This paper presents a protocol for resource sharing in a hi-
erarchical real-time scheduling framework. Targeting real-
time open systems, the protocol and the scheduling frame-
work significantly reduce the efforts and errors associated
with integrating multiple semi-independent subsystems on
a single processor. Thus, our proposed techniques facilitate
modern software development processes, where subsystems
are developed by independent teams (or subcontractors) and
at a later stage integrated into a single product. Using our
solution, a subsystem need not know, and is not dependent
on, the timing behaviour of other subsystems; even though
they share mutually exclusive resources. In this paper we
also prove the correctness of our approach and evaluate its
efficiency.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application based System—Real-time and embedded sys-
tems; D.4.1 [Operating System]: Process Management—
Concurrency, Mutual exclusion, Scheduling, Synchroniza-
tion.

General Terms
Design, Performance, Theory.

Keywords
Hierarchical scheduling, Real-time open systems, Real-time
subsystem integration, Resource-sharing, SIRAP, Synchro-
nization protocol.

∗The work in this paper is supported by the Swedish Foun-
dation for Strategic Research (SSF), via the research pro-
gramme PROGRESS.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

1. INTRODUCTION
In many industrial sectors integration of electronic and

software subsystems (to form an integrated hardware and
software system), is one of the activities that is most diffi-
cult, time consuming, and error prone [2, 14]. Almost any
system, with some level of complexity, is today developed
as a set of semi-independent subsystems. For example, cars
consist of multiple subsystems such as antilock braking sys-
tems, airbag systems and engine control systems. In the
later development stages, these subsystems are integrated
to produce the final product. Product domains where this
approach is the norm include automotive, aerospace, au-
tomation and consumer electronics.

It is not uncommon that these subsystems are more or less
dependent on each other, introducing complications when
subsystems are to be integrated. This is especially apparent
when integrating multiple software subsystems on a single
processor. Due to these difficulties inherent in the integra-
tion process, many projects run over their estimated budget
and deadlines during the integration phase. Here, a large
source of problems when integrating real-time systems stems
from subsystem interference in the time domain.

To provide remedy to these problems we propose the usage
of a real-time scheduling framework that allows for an easier
integration process. The framework will preserve the essen-
tial temporal properties of the subsystem both when the
subsystem is executed in isolation (unit testing) and when
it is integrated together with other subsystems (integration
testing and deployment). Most importantly, the deviation in
the temporal behaviour will be bounded, hence allowing for
predictable integration of hard real-time subsystems. This
is traditionally targeted by the philosophy of open systems
[9], allowing for the independent development and validation
of subsystems, preserving validated properties also after in-
tegration on a common platform.

In this paper we present the Subsystem Integration and
Resource Allocation Policy (SIRAP), which makes it possi-
ble to develop subsystems individually without knowledge of
the temporal behaviour of other subsystems. One key issue
addressed by SIRAP is the resource sharing between sub-
systems that are only semi-independent, i.e., they use one
or more shared logical resources.

Problem description.
A software system S consists of one or more subsystems

to be executed on one single processor. Each subsystem
Ss ∈ S , in turn, consists of a number of tasks. These sub-
systems can be developed independently and they have their

own local scheduler (scheduling the subsystem’s tasks). This
approach by isolation of tasks within subsystems, and allow-
ing for their own local scheduler, has several advantages [19].
For example, by keeping a subsystem isolated from other
subsystems, and by keeping the subsystem local scheduler,
it is possible to re-use a complete subsystem in a different ap-
plication from where it was originally developed. However,
as subsystems are likely to share logical resources, an appro-
priate resource sharing protocol must be used. In order to
facilitate independent subsystem development, this protocol
should not require information from all other subsystems in
the system. It should be enough with only the information
of the subsystem under development in isolation.

Contributions.
The main contributions of this paper include the presen-

tation of SIRAP, a novel approach to subsystem integration
in the presence of shared resources. Moreover, the paper
presents the deduction of bounds on the timing behaviour of
SIRAP together with accompanying formal proofs. In addi-
tion, the cost of using this protocol is thoroughly evaluated.
The cost is investigated as a function of various parame-
ters including: cost as a function of the length of critical
sections, cost depending on the priority of the task shar-
ing a resource, and cost depending on the periodicity of the
subsystem. Finally, the cost of having an independent sub-
system abstraction, which is suitable for open systems, is
investigated and compared with dependent abstractions.

Organization of the paper.
Firstly, related work on hierarchical scheduling and re-

source sharing is presented in Section 2. Then, the system
model is presented in Section 3. SIRAP is presented in Sec-
tion 4. In Section 5 schedulability analysis is presented, and
SIRAP is evaluated in Section 6. Finally, the paper is sum-
marized in Section 7.

2. RELATED WORK

Hierarchical scheduling.
For real-time systems, there has been a growing attention

to hierarchical scheduling frameworks [1, 7, 9, 10, 15, 16, 17,
20, 23, 25, 26].

Deng and Liu [9] proposed a two-level hierarchical schedul-
ing framework for open systems, where subsystems may be
developed and validated independently in different environ-
ments. Kuo and Li [15] presented schedulability analysis
techniques for such a two-level framework with the fixed-
priority global scheduler. Lipari and Baruah [16, 18] pre-
sented schedulability analysis techniques for the EDF-based
global schedulers.

Mok et al. [21] proposed the bounded-delay resource par-
tition model for a hierarchical scheduling framework. Their
model can specify the real-time guarantees that a parent
component provides to its child components, where the par-
ent and child components have different schedulers. Feng
and Mok [10] and Shin and Lee [26] presented schedulabil-
ity analysis techniques for the hierarchical scheduling frame-
work that employs the bounded-delay resource partition model.

There have been studies on the schedulability analysis
with the periodic resource model. This periodic resource
model can specify the periodic resource allocation guaran-

tees provided to a component from its parent component [25].
Saewong et al. [23] and Lipari and Bini [17] introduced schedu-
lability conditions for fixed-priority local scheduling, and
Shin and Lee [25] presented a schedulability condition for
EDF local scheduling. Davis and Burns [7] evaluated dif-
ferent periodic servers (Polling, Deferrable, and Sporadic
Servers) for fixed-priority local scheduling.

Resource sharing.
When several tasks are sharing a logical resource, typically

only one task is allowed to use the resource at a time. Thus
the logical resource requires mutual exclusion of tasks that
uses it. To achieve this a mutual exclusion protocol is used.
The protocol provides rules about how to gain access to the
resource, and specifies which tasks should be blocked when
trying to access the resource.

To achieve predictable real-time behaviour, several proto-
cols have been proposed including the Priority Inheritance
Protocol (PIP) [24], the Priority Ceiling Protocol (PCP)
[22], and the Stack Resource Policy (SRP) [3].

When using SRP, a task may not preempt any other tasks
until its priority is the highest among all tasks that are ready
to run, and its preemption level is higher than the system
ceiling. The preemption level of a task is a static parameter
assigned to the task at its creation, and associated with all
instances of that task. A task can only preempt another
task if its preemption level is higher than the task that it
is to preempt. Each resource in the system is associated
with a resource ceiling and based on these resource ceilings,
a system ceiling can be calculated. The system ceiling is a
dynamic parameter that changes during system execution.

The duration of time that a task lock a resource, is called
Resource Holding Time (RHT). Fisher et al. [4, 11] proposed
algorithms to minimize RHT for fixed priority and EDF
scheduling with SRP as a resource synchronization proto-
col. The basic idea of their proposed algorithms is to in-
crease the ceiling of resources as much as possible without
violating the schedulability of the system under the same
semantics of SRP.

Deng and Liu [9] proposed the usage of non-preemptive
global resource access, which bounds the maximum blocking
time that a task might be subject to. The work by Kuo and
Li [15] used SRP and they showed that it is very suitable
for sharing of local resources in a hierarchical scheduling
framework. Almeida and Pedreiras [1] considered the issue
of supporting mutually exclusive resource sharing within a
subsystem. Matic and Henzinger [20] considered supporting
interacting tasks with data dependency within a subsystem
and between subsystems, respectively.

More recently, Davis and Burns [8] presented the Hierar-
chical Stack Resource Policy (HSRP), allowing their work
on hierarchical scheduling [7] to be extended with sharing of
logical resources. However, using HSRP, information on all
tasks in the system must be available at the time of subsys-
tem integration, which is not suitable for an open systems
development environment, and this can be avoided by the
SIRAP protocol presented in this paper.

3. SYSTEM MODEL

3.1 Hierarchical scheduling framework
A hierarchical scheduling framework is introduced to sup-

port CPU time sharing among applications (subsystems) un-

der different scheduling services. Hence, a system S consists
of one or more subsystems Ss ∈ S . The hierarchical schedul-
ing framework can be generally represented as a two-level
tree of nodes, where each node represents a subsystem with
its own scheduler for scheduling internal tasks (threads), and
CPU time is allocated from a parent node to its children
nodes, as illustrated in Figure 1.

Global scheduler

Subsystem1

Local
scheduler

Subsystem2

Local
scheduler

Subsystemn

Local
scheduler

Figure 1: Two-level hierarchical scheduling frame-

work.

The hierarchical scheduling framework provides partition-
ing of the CPU between different subsystems. Thus, subsys-
tems can be isolated from each other for, e.g., fault contain-
ment, compositional verification, validation and certification
and unit testing.

The hierarchical scheduling framework is also useful in
the domain of open systems [9], where subsystems may be
developed and validated independently in different environ-
ments. For example, the hierarchical scheduling framework
allows a subsystem to be developed with its own scheduling
algorithm internal to the subsystem and then later included
in a system that has a different global level scheduler for
scheduling subsystems.

3.2 Shared resources
For the purpose of this paper a shared (logical) resource,

ri, is a shared memory area to which only one task at a time
may have access. To access the resource a task must first
lock the resource, and when the task no longer needs the
resource it is unlocked. The time during which a task holds
a lock is called a critical section. Only one task at a time
may lock each resource.

A resource that is used by tasks in more than one sub-
system is denoted a global shared resource. A resource only
used within a single subsystem is a local shared resource.
In this paper we are concerned only with global shared re-
sources and will simply denote them by shared resources.
Management of local shared resources can be done by using
any synchronization protocol such as PIP, PCP, and SRP.

3.3 Virtual processor model
The notion of real-time virtual processor (resource) model

was first introduced Mok et al. [21] to characterize the CPU
allocations that a parent node provides to a child node in
a hierarchical scheduling framework. The CPU supply of a
virtual processor model refers to the amounts of CPU allo-
cations that the virtual processor model can provide. The
supply bound function of a virtual processor model calculates
the minimum possible CPU supply of the virtual processor
model for a time interval length t.

Shin and Lee [25] proposed the periodic virtual processor
model Γ(Π,Θ), where Π is a period (Π > 0) and Θ is a
periodic allocation time (0 < Θ ≤ Π). The capacity UΓ of a
periodic virtual processor model Γ(Π, Θ) is defined as Θ/Π.
The periodic virtual processor model Γ(Π,Θ) is defined to
characterize the following property:

supplyΓ

(

kΠ, (k + 1)Π
)

= Θ, where k = 0, 1, 2, . . . , (1)

where the supply function supplyRs
(t1, t2) computes the amount

of CPU allocations that the virtual processor model Rs pro-
vides during the interval [t1, t2).

t

sbf(t)

Π

Φ

0 1 2 3 4 5 6 7 8 9 10

Φ Φ Φ

Π-Φ
Π Π Π
kΠ-Φ

kΠ

Figure 2: The supply bound function of a periodic

virtual processor model Γ(Π, Θ) for k = 3.

For the periodic model Γ(Π, Θ), its supply bound function
sbfΓ(t) is defined to compute the minimum possible CPU
supply for every interval length t as follows:

sbfΓ(t) =

t − (k + 1)(Π − Θ) if t ∈ [(k + 1)Π − 2Θ,
(k + 1)Π − Θ],

(k − 1)Θ otherwise,
(2)

where k = max
(

⌈(

t − (Π − Θ)
)

/Π
⌉

, 1
)

. Here, we first note

that an interval of length t may not begin synchronously
with the beginning of period Π. That is, as shown in Fig-
ure 2, the interval of length t can start in the middle of the
period of a periodic model Γ(Π, Θ). We also note that the
intuition of k in Eq. (2) basically indicates how many peri-
ods of a periodic model can overlap the interval of length t,
more precisely speaking, the interval of length t − (Π − Θ).
Figure 2 illustrates the intuition of k and how the supply
bound function sbfΓ(t) is defined for k = 3.

3.4 Subsystem model
A subsystem Ss ∈ S , where S is the whole system of

subsystems, consists of a task set and a scheduler. Each
subsystem Ss is associated with a periodic virtual proces-
sor model abstraction Γs(Πs, Θs), where Πs and Θs are the
subsystem period and budget respectively. This abstraction
Γs(Πs, Θs) is supposed to specify the collective temporal re-
quirements of a subsystem, in the presence of global logical
resource sharing.

Task model.
We consider a periodic task model τi(Ti, Ci,Xi), where Ti

and Ci represent the task’s period and worst-case execution
time (WCET) respectively, and Xi is the set of WCETs
within critical sections belonging to τi. Each element xi,j

in Xi represents the WCET of a particular critical section
cxi,j executed by τi. Note that Ci includes all xi,j ∈ Xi.

The set of critical sections cover for the following two cases
of multiple critical sections within one job:

1. sequential critical sections, where Xi contains the WCETs
of all sequential critical sections, i.e. Xi = {xi,1, ..., xi,o}
where o is the number of sequential shared resources
that task τi may lock during its execution.

2. nested critical sections, where xi,j ∈ X being the length
of the outer critical section.

Note that in the remaining paper, we use xi rather than
xi,j for simplicity when it is not necessary to indicate j.

Scheduler.
In this paper, we assume that each subsystem has a fixed-

priority preemptive scheduler for scheduling its internal tasks.

4. SIRAP PROTOCOL

4.1 Terminology
Before describing the SIRAP protocol, we define the ter-

minology (also depicted in Figure 3) that are related to hi-
erarchical logical resource sharing.

(Shared) Resource Access Time

Waiting Time Resource Holding Time

Semaphore
Request Instant

Critical Section
Entering Instant

Critical Section
Exiting Instant

Figure 3: Shared resource access time.

• Semaphore request instant: an instant at which a job
tries to enter a critical section guarded by a semaphore.

• Critical section entering (exiting) instant: an instant
at which a job enters (exits) a critical section.

• Waiting time: a duration from a semaphore request
time to a critical section entering time.

• Resource holding time: a duration from a critical sec-
tion entering instant to a critical section exiting in-
stant. Let hi,j denote the resource holding time of a
critical section cxi,j of task τi.

• (Shared) resource access time: a duration from a semaphore
request instant to a critical section exiting time.

In addition, a context switch is referred to as task-level
context switch if it happens between tasks within a sub-
system, or as subsystem-level context switch if it happens
between subsystems.

4.2 SIRAP protocol description
The subject of this paper is to develop a synchronization

protocol that can address global resource sharing in hier-
archical real-time scheduling frameworks, while aiming at
supporting independent subsystem development and valida-
tion. This section describes our proposed synchronization
protocol, SIRAP (Subsystem Integration and Resource Al-
location Policy).

Assumption.
SIRAP relies on the following assumption:

• The system’s global scheduler schedules subsystems
according to their periodic virtual processor abstrac-
tions Γs(Πs, Θs). The subsystem budget is consumed
every time when an internal task within a subsystem
executes, and the budget is replenished to Θs every
subsystem period Πs. Similar to traditional server-
based scheduling methods [6], the system provides a
runtime mechanism such that each subsystem is able
to figure out at any time t how much its remaining sub-
system budget Θs is, which will be denoted as Θ′

s(t)
in the remaining of this section.

The above assumption is necessary to allow run-time check-
ing whether or not a job can potentially enter and execute
a whole critical section before a subsystem-budget expire.
This is useful particularly for supporting independent ab-
straction of subsystem’s temporal behavior in the presence
of global resource accesses.

In addition to supporting independent subsystem develop-
ment, SIRAP also aims at minimizing the resource holding
time and bounding the waiting time at the same time. To
achieve this goal, the protocol has two key rules as follows:

R1 When a job enters a critical section, preemptions from
other jobs within the same subsystem should be bounded
to keep its resource holding time as small as possible.

R2 When a job wants to enter a critical section, it enters
the critical section at the earliest instant such that it
can complete the critical section before the subsystem-
budget expires.

The first rule R1 aims at minimizing a resource holding
time so that the waiting time of other jobs, which want
to lock the same resource, can be minimized as well. The
second rule R2 prevents a job Ji from entering a critical
section cxi,j at any time t when Θ′(t) < hi,j . This rule
guarantees that when the budget of a subsystem expires, no
task within the subsystem locks a global shared resource.

SIRAP : preemption management.
The SRP [3] is used to enforce the first rule R1. Each sub-

system will have its own system ceiling and resources ceiling
according to its jobs that share global resources. According
to SRP, whenever a job locks a resource, other jobs within
the same subsystem can preempt it if the jobs have higher
preemption levels than the locked resource ceiling, so as to
bound the blocking time of higher-priority jobs. However,
such task-level preemptions generally increase resource hold-
ing times and can potentially increase subsystem utilization.
One approach to minimize hi,j is to allow no task-level pre-
emptions, by assigning the ceiling of global resource equal

to the maximum preemption level. However, increasing the
resource ceiling to the maximum preemption level may af-
fect the schedulability of a subsystem. A good approach is
presented in [4], which increases the ceiling of shared global
resources as much as possible while keeping the schedulabil-
ity of the subsystem.

SIRAP : self-blocking.
When a job Ji tries to enter a critical section, SIRAP

requires each local scheduler to perform the following action.
Let t0 denote the semaphore request instant of Ji and Θ′(t0)
denote the subsystem’s budget at time t0.

• If hi,j ≤ Θ′(t0), the local scheduler executes the job
Ji. The job Ji enters a critical section at time t0.

• Otherwise, i.e., if hi,j > Θ′(t0), the local scheduler de-
lays the critical section entering of the job Ji until the
next subsystem budget replenishment. This is defined
as self-blocking. Note that the system ceiling will be
equal to resource ceiling at time t0, which means that
the jobs that have preemption level greater than sys-
tem ceiling can only execute during the self blocking
interval1. This guarantees that when the subsystem of
Ji receives the next resource allocation, the subsystem-
budget will be enough to execute job Ji inside the crit-
ical section2.

5. SCHEDULABILITY ANALYSIS

5.1 Local schedulability analysis
Consider a subsystem Ss that consists of a periodic task

set and a fixed-priority scheduler and receives CPU alloca-
tions from a virtual processor model Γs(Πs, Θs). According
to [25], this subsystem is schedulable if

∀τi, 0 < ∃t ≤ Ti dbfFP(i, t) ≤ sbfΓ(t). (3)

The goal of this section is to develop the demand bound
function dbfFP(i, t) calculation for the SIRAP protocol. dbfFP(i, t)
is computed as follows;

dbfFP(i, t) = Ci + IS(i) + IH(i, t) + IL(i), (4)

where Ci is the WCET of τi, IS(i) is the maximum self
blocking for τi, IH(i, t) is the maximum possible interference
imposed by a set of higher-priority tasks to a task τi during
an interval of length t, and IL(i) is the maximum possible
interference imposed by a set of lower-priority tasks that
share resources with preemption level (ceiling) greater than
or equal to the priority of task τi.
1With simple modifications to the SRP protocol, the execu-
tion of tasks can be allowed within the self blocking interval
if they do not access global resources even though their pre-
emption levels are less than the system ceiling. However this
is off the point of this paper.
2The idea of self-blocking has been also considered in dif-
ferent contexts, for example, in CBS-R [6] and zone based
protocol (ZB) [12]. Our work is different from those in the
sense that CBS-R used a similar idea for supporting soft
real-time tasks, and ZB used it in a pfair-scheduling envi-
ronment, while we use it for hard real-time tasks under hier-
archical scheduling. This difference inherently requires the
development of different schedulability analysis, including
Eqs. (5), (6), and (7).

The following lemmas shows how to compute IS(i), IH(i, t)
and IL(i).

Lemma 1. Self-blocking imposes to a job Ji an extra pro-
cessor demand of at most

∑o

j=1 hi,j if a job access multiple
shared resources.

Proof. When the job Ji self-blocks itself, it consumes
the processor of at most hi,j units being idle. If the job ac-
cess shared resources then the worst case will happen when
the job block itself whenever it tries to enter a critical sec-
tion.

Lemma 2. A job Ji can be interfered by a higher-priority
job Jj that access shared resources, at t time units for a
duration of at most ⌈ t

Tj
⌉(Cj +

∑o

k=1 hj,k) time units.

Proof. Similar to classical response time analysis [13],
we add

∑o

k=1 hj,k to Cj which is the worst case self blocking
from higher priority tasks, the lemma follows.

Lemma 3. A job Ji can be interfered by only one lower-
priority job Jj by at most 2 · max(hj,k), where k=1,...,o.

Proof. A higher-priority job Ji can be interfered by a
lower-priority job Jj . This occurs only if Ji is released after
Jj tries to enter a critical section but before Jj exits the
critical section. When Ji is released, only one job can try
to enter or be inside a critical section. That is, a higher-
priority job Ji can then be interfered by at most a single
lower-priority job. The processor demand of Jj during a
critical section period is bounded by 2 · max(hj,k) for the
worst case. The lemma follows.

From Lemma 1, the self-blocking IS(i) is given by;

IS(i) =
o

∑

k=1

hi,k (5)

According to Lemma 2 and taking into account the inter-
ference from higher priority tasks, IH(i, t) is computed as
follows;

IH(i, t) =

i−1
∑

j=1

⌈ t

Tj

⌉

(Cj +
o

∑

k=1

hj,k). (6)

The maximum interference from lower priority tasks can
be evaluated according to Lemma 3 according to;

IL(i) = max
j=i+1,...,n

(2 · max
k=1,...,o

(hj,k)). (7)

Based on Eq. (5) and (6) and (7), the processor demand
bound function is given by Eq. (4).

The resource holding time hi,j of a job Ji that access a
global resource is evaluated as the maximum critical sec-
tion execution time xi,j+ the maximum interference from
the tasks that have preemption level greater than the ceil-
ing of the logical resource during the execution xi,j . hi,j is
computed [4] using Wi,j(t) as follows;

Wi,j(t) = xi,j +
u

∑

l=ceil(xi,j)+1

⌈
t

Tl

⌉Cl, (8)

where ceil(xi,j) is the ceiling of the logical resource accessed
within the critical section xi,j , and Cl, Tl are the worst case
execution time and the period of job that have higher pre-
emption level than ceil(xi,j), and u is the maximum ceiling
within the subsystem.

The resource holding time hi,j is the smallest time t∗i such
that Wi,j(t

∗
i) = t∗i .

5.2 Global schedulability analysis
Here, issues for global scheduling of multiple subsystems

are dealt with. For a subsystem Ss, it is possible to derive a
periodic virtual processor model Γs(Πs, Θs) that guarantees
the schedulability of the subsystem Ss according to Eq.(3).

The local schedulability analysis presented for subsystems
is not dependent on any specific global scheduling policy.
The requirements for the global scheduler, are as follows: i)
it should schedule all subsystems according to their virtual
processor model Γs(Πs, Θs), ii) it should be able to bound
the waiting time of a task in any subsystem that wants to
access global resource.

To achieve those global scheduling requirements, preemp-
tive schedulers such as EDF and RM together with the SRP
[3] synchronization protocol can be used. So when a subsys-
tem locks a global resource, it will not be preempted by other
subsystems that have preemption level less than or equal to
the locked resource ceiling. Each subsystem, for all global re-
sources accessed by tasks within a subsystem, should specify
a list of pairs of all those global resources and their maximum
resource holding times {(r1, Hr1

), ..., (rp, Hrp)}. However it
is possible to minimize the required information that should
be provided for each subsystem by assuming that all global
resources have the same ceiling equal to the maximum pre-
emption level π̂s among all subsystems. Then for the global
scheduling, it is enough to provide virtual processor model
Γs(Πs, Θs) and the maximum resource holding times among

all global resources Ĥs = max(HR1
, ..., HRp) for each sub-

system Ss. On the other hand, assigning the ceiling of all
global resources to the maximum preemption level of the
subsystem that access these resources is not as efficient as
using the original SRP protocol, this since we may have re-
sources with lower ceiling which permit more preemptions
from the higher preemption level subsystems.

Under EDF global scheduling, a set of n subsystems is
schedulable [3] if

∀kk=1,...,n(

k
∑

i=1

Θi

Πi

) +
Bk

Πk

≤ 1, (9)

where Bk of subsystem Sk is the duration of the longest
resource holding time among those belonging to subsystems
with preemption level lower than πk.

For RM global scheduling, the schedulability test based
on tasks’ response time is

Wi = Θi + Bk +
i−1
∑

j=1

⌈Wi

Πj

⌉

(Cj). (10)

It is also possible to use a non-preemptive global sched-
uler together with the SIRAP protocol. In this case, no
subsystem-level context switch happens when there is a task
inside a critical section. That is, whenever a task tries to
lock a global resource, it is guaranteed that the global re-
source is not locked by another task from other subsystems.

This way provides a clean separation between subsystems
in accessing global shared resources. Then, we can achieve
a more subsystem abstraction, i.e., subsystems do not have
to export information about their global shared resource ac-
cesses, for example, which global shared resources they ac-
cess and the maximum resource holding time. In fact, it
will require more system resources to schedule subsystems
under non-preemptive global scheduling rather than under
preemptive global scheduling. Hence, we can see a tradeoff
between abstraction and efficiency. Exploring this tradeoff
is a topic of our future work.

5.3 Local resource sharing
So far, only the problem of sharing global resource be-

tween subsystems has been considered. However, many real
time applications may have local resource sharing within
subsystem as well. Almeida and Pedreiras [1] showed that
some traditional synchronization protocols such as PCP and
SRP can be used for supporting local resource sharing in a
hierarchical scheduling framework by including the effect of
local resource sharing in the calculation of dbfFP. That is, to
combine SRP/PCP and the SIRAP protocol for synchroniz-
ing both local and global resources sharing, Eq. (7) should
be modified to

IL(i) = max(max(2·xj,k), bi), where j = i+1, . . . , n. (11)

where bi is the maximum duration for which a task i can be
blocked by its lower-priority tasks in critical sections from
local resource sharing.

6. PROTOCOL EVALUATION
In this section, the cost of using SIRAP is investigated

in terms of extra CPU utilization (UΓ) required for subsys-
tem schedulability guarantees. We assume that all global
resource ceilings can be equal to the maximum preemption
level, which means that no tasks within a subsystem preempt
a task inside a critical section, and therefore hi,j = xi,j .
Supporting logical resource sharing is expected to increase
subsystem utilizations UΓ. This increment in UΓ depends
on many factors such as the maximum WCET within a crit-
ical section xi,j , the priority of the task sharing a global
resource, and the subsystem period Πs.

Sections 6.1, 6.2, and 6.3 investigate the effect of those
factors under the assumption that task i accesses a single
critical section. In Section 6.4, this assumption is relaxed so
as to investigate the effect of the number of critical sections.
Section 6.5 compares independent and dependent abstrac-
tions in terms of subsystem utilization.

6.1 WCET within critical section
One of the main factors that affect the cost of using SIRAP

is the value of xi,j . It is clear from Eqs. (4), (6), and (7) that
whenever xi,j (which equals to hi,j) increases, dbfFP will
increase as well, potentially causing UΓ to increase in order
to satisfy the condition in Eq. (3). Figure 4 shows the effect
of increasing xi on two different task sets. Task set 1 is
sensitive for small changes in xi whilst task set 2 can tolerate
the given range of xi without showing a big change in UΓ.
The reason behind the difference is that task set 1 has a task
with period very close to Πs while the smallest task period
in task set 2 is greater than Πs by more than 4 times. Hence,

0,25

0,3

0,35

0,4

0,45

0 0,5 1 1,5 2 2,5 3

Xi

S
u

b
sy

st
em

 u
ti

li
za

ti
o

n

task set 1

task set 2

Figure 4: UΓ as a function of xi for two task sets

where only the lowest priority task share a resource.

SIRAP can be more or less sensitive to xi depending on the
ratio between task and subsystem period.

For the remaining figures (Figure 5 and 6), simulations
are performed as follows. We randomly generated 100 task
sets, each containing 5 tasks. Each task set has a utilization
of 25%, and the period of the generated tasks range from 40
to 1000. For each task set, a single task accesses a global
shared resource; the task is the highest priority task, the
middle priority task, or the lowest priority task. For each
task set, we use 11 different values of xi ranging from 10%
to 50% of the subsystem period.

6.2 Task priority
From Eqs. (4), (6) and (7), looking how tasks sharing

global logical resources affect the calculations of dbfFP, it
is clear that task priority for these tasks is of importance.
The contribution of low priority tasks on dbfFP is fixed to
a specific value of xi (see Eq. (7)), while the increase in
dbfFP by higher priority tasks depends on many terms such
as higher priority task period Tk and execution time Ck (see
Eq. (6)). It is fairly easy to estimate the behaviour of a
subsystem when lower priority tasks share global resources;
on one hand, if the smallest task period in a subsystem is
close to Πs, UΓ will be significantly increased even for small
values of xi. As the value of sbf is small for time intervals
close to Πs, the subsystem needs a lot of extra resources
in order to fulfil subsystem schedulability. On the other
hand, if the smallest task period is much larger than Πs

then UΓ will only be affected for large values of xi, as shown
in Figure 4.

Figure 5 shows UΓ as a function of xi for when the highest,
middle and lowest priority task are sharing global resources,
respectively, where Πs = 15. The figure shows that the high-
est priority task accessing a global shared resource needs in
average more utilization than other tasks with lower pri-
ority. This observation is expected as the interference from
higher priority task is larger than the interference from lower
priority tasks (see Eq. (6) and (7)). However, note that in
the figure this is true for xi within the range of [0,5]. If
the value of xi is larger than 5, then UΓ keeps increasing
rapidly without any difference among the priorities of tasks

0,25

0,3

0,35

0,4

0,45

0,5

0 1 2 3 4 5 6 7

Xi

S
u

b
sy

st
em

 u
ti

li
za

ti
o

n

lowest priority

midle priority

highest priority

Figure 5: Average utilization for 100 task sets as a

function of xi, when low, medium and high priority

task share a resource respectively, Πs = 15.

accessing the global shared resource. This can be explained
as follows. When using SIRAP, the subsystem budget Θs

should be no smaller than xi to enforce the second rule R2
in Section 4.2. Therefore, when xi ≥ 5, Θs should also be-
come greater than 5 even though subsystem period is fixed
to 15. This essentially results in a rapid increase of UΓ with
the speed of xi/15.

6.3 Subsystem period
The subsystem period is one of the most important param-

eters, both in the context of global scheduling and sbf cal-
culations for a subsystem. As Πs is used in the sbf calcula-
tions, Πs will have significant effect on UΓ (see Eq. (3)).

Figure 6 compares average subsystem utilization for dif-
ferent values of subsystem period, i.e., for Πs = 20 and
Πs = 40 for the same task sets. Here, only the highest pri-
ority task accesses a global shared resource. It is interesting
to see that the lower value of Πs, i.e, Πs = 20, results in
a lower subsystem utilization when xi is small, i.e., xi ≤ 6,
and then a higher subsystem utilization when xi gets larger
from xi = 6. That is, xi and Πs are not dominating fac-
tors one to another, but they collectively affect subsystem
utilization. It is also interesting to see in Figure 6 that the
subsystem utilization of Πs = 40 behaves in a similar way
by increasing rapidly from xi = 14.

Hence, in general, Πs should be less than the smallest task
period in a subsystem, as in hierarchical scheduling without
resource sharing, the lower value of Πs gives better results
(needs less utilization). However, in the presence of global
resources sharing, the selection of the subsystem period de-
pends also on the maximum value of xi in the subsystem.

6.4 Multiple critical sections
We compare the case when a task i accesses multiple

critical sections (MCS) with the case when a task j ac-
cesses a single critical section (SCS) within duration xj =
∑o

k=1 xi,k according to the demand bound function calcula-
tions in Eq. (4). The following shows the effect of accessing
MCS by a task on itself and on higher and lower priority
tasks;

0,25

0,3

0,35

0,4

0,45

0,5

0 5 10 15 20

Xi

S
u

b
sy

st
em

 u
ti

li
za

ti
o

n

highest priority
�

s=40

highest priority
�

s=20

Figure 6: Average utilization for 100 task sets as a

function of xi, when only the highest priority tasks

share a resource and the subsystem period is Πs = 20
and Πs = 40.

0,35

0,4

0,45

0,5

0,55

2 4 8 16 32

Task-Subsystem Period Ratio

S
u

b
sy

st
em

 U
ti

li
za

ti
o

n

r=1.0

r=0.75

r=0.5

r=0.25

r=0.0

Figure 7: Comparison between independent and de-

pendent abstractions in terms of subsystem utiliza-

tion.

• Self blocking, Eq. (5) shows that both accessing MCS
and SCS by a task gives the same result.

• Higher priority task, the effect from higher priority
task accessing MCS or SCS can be evaluated by Eq.
(6). IH will be the same for both cases also.

• Lower priority task, Eq. (7) shows that IL for MCS is
less than SCS case because in MCS the maximum of
xi,j will be less than xi for SCS.

We can conclude that the required subsystem utilization
for MCS case will be always less than or equal to the case
of SCS having xj =

∑o

k=1 xi,k, which means that our pro-
posed protocol is scalable in terms of the number of critical
sections.

6.5 Independent abstraction
In this paper, we have proposed a synchronization pro-

tocol that supports independent abstraction of a subsys-

tem, particularly, for open systems. Independent abstrac-
tion is desirable since it allows subsystems to be developed
and validated without knowledge about temporal behavior
of other subsystems. In some cases, subsystems can be ab-
stracted dependently of others when some necessary informa-
tion about all the other subsystems is available. However,
dependent abstraction has a clear limitation to open systems
where such information is assumed to be unavailable. In ad-
dition, dependent abstraction is not good for dynamically
changing systems, since it may be no longer valid when a
new subsystem is added. Despite of the advantages of in-
dependent abstraction vs. dependent abstraction, however,
one may wonder what costs look like in using independent
abstraction in comparison with using dependent abstraction.
In this section, we discuss this issue in terms of resource ef-
ficiency (subsystem resource utilization).

One of the key differences between independent and de-
pendent abstractions is how to model a resource supply pro-
vided to a subsystem, more specifically, how to characterize
the longest blackout duration during which no resource sup-
ply is provided. Under independent abstraction, the longest
blackout duration is assumed to be the worst-case (maxi-
mum) one. Whereas, it can be exactly identified by some
techniques [7, 5] under dependent abstraction. This differ-
ence inherently yields different subsystem resource utiliza-
tions, as illustrated in Figure 7. Before explaining this fig-
ure, we need to establish some notions and explain how to
obtain this figure.

We first extend the periodic resource model Γ(Π,Θ) by
introducing an additional parameter, blackout duration ratio
(r). We define r as follows. Let Lmin and Lmax denote the
minimum and maximum possible blackout duration, and

Lmin = Π − Θ and Lmax = 2(Π − Θ).

When exactly computed, the longest blackout duration can
then be represented as r · (Lmax −Lmin)+Lmin. We gener-
alize the supply bound function of Eq. (2) with the blackout
duration ratio r as follows:

sbfΓ(t) =

t − (k + 1)(Π − Θ) if t ∈ [kΠ − Θ
+r(Π − Θ),
kΠ + r(Π − Θ)],

(k − 1)Θ otherwise,

(12)

where k = max
(

⌈(

t − (Π − Θ)
)

/Π
⌉

, 1
)

.

We here explain the notion of task-subsystem period ratio,
which is the x-axis of the figure. Suppose a periodic resource
model Γ1(Π1, Θ1, r1) is an abstraction that guarantees the
schedulability of a subsystem S. According to Eq. (3), there
then exists a time instant t∗i , where 0 < t∗i ≤ Ti, for each
task τi within the subsystem S such that

∀τi, dbfFP(i, t∗i) ≤ sbfΓ1
(t∗i). (13)

In fact, given the values of subsystem period Π and blackout
duration ratio r, we can find a smallest value of Θ, denoted
as Θ∗

i , that can satisfy Eq. (13) at t∗i for each task τi. The
value of budget Θ is then finally determined as the maximum
value among all Θ∗

i . This way makes sure that Θ is large
enough to guarantee the timing requirements of all tasks.
Let T ∗ denote a time instant t∗k such that Θ∗

k is the maximum
among the ones. We can see that T ∗ ∈ [Tmin, Tmax], where
Tmin and Tmax denote the minimum and maximum task
periods within subsystem, respectively. We define the task-
subsystem period ratio as T ∗/Π.

Given a periodic abstraction Γ1 of the subsystem S, an-
other periodic resource model Γ2(Π2, Θ2, r2) can be also an
abstraction of S, if

∀τi, sbfΓ1
(t∗i) ≤ sbfΓ2

(t∗i), (14)

since Eq. (3) can be satisfied with S and Γ2 as well. More
specifically, Γ2(Π2, Θ2, r2) can be an abstraction of S, if

sbfΓ1
(T ∗) ≤ sbfΓ2

(T ∗). (15)

That is, given Γ1 and the values of Π2 and r2, we can find
the minimum value of Θ2 that satisfies Eq. (15).

Figure 7 shows subsystem utilizations of periodic ab-
stractions under different values of blackout duration ra-
tio r, when they have the same subsystem period in ab-
stracting the same subsystem. In general, it shows that
dependent abstraction, which can exactly identify the value
of r, would produce more resource-efficient subsystem ab-
stractions. Specifically, for example, when r = 0, i.e., when
the subsystem has the highest priority under fixed-priority
global scheduling, a subsystem can be abstracted with 15%
less subsystem utilization than in the case of independent
abstraction (r = 1). The figure also shows that differences
in subsystem utilization generally decrease when the task-
subsystem period ratio increases and/or the blackout dura-
tion ratio increases. For example, when r = 0.5, i.e., when
the system has a moderately high utilization and subsystems
have medium or low priorities under fixed-priority global
scheduling or subsystems are scheduled under global EDF
scheduling, differences are shown to be smaller than 8%.

7. CONCLUSION
In this paper we have presented the novel Subsystem In-

tegration and Resource Allocation Policy (SIRAP), which
provides temporal isolation between subsystems that share
logical resources. Each subsystem can be developed, tested
and analyzed without knowledge of the temporal behaviour
of other subsystems. Hence, integration of subsystems, in
later phases of product development, will be smooth and
seamless.

We have formally proven key features of SIRAP such as
bounds on delays for accessing shared resources. Further,
we have provided schedulability analysis for tasks executing
in the subsystems; allowing for use of hard real-time appli-
cation within the SIRAP framework.

Naturally, the flexibility and predictability offered by SIRAP
comes with some costs in terms of overhead. We have eval-
uated this overhead through a comprehensive simulation
study. From the study we can see that the subsystem pe-
riod should be chosen as much smaller than the smallest
task period in a subsystem and take into account the max-
imum value of hi in the subsystem to prevent having high
subsystem utilization. Future work includes investigating
the effect of context switch overhead on subsystem utiliza-
tion together with the subsystem period and the maximum
value of hi.

8. REFERENCES
[1] L. Almeida and P. Pedreiras. Scheduling within

temporal partitions: response-time analysis and server
design. In Proc. of the Fourth ACM International
Conference on Embedded Software, September 2004.

[2] D. Andrews, I. Bate, T. Nolte, C. M. O. Pérez, and
S. M. Petters. Impact of embedded systems evolution
on RTOS use and design. In G. Lipari, editor,
Proceedings of the 1st International Workshop
Operating System Platforms for Embedded Real-Time
Applications (OSPERT’05) in conjunction with the
17th Euromicro International Conference on
Real-Time Systems (ECRTS’05), pages 13–19, Palma
de Mallorca, Balearic Islands, Spain, July 2005.

[3] T. P. Baker. Stack-based scheduling of realtime
processes. Real-Time Systems, 3(1):67–99, March 1991.

[4] M. Bertogna, N. Fisher, and S. Baruah. Static-priority
scheduling and resource hold times. In Proceedings of
the 15th International Workshop on Parallel and
Distributed Real-Time Systems, Long Beach, CA,
March 2007.

[5] R. J. Bril, W. F. J. Verhaegh, and C. C. Wust. A
cognac-glass algorithm for conditionally guaranteed
budgets. In RTSS ’06: Proceedings of the 27th IEEE
International Real-Time Systems Symposium, pages
388–400, 2006.

[6] M. Caccamo and L. Sha. Aperiodic servers with
resource constraints. In IEEE Real-Time Systems
Symposium, pages 161–170, 2001.

[7] R. I. Davis and A. Burns. Hierarchical fixed priority
pre-emptive scheduling. In Proceedings of the 26th

IEEE International Real-Time Systems Symposium
(RTSS’05), December 2005.

[8] R. I. Davis and A. Burns. Resource sharing in
hierarchical fixed priority pre-emptive systems. In
Proceedings of the 27th IEEE International Real-Time
Systems Symposium (RTSS’06), December 2005.

[9] Z. Deng and J. W.-S. Liu. Scheduling real-time
applications in an open environment. In Proc. of IEEE
Real-Time Systems Symposium, pages 308–319,
December 1997.

[10] X. Feng and A. Mok. A model of hierarchical real-time
virtual resources. In Proc. of IEEE Real-Time Systems
Symposium, pages 26–35, December 2002.

[11] N. Fisher, M. Bertogna, and S. Baruah.
Resource-locking durations in edf-scheduled systems.
In 13th IEEE Real Time and Embedded Technology
and Applications Symposium (RTAS’07), pages
91–100, 2007.

[12] P. Holman and J. H. Anderson. Locking under pfair
scheduling. ACM Trans. Comput. Syst.,
24(2):140–174, 2006.

[13] M. Joseph and P. Pandya. Finding response times in a
real-time system. The Computer Journal (British
Computer Society), 29(5):390–395, October 1986.

[14] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri. From
a federated to an integrated architecture for
dependable embedded real-time systems. Technical
Report 22, Technische Universität at Wien, Institut
für Technische Informatik, Treitlstr. 1-3/182-1, 1040
Vienna, Austria, 2004.

[15] T.-W. Kuo and C. Li. A fixed-priority-driven open
environment for real-time applications. In Proc. of
IEEE Real-Time Systems Symposium, pages 256–267,
December 1999.

[16] G. Lipari and S. Baruah. Efficient scheduling of
real-time multi-task applications in dynamic systems.

In Proc. of IEEE Real-Time Technology and
Applications Symposium, pages 166–175, May 2000.

[17] G. Lipari and E. Bini. Resource partitioning among
real-time applications. In Proc. of Euromicro
Conference on Real-Time Systems, July 2003.

[18] G. Lipari, J. Carpenter, and S. Baruah. A framework
for achieving inter-application isolation in
multiprogrammed hard-real-time environments. In
Proc. of IEEE Real-Time Systems Symposium,
December 2000.

[19] G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and
P. Ancilotti. A hierarchical framework for
component-based real-time systems. In
Component-Based Software Engineering, volume
LNCS-3054/2004, pages 209–216. Springer Berlin /
Heidelberg, May 2005.

[20] S. Matic and T. A. Henzinger. Trading end-to-end
latency for composability. In Proc. of IEEE Real-Time
Systems Symposium, pages 99–110, December 2005.

[21] A. Mok, X. Feng, and D. Chen. Resource partition for
real-time systems. In Proc. of IEEE Real-Time
Technology and Applications Symposium, pages 75–84,
May 2001.

[22] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time
synchronization protocols for multiprocessors. In
Proceedings of the 9th IEEE International Real-Time
Systems Symposium (RTSS’88), pages 259–269,
December 1988.

[23] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein.
Analysis of hierarchical fixed-priority scheduling. In
Proc. of Euromicro Conference on Real-Time Systems,
June 2002.

[24] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task
scheduling in distributed real-time systems. In
Proceedings of the International Conference on
Industrial Electronics, Control, and Instrumentation,
pages 909–916, Cambridge, MA, USA, November 1987.

[25] I. Shin and I. Lee. Periodic resource model for
compositional real-time guarantees. In Proc. of IEEE
Real-Time Systems Symposium, pages 2–13, December
2003.

[26] I. Shin and I. Lee. Compositional real-time scheduling
framework. In Proc. of IEEE Real-Time Systems
Symposium, December 2004.

